summaryrefslogtreecommitdiffstats
path: root/cpukit/score/cpu/powerpc/rtems/score/cpu.h
blob: 91f8f633428f988879784874b68831708c8b8481 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
/**
 * @file
 * 
 * @brief PowerPC CPU Department Source
 */

/*
 *  COPYRIGHT (c) 1989-2012.
 *  On-Line Applications Research Corporation (OAR).
 *
 *  COPYRIGHT (c) 1995 i-cubed ltd.
 *
 *  To anyone who acknowledges that this file is provided "AS IS"
 *  without any express or implied warranty:
 *      permission to use, copy, modify, and distribute this file
 *      for any purpose is hereby granted without fee, provided that
 *      the above copyright notice and this notice appears in all
 *      copies, and that the name of i-cubed limited not be used in
 *      advertising or publicity pertaining to distribution of the
 *      software without specific, written prior permission.
 *      i-cubed limited makes no representations about the suitability
 *      of this software for any purpose.
 *
 *  Copyright (c) 2001 Andy Dachs <a.dachs@sstl.co.uk>.
 *
 *  Copyright (c) 2001 Surrey Satellite Technology Limited (SSTL).
 *
 *  Copyright (c) 2010, 2016 embedded brains GmbH.
 *
 *  The license and distribution terms for this file may be
 *  found in the file LICENSE in this distribution or at
 *  http://www.rtems.org/license/LICENSE.
 */

#ifndef _RTEMS_SCORE_CPU_H
#define _RTEMS_SCORE_CPU_H

#include <rtems/score/types.h>
#include <rtems/score/powerpc.h>
#include <rtems/powerpc/registers.h>

#ifndef ASM
  #include <string.h> /* for memset() */
#endif

#ifdef __cplusplus
extern "C" {
#endif

/* conditional compilation parameters */

/*
 *  Does this port provide a CPU dependent IDLE task implementation?
 *
 *  If TRUE, then the routine _CPU_Thread_Idle_body
 *  must be provided and is the default IDLE thread body instead of
 *  _CPU_Thread_Idle_body.
 *
 *  If FALSE, then use the generic IDLE thread body if the BSP does
 *  not provide one.
 *
 *  This is intended to allow for supporting processors which have
 *  a low power or idle mode.  When the IDLE thread is executed, then
 *  the CPU can be powered down.
 *
 *  The order of precedence for selecting the IDLE thread body is:
 *
 *    1.  BSP provided
 *    2.  CPU dependent (if provided)
 *    3.  generic (if no BSP and no CPU dependent)
 */

#define CPU_PROVIDES_IDLE_THREAD_BODY    FALSE

/*
 *  Does the stack grow up (toward higher addresses) or down
 *  (toward lower addresses)?
 *
 *  If TRUE, then the grows upward.
 *  If FALSE, then the grows toward smaller addresses.
 */

#define CPU_STACK_GROWS_UP               FALSE

#define CPU_CACHE_LINE_BYTES PPC_STRUCTURE_ALIGNMENT

#define CPU_STRUCTURE_ALIGNMENT RTEMS_ALIGNED( CPU_CACHE_LINE_BYTES )

/*
 *  Define what is required to specify how the network to host conversion
 *  routines are handled.
 */

#if defined(__BIG_ENDIAN__) || defined(_BIG_ENDIAN)
#define CPU_BIG_ENDIAN                           TRUE
#define CPU_LITTLE_ENDIAN                        FALSE
#else
#define CPU_BIG_ENDIAN                           FALSE
#define CPU_LITTLE_ENDIAN                        TRUE
#endif

/*
 *  Does the CPU have hardware floating point?
 *
 *  If TRUE, then the RTEMS_FLOATING_POINT task attribute is supported.
 *  If FALSE, then the RTEMS_FLOATING_POINT task attribute is ignored.
 *
 *  If there is a FP coprocessor such as the i387 or mc68881, then
 *  the answer is TRUE.
 *
 *  The macro name "PPC_HAS_FPU" should be made CPU specific.
 *  It indicates whether or not this CPU model has FP support.  For
 *  example, it would be possible to have an i386_nofp CPU model
 *  which set this to false to indicate that you have an i386 without
 *  an i387 and wish to leave floating point support out of RTEMS.
 */

#if ( PPC_HAS_FPU == 1 )
#define CPU_HARDWARE_FP     TRUE
#define CPU_SOFTWARE_FP     FALSE
#else
#define CPU_HARDWARE_FP     FALSE
#define CPU_SOFTWARE_FP     FALSE
#endif

/*
 *  Are all tasks RTEMS_FLOATING_POINT tasks implicitly?
 *
 *  If TRUE, then the RTEMS_FLOATING_POINT task attribute is assumed.
 *  If FALSE, then the RTEMS_FLOATING_POINT task attribute is followed.
 *
 *  If CPU_HARDWARE_FP is FALSE, then this should be FALSE as well.
 *
 *  PowerPC Note: It appears the GCC can implicitly generate FPU
 *  and Altivec instructions when you least expect them.  So make
 *  all tasks floating point.
 */

#define CPU_ALL_TASKS_ARE_FP CPU_HARDWARE_FP

/*
 *  Should the IDLE task have a floating point context?
 *
 *  If TRUE, then the IDLE task is created as a RTEMS_FLOATING_POINT task
 *  and it has a floating point context which is switched in and out.
 *  If FALSE, then the IDLE task does not have a floating point context.
 *
 *  Setting this to TRUE negatively impacts the time required to preempt
 *  the IDLE task from an interrupt because the floating point context
 *  must be saved as part of the preemption.
 */

