summaryrefslogtreecommitdiffstats
path: root/cpukit/include/rtems/score/heap.h
blob: c7c80a07d599468bd9c05b182c50043b66e9e20f (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
/**
 * @file
 *
 * @ingroup RTEMSScoreHeap
 *
 * @brief Heap Handler API
 */

/*
 *  COPYRIGHT (c) 1989-2006.
 *  On-Line Applications Research Corporation (OAR).
 *
 *  The license and distribution terms for this file may be
 *  found in the file LICENSE in this distribution or at
 *  http://www.rtems.org/license/LICENSE.
 */

#ifndef _RTEMS_SCORE_HEAP_H
#define _RTEMS_SCORE_HEAP_H

#include <rtems/score/cpu.h>
#include <rtems/score/heapinfo.h>

#ifdef __cplusplus
extern "C" {
#endif

#ifdef RTEMS_DEBUG
  #define HEAP_PROTECTION
#endif

/**
 * @defgroup RTEMSScoreHeap Heap Handler
 *
 * @ingroup RTEMSScore
 *
 * @brief The Heap Handler provides a heap.
 *
 * A heap is a doubly linked list of variable size blocks which are allocated
 * using the first fit method.  Garbage collection is performed each time a
 * block is returned to the heap by coalescing neighbor blocks.  Control
 * information for both allocated and free blocks is contained in the heap
 * area.  A heap control structure contains control information for the heap.
 *
 * The alignment routines could be made faster should we require only powers of
 * two to be supported for page size, alignment and boundary arguments.  The
 * minimum alignment requirement for pages is currently CPU_ALIGNMENT and this
 * value is only required to be multiple of two and explicitly not required to
 * be a power of two.
 *
 * There are two kinds of blocks.  One sort describes a free block from which
 * we can allocate memory.  The other blocks are used and provide an allocated
 * memory area.  The free blocks are accessible via a list of free blocks.
 *
 * Blocks or areas cover a continuous set of memory addresses. They have a
 * begin and end address.  The end address is not part of the set.  The size of
 * a block or area equals the distance between the begin and end address in
 * units of bytes.
 *
 * Free blocks look like:
 * <table>
 *   <tr>
 *     <td rowspan=4>@ref Heap_Block</td><td>previous block size in case the
 *       previous block is free, <br> otherwise it may contain data used by
 *       the previous block</td>
 *   </tr>
 *   <tr>
 *     <td>block size and a flag which indicates if the previous block is free
 *       or used, <br> this field contains always valid data regardless of the
 *       block usage</td>
 *   </tr>
 *   <tr><td>pointer to next block (this field is page size aligned)</td></tr>
 *   <tr><td>pointer to previous block</td></tr>
 *   <tr><td colspan=2>free space</td></tr>
 * </table>
 *
 * Used blocks look like:
 * <table>
 *   <tr>
 *     <td rowspan=4>@ref Heap_Block</td><td>previous block size in case the
 *       previous block is free,<br>otherwise it may contain data used by
 *       the previous block</td>
 *   </tr>
 *   <tr>
 *     <td>block size and a flag which indicates if the previous block is free
 *       or used, <br> this field contains always valid data regardless of the
 *       block usage</td>
 *   </tr>
 *   <tr><td>begin of allocated area (this field is page size aligned)</td></tr>
 *   <tr><td>allocated space</td></tr>
 *   <tr><td colspan=2>allocated space</td></tr>
 * </table>
 *
 * The heap area after initialization contains two blocks and looks like:
 * <table>
 *   <tr><th>Label</th><th colspan=2>Content</th></tr>
 *   <tr><td>heap->area_begin</td><td colspan=2>heap area begin address</td></tr>
 *   <tr>
 *     <td>first_block->prev_size</td>
 *     <td colspan=2>
 *       subordinate heap area end address (this will be used to maintain a
 *       linked list of scattered heap areas)
 *     </td>
 *   </tr>
 *   <tr>
 *     <td>first_block->size</td>
 *     <td colspan=2>size available for allocation
 *       | @c HEAP_PREV_BLOCK_USED</td>
 *   </tr>
 *   <tr>
 *     <td>first_block->next</td><td>_Heap_Free_list_tail(heap)</td>
 *     <td rowspan=3>memory area available for allocation</td>
 *   </tr>
 *   <tr><td>first_block->prev</td><td>_Heap_Free_list_head(heap)</td></tr>
 *   <tr><td>...</td></tr>
 *   <tr>
 *     <td>last_block->prev_size</td><td colspan=2>size of first block</td>
 *   </tr>
 *   <tr>
 *     <td>last_block->size</td>
 *     <td colspan=2>first block begin address - last block begin address</td>
 *   </tr>
 *   <tr><td>heap->area_end</td><td colspan=2>heap area end address</td></tr>
 * </table>
 * The next block of the last block is the first block.  Since the first
 * block indicates that the previous block is used, this ensures that the
 * last block appears as used for the _Heap_Is_used() and _Heap_Is_free()
 * functions.
 */
/**@{**/

