summaryrefslogtreecommitdiffstats
path: root/cpukit/include/rtems/score/percpu.h
blob: 31bc2b0bff83c0a0fb80d67065ec08c02c756429 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
/**
 *  @file
 *
 *  This include file defines the per CPU information required
 *  by RTEMS.
 */

/*
 *  COPYRIGHT (c) 1989-2011.
 *  On-Line Applications Research Corporation (OAR).
 *
 *  Copyright (c) 2012, 2018 embedded brains GmbH
 *
 *  The license and distribution terms for this file may be
 *  found in the file LICENSE in this distribution or at
 *  http://www.rtems.org/license/LICENSE.
 */

#ifndef _RTEMS_PERCPU_H
#define _RTEMS_PERCPU_H

#include <rtems/score/cpuimpl.h>

#if defined( ASM )
  #include <rtems/asm.h>
#else
  #include <rtems/score/assert.h>
  #include <rtems/score/chain.h>
  #include <rtems/score/isrlock.h>
  #include <rtems/score/smp.h>
  #include <rtems/score/timestamp.h>
  #include <rtems/score/watchdog.h>
#endif

#ifdef __cplusplus
extern "C" {
#endif

#if defined(RTEMS_SMP)
  #if defined(RTEMS_PROFILING)
    #define PER_CPU_CONTROL_SIZE_APPROX \
      ( 512 + CPU_PER_CPU_CONTROL_SIZE + CPU_INTERRUPT_FRAME_SIZE )
  #elif defined(RTEMS_DEBUG) || CPU_SIZEOF_POINTER > 4
    #define PER_CPU_CONTROL_SIZE_APPROX \
      ( 256 + CPU_PER_CPU_CONTROL_SIZE + CPU_INTERRUPT_FRAME_SIZE )
  #else
    #define PER_CPU_CONTROL_SIZE_APPROX \
      ( 180 + CPU_PER_CPU_CONTROL_SIZE + CPU_INTERRUPT_FRAME_SIZE )
  #endif

  /*
   * This ensures that on SMP configurations the individual per-CPU controls
   * are on different cache lines to prevent false sharing.  This define can be
   * used in assembler code to easily get the per-CPU control for a particular
   * processor.
   */
  #if PER_CPU_CONTROL_SIZE_APPROX > 1024
    #define PER_CPU_CONTROL_SIZE_LOG2 11
  #elif PER_CPU_CONTROL_SIZE_APPROX > 512
    #define PER_CPU_CONTROL_SIZE_LOG2 10
  #elif PER_CPU_CONTROL_SIZE_APPROX > 256
    #define PER_CPU_CONTROL_SIZE_LOG2 9
  #elif PER_CPU_CONTROL_SIZE_APPROX > 128
    #define PER_CPU_CONTROL_SIZE_LOG2 8
  #else
    #define PER_CPU_CONTROL_SIZE_LOG2 7
  #endif

  #define PER_CPU_CONTROL_SIZE ( 1 << PER_CPU_CONTROL_SIZE_LOG2 )
#endif

#if !defined( ASM )

struct Record_Control;

struct _Thread_Control;

struct Scheduler_Context;

/**
 *  @defgroup PerCPU RTEMS Per CPU Information
 *
 *  @ingroup RTEMSScore
 *
 *  This defines the per CPU state information required by RTEMS
 *  and the BSP.  In an SMP configuration, there will be multiple
 *  instances of this data structure -- one per CPU -- and the
 *  current CPU number will be used as the index.
 */

/**@{*/

#if defined( RTEMS_SMP )