#define CPU_IDLE_TASK_IS_FP      FALSE

#define CPU_MAXIMUM_PROCESSORS 32

/*
 *  Processor defined structures required for cpukit/score.
 */

/*
 * Contexts
 *
 *  Generally there are 2 types of context to save.
 *     1. Interrupt registers to save
 *     2. Task level registers to save
 *
 *  This means we have the following 3 context items:
 *     1. task level context stuff::  Context_Control
 *     2. floating point task stuff:: Context_Control_fp
 *     3. special interrupt level context :: Context_Control_interrupt
 *
 *  On some processors, it is cost-effective to save only the callee
 *  preserved registers during a task context switch.  This means
 *  that the ISR code needs to save those registers which do not
 *  persist across function calls.  It is not mandatory to make this
 *  distinctions between the caller/callee saves registers for the
 *  purpose of minimizing context saved during task switch and on interrupts.
 *  If the cost of saving extra registers is minimal, simplicity is the
 *  choice.  Save the same context on interrupt entry as for tasks in
 *  this case.
 *
 *  Additionally, if gdb is to be made aware of RTEMS tasks for this CPU, then
 *  care should be used in designing the context area.
 *
 *  On some CPUs with hardware floating point support, the Context_Control_fp
 *  structure will not be used or it simply consist of an array of a
 *  fixed number of bytes.   This is done when the floating point context
 *  is dumped by a "FP save context" type instruction and the format
 *  is not really defined by the CPU.  In this case, there is no need
 *  to figure out the exact format -- only the size.  Of course, although
 *  this is enough information for RTEMS, it is probably not enough for
 *  a debugger such as gdb.  But that is another problem.
 */

#ifndef __SPE__
  #define PPC_GPR_TYPE uint32_t
  #define PPC_GPR_SIZE 4
  #define PPC_GPR_LOAD lwz
  #define PPC_GPR_STORE stw
#else
  #define PPC_GPR_TYPE uint64_t
  #define PPC_GPR_SIZE 8
  #define PPC_GPR_LOAD evldd
  #define PPC_GPR_STORE evstdd
#endif

#ifndef ASM

/*
 * Non-volatile context according to E500ABIUG, EABI and 32-bit TLS (according
 * to "Power Architecture 32-bit Application Binary Interface Supplement 1.0 -
 * Linux and Embedded")
 */
typedef struct {
  uint32_t gpr1;
  uint32_t msr;
  uint32_t lr;
  uint32_t cr;
  PPC_GPR_TYPE gpr14;
  PPC_GPR_TYPE gpr15;
  PPC_GPR_TYPE gpr16;
  PPC_GPR_TYPE gpr17;
  PPC_GPR_TYPE gpr18;
  PPC_GPR_TYPE gpr19;
  PPC_GPR_TYPE gpr20;
  PPC_GPR_TYPE gpr21;
  PPC_GPR_TYPE gpr22;
  PPC_GPR_TYPE gpr23;
  PPC_GPR_TYPE gpr24;
  PPC_GPR_TYPE gpr25;
  PPC_GPR_TYPE gpr26;
  PPC_GPR_TYPE gpr27;
  PPC_GPR_TYPE gpr28;
  PPC_GPR_TYPE gpr29;
  PPC_GPR_TYPE gpr30;
  PPC_GPR_TYPE gpr31;
  uint32_t gpr2;
  uint32_t isr_dispatch_disable;
  #if defined(PPC_MULTILIB_ALTIVEC)
    uint8_t v20[16];
    uint8_t v21[16];
    uint8_t v22[16];
    uint8_t v23[16];
    uint8_t v24[16];
    uint8_t v25[16];
    uint8_t v26[16];
    uint8_t v27[16];
    uint8_t v28[16];
    uint8_t v29[16];
    uint8_t v30[16];
    uint8_t v31[16];
    uint32_t vrsave;
  #elif defined(__ALTIVEC__)
    /*
     * 12 non-volatile vector registers, cache-aligned area for vscr/vrsave
     * and padding to ensure cache-alignment.  Unfortunately, we can't verify
     * the cache line size here in the cpukit but altivec support code will
     * produce an error if this is ever different from 32 bytes.
     * 
     * Note: it is the BSP/CPU-support's responsibility to save/restore
     *       volatile vregs across interrupts and exceptions.
     */
    uint8_t altivec[16*12 + 32 + PPC_DEFAULT_CACHE_LINE_SIZE];
  #endif
  #if defined(PPC_MULTILIB_FPU)
    double f14;
    double f15;
    double f16;
    double f17;
    double f18;
    double f19;
    double f20;
    double f21;
    double f22;
    double f23;
    double f24;
    double f25;
    double f26;
    double f27;
    double f28;
    double f29;
    double f30;
    double f31;
  #endif
  #if defined(RTEMS_SMP)
    /*
     * This item is at the structure end, so that we can use dcbz for the
     * previous items to optimize the context switch.  We must not set this
     * item to zero via the dcbz.
     */
    volatile uint32_t is_executing;
  #endif
} ppc_context;

typedef struct {
  uint8_t context [
    PPC_DEFAULT_CACHE_LINE_SIZE
      + sizeof(ppc_context)
      + (sizeof(ppc_context) % PPC_DEFAULT_CACHE_LINE_SIZE == 0
        ? 0
          : PPC_DEFAULT_CACHE_LINE_SIZE
            - sizeof(ppc_context) % PPC_DEFAULT_CACHE_LINE_SIZE)
  ];
} Context_Control;

static inline ppc_context *ppc_get_context( const Context_Control *context )
{
  uintptr_t clsz = PPC_DEFAULT_CACHE_LINE_SIZE;
  uintptr_t mask = clsz - 1;
  uintptr_t addr = (uintptr_t) context;

  return (ppc_context *) ((addr & ~mask) + clsz);
}

#define _CPU_Context_Get_SP( _context ) \
  ppc_get_context(_context)->gpr1

#ifdef RTEMS_SMP
  static inline bool _CPU_Context_Get_is_executing(
    const Context_Control *context
  )
  {
    return ppc_get_context(context)->is_executing;
  }

  static inline void _CPU_Context_Set_is_executing(
    Context_Control *context,
    bool is_executing
  )
  {
    ppc_get_context(context)->is_executing = is_executing;
  }
#endif
#endif /* ASM */

