summaryrefslogtreecommitdiffstats
path: root/cpukit/score/src/smp.c
blob: 7864640829f778bc59b3e50355e3537b75a50795 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
/**
 *  @file
 *
 *  @brief SMP Support
 *  @ingroup RTEMSScore
 */

/*
 *  COPYRIGHT (c) 1989-2011.
 *  On-Line Applications Research Corporation (OAR).
 *
 *  The license and distribution terms for this file may be
 *  found in the file LICENSE in this distribution or at
 *  http://www.rtems.org/license/LICENSE.
 */

#if HAVE_CONFIG_H
#include "config.h"
#endif

#include <rtems/score/smpimpl.h>
#include <rtems/score/assert.h>
#include <rtems/score/schedulerimpl.h>
#include <rtems/score/threadimpl.h>
#include <rtems/config.h>

#if CPU_USE_DEFERRED_FP_SWITCH == TRUE
  #error "deferred FP switch not implemented for SMP"
#endif

Processor_mask _SMP_Online_processors;

uint32_t _SMP_Processor_count;

static const Scheduler_Assignment *_Scheduler_Get_initial_assignment(
  uint32_t cpu_index
)
{
  return &_Scheduler_Initial_assignments[ cpu_index ];
}

static bool _Scheduler_Is_mandatory_processor(
  const Scheduler_Assignment *assignment
)
{
  return (assignment->attributes & SCHEDULER_ASSIGN_PROCESSOR_MANDATORY) != 0;
}

static bool _Scheduler_Should_start_processor(
  const Scheduler_Assignment *assignment
)
{
  return assignment->scheduler != NULL;
}

static void _SMP_Start_processors( uint32_t cpu_count )
{
  uint32_t cpu_index_self;
  uint32_t cpu_index;

  cpu_index_self = _SMP_Get_current_processor();

  for ( cpu_index = 0 ; cpu_index < cpu_count; ++cpu_index ) {
    const Scheduler_Assignment *assignment;
    Per_CPU_Control            *cpu;
    bool                        started;

    assignment = _Scheduler_Get_initial_assignment( cpu_index );
    cpu = _Per_CPU_Get_by_index( cpu_index );

    if ( cpu_index != cpu_index_self ) {
      if ( _Scheduler_Should_start_processor( assignment ) ) {
        started = _CPU_SMP_Start_processor( cpu_index );

        if ( !started && _Scheduler_Is_mandatory_processor( assignment ) ) {
          _SMP_Fatal( SMP_FATAL_START_OF_MANDATORY_PROCESSOR_FAILED );
        }
      } else {
        started = false;
      }
    } else {
      started = true;

      cpu->boot = true;

      if ( !_Scheduler_Should_start_processor( assignment ) ) {
        _SMP_Fatal( SMP_FATAL_BOOT_PROCESSOR_NOT_ASSIGNED_TO_SCHEDULER );
      }
    }

    cpu->online = started;

    if ( started ) {
      const Scheduler_Control *scheduler;
      Scheduler_Context       *context;

      scheduler = assignment->scheduler;
      context = _Scheduler_Get_context( scheduler );

      _Processor_mask_Set( &_SMP_Online_processors, cpu_index );
      _Processor_mask_Set( &context->Processors, cpu_index );
      cpu->Scheduler.control = scheduler;
      cpu->Scheduler.context = context;
    }
  }
}

void _SMP_Handler_initialize( void )
{
  uint32_t cpu_max = rtems_configuration_get_maximum_processors();
  uint32_t cpu_count;
  uint32_t cpu_index;

  for ( cpu_index = 0 ; cpu_index < cpu_max; ++cpu_index ) {
    Per_CPU_Control *cpu = _Per_CPU_Get_by_index( cpu_index );

    _ISR_lock_Initialize( &cpu->Watchdog.Lock, "Watchdog" );
    _SMP_ticket_lock_Initialize( &cpu->Lock );
    _SMP_lock_Stats_initialize( &cpu->Lock_stats, "Per-CPU" );
    _Chain_Initialize_empty( &cpu->Threads_in_need_for_help );
  }

  /*
   * Discover and initialize the secondary cores in an SMP system.
   */

  cpu_count = _CPU_SMP_Initialize();
  cpu_count = cpu_count < cpu_max ? cpu_count : cpu_max;
  _SMP_Processor_count = cpu_count;

  for ( cpu_index = cpu_count ; cpu_index < cpu_max; ++cpu_index ) {
    const Scheduler_Assignment *assignment;

    assignment = _Scheduler_Get_initial_assignment( cpu_index );

    if ( _Scheduler_Is_mandatory_processor( assignment ) ) {
      _SMP_Fatal( SMP_FATAL_MANDATORY_PROCESSOR_NOT_PRESENT );
    }
  }

