summaryrefslogtreecommitdiffstats
path: root/cpukit/dev/i2c/xilinx-axi-i2c.c
blob: fc8b4dd92c33febf50bc53a430f2daa85e35087a (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
/*
 * Copyright (c) 2016-2017 Chris Johns <chrisj@rtems.org>  All rights reserved.
 *
 * The license and distribution terms for this file may be
 * found in the file LICENSE in this distribution or at
 * http://www.rtems.org/license/LICENSE.
 */

/*
 * Xilinx AXI IIC Interface v2.0. See PG090.pdf.
 *
 * Note, only master support is provided and no dynamic mode by design.
 */

#include <stdarg.h>

#include <rtems.h>
#include <rtems/bspIo.h>
#include <rtems/irq-extension.h>
#include <rtems/score/assert.h>

#include <dev/i2c/i2c.h>
#include <dev/i2c/xilinx-axi-i2c.h>

/*
 * Register map.
 */
#define REG_GIE                    0x01c
#define REG_ISR                    0x020
#define REG_IER                    0x028
#define REG_SOFTR                  0x040
#define REG_CR                     0x100
#define REG_SR                     0x104
#define REG_TX_FIFO                0x108
#define REG_RX_FIFO                0x10c
#define REG_ADR                    0x110
#define REG_TX_FIFO_OCY            0x114
#define REG_RX_FIFO_OCY            0x118
#define REG_TEN_ADR                0x11c
#define REG_RX_FIFO_PIRQ           0x120
#define REG_GPO                    0x124
#define REG_TSUSTA                 0x128
#define REG_TSUSTO                 0x12c
#define REG_THDSTA                 0x130
#define REG_TSUDAT                 0x134
#define REG_TBUF                   0x138
#define REG_THIGH                  0x13c
#define REG_TLOW                   0x140
#define REG_THDDAT                 0x144

/*
 * Interrupts.
 */
#define INT_ARB_LOST               (1 << 0)
#define INT_TX_ERROR               (1 << 1)
#define INT_TX_FIFO_EMPTY          (1 << 2)
#define INT_RX_FIFO_FULL           (1 << 3)
#define INT_BUS_NOT_BUSY           (1 << 4)
#define INT_ADDRESSED_AS_SLAVE     (1 << 5)
#define INT_NOT_ADDRESSED_AS_SLAVE (1 << 6)
#define INT_TX_FIFO_HALF_FULL      (1 << 7)
#define INT_ALL                    (0xff)

/*
 * Command register.
 */
#define CR_EN                      (1 << 0)
#define CR_TX_FIFO_RESET           (1 << 1)
#define CR_MSMS                    (1 << 2)
#define CR_TX                      (1 << 3)
#define CR_TXAK                    (1 << 4)
#define CR_RSTA                    (1 << 5)
#define CR_GC_EN                   (1 << 6)

/*
 * Status register.
 */
#define SR_ABGC                    (1 << 0)
#define SR_AAS                     (1 << 1)
#define SR_BB                      (1 << 2)
#define SR_SRW                     (1 << 3)
#define SR_TX_FIFO_FULL            (1 << 4)
#define SR_RX_FIFO_FULL            (1 << 5)
#define SR_RX_FIFO_EMPTY           (1 << 6)
#define SR_TX_FIFO_EMPTY           (1 << 7)

/*
 * FIFO Sizes.
 */
#define TX_FIFO_SIZE      16
#define TX_FIFO_HALF_SIZE (TX_FIFO_SIZE / 2)
#define RX_FIFO_SIZE      16

/*
 * Address flags.
 */
#define ADDR_TEN  (1 << 31)
#define ADDR_GPO  (1 << 30)

typedef struct {
  i2c_bus               base;
  uintptr_t             regs;
  i2c_msg*              msgs;
  uint32_t              msgs_remaining;
  i2c_msg*              current_msg;
  uint32_t              current_msg_todo;
  uint8_t*              current_msg_byte;
  uint32_t              current_todo;
  uint32_t              irqstatus;
  bool                  read;
  uint32_t              addr;
  rtems_id              task_id;
  bool                  gpo_address;
  xilinx_aix_i2c_timing timing;
  rtems_vector_number   irq;
} xilinx_axi_i2c_bus;

xilinx_axi_i2c_bus* axi_i2c_bus;