#define PPC_CONTEXT_OFFSET_GPR1 (PPC_DEFAULT_CACHE_LINE_SIZE + 0)
#define PPC_CONTEXT_OFFSET_MSR (PPC_DEFAULT_CACHE_LINE_SIZE + 4)
#define PPC_CONTEXT_OFFSET_LR (PPC_DEFAULT_CACHE_LINE_SIZE + 8)
#define PPC_CONTEXT_OFFSET_CR (PPC_DEFAULT_CACHE_LINE_SIZE + 12)

#define PPC_CONTEXT_GPR_OFFSET( gpr ) \
  (((gpr) - 14) * PPC_GPR_SIZE + PPC_DEFAULT_CACHE_LINE_SIZE + 16)

#define PPC_CONTEXT_OFFSET_GPR14 PPC_CONTEXT_GPR_OFFSET( 14 )
#define PPC_CONTEXT_OFFSET_GPR15 PPC_CONTEXT_GPR_OFFSET( 15 )
#define PPC_CONTEXT_OFFSET_GPR16 PPC_CONTEXT_GPR_OFFSET( 16 )
#define PPC_CONTEXT_OFFSET_GPR17 PPC_CONTEXT_GPR_OFFSET( 17 )
#define PPC_CONTEXT_OFFSET_GPR18 PPC_CONTEXT_GPR_OFFSET( 18 )
#define PPC_CONTEXT_OFFSET_GPR19 PPC_CONTEXT_GPR_OFFSET( 19 )
#define PPC_CONTEXT_OFFSET_GPR20 PPC_CONTEXT_GPR_OFFSET( 20 )
#define PPC_CONTEXT_OFFSET_GPR21 PPC_CONTEXT_GPR_OFFSET( 21 )
#define PPC_CONTEXT_OFFSET_GPR22 PPC_CONTEXT_GPR_OFFSET( 22 )
#define PPC_CONTEXT_OFFSET_GPR23 PPC_CONTEXT_GPR_OFFSET( 23 )
#define PPC_CONTEXT_OFFSET_GPR24 PPC_CONTEXT_GPR_OFFSET( 24 )
#define PPC_CONTEXT_OFFSET_GPR25 PPC_CONTEXT_GPR_OFFSET( 25 )
#define PPC_CONTEXT_OFFSET_GPR26 PPC_CONTEXT_GPR_OFFSET( 26 )
#define PPC_CONTEXT_OFFSET_GPR27 PPC_CONTEXT_GPR_OFFSET( 27 )
#define PPC_CONTEXT_OFFSET_GPR28 PPC_CONTEXT_GPR_OFFSET( 28 )
#define PPC_CONTEXT_OFFSET_GPR29 PPC_CONTEXT_GPR_OFFSET( 29 )
#define PPC_CONTEXT_OFFSET_GPR30 PPC_CONTEXT_GPR_OFFSET( 30 )
#define PPC_CONTEXT_OFFSET_GPR31 PPC_CONTEXT_GPR_OFFSET( 31 )
#define PPC_CONTEXT_OFFSET_GPR2 PPC_CONTEXT_GPR_OFFSET( 32 )
#define PPC_CONTEXT_OFFSET_ISR_DISPATCH_DISABLE \
  ( PPC_CONTEXT_GPR_OFFSET( 32 ) + 4 )

#ifdef PPC_MULTILIB_ALTIVEC
  #define PPC_CONTEXT_OFFSET_V( v ) \
    ( ( ( v ) - 20 ) * 16 + PPC_DEFAULT_CACHE_LINE_SIZE + 96 )
  #define PPC_CONTEXT_OFFSET_V20 PPC_CONTEXT_OFFSET_V( 20 )
  #define PPC_CONTEXT_OFFSET_V21 PPC_CONTEXT_OFFSET_V( 21 )
  #define PPC_CONTEXT_OFFSET_V22 PPC_CONTEXT_OFFSET_V( 22 )
  #define PPC_CONTEXT_OFFSET_V23 PPC_CONTEXT_OFFSET_V( 23 )
  #define PPC_CONTEXT_OFFSET_V24 PPC_CONTEXT_OFFSET_V( 24 )
  #define PPC_CONTEXT_OFFSET_V25 PPC_CONTEXT_OFFSET_V( 25 )
  #define PPC_CONTEXT_OFFSET_V26 PPC_CONTEXT_OFFSET_V( 26 )
  #define PPC_CONTEXT_OFFSET_V27 PPC_CONTEXT_OFFSET_V( 27 )
  #define PPC_CONTEXT_OFFSET_V28 PPC_CONTEXT_OFFSET_V( 28 )
  #define PPC_CONTEXT_OFFSET_V29 PPC_CONTEXT_OFFSET_V( 29 )
  #define PPC_CONTEXT_OFFSET_V30 PPC_CONTEXT_OFFSET_V( 30 )
  #define PPC_CONTEXT_OFFSET_V31 PPC_CONTEXT_OFFSET_V( 31 )
  #define PPC_CONTEXT_OFFSET_VRSAVE PPC_CONTEXT_OFFSET_V( 32 )
  #define PPC_CONTEXT_OFFSET_F( f ) \
    ( ( ( f ) - 14 ) * 8 + PPC_DEFAULT_CACHE_LINE_SIZE + 296 )
#else
  #define PPC_CONTEXT_OFFSET_F( f ) \
    ( ( ( f ) - 14 ) * 8 + PPC_DEFAULT_CACHE_LINE_SIZE + 96 )
#endif

