summaryrefslogtreecommitdiffstats
path: root/cpukit/score/cpu/lm32/include/rtems/score/cpu.h
blob: 5c890de53ec1aa4a48b03d64f74653b1ebe112f5 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
/**
 * @file
 *
 * @brief LM32 CPU Department Source
 *
 * This include file contains information pertaining to the LM32
 * processor.
 */

/*
 *  COPYRIGHT (c) 1989-2008.
 *  On-Line Applications Research Corporation (OAR).
 *
 *  The license and distribution terms for this file may be
 *  found in the file LICENSE in this distribution or at
 *  http://www.rtems.org/license/LICENSE.
 */

#ifndef _RTEMS_SCORE_CPU_H
#define _RTEMS_SCORE_CPU_H

#ifdef __cplusplus
extern "C" {
#endif

#include <rtems/score/basedefs.h>
#include <rtems/score/lm32.h>

/* conditional compilation parameters */

/**
 * Does the CPU follow the simple vectored interrupt model?
 *
 * If TRUE, then RTEMS allocates the vector table it internally manages.
 * If FALSE, then the BSP is assumed to allocate and manage the vector
 * table
 *
 * Port Specific Information:
 *
 * XXX document implementation including references if appropriate
 */
#define CPU_SIMPLE_VECTORED_INTERRUPTS TRUE

/**
 * Does the RTEMS invoke the user's ISR with the vector number and
 * a pointer to the saved interrupt frame (1) or just the vector
 * number (0)?
 *
 * Port Specific Information:
 *
 * XXX document implementation including references if appropriate
 */
#define CPU_ISR_PASSES_FRAME_POINTER TRUE

#define CPU_HARDWARE_FP FALSE

#define CPU_SOFTWARE_FP FALSE

/**
 * Are all tasks RTEMS_FLOATING_POINT tasks implicitly?
 *
 * If TRUE, then the RTEMS_FLOATING_POINT task attribute is assumed.
 * If FALSE, then the RTEMS_FLOATING_POINT task attribute is followed.
 *
 * So far, the only CPUs in which this option has been used are the
 * HP PA-RISC and PowerPC.  On the PA-RISC, The HP C compiler and
 * gcc both implicitly used the floating point registers to perform
 * integer multiplies.  Similarly, the PowerPC port of gcc has been
 * seen to allocate floating point local variables and touch the FPU
 * even when the flow through a subroutine (like vfprintf()) might
 * not use floating point formats.
 *
 * If a function which you would not think utilize the FP unit DOES,
 * then one can not easily predict which tasks will use the FP hardware.
 * In this case, this option should be TRUE.
 *
 * If @ref CPU_HARDWARE_FP is FALSE, then this should be FALSE as well.
 *
 * Port Specific Information:
 *
 * XXX document implementation including references if appropriate
 */
#define CPU_ALL_TASKS_ARE_FP     FALSE

/**
 * Should the IDLE task have a floating point context?
 *
 * If TRUE, then the IDLE task is created as a RTEMS_FLOATING_POINT task
 * and it has a floating point context which is switched in and out.
 * If FALSE, then the IDLE task does not have a floating point context.
 *
 * Setting this to TRUE negatively impacts the time required to preempt
 * the IDLE task from an interrupt because the floating point context
 * must be saved as part of the preemption.
 *
 * Port Specific Information:
 *
 * XXX document implementation including references if appropriate
 */
#define CPU_IDLE_TASK_IS_FP      FALSE

/**
 * Should the saving of the floating point registers be deferred
 * until a context switch is made to another different floating point
 * task?
 *
 * If TRUE, then the floating point context will not be stored until
 * necessary.  It will remain in the floating point registers and not
 * disturned until another floating point task is switched to.
 *
 * If FALSE, then the floating point context is saved when a floating
 * point task is switched out and restored when the next floating point
 * task is restored.  The state of the floating point registers between
 * those two operations is not specified.
 *
 * If the floating point context does NOT have to be saved as part of
 * interrupt dispatching, then it should be safe to set this to TRUE.
 *
 * Setting this flag to TRUE results in using a different algorithm
 * for deciding when to save and restore the floating point context.
 * The deferred FP switch algorithm minimizes the number of times
 * the FP context is saved and restored.  The FP context is not saved
 * until a context switch is made to another, different FP task.
 * Thus in a system with only one FP task, the FP context will never
 * be saved or restored.
 *
 * Port Specific Information:
 *
 * XXX document implementation including references if appropriate
 */
#define CPU_USE_DEFERRED_FP_SWITCH       TRUE