/**
 * @brief State of a processor.
 *
 * The processor state controls the life cycle of processors at the lowest
 * level.  No multi-threading or other high-level concepts matter here.
 *
 * State changes must be initiated via _Per_CPU_State_change().  This function
 * may not return in case someone requested a shutdown.  The
 * _SMP_Send_message() function will be used to notify other processors about
 * state changes if the other processor is in the up state.
 *
 * Due to the sequential nature of the basic system initialization one
 * processor has a special role.  It is the processor executing the boot_card()
 * function.  This processor is called the boot processor.  All other
 * processors are called secondary.
 *
 * @dot
 * digraph states {
 *   i [label="PER_CPU_STATE_INITIAL"];
 *   rdy [label="PER_CPU_STATE_READY_TO_START_MULTITASKING"];
 *   reqsm [label="PER_CPU_STATE_REQUEST_START_MULTITASKING"];
 *   u [label="PER_CPU_STATE_UP"];
 *   s [label="PER_CPU_STATE_SHUTDOWN"];
 *   i -> rdy [label="processor\ncompleted initialization"];
 *   rdy -> reqsm [label="boot processor\ncompleted initialization"];
 *   reqsm -> u [label="processor\nstarts multitasking"];
 *   i -> s;
 *   rdy -> s;
 *   reqsm -> s;
 *   u -> s;
 * }
 * @enddot
 */
typedef enum {
  /**
   * @brief The per CPU controls are initialized to zero.
   *
   * The boot processor executes the sequential boot code in this state.  The
   * secondary processors should perform their basic initialization now and
   * change into the PER_CPU_STATE_READY_TO_START_MULTITASKING state once this
   * is complete.
   */
  PER_CPU_STATE_INITIAL,

  /**
   * @brief Processor is ready to start multitasking.
   *
   * The secondary processor performed its basic initialization and is ready to
   * receive inter-processor interrupts.  Interrupt delivery must be disabled
   * in this state, but requested inter-processor interrupts must be recorded
   * and must be delivered once the secondary processor enables interrupts for
   * the first time.  The boot processor will wait for all secondary processors
   * to change into this state.  In case a secondary processor does not reach
   * this state the system will not start.  The secondary processors wait now
   * for a change into the PER_CPU_STATE_REQUEST_START_MULTITASKING state set
   * by the boot processor once all secondary processors reached the
   * PER_CPU_STATE_READY_TO_START_MULTITASKING state.
   */
  PER_CPU_STATE_READY_TO_START_MULTITASKING,

  /**
   * @brief Multitasking start of processor is requested.
   *
   * The boot processor completed system initialization and is about to perform
   * a context switch to its heir thread.  Secondary processors should now
   * issue a context switch to the heir thread.  This normally enables
   * interrupts on the processor for the first time.
   */
  PER_CPU_STATE_REQUEST_START_MULTITASKING,

  /**
   * @brief Normal multitasking state.
   */
  PER_CPU_STATE_UP,

  /**
   * @brief This is the terminal state.
   */
  PER_CPU_STATE_SHUTDOWN
} Per_CPU_State;

typedef void ( *Per_CPU_Job_handler )( void *arg );

/**
 * @brief Context for per-processor jobs.
 *
 * This is separate from Per_CPU_Job to save stack memory in
 * _SMP_Multicast_action().
 */
typedef struct {
  /**
   * @brief The job handler.
   */
  Per_CPU_Job_handler handler;

  /**
   * @brief The job handler argument.
   */
  void *arg;
} Per_CPU_Job_context;

/*
 * Value for the Per_CPU_Job::done member to indicate that a job is done
 * (handler was called on the target processor).  Must not be a valid pointer
 * value since it overlaps with the Per_CPU_Job::next member.
 */
#define PER_CPU_JOB_DONE 1

/**
 * @brief A per-processor job.
 *
 * This structure must be as small as possible due to stack space constraints
 * in _SMP_Multicast_action().
 */
typedef struct Per_CPU_Job {
  union {
    /**
     * @brief The next job in the corresponding per-processor job list.
     */
    struct Per_CPU_Job *next;

    /**
     * @brief Indication if the job is done.
     *
     * A job is done if this member has the value PER_CPU_JOB_DONE.  This
     * assumes that PER_CPU_JOB_DONE is not a valid pointer value.
     */
    Atomic_Ulong done;
  };

  /**
   * @brief Pointer to the job context to get the handler and argument.
   */
  const Per_CPU_Job_context *context;
} Per_CPU_Job;

#endif /* defined( RTEMS_SMP ) */

/**
 * @brief Per-CPU statistics.
 */
typedef struct {
#if defined( RTEMS_PROFILING )
  /**
   * @brief The thread dispatch disabled begin instant in CPU counter ticks.
   *
   * This value is used to measure the time of disabled thread dispatching.
   */
  CPU_Counter_ticks thread_dispatch_disabled_instant;

  /**
   * @brief The maximum time of disabled thread dispatching in CPU counter
   * ticks.
   */
  CPU_Counter_ticks max_thread_dispatch_disabled_time;