#ifdef PPC_MULTILIB_FPU
  #define PPC_CONTEXT_OFFSET_F14 PPC_CONTEXT_OFFSET_F( 14 )
  #define PPC_CONTEXT_OFFSET_F15 PPC_CONTEXT_OFFSET_F( 15 )
  #define PPC_CONTEXT_OFFSET_F16 PPC_CONTEXT_OFFSET_F( 16 )
  #define PPC_CONTEXT_OFFSET_F17 PPC_CONTEXT_OFFSET_F( 17 )
  #define PPC_CONTEXT_OFFSET_F18 PPC_CONTEXT_OFFSET_F( 18 )
  #define PPC_CONTEXT_OFFSET_F19 PPC_CONTEXT_OFFSET_F( 19 )
  #define PPC_CONTEXT_OFFSET_F20 PPC_CONTEXT_OFFSET_F( 20 )
  #define PPC_CONTEXT_OFFSET_F21 PPC_CONTEXT_OFFSET_F( 21 )
  #define PPC_CONTEXT_OFFSET_F22 PPC_CONTEXT_OFFSET_F( 22 )
  #define PPC_CONTEXT_OFFSET_F23 PPC_CONTEXT_OFFSET_F( 23 )
  #define PPC_CONTEXT_OFFSET_F24 PPC_CONTEXT_OFFSET_F( 24 )
  #define PPC_CONTEXT_OFFSET_F25 PPC_CONTEXT_OFFSET_F( 25 )
  #define PPC_CONTEXT_OFFSET_F26 PPC_CONTEXT_OFFSET_F( 26 )
  #define PPC_CONTEXT_OFFSET_F27 PPC_CONTEXT_OFFSET_F( 27 )
  #define PPC_CONTEXT_OFFSET_F28 PPC_CONTEXT_OFFSET_F( 28 )
  #define PPC_CONTEXT_OFFSET_F29 PPC_CONTEXT_OFFSET_F( 29 )
  #define PPC_CONTEXT_OFFSET_F30 PPC_CONTEXT_OFFSET_F( 30 )
  #define PPC_CONTEXT_OFFSET_F31 PPC_CONTEXT_OFFSET_F( 31 )
#endif

#if defined(PPC_MULTILIB_FPU)
  #define PPC_CONTEXT_VOLATILE_SIZE PPC_CONTEXT_OFFSET_F( 32 )
#elif defined(PPC_MULTILIB_ALTIVEC)
  #define PPC_CONTEXT_VOLATILE_SIZE (PPC_CONTEXT_OFFSET_VRSAVE + 4)
#else
  #define PPC_CONTEXT_VOLATILE_SIZE (PPC_CONTEXT_GPR_OFFSET( 32 ) + 4)
#endif

#ifdef RTEMS_SMP
  #define PPC_CONTEXT_OFFSET_IS_EXECUTING PPC_CONTEXT_VOLATILE_SIZE
#endif

#ifndef ASM
typedef struct {
#if (PPC_HAS_FPU == 1)
    /* The ABIs (PowerOpen/SVR4/EABI) only require saving f14-f31 over
     * procedure calls.  However, this would mean that the interrupt
     * frame had to hold f0-f13, and the fpscr.  And as the majority
     * of tasks will not have an FP context, we will save the whole
     * context here.
     */
#if (PPC_HAS_DOUBLE == 1)
    double	f[32];
    uint64_t	fpscr;
#else
    float	f[32];
    uint32_t	fpscr;
#endif
#endif /* (PPC_HAS_FPU == 1) */
} Context_Control_fp;

#endif /* ASM */

/*
 *  Does the CPU follow the simple vectored interrupt model?
 *
 *  If TRUE, then RTEMS allocates the vector table it internally manages.
 *  If FALSE, then the BSP is assumed to allocate and manage the vector
 *  table
 *
 *  PowerPC Specific Information:
 *
 *  The PowerPC and x86 were the first to use the PIC interrupt model.
 *  They do not use the simple vectored interrupt model.
 */
#define CPU_SIMPLE_VECTORED_INTERRUPTS FALSE

/*
 *  Does RTEMS manage a dedicated interrupt stack in software?
 *
 *  If TRUE, then a stack is allocated in _ISR_Handler_initialization.
 *  If FALSE, nothing is done.
 *
 *  If the CPU supports a dedicated interrupt stack in hardware,
 *  then it is generally the responsibility of the BSP to allocate it
 *  and set it up.
 *
 *  If the CPU does not support a dedicated interrupt stack, then
 *  the porter has two options: (1) execute interrupts on the
 *  stack of the interrupted task, and (2) have RTEMS manage a dedicated
 *  interrupt stack.
 *
 *  If this is TRUE, CPU_ALLOCATE_INTERRUPT_STACK should also be TRUE.
 *
 *  Only one of CPU_HAS_SOFTWARE_INTERRUPT_STACK and
 *  CPU_HAS_HARDWARE_INTERRUPT_STACK should be set to TRUE.  It is
 *  possible that both are FALSE for a particular CPU.  Although it
 *  is unclear what that would imply about the interrupt processing
 *  procedure on that CPU.
 */

#define CPU_HAS_SOFTWARE_INTERRUPT_STACK TRUE

/*
 *  Does this CPU have hardware support for a dedicated interrupt stack?
 *
 *  If TRUE, then it must be installed during initialization.
 *  If FALSE, then no installation is performed.
 *
 *  If this is TRUE, CPU_ALLOCATE_INTERRUPT_STACK should also be TRUE.
 *
 *  Only one of CPU_HAS_SOFTWARE_INTERRUPT_STACK and
 *  CPU_HAS_HARDWARE_INTERRUPT_STACK should be set to TRUE.  It is
 *  possible that both are FALSE for a particular CPU.  Although it
 *  is unclear what that would imply about the interrupt processing
 *  procedure on that CPU.
 */

#define CPU_HAS_HARDWARE_INTERRUPT_STACK FALSE

/*
 *  Does RTEMS allocate a dedicated interrupt stack in the Interrupt Manager?
 *
 *  If TRUE, then the memory is allocated during initialization.
 *  If FALSE, then the memory is allocated during initialization.
 *
 *  This should be TRUE is CPU_HAS_SOFTWARE_INTERRUPT_STACK is TRUE.
 */

