summaryrefslogtreecommitdiffstats
path: root/cpukit/score/include/rtems/score/heap.h
blob: 9208d17ef429516b78235a063d1eb34100f34d1c (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
/**
 * @file
 *
 * @ingroup ScoreHeap
 *
 * @brief Heap Handler API.
 */

/*
 *  COPYRIGHT (c) 1989-2006.
 *  On-Line Applications Research Corporation (OAR).
 *
 *  The license and distribution terms for this file may be
 *  found in the file LICENSE in this distribution or at
 *  http://www.rtems.com/license/LICENSE.
 */

#ifndef _RTEMS_SCORE_HEAP_H
#define _RTEMS_SCORE_HEAP_H

#include <rtems/system.h>
#include <rtems/score/thread.h>

#ifdef __cplusplus
extern "C" {
#endif

#ifdef RTEMS_DEBUG
  #define HEAP_PROTECTION
#endif

/**
 * @defgroup ScoreHeap Heap Handler
 *
 * @ingroup Score
 *
 * @brief The Heap Handler provides a heap.
 *
 * A heap is a doubly linked list of variable size blocks which are allocated
 * using the first fit method.  Garbage collection is performed each time a
 * block is returned to the heap by coalescing neighbor blocks.  Control
 * information for both allocated and free blocks is contained in the heap
 * area.  A heap control structure contains control information for the heap.
 *
 * The alignment routines could be made faster should we require only powers of
 * two to be supported for page size, alignment and boundary arguments.  The
 * minimum alignment requirement for pages is currently CPU_ALIGNMENT and this
 * value is only required to be multiple of two and explicitly not required to
 * be a power of two.
 *
 * There are two kinds of blocks.  One sort describes a free block from which
 * we can allocate memory.  The other blocks are used and provide an allocated
 * memory area.  The free blocks are accessible via a list of free blocks.
 *
 * Blocks or areas cover a continuous set of memory addresses. They have a
 * begin and end address.  The end address is not part of the set.  The size of
 * a block or area equals the distance between the begin and end address in
 * units of bytes.
 *
 * Free blocks look like:
 * <table>
 *   <tr>
 *     <td rowspan=4>@ref Heap_Block</td><td>previous block size in case the
 *       previous block is free, <br> otherwise it may contain data used by
 *       the previous block</td>
 *   </tr>
 *   <tr>
 *     <td>block size and a flag which indicates if the previous block is free
 *       or used, <br> this field contains always valid data regardless of the
 *       block usage</td>
 *   </tr>
 *   <tr><td>pointer to next block (this field is page size aligned)</td></tr>
 *   <tr><td>pointer to previous block</td></tr>
 *   <tr><td colspan=2>free space</td></tr>
 * </table>
 *
 * Used blocks look like:
 * <table>
 *   <tr>
 *     <td rowspan=4>@ref Heap_Block</td><td>previous block size in case the
 *       previous block is free,<br>otherwise it may contain data used by
 *       the previous block</td>
 *   </tr>
 *   <tr>
 *     <td>block size and a flag which indicates if the previous block is free
 *       or used, <br> this field contains always valid data regardless of the
 *       block usage</td>
 *   </tr>
 *   <tr><td>begin of allocated area (this field is page size aligned)</td></tr>
 *   <tr><td>allocated space</td></tr>
 *   <tr><td colspan=2>allocated space</td></tr>
 * </table>
 *
 * The heap area after initialization contains two blocks and looks like:
 * <table>
 *   <tr><th>Label</th><th colspan=2>Content</th></tr>
 *   <tr><td>heap->area_begin</td><td colspan=2>heap area begin address</td></tr>
 *   <tr>
 *     <td>first_block->prev_size</td>
 *     <td colspan=2>
 *       subordinate heap area end address (this will be used to maintain a
 *       linked list of scattered heap areas)
 *     </td>
 *   </tr>
 *   <tr>
 *     <td>first_block->size</td>
 *     <td colspan=2>size available for allocation
 *       | @c HEAP_PREV_BLOCK_USED</td>
 *   </tr>
 *   <tr>
 *     <td>first_block->next</td><td>_Heap_Free_list_tail(heap)</td>
 *     <td rowspan=3>memory area available for allocation</td>
 *   </tr>
 *   <tr><td>first_block->prev</td><td>_Heap_Free_list_head(heap)</td></tr>
 *   <tr><td>...</td></tr>
 *   <tr>
 *     <td>last_block->prev_size</td><td colspan=2>size of first block</td>
 *   </tr>
 *   <tr>
 *     <td>last_block->size</td>
 *     <td colspan=2>first block begin address - last block begin address</td>
 *   </tr>
 *   <tr><td>heap->area_end</td><td colspan=2>heap area end address</td></tr>
 * </table>
 * The next block of the last block is the first block.  Since the first
 * block indicates that the previous block is used, this ensures that the
 * last block appears as used for the _Heap_Is_used() and _Heap_Is_free()
 * functions.
 *
 * @{
 */