/*
 * Real-time trace buffering with a small overhead. The data can be dumped from
 * gdb with:
 *
 * define axi-i2c
 *  set $i = 0
 *  while $i < axi_trace_in
 *    printf "%4d %08x %08x %08x : ", \
 *     $i, axi_trace[$i].vars[0], axi_trace[$i].vars[1], axi_trace[$i].vars[2]
 *    output axi_trace[$i].state
 *    printf "\n"
 *    set $i = $i + 1
 *  end
 * end
 */

typedef enum
{
  AXI_I2C_NOP,
  AXI_I2C_BEGIN,
  AXI_I2C_END,
  AXI_I2C_TRANSFER,
  AXI_I2C_ADDRESS,
  AXI_I2C_START_TRANSFER,
  AXI_I2C_WRITE,
  AXI_I2C_READ,
  AXI_I2C_TX_FIFO,
  AXI_I2C_RX_FIFO,
  AXI_I2C_RX_FIFO_LEVEL,
  AXI_I2C_INT,
  AXI_I2C_INT_DONE,
  AXI_I2C_INT_ERROR,
  AXI_I2C_BUS_NOT_BUSY,
  AXI_I2C_REG_WRITE,
  AXI_I2C_REG_READ,
  AXI_I2C_TIMEOUT,
  AXI_I2C_WAKE
} axi_i2c_state;

#define RTEMS_AXI_I2C_TRACE 0
#if RTEMS_AXI_I2C_TRACE

#define DRIVER_REG_TRACE 1

typedef struct
{
  axi_i2c_state state;
  uint32_t      vars[3];
} axi_i2c_trace;

#define AXI_I2C_TRACE 5000
axi_i2c_trace axi_trace[AXI_I2C_TRACE];
int axi_trace_in;

static inline void axi_trace_reset(void)
{
  axi_trace_in = 0;
}

static inline void axi_trace_append(axi_i2c_state state,
                                    uint32_t      v1,
                                    uint32_t      v2,
                                    uint32_t      v3)
{
  if (axi_trace_in < AXI_I2C_TRACE) {
    axi_i2c_trace rec = { state, { v1, v2, v3 } };
    axi_trace[axi_trace_in++] = rec;
  }
}
#else
#define axi_trace_reset()
#define axi_trace_append(s, v1, v2, v3)
#endif

#define DRIVER_DEBUG 0
#define DRIVER_DEBUG_DEFAULT true
#if DRIVER_DEBUG
#ifndef RTEMS_PRINTFLIKE
#define RTEMS_PRINTFLIKE( _format_pos, _ap_pos ) \
__attribute__((__format__(__printf__, _format_pos, _ap_pos)))
#endif
static bool drv_printk_enable = DRIVER_DEBUG_DEFAULT;
static void drv_printk(const char* format, ...) RTEMS_PRINTFLIKE(1, 2);
static void
drv_printk(const char* format, ...)
{
  va_list ap;
  va_start(ap, format);
  if (drv_printk_enable)
    vprintk(format, ap);
  va_end(ap);
}
#else
#define drv_printk(_fmt, ...)
#endif

static inline void
xilinx_axi_i2c_reg_write(const xilinx_axi_i2c_bus* bus, uint32_t reg, uint32_t value)
{
  #if DRIVER_REG_TRACE
    axi_trace_append(AXI_I2C_REG_WRITE, reg, value, 0);
  #endif
  *((volatile uint32_t*) (bus->regs + reg))= value;
}

static inline uint32_t
xilinx_axi_i2c_reg_read(const xilinx_axi_i2c_bus* bus, uint32_t reg)
{
  uint32_t value = *((volatile uint32_t*) (bus->regs + reg));
  #if DRIVER_REG_TRACE
    axi_trace_append(AXI_I2C_REG_READ, reg, value, 0);
  #endif
  return value;
}

static uint32_t
xilinx_axi_i2c_read_irq_status(const xilinx_axi_i2c_bus* bus)
{
  return xilinx_axi_i2c_reg_read(bus, REG_ISR);
}