  /**
   * @brief The maximum time spent to process a single sequence of nested
   * interrupts in CPU counter ticks.
   *
   * This is the time interval between the change of the interrupt nest level
   * from zero to one and the change back from one to zero.
   */
  CPU_Counter_ticks max_interrupt_time;

  /**
   * @brief The maximum interrupt delay in CPU counter ticks if supported by
   * the hardware.
   */
  CPU_Counter_ticks max_interrupt_delay;

  /**
   * @brief Count of times when the thread dispatch disable level changes from
   * zero to one in thread context.
   *
   * This value may overflow.
   */
  uint64_t thread_dispatch_disabled_count;

  /**
   * @brief Total time of disabled thread dispatching in CPU counter ticks.
   *
   * The average time of disabled thread dispatching is the total time of
   * disabled thread dispatching divided by the thread dispatch disabled
   * count.
   *
   * This value may overflow.
   */
  uint64_t total_thread_dispatch_disabled_time;

  /**
   * @brief Count of times when the interrupt nest level changes from zero to
   * one.
   *
   * This value may overflow.
   */
  uint64_t interrupt_count;

  /**
   * @brief Total time of interrupt processing in CPU counter ticks.
   *
   * The average time of interrupt processing is the total time of interrupt
   * processing divided by the interrupt count.
   *
   * This value may overflow.
   */
  uint64_t total_interrupt_time;
#endif /* defined( RTEMS_PROFILING ) */
} Per_CPU_Stats;

/**
 * @brief Per-CPU watchdog header index.
 */
typedef enum {
  /**
   * @brief Index for tick clock per-CPU watchdog header.
   *
   * The reference time point for the tick clock is the system start.  The
   * clock resolution is one system clock tick.  It is used for the system
   * clock tick based time services.
   */
  PER_CPU_WATCHDOG_TICKS,

  /**
   * @brief Index for realtime clock per-CPU watchdog header.
   *
   * The reference time point for the realtime clock is the POSIX Epoch.  The
   * clock resolution is one nanosecond.  It is used for the time of day
   * services and the POSIX services using CLOCK_REALTIME.
   */
  PER_CPU_WATCHDOG_REALTIME,

  /**
   * @brief Index for monotonic clock per-CPU watchdog header.
   *
   * The reference time point for the monotonic clock is the system start.  The
   * clock resolution is one nanosecond.  It is used for the POSIX services
   * using CLOCK_MONOTONIC.
   */
  PER_CPU_WATCHDOG_MONOTONIC,

  /**
   * @brief Count of per-CPU watchdog headers.
   */
  PER_CPU_WATCHDOG_COUNT
} Per_CPU_Watchdog_index;

/**
 *  @brief Per CPU Core Structure
 *
 *  This structure is used to hold per core state information.
 */
typedef struct Per_CPU_Control {
  #if CPU_PER_CPU_CONTROL_SIZE > 0
    /**
     * @brief CPU port specific control.
     */
    CPU_Per_CPU_control cpu_per_cpu;
  #endif

  /**
   * @brief The interrupt stack low address for this processor.
   */
  void *interrupt_stack_low;

  /**
   * @brief The interrupt stack high address for this processor.
   */
  void *interrupt_stack_high;

  /**
   *  This contains the current interrupt nesting level on this
   *  CPU.
   */
  uint32_t isr_nest_level;

  /**
   * @brief Indicates if an ISR thread dispatch is disabled.
   *
   * This flag is context switched with each thread.  It indicates that this
   * thread has an interrupt stack frame on its stack.  By using this flag, we
   * can avoid nesting more interrupt dispatching attempts on a previously
   * interrupted thread's stack.
   */
  uint32_t isr_dispatch_disable;

  /**
   * @brief The thread dispatch critical section nesting counter which is used
   * to prevent context switches at inopportune moments.
   */
  volatile uint32_t thread_dispatch_disable_level;

  /**
   * @brief This is set to true when this processor needs to run the thread
   * dispatcher.
   *
   * It is volatile since interrupts may alter this flag.
   *
   * This member is not protected by a lock and must be accessed only by this
   * processor.  Code (e.g. scheduler and post-switch action requests) running
   * on another processors must use an inter-processor interrupt to set the
   * thread dispatch necessary indicator to true.
   *
   * @see _Thread_Get_heir_and_make_it_executing().
   */
  volatile bool dispatch_necessary;