typedef struct Heap_Control Heap_Control;

typedef struct Heap_Block Heap_Block;

#ifndef HEAP_PROTECTION
  #define HEAP_PROTECTION_HEADER_SIZE 0
#else
  #define HEAP_PROTECTOR_COUNT 2

  #define HEAP_BEGIN_PROTECTOR_0 ((uintptr_t) 0xfd75a98f)
  #define HEAP_BEGIN_PROTECTOR_1 ((uintptr_t) 0xbfa1f177)
  #define HEAP_END_PROTECTOR_0 ((uintptr_t) 0xd6b8855e)
  #define HEAP_END_PROTECTOR_1 ((uintptr_t) 0x13a44a5b)

  #define HEAP_FREE_PATTERN ((uintptr_t) 0xe7093cdf)

  #define HEAP_PROTECTION_OBOLUS ((Heap_Block *) 1)

  typedef void (*_Heap_Protection_handler)(
     Heap_Control *heap,
     Heap_Block *block
  );

  typedef struct {
    _Heap_Protection_handler block_initialize;
    _Heap_Protection_handler block_check;
    _Heap_Protection_handler block_error;
    void *handler_data;
    Heap_Block *first_delayed_free_block;
    Heap_Block *last_delayed_free_block;
    uintptr_t delayed_free_block_count;
  } Heap_Protection;

  typedef struct {
    uintptr_t protector [HEAP_PROTECTOR_COUNT];
    Heap_Block *next_delayed_free_block;
    Thread_Control *task;
    void *tag;
  } Heap_Protection_block_begin;

  typedef struct {
    uintptr_t protector [HEAP_PROTECTOR_COUNT];
  } Heap_Protection_block_end;

  #define HEAP_PROTECTION_HEADER_SIZE \
    (sizeof(Heap_Protection_block_begin) + sizeof(Heap_Protection_block_end))
#endif

/**
 * @brief See also @ref Heap_Block.size_and_flag.
 */
#define HEAP_PREV_BLOCK_USED ((uintptr_t) 1)

/**
 * @brief Size of the part at the block begin which may be used for allocation
 * in charge of the previous block.
 */
#define HEAP_ALLOC_BONUS sizeof(uintptr_t)

/**
 * @brief The block header consists of the two size fields
 * (@ref Heap_Block.prev_size and @ref Heap_Block.size_and_flag).
 */
#define HEAP_BLOCK_HEADER_SIZE \
  (2 * sizeof(uintptr_t) + HEAP_PROTECTION_HEADER_SIZE)

/**
 * @brief Description for free or used blocks.
 */
struct Heap_Block {
  /**
   * @brief Size of the previous block or part of the allocated area of the
   * previous block.
   *
   * This field is only valid if the previous block is free.  This case is
   * indicated by a cleared @c HEAP_PREV_BLOCK_USED flag in the
   * @a size_and_flag field of the current block.
   *
   * In a used block only the @a size_and_flag field needs to be valid.  The
   * @a prev_size field of the current block is maintained by the previous
   * block.  The current block can use the @a prev_size field in the next block
   * for allocation.
   */
  uintptr_t prev_size;

  #ifdef HEAP_PROTECTION
    Heap_Protection_block_begin Protection_begin;
  #endif

  /**
   * @brief Contains the size of the current block and a flag which indicates
   * if the previous block is free or used.
   *
   * If the flag @c HEAP_PREV_BLOCK_USED is set, then the previous block is
   * used, otherwise the previous block is free.  A used previous block may
   * claim the @a prev_size field for allocation.  This trick allows to
   * decrease the overhead in the used blocks by the size of the @a prev_size
   * field.  As sizes are required to be multiples of two, the least
   * significant bits would be always zero. We use this bit to store the flag.
   *
   * This field is always valid.
   */
  uintptr_t size_and_flag;