#define CPU_ALLOCATE_INTERRUPT_STACK TRUE

/*
 *  Does the RTEMS invoke the user's ISR with the vector number and
 *  a pointer to the saved interrupt frame (1) or just the vector
 *  number (0)?
 */

#define CPU_ISR_PASSES_FRAME_POINTER FALSE

/*
 *  Should the saving of the floating point registers be deferred
 *  until a context switch is made to another different floating point
 *  task?
 *
 *  If TRUE, then the floating point context will not be stored until
 *  necessary.  It will remain in the floating point registers and not
 *  disturned until another floating point task is switched to.
 *
 *  If FALSE, then the floating point context is saved when a floating
 *  point task is switched out and restored when the next floating point
 *  task is restored.  The state of the floating point registers between
 *  those two operations is not specified.
 *
 *  If the floating point context does NOT have to be saved as part of
 *  interrupt dispatching, then it should be safe to set this to TRUE.
 *
 *  Setting this flag to TRUE results in using a different algorithm
 *  for deciding when to save and restore the floating point context.
 *  The deferred FP switch algorithm minimizes the number of times
 *  the FP context is saved and restored.  The FP context is not saved
 *  until a context switch is made to another, different FP task.
 *  Thus in a system with only one FP task, the FP context will never
 *  be saved or restored.
 *
 *  Note, however that compilers may use floating point registers/
 *  instructions for optimization or they may save/restore FP registers
 *  on the stack. You must not use deferred switching in these cases
 *  and on the PowerPC attempting to do so will raise a "FP unavailable"
 *  exception.
 */
/*
 *  ACB Note:  This could make debugging tricky..
 */

/* conservative setting (FALSE); probably doesn't affect performance too much */
#define CPU_USE_DEFERRED_FP_SWITCH       FALSE

#define CPU_ENABLE_ROBUST_THREAD_DISPATCH FALSE

/*
 *  Processor defined structures required for cpukit/score.
 */

#ifndef ASM

/*
 *  This variable is optional.  It is used on CPUs on which it is difficult
 *  to generate an "uninitialized" FP context.  It is filled in by
 *  _CPU_Initialize and copied into the task's FP context area during
 *  _CPU_Context_Initialize.
 */

/* EXTERN Context_Control_fp  _CPU_Null_fp_context; */

#endif /* ndef ASM */

/*
 *  This defines the number of levels and the mask used to pick those
 *  bits out of a thread mode.
 */

#define CPU_MODES_INTERRUPT_LEVEL  0x00000001 /* interrupt level in mode */
#define CPU_MODES_INTERRUPT_MASK   0x00000001 /* interrupt level in mode */

/*
 *  The size of the floating point context area.  On some CPUs this
 *  will not be a "sizeof" because the format of the floating point
 *  area is not defined -- only the size is.  This is usually on
 *  CPUs with a "floating point save context" instruction.
 */

#define CPU_CONTEXT_FP_SIZE sizeof( Context_Control_fp )

/*
 * (Optional) # of bytes for libmisc/stackchk to check
 * If not specifed, then it defaults to something reasonable
 * for most architectures.
 */

#define CPU_STACK_CHECK_PATTERN_INITIALIZER \
  { 0xFEEDF00D, 0x0BAD0D06, 0xDEADF00D, 0x600D0D06, \
    0xFEEDF00D, 0x0BAD0D06, 0xDEADF00D, 0x600D0D06, \
    0xFEEDF00D, 0x0BAD0D06, 0xDEADF00D, 0x600D0D06, \
    0xFEEDF00D, 0x0BAD0D06, 0xDEADF00D, 0x600D0D06, \
    0xFEEDF00D, 0x0BAD0D06, 0xDEADF00D, 0x600D0D06, \
    0xFEEDF00D, 0x0BAD0D06, 0xDEADF00D, 0x600D0D06, \
    0xFEEDF00D, 0x0BAD0D06, 0xDEADF00D, 0x600D0D06, \
    0xFEEDF00D, 0x0BAD0D06, 0xDEADF00D, 0x600D0D06 }

/*
 *  Amount of extra stack (above minimum stack size) required by
 *  MPCI receive server thread.  Remember that in a multiprocessor
 *  system this thread must exist and be able to process all directives.
 */

#define CPU_MPCI_RECEIVE_SERVER_EXTRA_STACK 0

/*
 *  This is defined if the port has a special way to report the ISR nesting
 *  level.  Most ports maintain the variable _ISR_Nest_level. Note that
 *  this is not an option - RTEMS/score _relies_ on _ISR_Nest_level
 *  being maintained (e.g. watchdog queues).
 */

#define CPU_PROVIDES_ISR_IS_IN_PROGRESS FALSE

/*
 *  ISR handler macros
 */

/*
 *  Disable all interrupts for an RTEMS critical section.  The previous
 *  level is returned in _isr_cookie.
 */

#ifndef ASM

RTEMS_INLINE_ROUTINE bool _CPU_ISR_Is_enabled( uint32_t level )
{
  return ( level & MSR_EE ) != 0;
}

static inline uint32_t   _CPU_ISR_Get_level( void )
{
  register unsigned int msr;
  _CPU_MSR_GET(msr);
  if (msr & MSR_EE) return 0;
  else	return 1;
}

static inline void _CPU_ISR_Set_level( uint32_t   level )
{
  register unsigned int msr;
  _CPU_MSR_GET(msr);
  if (!(level & CPU_MODES_INTERRUPT_MASK)) {
    msr |= ppc_interrupt_get_disable_mask();
  }
  else {
    msr &= ~ppc_interrupt_get_disable_mask();
  }
  _CPU_MSR_SET(msr);
}

void BSP_panic(char *);

/* Fatal Error manager macros */

/*
 *  This routine copies _error into a known place -- typically a stack
 *  location or a register, optionally disables interrupts, and
 *  halts/stops the CPU.
 */

void _BSP_Fatal_error(unsigned int);