  /*
   * Ensure that the executing member is at least 4-byte aligned, see
   * PER_CPU_OFFSET_EXECUTING.  This is necessary on CPU ports with relaxed
   * alignment restrictions, e.g. type alignment is less than the type size.
   */
  bool reserved_for_executing_alignment[ 3 ];

  /**
   * @brief This is the thread executing on this processor.
   *
   * This member is not protected by a lock.  The only writer is this
   * processor.
   *
   * On SMP configurations a thread may be registered as executing on more than
   * one processor in case a thread migration is in progress.  On SMP
   * configurations use _Thread_Is_executing_on_a_processor() to figure out if
   * a thread context is executing on a processor.
   */
  struct _Thread_Control *executing;

  /**
   * @brief This is the heir thread for this processor.
   *
   * This member is not protected by a lock.  The only writer after
   * multitasking start is the scheduler owning this processor.  It is assumed
   * that stores to pointers are atomic on all supported SMP architectures.
   * The CPU port specific code (inter-processor interrupt handling and
   * _CPU_SMP_Send_interrupt()) must guarantee that this processor observes the
   * last value written.
   *
   * A thread can be a heir on at most one processor in the system.
   *
   * @see _Thread_Get_heir_and_make_it_executing().
   */
  struct _Thread_Control *heir;

#if defined(RTEMS_SMP)
  CPU_Interrupt_frame Interrupt_frame;
#endif

  /**
   * @brief The CPU usage timestamp contains the time point of the last heir
   * thread change or last CPU usage update of the executing thread of this
   * processor.
   *
   * Protected by the scheduler lock.
   *
   * @see _Scheduler_Update_heir(), _Thread_Dispatch_update_heir() and
   * _Thread_Get_CPU_time_used().
   */
  Timestamp_Control cpu_usage_timestamp;

  /**
   * @brief Watchdog state for this processor.
   */
  struct {
    /**
     * @brief Protects all watchdog operations on this processor.
     */
    ISR_LOCK_MEMBER( Lock )

    /**
     * @brief Watchdog ticks on this processor used for monotonic clock
     * watchdogs.
     */
    uint64_t ticks;

    /**
     * @brief Header for watchdogs.
     *
     * @see Per_CPU_Watchdog_index.
     */
    Watchdog_Header Header[ PER_CPU_WATCHDOG_COUNT ];
  } Watchdog;

  #if defined( RTEMS_SMP )
    /**
     * @brief This lock protects some members of this structure.
     */
    ISR_lock_Control Lock;

    /**
     * @brief Lock context used to acquire all per-CPU locks.
     *
     * This member is protected by the Per_CPU_Control::Lock lock.
     *
     * @see _Per_CPU_Acquire_all().
     */
    ISR_lock_Context Lock_context;

    /**
     * @brief Chain of threads in need for help.
     *
     * This member is protected by the Per_CPU_Control::Lock lock.
     */
    Chain_Control Threads_in_need_for_help;

    /**
     * @brief Bit field for SMP messages.
     *
     * This member is not protected locks.  Atomic operations are used to set
     * and get the message bits.
     */
    Atomic_Ulong message;

    struct {
      /**
       * @brief The scheduler control of the scheduler owning this processor.
       *
       * This pointer is NULL in case this processor is currently not used by a
       * scheduler instance.
       */
      const struct _Scheduler_Control *control;

      /**
       * @brief The scheduler context of the scheduler owning this processor.
       *
       * This pointer is NULL in case this processor is currently not used by a
       * scheduler instance.
       */
      const struct Scheduler_Context *context;

      /**
       * @brief The idle thread for this processor in case it is online and
       * currently not used by a scheduler instance.
       */
      struct _Thread_Control *idle_if_online_and_unused;
    } Scheduler;

    /**
     * @brief The ancestor of the executing thread.
     *
     * This member is used by _User_extensions_Thread_switch().
     */
    struct _Thread_Control *ancestor;

    /**
     * @brief Begin of the per-CPU data area.
     *
     * Contains items defined via PER_CPU_DATA_ITEM().
     */
    char *data;

    /**
     * @brief Indicates the current state of the CPU.
     *
     * This member is protected by the _Per_CPU_State_lock lock.
     *
     * @see _Per_CPU_State_change().
     */
    Per_CPU_State state;