#define CPU_ENABLE_ROBUST_THREAD_DISPATCH FALSE

/**
 * Does the stack grow up (toward higher addresses) or down
 * (toward lower addresses)?
 *
 * If TRUE, then the grows upward.
 * If FALSE, then the grows toward smaller addresses.
 *
 * Port Specific Information:
 *
 * XXX document implementation including references if appropriate
 */
#define CPU_STACK_GROWS_UP               FALSE

/* L2 cache lines are 32 bytes in Milkymist SoC */
#define CPU_CACHE_LINE_BYTES 32

#define CPU_STRUCTURE_ALIGNMENT RTEMS_ALIGNED( CPU_CACHE_LINE_BYTES )

/**
 * @addtogroup RTEMSScoreCPUlm32Interrupt
 * The following defines the number of bits actually used in the
 * interrupt field of the task mode.  How those bits map to the
 * CPU interrupt levels is defined by the routine @ref _CPU_ISR_Set_level.
 *
 * Port Specific Information:
 *
 * XXX document implementation including references if appropriate
 */
#define CPU_MODES_INTERRUPT_MASK   0x00000001

#define CPU_MAXIMUM_PROCESSORS 32

/*
 *  Processor defined structures required for cpukit/score.
 *
 *  Port Specific Information:
 *
 *  XXX document implementation including references if appropriate
 */

/* may need to put some structures here.  */

/**
 * @defgroup RTEMSScoreCPUlm32Context Processor Dependent Context Management
 * 
 * @ingroup RTEMSScoreCPUlm32
 *
 * From the highest level viewpoint, there are 2 types of context to save.
 *
 *    -# Interrupt registers to save
 *    -# Task level registers to save
 *
 * Since RTEMS handles integer and floating point contexts separately, this
 * means we have the following 3 context items:
 *
 *    -# task level context stuff::  Context_Control
 *    -# floating point task stuff:: Context_Control_fp
 *    -# special interrupt level context :: CPU_Interrupt_frame
 *
 * On some processors, it is cost-effective to save only the callee
 * preserved registers during a task context switch.  This means
 * that the ISR code needs to save those registers which do not
 * persist across function calls.  It is not mandatory to make this
 * distinctions between the caller/callee saves registers for the
 * purpose of minimizing context saved during task switch and on interrupts.
 * If the cost of saving extra registers is minimal, simplicity is the
 * choice.  Save the same context on interrupt entry as for tasks in
 * this case.
 *
 * Additionally, if gdb is to be made aware of RTEMS tasks for this CPU, then
 * care should be used in designing the context area.
 *
 * On some CPUs with hardware floating point support, the Context_Control_fp
 * structure will not be used or it simply consist of an array of a
 * fixed number of bytes.   This is done when the floating point context
 * is dumped by a "FP save context" type instruction and the format
 * is not really defined by the CPU.  In this case, there is no need
 * to figure out the exact format -- only the size.  Of course, although
 * this is enough information for RTEMS, it is probably not enough for
 * a debugger such as gdb.  But that is another problem.
 *
 * Port Specific Information:
 *
 * XXX document implementation including references if appropriate
 */
/**@{**/

/**
 * This defines the minimal set of integer and processor state registers
 * that must be saved during a voluntary context switch from one thread
 * to another.
 */
typedef struct {
  uint32_t r11;
  uint32_t r12;
  uint32_t r13;
  uint32_t r14;
  uint32_t r15;
  uint32_t r16;
  uint32_t r17;
  uint32_t r18;
  uint32_t r19;
  uint32_t r20;
  uint32_t r21;
  uint32_t r22;
  uint32_t r23;
  uint32_t r24;
  uint32_t r25;
  uint32_t gp;
  uint32_t fp;
  uint32_t sp;
  uint32_t ra;
  uint32_t ie;
  uint32_t epc;
} Context_Control;