  #ifdef HEAP_PROTECTION
    Heap_Protection_block_end Protection_end;
  #endif

  /**
   * @brief Pointer to the next free block or part of the allocated area.
   *
   * This field is page size aligned and begins of the allocated area in case
   * the block is used.
   *
   * This field is only valid if the block is free and thus part of the free
   * block list.
   */
  Heap_Block *next;

  /**
   * @brief Pointer to the previous free block or part of the allocated area.
   *
   * This field is only valid if the block is free and thus part of the free
   * block list.
   */
  Heap_Block *prev;
};

/**
 * @brief Run-time heap statistics.
 *
 * The value @a searches / @a allocs gives the mean number of searches per
 * allocation, while @a max_search gives maximum number of searches ever
 * performed on a single allocation call.
 */
typedef struct {
  /**
   * @brief Instance number of this heap.
   */
  uint32_t instance;

  /**
   * @brief Size of the allocatable area in bytes.
   *
   * This value is an integral multiple of the page size.
   */
  uintptr_t size;

  /**
   * @brief Current free size in bytes.
   *
   * This value is an integral multiple of the page size.
   */
  uintptr_t free_size;

  /**
   * @brief Minimum free size ever in bytes.
   *
   * This value is an integral multiple of the page size.
   */
  uintptr_t min_free_size;

  /**
   * @brief Current number of free blocks.
   */
  uint32_t free_blocks;

  /**
   * @brief Maximum number of free blocks ever.
   */
  uint32_t max_free_blocks;

  /**
   * @brief Current number of used blocks.
   */
  uint32_t used_blocks;

  /**
   * @brief Maximum number of blocks searched ever.
   */
  uint32_t max_search;

  /**
   * @brief Total number of successful allocations.
   */
  uint32_t allocs;

  /**
   * @brief Total number of searches ever.
   */
  uint32_t searches;

  /**
   * @brief Total number of suceessful calls to free.
   */
  uint32_t frees;

  /**
   * @brief Total number of successful resizes.
   */
  uint32_t resizes;
} Heap_Statistics;

/**
 * @brief Control block used to manage a heap.
 */
struct Heap_Control {
  Heap_Block free_list;
  uintptr_t page_size;
  uintptr_t min_block_size;
  uintptr_t area_begin;
  uintptr_t area_end;
  Heap_Block *first_block;
  Heap_Block *last_block;
  Heap_Statistics stats;
  #ifdef HEAP_PROTECTION
    Heap_Protection Protection;
  #endif
};

/**
 * @brief Information about blocks.
 */
typedef struct {
  /**
   * @brief Number of blocks of this type.
   */
  uint32_t number;

  /**
   * @brief Largest block of this type.
   */
  uint32_t largest;

  /**
   * @brief Total size of the blocks of this type.
   */
  uint32_t total;
} Heap_Information;

/**
 * @brief Information block returned by _Heap_Get_information().
 */
typedef struct {
  Heap_Information Free;
  Heap_Information Used;
} Heap_Information_block;

/**
 * @brief See _Heap_Resize_block().
 */
typedef enum {
  HEAP_RESIZE_SUCCESSFUL,
  HEAP_RESIZE_UNSATISFIED,
  HEAP_RESIZE_FATAL_ERROR
} Heap_Resize_status;

/**
 * @brief Gets the first and last block for the heap area with begin
 * @a heap_area_begin and size @a heap_area_size.
 *
 * A page size of @a page_size and minimal block size of @a min_block_size will
 * be used for calculation.
 *
 * Nothing will be written to this area.
 *
 * In case of success the pointers to the first and last block will be returned
 * via @a first_block_ptr and @a last_block_ptr.
 *
 * Returns @c true if the area is big enough, and @c false otherwise.
 */
bool _Heap_Get_first_and_last_block(
  uintptr_t heap_area_begin,
  uintptr_t heap_area_size,
  uintptr_t page_size,
  uintptr_t min_block_size,
  Heap_Block **first_block_ptr,
  Heap_Block **last_block_ptr
);