    /**
     * @brief FIFO list of jobs to be performed by this processor.
     *
     * @see _SMP_Multicast_action().
     */
    struct {
      /**
       * @brief Lock to protect the FIFO list of jobs to be performed by this
       * processor.
       */
      ISR_lock_Control Lock;

      /**
       * @brief Head of the FIFO list of jobs to be performed by this
       * processor.
       *
       * This member is protected by the Per_CPU_Control::Jobs::Lock lock.
       */
      struct Per_CPU_Job *head;

      /**
       * @brief Tail of the FIFO list of jobs to be performed by this
       * processor.
       *
       * This member is only valid if the head is not @c NULL.
       *
       * This member is protected by the Per_CPU_Control::Jobs::Lock lock.
       */
      struct Per_CPU_Job **tail;
    } Jobs;

    /**
     * @brief Indicates if the processor has been successfully started via
     * _CPU_SMP_Start_processor().
     */
    bool online;

    /**
     * @brief Indicates if the processor is the one that performed the initial
     * system initialization.
     */
    bool boot;
  #endif

  struct Record_Control *record;

  Per_CPU_Stats Stats;
} Per_CPU_Control;

#if defined( RTEMS_SMP )
typedef struct {
  Per_CPU_Control per_cpu;
  char unused_space_for_cache_line_alignment
    [ PER_CPU_CONTROL_SIZE - sizeof( Per_CPU_Control ) ];
} Per_CPU_Control_envelope;
#else
typedef struct {
  Per_CPU_Control per_cpu;
} Per_CPU_Control_envelope;
#endif

/**
 *  @brief Set of Per CPU Core Information
 *
 *  This is an array of per CPU core information.
 */
extern Per_CPU_Control_envelope _Per_CPU_Information[] CPU_STRUCTURE_ALIGNMENT;

#define _Per_CPU_Acquire( cpu, lock_context ) \
  _ISR_lock_Acquire( &( cpu )->Lock, lock_context )

#define _Per_CPU_Release( cpu, lock_context ) \
  _ISR_lock_Release( &( cpu )->Lock, lock_context )

/*
 * If we get the current processor index in a context which allows thread
 * dispatching, then we may already run on another processor right after the
 * read instruction.  There are very few cases in which this makes sense (here
 * we can use _Per_CPU_Get_snapshot()).  All other places must use
 * _Per_CPU_Get() so that we can add checks for RTEMS_DEBUG.
 */
#if defined( _CPU_Get_current_per_CPU_control )
  #define _Per_CPU_Get_snapshot() _CPU_Get_current_per_CPU_control()
#else
  #define _Per_CPU_Get_snapshot() \
    ( &_Per_CPU_Information[ _SMP_Get_current_processor() ].per_cpu )
#endif

#if defined( RTEMS_SMP )
static inline Per_CPU_Control *_Per_CPU_Get( void )
{
  Per_CPU_Control *cpu_self = _Per_CPU_Get_snapshot();

  _Assert(
    cpu_self->thread_dispatch_disable_level != 0 || _ISR_Get_level() != 0
  );

  return cpu_self;
}
#else
#define _Per_CPU_Get() _Per_CPU_Get_snapshot()
#endif

static inline Per_CPU_Control *_Per_CPU_Get_by_index( uint32_t index )
{
  return &_Per_CPU_Information[ index ].per_cpu;
}

static inline uint32_t _Per_CPU_Get_index( const Per_CPU_Control *cpu )
{
#if defined(RTEMS_SMP)
  const Per_CPU_Control_envelope *per_cpu_envelope =
    ( const Per_CPU_Control_envelope * ) cpu;

  return ( uint32_t ) ( per_cpu_envelope - &_Per_CPU_Information[ 0 ] );
#else
  (void) cpu;
  return 0;
#endif
}

static inline struct _Thread_Control *_Per_CPU_Get_executing(
  const Per_CPU_Control *cpu
)
{
  return cpu->executing;
}

static inline bool _Per_CPU_Is_processor_online(
  const Per_CPU_Control *cpu
)
{
#if defined( RTEMS_SMP )
  return cpu->online;
#else
  (void) cpu;

  return true;
#endif
}

static inline bool _Per_CPU_Is_boot_processor(
  const Per_CPU_Control *cpu
)
{
#if defined( RTEMS_SMP )
  return cpu->boot;
#else
  (void) cpu;

  return true;
#endif
}

RTEMS_INLINE_ROUTINE void _Per_CPU_Acquire_all(
  ISR_lock_Context *lock_context
)
{
#if defined(RTEMS_SMP)
  uint32_t         cpu_max;
  uint32_t         cpu_index;
  Per_CPU_Control *previous_cpu;

  cpu_max = _SMP_Get_processor_maximum();
  previous_cpu = _Per_CPU_Get_by_index( 0 );