/**
 *
 * This macro returns the stack pointer associated with @a _context.
 *
 * @param[in] _context is the thread context area to access
 *
 * @return This method returns the stack pointer.
 */
#define _CPU_Context_Get_SP( _context ) \
  (_context)->sp

/**
 * This defines the set of integer and processor state registers that must
 * be saved during an interrupt.  This set does not include any which are
 * in @ref Context_Control.
 */
typedef struct {
  uint32_t r1;
  uint32_t r2;
  uint32_t r3;
  uint32_t r4;
  uint32_t r5;
  uint32_t r6;
  uint32_t r7;
  uint32_t r8;
  uint32_t r9;
  uint32_t r10;
  uint32_t ra;
  uint32_t ba;
  uint32_t ea;
} CPU_Interrupt_frame;

/**
 * This variable is optional.  It is used on CPUs on which it is difficult
 * to generate an "uninitialized" FP context.  It is filled in by
 * @ref _CPU_Initialize and copied into the task's FP context area during
 * @ref _CPU_Context_Initialize.
 *
 * Port Specific Information:
 *
 * XXX document implementation including references if appropriate
 */
#if 0
extern Context_Control_fp _CPU_Null_fp_context;
#endif

/** @} */

/**
 * @defgroup RTEMSScoreCPUlm32Interrupt Processor Dependent Interrupt Management
 * 
 * @ingroup RTEMSScoreCPUlm32
 */
/** @{ **/
/** @} **/

/*
 * Nothing prevents the porter from declaring more CPU specific variables.
 *
 * Port Specific Information:
 *
 * XXX document implementation including references if appropriate
 */

/* XXX: if needed, put more variables here */

/**
 * @addtogroup RTEMSScoreCPUlm32Interrupt
 * Amount of extra stack (above minimum stack size) required by
 * MPCI receive server thread.  Remember that in a multiprocessor
 * system this thread must exist and be able to process all directives.
 *
 * Port Specific Information:
 *
 * XXX document implementation including references if appropriate
 */
#define CPU_MPCI_RECEIVE_SERVER_EXTRA_STACK 0

/**
 * @addtogroup RTEMSScoreCPUlm32Interrupt
 * This defines the number of entries in the @ref _ISR_Vector_table managed
 * by RTEMS.
 *
 * Port Specific Information:
 *
 * XXX document implementation including references if appropriate
 */
#define CPU_INTERRUPT_NUMBER_OF_VECTORS      32

/**
 * @addtogroup RTEMSScoreCPUlm32Interrupt
 * This defines the highest interrupt vector number for this port.
 */
#define CPU_INTERRUPT_MAXIMUM_VECTOR_NUMBER  (CPU_INTERRUPT_NUMBER_OF_VECTORS - 1)

/**
 * @addtogroup RTEMSScoreCPUlm32Interrupt
 * This is defined if the port has a special way to report the ISR nesting
 * level.  Most ports maintain the variable @a _ISR_Nest_level.
 */
#define CPU_PROVIDES_ISR_IS_IN_PROGRESS FALSE


/**
 * @addtogroup RTEMSScoreCPUlm32Context
 * Should be large enough to run all RTEMS tests.  This ensures
 * that a "reasonable" small application should not have any problems.
 *
 * Port Specific Information:
 *
 * XXX document implementation including references if appropriate
 */
#define CPU_STACK_MINIMUM_SIZE          (1024*4)

#define CPU_SIZEOF_POINTER 4

/**
 * CPU's worst alignment requirement for data types on a byte boundary.  This
 * alignment does not take into account the requirements for the stack.
 *
 * Port Specific Information:
 * The LM32 architecture manual simply states: "All memory accesses must be
 * aligned to the size of the access", and there is no hardware support
 * whatsoever for 64-bit numbers.
 * (lm32_archman.pdf, July 2009, p. 15)
 */
#define CPU_ALIGNMENT              4

