summaryrefslogtreecommitdiffstats
path: root/cpukit/libnetworking/netinet/in_cksum_i386.c
blob: 0612c5a7c41b528eab1d2642a3992b75064ee486 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
/*
 * Checksum routine for Internet Protocol family headers.
 *
 * This routine is very heavily used in the network
 * code and should be modified for each CPU to be as fast as possible.
 *
 * This implementation is 386 version.
 *
 *  $Id$
 */

#include <stdio.h>                /* for puts */

#undef	ADDCARRY
#define ADDCARRY(x)     if ((x) > 0xffff) (x) -= 0xffff
#define REDUCE          {sum = (sum & 0xffff) + (sum >> 16); ADDCARRY(sum);}

/*
 * Thanks to gcc we don't have to guess
 * which registers contain sum & w.
 */
#define ADD(n)	asm("addl " #n "(%2), %0" : "=r" (sum) : "0" (sum), "r" (w))
#define ADDC(n)	asm("adcl " #n "(%2), %0" : "=r" (sum) : "0" (sum), "r" (w))
#define LOAD(n)	asm volatile("movb " #n "(%1), %0" : "=r" (junk) : "r" (w))
#define MOP	asm("adcl         $0, %0" : "=r" (sum) : "0" (sum))

int
in_cksum(m, len)
	register struct mbuf *m;
	register int len;
{
	register u_short *w;
	register unsigned sum = 0;
	register int mlen = 0;
	int byte_swapped = 0;
	union { char	c[2]; u_short	s; } su;

	for (;m && len; m = m->m_next) {
		if (m->m_len == 0)
			continue;
		w = mtod(m, u_short *);
		if (mlen == -1) {
			/*
			 * The first byte of this mbuf is the continuation
			 * of a word spanning between this mbuf and the
			 * last mbuf.
			 */

			/* su.c[0] is already saved when scanning previous
			 * mbuf.  sum was REDUCEd when we found mlen == -1
			 */
			su.c[1] = *(u_char *)w;
			sum += su.s;
			w = (u_short *)((char *)w + 1);
			mlen = m->m_len - 1;
			len--;
		} else
			mlen = m->m_len;
		if (len < mlen)
			mlen = len;
		len -= mlen;
		/*
		 * Force to long boundary so we do longword aligned
		 * memory operations
		 */
		if (3 & (int) w) {
			REDUCE;
			if ((1 & (int) w) && (mlen > 0)) {
				sum <<= 8;
				su.c[0] = *(char *)w;
				w = (u_short *)((char *)w + 1);
				mlen--;
				byte_swapped = 1;
			}
			if ((2 & (int) w) && (mlen >= 2)) {
				sum += *w++;
				mlen -= 2;
			}
		}
		/*
		 * Advance to a 486 cache line boundary.
		 */
		if (4 & (int) w && mlen >= 4) {
			ADD(0);
			MOP;
			w += 2;
			mlen -= 4;
		}
		if (8 & (int) w && mlen >= 8) {
			ADD(0);
			ADDC(4);
			MOP;
			w += 4;
			mlen -= 8;
		}
		/*
		 * Do as much of the checksum as possible 32 bits at at time.
		 * In fact, this loop is unrolled to make overhead from
		 * branches &c small.
		 */
		mlen -= 1;
		while ((mlen -= 32) >= 0) {
			u_char junk;
			/*
			 * Add with carry 16 words and fold in the last
			 * carry by adding a 0 with carry.
			 *
			 * The early ADD(16) and the LOAD(32) are to load
			 * the next 2 cache lines in advance on 486's.  The
			 * 486 has a penalty of 2 clock cycles for loading
			 * a cache line, plus whatever time the external
			 * memory takes to load the first word(s) addressed.
			 * These penalties are unavoidable.  Subsequent
			 * accesses to a cache line being loaded (and to
			 * other external memory?) are delayed until the
			 * whole load finishes.  These penalties are mostly
			 * avoided by not accessing external memory for
			 * 8 cycles after the ADD(16) and 12 cycles after
			 * the LOAD(32).  The loop terminates when mlen
			 * is initially 33 (not 32) to guaranteed that
			 * the LOAD(32) is within bounds.
			 */
			ADD(16);
			ADDC(0);
			ADDC(4);
			ADDC(8);
			ADDC(12);
			LOAD(32);
			ADDC(20);
			ADDC(24);
			ADDC(28);
			MOP;
			w += 16;
		}
		mlen += 32 + 1;
		if (mlen >= 32) {
			ADD(16);
			ADDC(0);
			ADDC(4);
			ADDC(8);
			ADDC(12);
			ADDC(20);
			ADDC(24);
			ADDC(28);
			MOP;
			w += 16;
			mlen -= 32;
		}
		if (mlen >= 16) {
			ADD(0);
			ADDC(4);
			ADDC(8);
			ADDC(12);
			MOP;
			w += 8;
			mlen -= 16;
		}
		if (mlen >= 8) {
			ADD(0);
			ADDC(4);
			MOP;
			w += 4;
			mlen -= 8;
		}
		if (mlen == 0 && byte_swapped == 0)
			continue;       /* worth 1% maybe ?? */
		REDUCE;
		while ((mlen -= 2) >= 0) {
			sum += *w++;
		}
		if (byte_swapped) {
			sum <<= 8;
			byte_swapped = 0;
			if (mlen == -1) {
				su.c[1] = *(char *)w;
				sum += su.s;
				mlen = 0;
			} else
				mlen = -1;
		} else if (mlen == -1)
			/*
			 * This mbuf has odd number of bytes.
			 * There could be a word split betwen
			 * this mbuf and the next mbuf.
			 * Save the last byte (to prepend to next mbuf).
			 */
			su.c[0] = *(char *)w;
	}

	if (len)
		puts("cksum: out of data");
	if (mlen == -1) {
		/* The last mbuf has odd # of bytes. Follow the
		   standard (the odd byte is shifted left by 8 bits) */
		su.c[1] = 0;
		sum += su.s;
	}
	REDUCE;
	return (~sum & 0xffff);
}