typedef struct Heap_Control Heap_Control;

typedef struct Heap_Block Heap_Block;

#ifndef HEAP_PROTECTION
  #define HEAP_PROTECTION_HEADER_SIZE 0
#else
  #define HEAP_PROTECTOR_COUNT 2

  #define HEAP_BEGIN_PROTECTOR_0 ((uintptr_t) 0xfd75a98f)
  #define HEAP_BEGIN_PROTECTOR_1 ((uintptr_t) 0xbfa1f177)
  #define HEAP_END_PROTECTOR_0 ((uintptr_t) 0xd6b8855e)
  #define HEAP_END_PROTECTOR_1 ((uintptr_t) 0x13a44a5b)

  #define HEAP_FREE_PATTERN ((uintptr_t) 0xe7093cdf)

  #define HEAP_PROTECTION_OBOLUS ((Heap_Block *) 1)

  typedef void (*_Heap_Protection_handler)(
     Heap_Control *heap,
     Heap_Block *block
  );

  typedef struct {
    _Heap_Protection_handler block_initialize;
    _Heap_Protection_handler block_check;
    _Heap_Protection_handler block_error;
    void *handler_data;
    Heap_Block *first_delayed_free_block;
    Heap_Block *last_delayed_free_block;
    uintptr_t delayed_free_block_count;
    uintptr_t delayed_free_fraction;
  } Heap_Protection;

  struct _Thread_Control;

  typedef struct {
    uintptr_t protector [HEAP_PROTECTOR_COUNT];
    Heap_Block *next_delayed_free_block;
    struct _Thread_Control *task;
    void *tag;
  } Heap_Protection_block_begin;

  typedef struct {
    uintptr_t protector [HEAP_PROTECTOR_COUNT];
  } Heap_Protection_block_end;

  #define HEAP_PROTECTION_HEADER_SIZE \
    (sizeof(Heap_Protection_block_begin) + sizeof(Heap_Protection_block_end))
#endif

/**
 * @brief The block header consists of the two size fields
 * (@ref Heap_Block.prev_size and @ref Heap_Block.size_and_flag).
 */
#define HEAP_BLOCK_HEADER_SIZE \
  (2 * sizeof(uintptr_t) + HEAP_PROTECTION_HEADER_SIZE)

/**
 * @brief Description for free or used blocks.
 */
struct Heap_Block {
  /**
   * @brief Size of the previous block or part of the allocated area of the
   * previous block.
   *
   * This field is only valid if the previous block is free.  This case is
   * indicated by a cleared @c HEAP_PREV_BLOCK_USED flag in the
   * @a size_and_flag field of the current block.
   *
   * In a used block only the @a size_and_flag field needs to be valid.  The
   * @a prev_size field of the current block is maintained by the previous
   * block.  The current block can use the @a prev_size field in the next block
   * for allocation.
   */
  uintptr_t prev_size;

  #ifdef HEAP_PROTECTION
    Heap_Protection_block_begin Protection_begin;
  #endif

  /**
   * @brief Contains the size of the current block and a flag which indicates
   * if the previous block is free or used.
   *
   * If the flag @c HEAP_PREV_BLOCK_USED is set, then the previous block is
   * used, otherwise the previous block is free.  A used previous block may
   * claim the @a prev_size field for allocation.  This trick allows to
   * decrease the overhead in the used blocks by the size of the @a prev_size
   * field.  As sizes are required to be multiples of two, the least
   * significant bits would be always zero. We use this bit to store the flag.
   *
   * This field is always valid.
   */
  uintptr_t size_and_flag;

  #ifdef HEAP_PROTECTION
    Heap_Protection_block_end Protection_end;
  #endif

  /**
   * @brief Pointer to the next free block or part of the allocated area.
   *
   * This field is page size aligned and begins of the allocated area in case
   * the block is used.
   *
   * This field is only valid if the block is free and thus part of the free
   * block list.
   */
  Heap_Block *next;