#endif /* ASM */

#define _CPU_Fatal_halt( _source, _error ) \
  _BSP_Fatal_error(_error)

/* end of Fatal Error manager macros */

/*
 *  Should be large enough to run all RTEMS tests.  This ensures
 *  that a "reasonable" small application should not have any problems.
 */

#define CPU_STACK_MINIMUM_SIZE          (1024*8)

#define CPU_SIZEOF_POINTER 4

/*
 *  CPU's worst alignment requirement for data types on a byte boundary.  This
 *  alignment does not take into account the requirements for the stack.
 */

#define CPU_ALIGNMENT              (PPC_ALIGNMENT)

/*
 *  This number corresponds to the byte alignment requirement for the
 *  heap handler.  This alignment requirement may be stricter than that
 *  for the data types alignment specified by CPU_ALIGNMENT.  It is
 *  common for the heap to follow the same alignment requirement as
 *  CPU_ALIGNMENT.  If the CPU_ALIGNMENT is strict enough for the heap,
 *  then this should be set to CPU_ALIGNMENT.
 *
 *  NOTE:  This does not have to be a power of 2.  It does have to
 *         be greater or equal to than CPU_ALIGNMENT.
 */

#define CPU_HEAP_ALIGNMENT         (PPC_ALIGNMENT)

/*
 *  This number corresponds to the byte alignment requirement for memory
 *  buffers allocated by the partition manager.  This alignment requirement
 *  may be stricter than that for the data types alignment specified by
 *  CPU_ALIGNMENT.  It is common for the partition to follow the same
 *  alignment requirement as CPU_ALIGNMENT.  If the CPU_ALIGNMENT is strict
 *  enough for the partition, then this should be set to CPU_ALIGNMENT.
 *
 *  NOTE:  This does not have to be a power of 2.  It does have to
 *         be greater or equal to than CPU_ALIGNMENT.
 */

#define CPU_PARTITION_ALIGNMENT    (PPC_ALIGNMENT)

/*
 *  This number corresponds to the byte alignment requirement for the
 *  stack.  This alignment requirement may be stricter than that for the
 *  data types alignment specified by CPU_ALIGNMENT.  If the CPU_ALIGNMENT
 *  is strict enough for the stack, then this should be set to 0.
 *
 *  NOTE:  This must be a power of 2 either 0 or greater than CPU_ALIGNMENT.
 */

#define CPU_STACK_ALIGNMENT        (PPC_STACK_ALIGNMENT)

#ifndef ASM
/*  The following routine swaps the endian format of an unsigned int.
 *  It must be static because it is referenced indirectly.
 *
 *  This version will work on any processor, but if there is a better
 *  way for your CPU PLEASE use it.  The most common way to do this is to:
 *
 *     swap least significant two bytes with 16-bit rotate
 *     swap upper and lower 16-bits
 *     swap most significant two bytes with 16-bit rotate
 *
 *  Some CPUs have special instructions which swap a 32-bit quantity in
 *  a single instruction (e.g. i486).  It is probably best to avoid
 *  an "endian swapping control bit" in the CPU.  One good reason is
 *  that interrupts would probably have to be disabled to ensure that
 *  an interrupt does not try to access the same "chunk" with the wrong
 *  endian.  Another good reason is that on some CPUs, the endian bit
 *  endianness for ALL fetches -- both code and data -- so the code
 *  will be fetched incorrectly.
 */

static inline uint32_t CPU_swap_u32(
  uint32_t value
)
{
  uint32_t   swapped;

  __asm__ volatile("rlwimi %0,%1,8,24,31;"
	       "rlwimi %0,%1,24,16,23;"
	       "rlwimi %0,%1,8,8,15;"
	       "rlwimi %0,%1,24,0,7;" :
	       "=&r" ((swapped)) : "r" ((value)));

  return( swapped );
}

#define CPU_swap_u16( value ) \
  (((value&0xff) << 8) | ((value >> 8)&0xff))

typedef uint32_t CPU_Counter_ticks;

static inline CPU_Counter_ticks _CPU_Counter_read( void )
{
  CPU_Counter_ticks value;

#if defined(__PPC_CPU_E6500__)
  /* Use Alternate Time Base */
  __asm__ volatile( "mfspr %0, 526" : "=r" (value) );
#else
  __asm__ volatile( "mfspr %0, 268" : "=r" (value) );
#endif

  return value;
}

static inline CPU_Counter_ticks _CPU_Counter_difference(
  CPU_Counter_ticks second,
  CPU_Counter_ticks first
)
{
  return second - first;
}

#endif /* ASM */


#ifndef ASM
/* Context handler macros */

/*
 *  Initialize the context to a state suitable for starting a
 *  task after a context restore operation.  Generally, this
 *  involves:
 *
 *     - setting a starting address
 *     - preparing the stack
 *     - preparing the stack and frame pointers
 *     - setting the proper interrupt level in the context
 *     - initializing the floating point context
 *
 *  This routine generally does not set any unnecessary register
 *  in the context.  The state of the "general data" registers is
 *  undefined at task start time.
 */

void _CPU_Context_Initialize(
  Context_Control  *the_context,
  uint32_t         *stack_base,
  uint32_t          size,
  uint32_t          new_level,
  void             *entry_point,
  bool              is_fp,
  void             *tls_area
);

/*
 *  This routine is responsible for somehow restarting the currently
 *  executing task.  If you are lucky, then all that is necessary
 *  is restoring the context.  Otherwise, there will need to be
 *  a special assembly routine which does something special in this
 *  case.  Context_Restore should work most of the time.  It will
 *  not work if restarting self conflicts with the stack frame
 *  assumptions of restoring a context.
 */

#define _CPU_Context_Restart_self( _the_context ) \
   _CPU_Context_restore( (_the_context) );