/**
 * @brief Initializes the heap control block @a heap to manage the area
 * starting at @a area_begin of size @a area_size bytes.
 *
 * Blocks of memory are allocated from the heap in multiples of @a page_size
 * byte units.  If the @a page_size is equal to zero or is not multiple of
 * @c CPU_ALIGNMENT, it is aligned up to the nearest @c CPU_ALIGNMENT boundary.
 *
 * Returns the maximum memory available, or zero in case of failure.
 */
uintptr_t _Heap_Initialize(
  Heap_Control *heap,
  void *area_begin,
  uintptr_t area_size,
  uintptr_t page_size
);

/**
 * @brief Extends the memory available for the heap @a heap using the memory
 * area starting at @a area_begin of size @a area_size bytes.
 *
 * The extended space available for allocation will be returned in
 * @a amount_extended.  This pointer may be @c NULL.
 *
 * There are no alignment requirements.  The memory area must be big enough to
 * contain some maintainance blocks.  It must not overlap parts of the current
 * heap areas.  Disconnected subordinate heap areas will lead to used blocks
 * which cover the gaps.  Extending with an inappropriate memory area will
 * corrupt the heap.
 *
 * Returns @c true in case of success, and @c false otherwise.
 */
bool _Heap_Extend(
  Heap_Control *heap,
  void *area_begin,
  uintptr_t area_size,
  uintptr_t *amount_extended
);

/**
 * @brief Allocates a memory area of size @a size bytes from the heap @a heap.
 *
 * If the alignment parameter @a alignment is not equal to zero, the allocated
 * memory area will begin at an address aligned by this value.
 *
 * If the boundary parameter @a boundary is not equal to zero, the allocated
 * memory area will fulfill a boundary constraint.  The boundary value
 * specifies the set of addresses which are aligned by the boundary value.  The
 * interior of the allocated memory area will not contain an element of this
 * set.  The begin or end address of the area may be a member of the set.
 *
 * A size value of zero will return a unique address which may be freed with
 * _Heap_Free().
 *
 * Returns a pointer to the begin of the allocated memory area, or @c NULL if
 * no memory is available or the parameters are inconsistent.
 */
void *_Heap_Allocate_aligned_with_boundary(
  Heap_Control *heap,
  uintptr_t size,
  uintptr_t alignment,
  uintptr_t boundary
);

/**
 * @brief See _Heap_Allocate_aligned_with_boundary() with boundary equals zero.
 */
RTEMS_INLINE_ROUTINE void *_Heap_Allocate_aligned(
  Heap_Control *heap,
  uintptr_t size,
  uintptr_t alignment
)
{
  return _Heap_Allocate_aligned_with_boundary( heap, size, alignment, 0 );
}

/**
 * @brief See _Heap_Allocate_aligned_with_boundary() with alignment and
 * boundary equals zero.
 */
RTEMS_INLINE_ROUTINE void *_Heap_Allocate( Heap_Control *heap, uintptr_t size )
{
  return _Heap_Allocate_aligned_with_boundary( heap, size, 0, 0 );
}

/**
 * @brief Frees the allocated memory area starting at @a addr in the heap
 * @a heap.
 *
 * Inappropriate values for @a addr may corrupt the heap.
 *
 * Returns @c true in case of success, and @c false otherwise.
 */
bool _Heap_Free( Heap_Control *heap, void *addr );

/**
 * @brief Walks the heap @a heap to verify its integrity.
 *
 * If @a dump is @c true, then diagnostic messages will be printed to standard
 * output.  In this case @a source is used to mark the output lines.
 *
 * Returns @c true if no errors occured, and @c false if the heap is corrupt.
 */
bool _Heap_Walk(
  Heap_Control *heap,
  int source,
  bool dump
);

/**
 * @brief Heap block visitor.
 *
 * @see _Heap_Iterate().
 *
 * @retval true Stop the iteration.
 * @retval false Continue the iteration.
 */
typedef bool (*Heap_Block_visitor)(
  const Heap_Block *block,
  uintptr_t block_size,
  bool block_is_used,
  void *visitor_arg
);

/**
 * @brief Iterates over all blocks of the heap.
 *
 * For each block the @a visitor with the argument @a visitor_arg will be
 * called.
 */
void _Heap_Iterate(
  Heap_Control *heap,
  Heap_Block_visitor visitor,
  void *visitor_arg
);