  _ISR_lock_ISR_disable( lock_context );
  _Per_CPU_Acquire( previous_cpu, lock_context );

  for ( cpu_index = 1 ; cpu_index < cpu_max ; ++cpu_index ) {
     Per_CPU_Control *cpu;

     cpu = _Per_CPU_Get_by_index( cpu_index );
     _Per_CPU_Acquire( cpu, &previous_cpu->Lock_context );
     previous_cpu = cpu;
  }
#else
  _ISR_lock_ISR_disable( lock_context );
#endif
}

RTEMS_INLINE_ROUTINE void _Per_CPU_Release_all(
  ISR_lock_Context *lock_context
)
{
#if defined(RTEMS_SMP)
  uint32_t         cpu_max;
  uint32_t         cpu_index;
  Per_CPU_Control *cpu;

  cpu_max = _SMP_Get_processor_maximum();
  cpu = _Per_CPU_Get_by_index( cpu_max - 1 );

  for ( cpu_index = cpu_max - 1 ; cpu_index > 0 ; --cpu_index ) {
     Per_CPU_Control *previous_cpu;

     previous_cpu = _Per_CPU_Get_by_index( cpu_index - 1 );
     _Per_CPU_Release( cpu, &previous_cpu->Lock_context );
     cpu = previous_cpu;
  }

  _Per_CPU_Release( cpu, lock_context );
  _ISR_lock_ISR_enable( lock_context );
#else
  _ISR_lock_ISR_enable( lock_context );
#endif
}

#if defined( RTEMS_SMP )

/**
 *  @brief Allocate and Initialize Per CPU Structures
 *
 *  This method allocates and initialize the per CPU structure.
 */
void _Per_CPU_Initialize(void);

void _Per_CPU_State_change(
  Per_CPU_Control *cpu,
  Per_CPU_State new_state
);

/**
 * @brief Waits for a processor to change into a non-initial state.
 *
 * This function should be called only in _CPU_SMP_Start_processor() if
 * required by the CPU port or BSP.
 *
 * @code
 * bool _CPU_SMP_Start_processor(uint32_t cpu_index)
 * {
 *   uint32_t timeout = 123456;
 *
 *   start_the_processor(cpu_index);
 *
 *   return _Per_CPU_State_wait_for_non_initial_state(cpu_index, timeout);
 * }
 * @endcode
 *
 * @param[in] cpu_index The processor index.
 * @param[in] timeout_in_ns The timeout in nanoseconds.  Use a value of zero to
 * wait forever if necessary.
 *
 * @retval true The processor is in a non-initial state.
 * @retval false The timeout expired before the processor reached a non-initial
 * state.
 */
bool _Per_CPU_State_wait_for_non_initial_state(
  uint32_t cpu_index,
  uint32_t timeout_in_ns
);

/**
 * @brief Performs the jobs of the specified processor in FIFO order.
 *
 * @param[in, out] cpu The jobs of this processor will be performed.
 */
void _Per_CPU_Perform_jobs( Per_CPU_Control *cpu );

/**
 * @brief Adds the job to the tail of the processing list of the specified
 * processor.
 *
 * This function does not send the SMP_MESSAGE_PERFORM_JOBS message the
 * specified processor.
 *
 * @param[in, out] cpu The processor to add the job.
 * @param[in, out] job The job.  The Per_CPU_Job::context member must be
 *   initialized by the caller.
 */
void _Per_CPU_Add_job( Per_CPU_Control *cpu, Per_CPU_Job *job );

/**
 * @brief Waits for the job carried out by the specified processor.
 *
 * This function may result in an SMP_FATAL_WRONG_CPU_STATE_TO_PERFORM_JOBS
 * fatal error.
 *
 * @param[in] cpu The processor carrying out the job.
 * @param[in] job The job to wait for.
 */
void _Per_CPU_Wait_for_job(
  const Per_CPU_Control *cpu,
  const Per_CPU_Job     *job
);

