summaryrefslogtreecommitdiffstats
path: root/cpukit/score/cpu/sparc/cpu.c
blob: f96d1ea786a5acee4bd265ee38fd85fa7af2bbcd (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
/**
 *  @file
 *
 *  @brief SPARC CPU Dependent Source
 */

/*
 *  COPYRIGHT (c) 1989-2007.
 *  On-Line Applications Research Corporation (OAR).
 *
 *  The license and distribution terms for this file may be
 *  found in the file LICENSE in this distribution or at
 *  http://www.rtems.org/license/LICENSE.
 */

#ifdef HAVE_CONFIG_H
#include "config.h"
#endif

#include <rtems/system.h>
#include <rtems/score/isr.h>
#include <rtems/score/percpu.h>
#include <rtems/score/tls.h>
#include <rtems/rtems/cache.h>

RTEMS_STATIC_ASSERT(
  offsetof( Per_CPU_Control, cpu_per_cpu.isr_dispatch_disable)
    == SPARC_PER_CPU_ISR_DISPATCH_DISABLE,
  SPARC_PER_CPU_ISR_DISPATCH_DISABLE
);

#define SPARC_ASSERT_OFFSET(field, off) \
  RTEMS_STATIC_ASSERT( \
    offsetof(Context_Control, field) == off ## _OFFSET, \
    Context_Control_offset_ ## field \
  )

SPARC_ASSERT_OFFSET(g5, G5);
SPARC_ASSERT_OFFSET(g7, G7);

RTEMS_STATIC_ASSERT(
  offsetof(Context_Control, l0_and_l1) == L0_OFFSET,
  Context_Control_offset_L0
);

RTEMS_STATIC_ASSERT(
  offsetof(Context_Control, l0_and_l1) + 4 == L1_OFFSET,
  Context_Control_offset_L1
);

SPARC_ASSERT_OFFSET(l2, L2);
SPARC_ASSERT_OFFSET(l3, L3);
SPARC_ASSERT_OFFSET(l4, L4);
SPARC_ASSERT_OFFSET(l5, L5);
SPARC_ASSERT_OFFSET(l6, L6);
SPARC_ASSERT_OFFSET(l7, L7);
SPARC_ASSERT_OFFSET(i0, I0);
SPARC_ASSERT_OFFSET(i1, I1);
SPARC_ASSERT_OFFSET(i2, I2);
SPARC_ASSERT_OFFSET(i3, I3);
SPARC_ASSERT_OFFSET(i4, I4);
SPARC_ASSERT_OFFSET(i5, I5);
SPARC_ASSERT_OFFSET(i6_fp, I6_FP);
SPARC_ASSERT_OFFSET(i7, I7);
SPARC_ASSERT_OFFSET(o6_sp, O6_SP);
SPARC_ASSERT_OFFSET(o7, O7);
SPARC_ASSERT_OFFSET(psr, PSR);
SPARC_ASSERT_OFFSET(isr_dispatch_disable, ISR_DISPATCH_DISABLE_STACK);

#if defined(RTEMS_SMP)
SPARC_ASSERT_OFFSET(is_executing, SPARC_CONTEXT_CONTROL_IS_EXECUTING);
#endif

#define SPARC_ASSERT_ISF_OFFSET(field, off) \
  RTEMS_STATIC_ASSERT( \
    offsetof(CPU_Interrupt_frame, field) == ISF_ ## off ## _OFFSET, \
    CPU_Interrupt_frame_offset_ ## field \
  )

SPARC_ASSERT_ISF_OFFSET(psr, PSR);
SPARC_ASSERT_ISF_OFFSET(pc, PC);
SPARC_ASSERT_ISF_OFFSET(npc, NPC);
SPARC_ASSERT_ISF_OFFSET(g1, G1);
SPARC_ASSERT_ISF_OFFSET(g2, G2);
SPARC_ASSERT_ISF_OFFSET(g3, G3);
SPARC_ASSERT_ISF_OFFSET(g4, G4);
SPARC_ASSERT_ISF_OFFSET(g5, G5);
SPARC_ASSERT_ISF_OFFSET(g7, G7);
SPARC_ASSERT_ISF_OFFSET(i0, I0);
SPARC_ASSERT_ISF_OFFSET(i1, I1);
SPARC_ASSERT_ISF_OFFSET(i2, I2);
SPARC_ASSERT_ISF_OFFSET(i3, I3);
SPARC_ASSERT_ISF_OFFSET(i4, I4);
SPARC_ASSERT_ISF_OFFSET(i5, I5);
SPARC_ASSERT_ISF_OFFSET(i6_fp, I6_FP);
SPARC_ASSERT_ISF_OFFSET(i7, I7);
SPARC_ASSERT_ISF_OFFSET(y, Y);
SPARC_ASSERT_ISF_OFFSET(tpc, TPC);