/**
 * This number corresponds to the byte alignment requirement for the
 * heap handler.  This alignment requirement may be stricter than that
 * for the data types alignment specified by @ref CPU_ALIGNMENT.  It is
 * common for the heap to follow the same alignment requirement as
 * @ref CPU_ALIGNMENT.  If the @ref CPU_ALIGNMENT is strict enough for
 * the heap, then this should be set to @ref CPU_ALIGNMENT.
 *
 * NOTE:  This does not have to be a power of 2 although it should be
 *        a multiple of 2 greater than or equal to 2.  The requirement
 *        to be a multiple of 2 is because the heap uses the least
 *        significant field of the front and back flags to indicate
 *        that a block is in use or free.  So you do not want any odd
 *        length blocks really putting length data in that bit.
 *
 *        On byte oriented architectures, @ref CPU_HEAP_ALIGNMENT normally will
 *        have to be greater or equal to than @ref CPU_ALIGNMENT to ensure that
 *        elements allocated from the heap meet all restrictions.
 *
 * Port Specific Information:
 *
 * XXX document implementation including references if appropriate
 */
#define CPU_HEAP_ALIGNMENT         CPU_ALIGNMENT

#define CPU_STACK_ALIGNMENT        CPU_ALIGNMENT

#define CPU_INTERRUPT_STACK_ALIGNMENT CPU_CACHE_LINE_BYTES

/*
 *  ISR handler macros
 */

/**
 * @addtogroup RTEMSScoreCPUlm32Interrupt
 */
/**@{**/

/**
 * Support routine to initialize the RTEMS vector table after it is allocated.
 *
 * Port Specific Information:
 *
 * XXX document implementation including references if appropriate
 */
#define _CPU_Initialize_vectors()

/**
 * Disable all interrupts for an RTEMS critical section.  The previous
 * level is returned in @a _isr_cookie.
 *
 * @param[out] _isr_cookie will contain the previous level cookie
 *
 * Port Specific Information:
 *
 * XXX document implementation including references if appropriate
 */
#define _CPU_ISR_Disable( _isr_cookie ) \
  lm32_disable_interrupts( _isr_cookie );

/**
 * Enable interrupts to the previous level (returned by _CPU_ISR_Disable).
 * This indicates the end of an RTEMS critical section.  The parameter
 * @a _isr_cookie is not modified.
 *
 * @param[in] _isr_cookie contain the previous level cookie
 *
 * Port Specific Information:
 *
 * XXX document implementation including references if appropriate
 */
#define _CPU_ISR_Enable( _isr_cookie ) \
  lm32_enable_interrupts( _isr_cookie );

/**
 * This temporarily restores the interrupt to @a _isr_cookie before immediately
 * disabling them again.  This is used to divide long RTEMS critical
 * sections into two or more parts.  The parameter @a _isr_cookie is not
 * modified.
 *
 * @param[in] _isr_cookie contain the previous level cookie
 *
 * Port Specific Information:
 *
 * XXX document implementation including references if appropriate
 */
#define _CPU_ISR_Flash( _isr_cookie ) \
  lm32_flash_interrupts( _isr_cookie );

RTEMS_INLINE_ROUTINE bool _CPU_ISR_Is_enabled( uint32_t level )
{
  return ( level & 0x0001 ) != 0;
}

/**
 * This routine and @ref _CPU_ISR_Get_level
 * Map the interrupt level in task mode onto the hardware that the CPU
 * actually provides.  Currently, interrupt levels which do not
 * map onto the CPU in a generic fashion are undefined.  Someday,
 * it would be nice if these were "mapped" by the application
 * via a callout.  For example, m68k has 8 levels 0 - 7, levels
 * 8 - 255 would be available for bsp/application specific meaning.
 * This could be used to manage a programmable interrupt controller
 * via the rtems_task_mode directive.
 *
 * Port Specific Information:
 *
 * XXX document implementation including references if appropriate
 */
#define _CPU_ISR_Set_level( new_level ) \
  { \
    _CPU_ISR_Enable( ( new_level==0 ) ? 1 : 0 ); \
  }

/**
 * Return the current interrupt disable level for this task in
 * the format used by the interrupt level portion of the task mode.
 *
 * NOTE: This routine usually must be implemented as a subroutine.
 *
 * Port Specific Information:
 *
 * XXX document implementation including references if appropriate
 */
uint32_t   _CPU_ISR_Get_level( void );