#endif /* defined( RTEMS_SMP ) */

/*
 * On a non SMP system, the _SMP_Get_current_processor() is defined to 0.
 * Thus when built for non-SMP, there should be no performance penalty.
 */
#define _Thread_Dispatch_disable_level \
  _Per_CPU_Get()->thread_dispatch_disable_level
#define _Thread_Heir \
  _Per_CPU_Get()->heir

#if defined(_CPU_Get_thread_executing)
#define _Thread_Executing \
  _CPU_Get_thread_executing()
#else
#define _Thread_Executing \
  _Per_CPU_Get_executing( _Per_CPU_Get() )
#endif

#define _ISR_Nest_level \
  _Per_CPU_Get()->isr_nest_level
#define _CPU_Interrupt_stack_low \
  _Per_CPU_Get()->interrupt_stack_low
#define _CPU_Interrupt_stack_high \
  _Per_CPU_Get()->interrupt_stack_high
#define _Thread_Dispatch_necessary \
  _Per_CPU_Get()->dispatch_necessary

/**
 * @brief Returns the thread control block of the executing thread.
 *
 * This function can be called in any thread context.  On SMP configurations,
 * interrupts are disabled to ensure that the processor index is used
 * consistently if no CPU port specific method is available to get the
 * executing thread.
 *
 * @return The thread control block of the executing thread.
 */
RTEMS_INLINE_ROUTINE struct _Thread_Control *_Thread_Get_executing( void )
{
  struct _Thread_Control *executing;

  #if defined(RTEMS_SMP) && !defined(_CPU_Get_thread_executing)
    ISR_Level level;

    _ISR_Local_disable( level );
  #endif

  executing = _Thread_Executing;

  #if defined(RTEMS_SMP) && !defined(_CPU_Get_thread_executing)
    _ISR_Local_enable( level );
  #endif

  return executing;
}

/**@}*/

#endif /* !defined( ASM ) */

#if defined( ASM ) || defined( _RTEMS_PERCPU_DEFINE_OFFSETS )

#define PER_CPU_INTERRUPT_STACK_LOW \
  CPU_PER_CPU_CONTROL_SIZE
#define PER_CPU_INTERRUPT_STACK_HIGH \
  PER_CPU_INTERRUPT_STACK_LOW + CPU_SIZEOF_POINTER

#define INTERRUPT_STACK_LOW \
  (SYM(_Per_CPU_Information) + PER_CPU_INTERRUPT_STACK_LOW)
#define INTERRUPT_STACK_HIGH \
  (SYM(_Per_CPU_Information) + PER_CPU_INTERRUPT_STACK_HIGH)

/*
 *  These are the offsets of the required elements in the per CPU table.
 */
#define PER_CPU_ISR_NEST_LEVEL \
  PER_CPU_INTERRUPT_STACK_HIGH + CPU_SIZEOF_POINTER
#define PER_CPU_ISR_DISPATCH_DISABLE \
  PER_CPU_ISR_NEST_LEVEL + 4
#define PER_CPU_THREAD_DISPATCH_DISABLE_LEVEL \
  PER_CPU_ISR_DISPATCH_DISABLE + 4
#define PER_CPU_DISPATCH_NEEDED \
  PER_CPU_THREAD_DISPATCH_DISABLE_LEVEL + 4
#define PER_CPU_OFFSET_EXECUTING \
  PER_CPU_DISPATCH_NEEDED + 4
#define PER_CPU_OFFSET_HEIR \
  PER_CPU_OFFSET_EXECUTING + CPU_SIZEOF_POINTER
#if defined(RTEMS_SMP)
#define PER_CPU_INTERRUPT_FRAME_AREA \
  PER_CPU_OFFSET_HEIR + CPU_SIZEOF_POINTER
#endif

#define THREAD_DISPATCH_DISABLE_LEVEL \
  (SYM(_Per_CPU_Information) + PER_CPU_THREAD_DISPATCH_DISABLE_LEVEL)
#define ISR_NEST_LEVEL \
  (SYM(_Per_CPU_Information) + PER_CPU_ISR_NEST_LEVEL)
#define DISPATCH_NEEDED \
  (SYM(_Per_CPU_Information) + PER_CPU_DISPATCH_NEEDED)

#endif /* defined( ASM ) || defined( _RTEMS_PERCPU_DEFINE_OFFSETS ) */

#ifdef __cplusplus
}
#endif

#endif
/* end of include file */