/*
 *  The purpose of this macro is to allow the initial pointer into
 *  a floating point context area (used to save the floating point
 *  context) to be at an arbitrary place in the floating point
 *  context area.
 *
 *  This is necessary because some FP units are designed to have
 *  their context saved as a stack which grows into lower addresses.
 *  Other FP units can be saved by simply moving registers into offsets
 *  from the base of the context area.  Finally some FP units provide
 *  a "dump context" instruction which could fill in from high to low
 *  or low to high based on the whim of the CPU designers.
 */

#define _CPU_Context_Fp_start( _base, _offset ) \
   ( (void *) _Addresses_Add_offset( (_base), (_offset) ) )

/*
 *  This routine initializes the FP context area passed to it to.
 *  There are a few standard ways in which to initialize the
 *  floating point context.  The code included for this macro assumes
 *  that this is a CPU in which a "initial" FP context was saved into
 *  _CPU_Null_fp_context and it simply copies it to the destination
 *  context passed to it.
 *
 *  Other models include (1) not doing anything, and (2) putting
 *  a "null FP status word" in the correct place in the FP context.
 */

#define _CPU_Context_Initialize_fp( _destination ) \
  memset( *(_destination), 0, sizeof( **(_destination) ) )

/* end of Context handler macros */
#endif /* ASM */

#ifndef ASM
/* Bitfield handler macros */

#define CPU_USE_GENERIC_BITFIELD_CODE FALSE

/*
 *  This routine sets _output to the bit number of the first bit
 *  set in _value.  _value is of CPU dependent type Priority_bit_map_Word.
 *  This type may be either 16 or 32 bits wide although only the 16
 *  least significant bits will be used.
 *
 *  There are a number of variables in using a "find first bit" type
 *  instruction.
 *
 *    (1) What happens when run on a value of zero?
 *    (2) Bits may be numbered from MSB to LSB or vice-versa.
 *    (3) The numbering may be zero or one based.
 *    (4) The "find first bit" instruction may search from MSB or LSB.
 *
 *  RTEMS guarantees that (1) will never happen so it is not a concern.
 *  (2),(3), (4) are handled by the macros _CPU_Priority_mask() and
 *  _CPU_Priority_Bits_index().  These three form a set of routines
 *  which must logically operate together.  Bits in the _value are
 *  set and cleared based on masks built by _CPU_Priority_mask().
 *  The basic major and minor values calculated by _Priority_Major()
 *  and _Priority_Minor() are "massaged" by _CPU_Priority_Bits_index()
 *  to properly range between the values returned by the "find first bit"
 *  instruction.  This makes it possible for _Priority_Get_highest() to
 *  calculate the major and directly index into the minor table.
 *  This mapping is necessary to ensure that 0 (a high priority major/minor)
 *  is the first bit found.
 *
 *  This entire "find first bit" and mapping process depends heavily
 *  on the manner in which a priority is broken into a major and minor
 *  components with the major being the 4 MSB of a priority and minor
 *  the 4 LSB.  Thus (0 << 4) + 0 corresponds to priority 0 -- the highest
 *  priority.  And (15 << 4) + 14 corresponds to priority 254 -- the next
 *  to the lowest priority.
 *
 *  If your CPU does not have a "find first bit" instruction, then
 *  there are ways to make do without it.  Here are a handful of ways
 *  to implement this in software:
 *
 *    - a series of 16 bit test instructions
 *    - a "binary search using if's"
 *    - _number = 0
 *      if _value > 0x00ff
 *        _value >>=8
 *        _number = 8;
 *
 *      if _value > 0x0000f
 *        _value >=8
 *        _number += 4
 *
 *      _number += bit_set_table[ _value ]
 *
 *    where bit_set_table[ 16 ] has values which indicate the first
 *      bit set
 */

#define _CPU_Bitfield_Find_first_bit( _value, _output ) \
  { \
    __asm__ volatile ("cntlzw %0, %1" : "=r" ((_output)), "=r" ((_value)) : \
		  "1" ((_value))); \
    (_output) = (_output) - 16; \
  }

/* end of Bitfield handler macros */

/*
 *  This routine builds the mask which corresponds to the bit fields
 *  as searched by _CPU_Bitfield_Find_first_bit().  See the discussion
 *  for that routine.
 */

#define _CPU_Priority_Mask( _bit_number ) \
  ( 0x8000u >> (_bit_number) )

/*
 *  This routine translates the bit numbers returned by
 *  _CPU_Bitfield_Find_first_bit() into something suitable for use as
 *  a major or minor component of a priority.  See the discussion
 *  for that routine.
 */

#define _CPU_Priority_bits_index( _priority ) \
  (_priority)

/* end of Priority handler macros */
#endif /* ASM */

/* functions */

#ifndef ASM

/*
 *  _CPU_Initialize
 *
 *  This routine performs CPU dependent initialization.
 */

void _CPU_Initialize(void);

/*
 *  _CPU_ISR_install_vector
 *
 *  This routine installs an interrupt vector.
 */

void _CPU_ISR_install_vector(
  uint32_t    vector,
  proc_ptr    new_handler,
  proc_ptr   *old_handler
);

/*
 *  _CPU_Context_switch
 *
 *  This routine switches from the run context to the heir context.
 */

void _CPU_Context_switch(
  Context_Control  *run,
  Context_Control  *heir
);

/*
 *  _CPU_Context_restore
 *
 *  This routine is generallu used only to restart self in an
 *  efficient manner.  It may simply be a label in _CPU_Context_switch.
 *
 *  NOTE: May be unnecessary to reload some registers.
 */

void _CPU_Context_restore(
  Context_Control *new_context
) RTEMS_NO_RETURN;

/*
 *  _CPU_Context_save_fp
 *
 *  This routine saves the floating point context passed to it.
 */

void _CPU_Context_save_fp(
  Context_Control_fp **fp_context_ptr
);

/*
 *  _CPU_Context_restore_fp
 *
 *  This routine restores the floating point context passed to it.
 */

void _CPU_Context_restore_fp(
  Context_Control_fp **fp_context_ptr
);

void _CPU_Context_volatile_clobber( uintptr_t pattern );

void _CPU_Context_validate( uintptr_t pattern );