RTEMS_STATIC_ASSERT(
  sizeof(CPU_Interrupt_frame) == CONTEXT_CONTROL_INTERRUPT_FRAME_SIZE,
  CPU_Interrupt_frame_size
);

/* https://devel.rtems.org/ticket/2352 */
RTEMS_STATIC_ASSERT(
  sizeof(CPU_Interrupt_frame) % CPU_ALIGNMENT == 0,
  CPU_Interrupt_frame_alignment
);

/*
 *  _CPU_Initialize
 *
 *  This routine performs processor dependent initialization.
 *
 *  INPUT PARAMETERS: NONE
 *
 *  Output Parameters: NONE
 *
 *  NOTE: There is no need to save the pointer to the thread dispatch routine.
 *        The SPARC's assembly code can reference it directly with no problems.
 */

void _CPU_Initialize(void)
{
#if (SPARC_HAS_FPU == 1)
  Context_Control_fp *pointer;

  /*
   *  This seems to be the most appropriate way to obtain an initial
   *  FP context on the SPARC.  The NULL fp context is copied it to
   *  the task's FP context during Context_Initialize.
   */

  pointer = &_CPU_Null_fp_context;
  _CPU_Context_save_fp( &pointer );
#endif
}

uint32_t   _CPU_ISR_Get_level( void )
{
  uint32_t   level;

  sparc_get_interrupt_level( level );

  return level;
}

/*
 *  _CPU_ISR_install_raw_handler
 *
 *  This routine installs the specified handler as a "raw" non-executive
 *  supported trap handler (a.k.a. interrupt service routine).
 *
 *  Input Parameters:
 *    vector      - trap table entry number plus synchronous
 *                    vs. asynchronous information
 *    new_handler - address of the handler to be installed
 *    old_handler - pointer to an address of the handler previously installed
 *
 *  Output Parameters: NONE
 *    *new_handler - address of the handler previously installed
 *
 *  NOTE:
 *
 *  On the SPARC, there are really only 256 vectors.  However, the executive
 *  has no easy, fast, reliable way to determine which traps are synchronous
 *  and which are asynchronous.  By default, synchronous traps return to the
 *  instruction which caused the interrupt.  So if you install a software
 *  trap handler as an executive interrupt handler (which is desirable since
 *  RTEMS takes care of window and register issues), then the executive needs
 *  to know that the return address is to the trap rather than the instruction
 *  following the trap.
 *
 *  So vectors 0 through 255 are treated as regular asynchronous traps which
 *  provide the "correct" return address.  Vectors 256 through 512 are assumed
 *  by the executive to be synchronous and to require that the return address
 *  be fudged.
 *
 *  If you use this mechanism to install a trap handler which must reexecute
 *  the instruction which caused the trap, then it should be installed as
 *  an asynchronous trap.  This will avoid the executive changing the return
 *  address.
 */

void _CPU_ISR_install_raw_handler(
  uint32_t    vector,
  proc_ptr    new_handler,
  proc_ptr   *old_handler
)
{
  uint32_t               real_vector;
  CPU_Trap_table_entry  *tbr;
  CPU_Trap_table_entry  *slot;
  uint32_t               u32_tbr;
  uint32_t               u32_handler;

  /*
   *  Get the "real" trap number for this vector ignoring the synchronous
   *  versus asynchronous indicator included with our vector numbers.
   */

  real_vector = SPARC_REAL_TRAP_NUMBER( vector );

  /*
   *  Get the current base address of the trap table and calculate a pointer
   *  to the slot we are interested in.
   */

  sparc_get_tbr( u32_tbr );

  u32_tbr &= 0xfffff000;

  tbr = (CPU_Trap_table_entry *) u32_tbr;

  slot = &tbr[ real_vector ];

  /*
   *  Get the address of the old_handler from the trap table.
   *
   *  NOTE: The old_handler returned will be bogus if it does not follow
   *        the RTEMS model.
   */

#define HIGH_BITS_MASK   0xFFFFFC00
#define HIGH_BITS_SHIFT  10
#define LOW_BITS_MASK    0x000003FF

  if ( slot->mov_psr_l0 == _CPU_Trap_slot_template.mov_psr_l0 ) {
    u32_handler =
      (slot->sethi_of_handler_to_l4 << HIGH_BITS_SHIFT) |
      (slot->jmp_to_low_of_handler_plus_l4 & LOW_BITS_MASK);
    *old_handler = (proc_ptr) u32_handler;
  } else
    *old_handler = 0;