/**
 * @brief Greedy allocate that empties the heap.
 *
 * Afterward the heap has at most @a remaining_free_space free space left in
 * one free block.  All other blocks are used.
 *
 * @see _Heap_Greedy_free().
 */
Heap_Block *_Heap_Greedy_allocate(
  Heap_Control *heap,
  uintptr_t remaining_free_space
);

/**
 * @brief Frees blocks of a greedy allocation.
 *
 * The @a blocks must be the return value of _Heap_Greedy_allocate().
 */
void _Heap_Greedy_free(
  Heap_Control *heap,
  Heap_Block *blocks
);

/**
 * @brief Returns information about used and free blocks for the heap @a heap
 * in @a info.
 */
void _Heap_Get_information(
  Heap_Control *heap,
  Heap_Information_block *info
);

/**
 * @brief Returns information about free blocks for the heap @a heap in
 * @a info.
 */
void _Heap_Get_free_information(
  Heap_Control *heap,
  Heap_Information *info
);

/**
 * @brief Returns the size of the allocatable memory area starting at @a addr
 * in @a size.
 *
 * The size value may be greater than the initially requested size in
 * _Heap_Allocate_aligned_with_boundary().
 *
 * Inappropriate values for @a addr will not corrupt the heap, but may yield
 * invalid size values.
 *
 * Returns @a true if successful, and @c false otherwise.
 */
bool _Heap_Size_of_alloc_area(
  Heap_Control *heap,
  void *addr,
  uintptr_t *size
);

/**
 * @brief Resizes the block of the allocated memory area starting at @a addr.
 *
 * The new memory area will have a size of at least @a size bytes.  A resize
 * may be impossible and depends on the current heap usage.
 *
 * The size available for allocation in the current block before the resize
 * will be returned in @a old_size.  The size available for allocation in
 * the resized block will be returned in @a new_size.  If the resize was not
 * successful, then a value of zero will be returned in @a new_size.
 *
 * Inappropriate values for @a addr may corrupt the heap.
 */
Heap_Resize_status _Heap_Resize_block(
  Heap_Control *heap,
  void *addr,
  uintptr_t size,
  uintptr_t *old_size,
  uintptr_t *new_size
);

#if !defined(__RTEMS_APPLICATION__)

#include <rtems/score/heap.inl>

/**
 * @brief Allocates the memory area starting at @a alloc_begin of size
 * @a alloc_size bytes in the block @a block.
 *
 * The block may be split up into multiple blocks.  The previous and next block
 * may be used or free.  Free block parts which form a vaild new block will be
 * inserted into the free list or merged with an adjacent free block.  If the
 * block is used, they will be inserted after the free list head.  If the block
 * is free, they will be inserted after the previous block in the free list.
 *
 * Inappropriate values for @a alloc_begin or @a alloc_size may corrupt the
 * heap.
 *
 * Returns the block containing the allocated memory area.
 */
Heap_Block *_Heap_Block_allocate(
  Heap_Control *heap,
  Heap_Block *block,
  uintptr_t alloc_begin,
  uintptr_t alloc_size
);

#ifndef HEAP_PROTECTION
  #define _Heap_Protection_block_initialize( heap, block ) ((void) 0)
  #define _Heap_Protection_block_check( heap, block ) ((void) 0)
  #define _Heap_Protection_block_error( heap, block ) ((void) 0)
#else
  static inline void _Heap_Protection_block_initialize(
    Heap_Control *heap,
    Heap_Block *block
  )
  {
    (*heap->Protection.block_initialize)( heap, block );
  }

  static inline void _Heap_Protection_block_check(
    Heap_Control *heap,
    Heap_Block *block
  )
  {
    (*heap->Protection.block_check)( heap, block );
  }

  static inline void _Heap_Protection_block_error(
    Heap_Control *heap,
    Heap_Block *block
  )
  {
    (*heap->Protection.block_error)( heap, block );
  }
#endif

/** @} */

#ifdef RTEMS_DEBUG
  #define RTEMS_HEAP_DEBUG
#endif

#ifdef RTEMS_HEAP_DEBUG
  #include <assert.h>
  #define _HAssert( cond ) \
    do { \
      if ( !(cond) ) { \
        __assert( __FILE__, __LINE__, #cond ); \
      } \
    } while (0)
#else
  #define _HAssert( cond ) ((void) 0)
#endif

#endif /* !defined(__RTEMS_APPLICATION__) */

#ifdef __cplusplus
}
#endif

#endif
/* end of include file */