#ifdef RTEMS_SMP
  uint32_t _CPU_SMP_Initialize( void );

  bool _CPU_SMP_Start_processor( uint32_t cpu_index );

  void _CPU_SMP_Finalize_initialization( uint32_t cpu_count );

  void _CPU_SMP_Prepare_start_multitasking( void );

  static inline uint32_t _CPU_SMP_Get_current_processor( void )
  {
    uint32_t pir;

    /* Use Book E Processor ID Register (PIR) */
    __asm__ volatile (
      "mfspr %[pir], 286"
      : [pir] "=&r" (pir)
    );

    return pir;
  }

  void _CPU_SMP_Send_interrupt( uint32_t target_processor_index );

  static inline void _CPU_SMP_Processor_event_broadcast( void )
  {
    __asm__ volatile ( "" : : : "memory" );
  }

  static inline void _CPU_SMP_Processor_event_receive( void )
  {
    __asm__ volatile ( "" : : : "memory" );
  }
#endif

typedef struct {
  uint32_t EXC_SRR0;
  uint32_t EXC_SRR1;
  uint32_t _EXC_number;
  uint32_t EXC_CR;
  uint32_t EXC_CTR;
  uint32_t EXC_XER;
  uint32_t EXC_LR;
  #ifdef __SPE__
    uint32_t EXC_SPEFSCR;
    uint64_t EXC_ACC;
  #endif
  PPC_GPR_TYPE GPR0;
  PPC_GPR_TYPE GPR1;
  PPC_GPR_TYPE GPR2;
  PPC_GPR_TYPE GPR3;
  PPC_GPR_TYPE GPR4;
  PPC_GPR_TYPE GPR5;
  PPC_GPR_TYPE GPR6;
  PPC_GPR_TYPE GPR7;
  PPC_GPR_TYPE GPR8;
  PPC_GPR_TYPE GPR9;
  PPC_GPR_TYPE GPR10;
  PPC_GPR_TYPE GPR11;
  PPC_GPR_TYPE GPR12;
  PPC_GPR_TYPE GPR13;
  PPC_GPR_TYPE GPR14;
  PPC_GPR_TYPE GPR15;
  PPC_GPR_TYPE GPR16;
  PPC_GPR_TYPE GPR17;
  PPC_GPR_TYPE GPR18;
  PPC_GPR_TYPE GPR19;
  PPC_GPR_TYPE GPR20;
  PPC_GPR_TYPE GPR21;
  PPC_GPR_TYPE GPR22;
  PPC_GPR_TYPE GPR23;
  PPC_GPR_TYPE GPR24;
  PPC_GPR_TYPE GPR25;
  PPC_GPR_TYPE GPR26;
  PPC_GPR_TYPE GPR27;
  PPC_GPR_TYPE GPR28;
  PPC_GPR_TYPE GPR29;
  PPC_GPR_TYPE GPR30;
  PPC_GPR_TYPE GPR31;
  #if defined(PPC_MULTILIB_ALTIVEC) || defined(PPC_MULTILIB_FPU)
    uint32_t reserved_for_alignment;
  #endif
  #ifdef PPC_MULTILIB_ALTIVEC
    uint32_t VRSAVE;

    /* This field must take stvewx/lvewx requirements into account */
    uint32_t VSCR;

    uint8_t V0[16];
    uint8_t V1[16];
    uint8_t V2[16];
    uint8_t V3[16];
    uint8_t V4[16];
    uint8_t V5[16];
    uint8_t V6[16];
    uint8_t V7[16];
    uint8_t V8[16];
    uint8_t V9[16];
    uint8_t V10[16];
    uint8_t V11[16];
    uint8_t V12[16];
    uint8_t V13[16];
    uint8_t V14[16];
    uint8_t V15[16];
    uint8_t V16[16];
    uint8_t V17[16];
    uint8_t V18[16];
    uint8_t V19[16];
    uint8_t V20[16];
    uint8_t V21[16];
    uint8_t V22[16];
    uint8_t V23[16];
    uint8_t V24[16];
    uint8_t V25[16];
    uint8_t V26[16];
    uint8_t V27[16];
    uint8_t V28[16];
    uint8_t V29[16];
    uint8_t V30[16];
    uint8_t V31[16];
  #endif
  #ifdef PPC_MULTILIB_FPU
    double F0;
    double F1;
    double F2;
    double F3;
    double F4;
    double F5;
    double F6;
    double F7;
    double F8;
    double F9;
    double F10;
    double F11;
    double F12;
    double F13;
    double F14;
    double F15;
    double F16;
    double F17;
    double F18;
    double F19;
    double F20;
    double F21;
    double F22;
    double F23;
    double F24;
    double F25;
    double F26;
    double F27;
    double F28;
    double F29;
    double F30;
    double F31;
    uint64_t FPSCR;
  #endif
} CPU_Exception_frame;

void _CPU_Exception_frame_print( const CPU_Exception_frame *frame );

/*
 * _CPU_Initialize_altivec()
 *
 * Global altivec-related initialization.
 */
void
_CPU_Initialize_altivec(void);

/*
 * _CPU_Context_switch_altivec
 *
 * This routine switches the altivec contexts passed to it.
 */

void
_CPU_Context_switch_altivec(
  ppc_context *from,
  ppc_context *to
);

/*
 * _CPU_Context_restore_altivec
 *
 * This routine restores the altivec context passed to it.
 */

void
_CPU_Context_restore_altivec(
  ppc_context *ctxt
);

/*
 * _CPU_Context_initialize_altivec
 *
 * This routine initializes the altivec context passed to it.
 */

void
_CPU_Context_initialize_altivec(
  ppc_context *ctxt
);

void _CPU_Fatal_error(
  uint32_t   _error
);

#endif /* ASM */

#ifdef __cplusplus
}
#endif

#endif /* _RTEMS_SCORE_CPU_H */