/* end of ISR handler macros */

/** @} */

/* Context handler macros */

/**
 * @addtogroup RTEMSScoreCPUlm32Context
 * Initialize the context to a state suitable for starting a
 * task after a context restore operation.  Generally, this
 * involves:
 *
 *    - setting a starting address
 *    - preparing the stack
 *    - preparing the stack and frame pointers
 *    - setting the proper interrupt level in the context
 *    - initializing the floating point context
 *
 * This routine generally does not set any unnecessary register
 * in the context.  The state of the "general data" registers is
 * undefined at task start time.
 *
 * @param[in] _the_context is the context structure to be initialized
 * @param[in] _stack_base is the lowest physical address of this task's stack
 * @param[in] _size is the size of this task's stack
 * @param[in] _isr is the interrupt disable level
 * @param[in] _entry_point is the thread's entry point.  This is
 *        always @a _Thread_Handler
 * @param[in] _is_fp is TRUE if the thread is to be a floating
 *       point thread.  This is typically only used on CPUs where the
 *       FPU may be easily disabled by software such as on the SPARC
 *       where the PSR contains an enable FPU bit.
 *
 * Port Specific Information:
 *
 * XXX document implementation including references if appropriate
 */
extern char _gp[];

#define _CPU_Context_Initialize( _the_context, _stack_base, _size, \
                                 _isr, _entry_point, _is_fp, _tls_area ) \
   do { \
     uint32_t _stack = (uint32_t)(_stack_base) + (_size) - 4; \
     \
     (void) _is_fp; /* avoid warning for being unused */ \
     (void) _isr;  /* avoid warning for being unused */ \
     (_the_context)->gp = (uint32_t)_gp; \
     (_the_context)->fp = (uint32_t)_stack; \
     (_the_context)->sp = (uint32_t)_stack; \
     (_the_context)->ra = (uint32_t)(_entry_point); \
   } while ( 0 )

/**
 * This routine is responsible for somehow restarting the currently
 * executing task.  If you are lucky, then all that is necessary
 * is restoring the context.  Otherwise, there will need to be
 * a special assembly routine which does something special in this
 * case.  For many ports, simply adding a label to the restore path
 * of @ref _CPU_Context_switch will work.  On other ports, it may be
 * possibly to load a few arguments and jump to the restore path. It will
 * not work if restarting self conflicts with the stack frame
 * assumptions of restoring a context.
 *
 * Port Specific Information:
 *
 * XXX document implementation including references if appropriate
 */
#define _CPU_Context_Restart_self( _the_context ) \
   _CPU_Context_restore( (_the_context) );

/**
 * This routine initializes the FP context area passed to it to.
 * There are a few standard ways in which to initialize the
 * floating point context.  The code included for this macro assumes
 * that this is a CPU in which a "initial" FP context was saved into
 * @a _CPU_Null_fp_context and it simply copies it to the destination
 * context passed to it.
 *
 * Other floating point context save/restore models include:
 *   -# not doing anything, and
 *   -# putting a "null FP status word" in the correct place in the FP context.
 *
 * @param[in] _destination is the floating point context area
 *
 * Port Specific Information:
 *
 * XXX document implementation including references if appropriate
 */
#define _CPU_Context_Initialize_fp( _destination )
#if 0
  { \
   *(*(_destination)) = _CPU_Null_fp_context; \
  }
#endif

/* end of Context handler macros */

/* Fatal Error manager macros */

/**
 * This routine copies _error into a known place -- typically a stack
 * location or a register, optionally disables interrupts, and
 * halts/stops the CPU.
 *
 * Port Specific Information:
 *
 * XXX document implementation including references if appropriate
 */
#define _CPU_Fatal_halt( _source, _error ) \
  { \
  }

/* end of Fatal Error manager macros */

#define CPU_USE_GENERIC_BITFIELD_CODE TRUE

#define CPU_USE_LIBC_INIT_FINI_ARRAY FALSE

/* functions */

/**
 * This routine performs CPU dependent initialization.
 *
 * Port Specific Information:
 *
 * XXX document implementation including references if appropriate
 */
void _CPU_Initialize(void);

/**
 * @addtogroup RTEMSScoreCPUlm32Interrupt
 */
/**@{**/

typedef void ( *CPU_ISR_raw_handler )( void );