  /*
   *  Copy the template to the slot and then fix it.
   */

  *slot = _CPU_Trap_slot_template;

  u32_handler = (uint32_t) new_handler;

  slot->mov_vector_l3 |= vector;
  slot->sethi_of_handler_to_l4 |=
    (u32_handler & HIGH_BITS_MASK) >> HIGH_BITS_SHIFT;
  slot->jmp_to_low_of_handler_plus_l4 |= (u32_handler & LOW_BITS_MASK);

  /*
   * There is no instruction cache snooping, so we need to invalidate
   * the instruction cache to make sure that the processor sees the
   * changes to the trap table. This step is required on both single-
   * and multiprocessor systems.
   *
   * In a SMP configuration a change to the trap table might be
   * missed by other cores. If the system state is up, the other
   * cores can be notified using SMP messages that they need to
   * flush their icache. If the up state has not been reached
   * there is no need to notify other cores. They will do an
   * automatic flush of the icache just after entering the up
   * state, but before enabling interrupts.
   */
  rtems_cache_invalidate_entire_instruction();
}

void _CPU_ISR_install_vector(
  uint32_t    vector,
  proc_ptr    new_handler,
  proc_ptr   *old_handler
)
{
   uint32_t   real_vector;
   proc_ptr   ignored;

  /*
   *  Get the "real" trap number for this vector ignoring the synchronous
   *  versus asynchronous indicator included with our vector numbers.
   */

   real_vector = SPARC_REAL_TRAP_NUMBER( vector );

   /*
    *  Return the previous ISR handler.
    */

   *old_handler = _ISR_Vector_table[ real_vector ];

   /*
    *  Install the wrapper so this ISR can be invoked properly.
    */

   _CPU_ISR_install_raw_handler( vector, _ISR_Handler, &ignored );

   /*
    *  We put the actual user ISR address in '_ISR_vector_table'.  This will
    *  be used by the _ISR_Handler so the user gets control.
    */

    _ISR_Vector_table[ real_vector ] = new_handler;
}

void _CPU_Context_Initialize(
  Context_Control  *the_context,
  uint32_t         *stack_base,
  uint32_t          size,
  uint32_t          new_level,
  void             *entry_point,
  bool              is_fp,
  void             *tls_area
)
{
    uint32_t     stack_high;  /* highest "stack aligned" address */
    uint32_t     tmp_psr;

    /*
     *  On CPUs with stacks which grow down (i.e. SPARC), we build the stack
     *  based on the stack_high address.
     */

    stack_high = ((uint32_t)(stack_base) + size);
    stack_high &= ~(CPU_STACK_ALIGNMENT - 1);

    /*
     *  See the README in this directory for a diagram of the stack.
     */

    the_context->o7    = ((uint32_t) entry_point) - 8;
    the_context->o6_sp = stack_high - CPU_MINIMUM_STACK_FRAME_SIZE;
    the_context->i6_fp = 0;

    /*
     *  Build the PSR for the task.  Most everything can be 0 and the
     *  CWP is corrected during the context switch.
     *
     *  The EF bit determines if the floating point unit is available.
     *  The FPU is ONLY enabled if the context is associated with an FP task
     *  and this SPARC model has an FPU.
     */

    sparc_get_psr( tmp_psr );
    tmp_psr &= ~SPARC_PSR_PIL_MASK;
    tmp_psr |= (new_level << 8) & SPARC_PSR_PIL_MASK;
    tmp_psr &= ~SPARC_PSR_EF_MASK;      /* disabled by default */

#if (SPARC_HAS_FPU == 1)
    /*
     *  If this bit is not set, then a task gets a fault when it accesses
     *  a floating point register.  This is a nice way to detect floating
     *  point tasks which are not currently declared as such.
     */

    if ( is_fp )
      tmp_psr |= SPARC_PSR_EF_MASK;
#endif
    the_context->psr = tmp_psr;

  /*
   *  Since THIS thread is being created, there is no way that THIS
   *  thread can have an _ISR_Dispatch stack frame on its stack.
   */
    the_context->isr_dispatch_disable = 0;

  if ( tls_area != NULL ) {
    void *tcb = _TLS_TCB_after_TLS_block_initialize( tls_area );

    the_context->g7 = (uintptr_t) tcb;
  }
}