  /**
   * @brief Pointer to the previous free block or part of the allocated area.
   *
   * This field is only valid if the block is free and thus part of the free
   * block list.
   */
  Heap_Block *prev;
};

/**
 * @brief Control block used to manage a heap.
 */
struct Heap_Control {
  Heap_Block free_list;
  uintptr_t page_size;
  uintptr_t min_block_size;
  uintptr_t area_begin;
  uintptr_t area_end;
  Heap_Block *first_block;
  Heap_Block *last_block;
  Heap_Statistics stats;
  #ifdef HEAP_PROTECTION
    Heap_Protection Protection;
  #endif
};

/**
 * @brief Heap area structure for table based heap initialization and
 * extension.
 *
 * @see Heap_Initialization_or_extend_handler.
 */
typedef struct {
  void *begin;
  uintptr_t size;
} Heap_Area;

/**
 * @brief Heap initialization and extend handler type.
 *
 * This helps to do a table based heap initialization and extension.  Create a
 * table of Heap_Area elements and iterate through it.  Set the handler to
 * _Heap_Initialize() in the first iteration and then to _Heap_Extend().
 *
 * @see Heap_Area, _Heap_Initialize(), _Heap_Extend(), or _Heap_No_extend().
 */
typedef uintptr_t (*Heap_Initialization_or_extend_handler)(
  Heap_Control *heap,
  void *area_begin,
  uintptr_t area_size,
  uintptr_t page_size_or_unused
);

/**
 * @brief Extends the memory available for the heap @a heap using the memory
 * area starting at @a area_begin of size @a area_size bytes.
 *
 * There are no alignment requirements for the memory area.  The memory area
 * must be big enough to contain some maintenance blocks.  It must not overlap
 * parts of the current heap memory areas.  Disconnected memory areas added to
 * the heap will lead to used blocks which cover the gaps.  Extending with an
 * inappropriate memory area will corrupt the heap resulting in undefined
 * behaviour.
 *
 * The unused fourth parameter is provided to have the same signature as
 * _Heap_Initialize().
 *
 * Returns the extended space available for allocation, or zero in case of failure.
 *
 * @see Heap_Initialization_or_extend_handler.
 */
uintptr_t _Heap_Extend(
  Heap_Control *heap,
  void *area_begin,
  uintptr_t area_size,
  uintptr_t unused
);

/**
 * @brief This function returns always zero.
 *
 * This function only returns zero and does nothing else.
 *
 * Returns always zero.
 *
 * @see Heap_Initialization_or_extend_handler.
 */
uintptr_t _Heap_No_extend(
  Heap_Control *unused_0,
  void *unused_1,
  uintptr_t unused_2,
  uintptr_t unused_3
);

RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_up(
  uintptr_t value,
  uintptr_t alignment
)
{
  uintptr_t remainder = value % alignment;

  if ( remainder != 0 ) {
    return value - remainder + alignment;
  } else {
    return value;
  }
}

RTEMS_INLINE_ROUTINE uintptr_t _Heap_Min_block_size( uintptr_t page_size )
{
  return _Heap_Align_up( sizeof( Heap_Block ), page_size );
}

/**
 * @brief Returns the worst case overhead to manage a memory area.
 */
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Area_overhead(
  uintptr_t page_size
)
{
  if ( page_size != 0 ) {
    page_size = _Heap_Align_up( page_size, CPU_ALIGNMENT );
  } else {
    page_size = CPU_ALIGNMENT;
  }

  return 2 * (page_size - 1) + HEAP_BLOCK_HEADER_SIZE;
}

/**
 * @brief Returns the size with administration and alignment overhead for one
 * allocation.
 */
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Size_with_overhead(
  uintptr_t page_size,
  uintptr_t size,
  uintptr_t alignment
)
{
  if ( page_size != 0 ) {
    page_size = _Heap_Align_up( page_size, CPU_ALIGNMENT );
  } else {
    page_size = CPU_ALIGNMENT;
  }

  if ( page_size < alignment ) {
    page_size = alignment;
  }

  return HEAP_BLOCK_HEADER_SIZE + page_size - 1 + size;
}

/** @} */

#ifdef __cplusplus
}
#endif

#endif
/* end of include file */