RTEMS_INLINE_ROUTINE void _CPU_ISR_install_raw_handler(
  uint32_t             vector,
  CPU_ISR_raw_handler  new_handler,
  CPU_ISR_raw_handler *old_handler
)
{
  /* TODO */
}

typedef void ( *CPU_ISR_handler )( uint32_t );

void _CPU_ISR_install_vector(
  uint32_t         vector,
  CPU_ISR_handler  new_handler,
  CPU_ISR_handler *old_handler
);

/** @} */

void *_CPU_Thread_Idle_body( uintptr_t ignored );

/**
 * @addtogroup RTEMSScoreCPUlm32Context
 * This routine switches from the run context to the heir context.
 *
 * @param[in] run points to the context of the currently executing task
 * @param[in] heir points to the context of the heir task
 *
 * Port Specific Information:
 *
 * XXX document implementation including references if appropriate
 */
void _CPU_Context_switch(
  Context_Control  *run,
  Context_Control  *heir
);

/**
 * @addtogroup RTEMSScoreCPUlm32Context
 */
/**@{**/

/**
 * This routine is generally used only to restart self in an
 * efficient manner.  It may simply be a label in @ref _CPU_Context_switch.
 *
 * @param[in] new_context points to the context to be restored.
 *
 * NOTE: May be unnecessary to reload some registers.
 *
 * Port Specific Information:
 *
 * XXX document implementation including references if appropriate
 */
RTEMS_NO_RETURN void _CPU_Context_restore( Context_Control *new_context );

/** @} */

/* FIXME */
typedef CPU_Interrupt_frame CPU_Exception_frame;

void _CPU_Exception_frame_print( const CPU_Exception_frame *frame );

/**
 * @defgroup RTEMSScoreCPUlm32CPUEndian CPUEndian
 * 
 * @ingroup RTEMSScoreCPUlm32
 * 
 * @brief CPUEndian
 */
/** @{ */

/**
 * The following routine swaps the endian format of an unsigned int.
 * It must be static because it is referenced indirectly.
 *
 * This version will work on any processor, but if there is a better
 * way for your CPU PLEASE use it.  The most common way to do this is to:
 *
 *    swap least significant two bytes with 16-bit rotate
 *    swap upper and lower 16-bits
 *    swap most significant two bytes with 16-bit rotate
 *
 * Some CPUs have special instructions which swap a 32-bit quantity in
 * a single instruction (e.g. i486).  It is probably best to avoid
 * an "endian swapping control bit" in the CPU.  One good reason is
 * that interrupts would probably have to be disabled to ensure that
 * an interrupt does not try to access the same "chunk" with the wrong
 * endian.  Another good reason is that on some CPUs, the endian bit
 * endianness for ALL fetches -- both code and data -- so the code
 * will be fetched incorrectly.
 *
 * @param[in] value is the value to be swapped
 * @return the value after being endian swapped
 *
 * Port Specific Information:
 *
 * XXX document implementation including references if appropriate
 */
static inline uint32_t CPU_swap_u32(
  uint32_t value
)
{
  uint32_t byte1, byte2, byte3, byte4, swapped;

  byte4 = (value >> 24) & 0xff;
  byte3 = (value >> 16) & 0xff;
  byte2 = (value >> 8)  & 0xff;
  byte1 =  value        & 0xff;

  swapped = (byte1 << 24) | (byte2 << 16) | (byte3 << 8) | byte4;
  return swapped;
}

/**
 * This routine swaps a 16 bir quantity.
 *
 * @param[in] value is the value to be swapped
 * @return the value after being endian swapped
 */
static inline uint16_t CPU_swap_u16(uint16_t v)
{
    return v << 8 | v >> 8;
}

/** @} */

typedef uint32_t CPU_Counter_ticks;

uint32_t _CPU_Counter_frequency( void );

CPU_Counter_ticks _CPU_Counter_read( void );

static inline CPU_Counter_ticks _CPU_Counter_difference(
  CPU_Counter_ticks second,
  CPU_Counter_ticks first
)
{
  return second - first;
}

/** Type that can store a 32-bit integer or a pointer. */
typedef uintptr_t CPU_Uint32ptr;

#ifdef __cplusplus
}
#endif

#endif