  _SMP_Start_processors( cpu_count );

  _CPU_SMP_Finalize_initialization( cpu_count );
}

void _SMP_Request_start_multitasking( void )
{
  Per_CPU_Control *cpu_self;
  uint32_t         cpu_count;
  uint32_t         cpu_index;

  cpu_self = _Per_CPU_Get();
  _Per_CPU_State_change( cpu_self, PER_CPU_STATE_READY_TO_START_MULTITASKING );

  cpu_count = _SMP_Get_processor_count();

  for ( cpu_index = 0 ; cpu_index < cpu_count ; ++cpu_index ) {
    Per_CPU_Control *cpu;

    cpu = _Per_CPU_Get_by_index( cpu_index );

    if ( _Per_CPU_Is_processor_online( cpu ) ) {
      _Per_CPU_State_change( cpu, PER_CPU_STATE_REQUEST_START_MULTITASKING );
    }
  }
}

bool _SMP_Should_start_processor( uint32_t cpu_index )
{
  const Scheduler_Assignment *assignment;

  assignment = _Scheduler_Get_initial_assignment( cpu_index );
  return _Scheduler_Should_start_processor( assignment );
}

void _SMP_Start_multitasking_on_secondary_processor(
  Per_CPU_Control *cpu_self
)
{
  uint32_t cpu_index_self;

  cpu_index_self = _Per_CPU_Get_index( cpu_self );

  if ( cpu_index_self >= rtems_configuration_get_maximum_processors() ) {
    _SMP_Fatal( SMP_FATAL_MULTITASKING_START_ON_INVALID_PROCESSOR );
  }

  if ( !_SMP_Should_start_processor( cpu_index_self ) ) {
    _SMP_Fatal( SMP_FATAL_MULTITASKING_START_ON_UNASSIGNED_PROCESSOR );
  }

  _Per_CPU_State_change( cpu_self, PER_CPU_STATE_READY_TO_START_MULTITASKING );

  _Thread_Start_multitasking();
}

void _SMP_Request_shutdown( void )
{
  ISR_Level level;

  _ISR_Local_disable( level );
  (void) level;

  _Per_CPU_State_change( _Per_CPU_Get(), PER_CPU_STATE_SHUTDOWN );
}

void _SMP_Send_message( uint32_t cpu_index, unsigned long message )
{
  Per_CPU_Control *cpu = _Per_CPU_Get_by_index( cpu_index );

  _Atomic_Fetch_or_ulong( &cpu->message, message, ATOMIC_ORDER_RELEASE );

  _CPU_SMP_Send_interrupt( cpu_index );
}

void _SMP_Send_message_broadcast( unsigned long message )
{
  uint32_t cpu_count = _SMP_Get_processor_count();
  uint32_t cpu_index_self = _SMP_Get_current_processor();
  uint32_t cpu_index;

  _Assert( _Debug_Is_thread_dispatching_allowed() );

  for ( cpu_index = 0 ; cpu_index < cpu_count ; ++cpu_index ) {
    if (
      cpu_index != cpu_index_self
        && _Processor_mask_Is_set( &_SMP_Online_processors, cpu_index )
    ) {
      _SMP_Send_message( cpu_index, message );
    }
  }
}

void _SMP_Send_message_multicast(
  const Processor_mask *targets,
  unsigned long         message
)
{
  uint32_t cpu_count = _SMP_Get_processor_count();
  uint32_t cpu_index;

  for ( cpu_index = 0 ; cpu_index < cpu_count ; ++cpu_index ) {
    if ( _Processor_mask_Is_set( targets, cpu_index ) ) {
      _SMP_Send_message( cpu_index, message );
    }
  }
}

bool _SMP_Before_multitasking_action_broadcast(
  SMP_Action_handler  handler,
  void               *arg
)
{
  bool done = true;
  uint32_t cpu_count = _SMP_Get_processor_count();
  uint32_t cpu_index;

  for ( cpu_index = 0 ; done && cpu_index < cpu_count ; ++cpu_index ) {
    Per_CPU_Control *cpu = _Per_CPU_Get_by_index( cpu_index );

    if (
      !_Per_CPU_Is_boot_processor( cpu )
        && _Per_CPU_Is_processor_online( cpu )
    ) {
      done = _SMP_Before_multitasking_action( cpu, handler, arg );
    }
  }

  return done;
}

SMP_Test_message_handler _SMP_Test_message_handler;