static uint32_t
xilinx_axi_i2c_read_irq_enabled(const xilinx_axi_i2c_bus* bus)
{
  return xilinx_axi_i2c_reg_read(bus, REG_IER);
}

static void
xilinx_axi_i2c_clear_irq(const xilinx_axi_i2c_bus* bus, uint32_t mask)
{
  /*
   * The ISR bits can be toggled so only write a 1 if set.
   */
  xilinx_axi_i2c_reg_write(bus, REG_ISR,
                           xilinx_axi_i2c_reg_read(bus, REG_ISR) & mask);
}

static inline void
xilinx_axi_i2c_enable_irq(const xilinx_axi_i2c_bus* bus, uint32_t mask)
{
  xilinx_axi_i2c_reg_write(bus, REG_IER,
                           xilinx_axi_i2c_reg_read(bus, REG_IER) | mask);
}

static inline void
xilinx_axi_i2c_disable_irq(const xilinx_axi_i2c_bus* bus, uint32_t mask)
{
  xilinx_axi_i2c_reg_write(bus, REG_IER,
                           xilinx_axi_i2c_reg_read(bus, REG_IER) & ~mask);
}

static void
xilinx_axi_i2c_clear_enable_irq(const xilinx_axi_i2c_bus* bus, uint32_t mask)
{
  xilinx_axi_i2c_clear_irq(bus, mask);
  xilinx_axi_i2c_enable_irq(bus, mask);
}

static void
xilinx_axi_i2c_disable_clear_irq(const xilinx_axi_i2c_bus* bus, uint32_t mask)
{
  xilinx_axi_i2c_disable_irq(bus, mask);
  xilinx_axi_i2c_clear_irq(bus, mask);
}

static inline void
xilinx_axi_i2c_disable_all_irq(const xilinx_axi_i2c_bus* bus)
{
  xilinx_axi_i2c_reg_write(bus, REG_GIE, 0);
}

static void
xilinx_axi_i2c_enable_interrupts(const xilinx_axi_i2c_bus* bus)
{
  xilinx_axi_i2c_reg_write(bus, REG_GIE, 1 << 31);
}

static void
xilinx_axi_i2c_disable_interrupts(const xilinx_axi_i2c_bus* bus)
{
  xilinx_axi_i2c_reg_write(bus, REG_GIE, 0);
  xilinx_axi_i2c_reg_write(bus, REG_IER, 0);
}

static inline void
xilinx_axi_i2c_write_cr(const xilinx_axi_i2c_bus* bus, uint32_t value)
{
  xilinx_axi_i2c_reg_write(bus, REG_CR, value);
}

static inline uint32_t
xilinx_axi_i2c_read_cr(const xilinx_axi_i2c_bus* bus)
{
  return xilinx_axi_i2c_reg_read(bus, REG_CR);
}

static inline void
xilinx_axi_i2c_set_cr(const xilinx_axi_i2c_bus* bus, uint32_t mask)
{
  xilinx_axi_i2c_reg_write(bus, REG_CR,
                           xilinx_axi_i2c_reg_read(bus, REG_CR) | mask);
}

static inline void
xilinx_axi_i2c_clear_cr(const xilinx_axi_i2c_bus* bus, uint32_t mask)
{
  xilinx_axi_i2c_write_cr(bus, xilinx_axi_i2c_read_cr(bus) & ~mask);
}

static inline uint32_t
xilinx_axi_i2c_read_sr(const xilinx_axi_i2c_bus* bus)
{
  return xilinx_axi_i2c_reg_read(bus, REG_SR);
}

static inline uint32_t
xilinx_axi_i2c_read_rx_level(const xilinx_axi_i2c_bus* bus)
{
  if ((xilinx_axi_i2c_read_sr(bus) & SR_RX_FIFO_EMPTY) != 0)
    return 0;
  return xilinx_axi_i2c_reg_read(bus, REG_RX_FIFO_OCY) + 1;
}

static inline void
xilinx_axi_i2c_write_rx_pirq(const xilinx_axi_i2c_bus* bus, uint32_t level)
{
  if (level != 0)
    xilinx_axi_i2c_reg_write(bus, REG_RX_FIFO_PIRQ, level - 1);
  else
    xilinx_axi_i2c_reg_write(bus, REG_RX_FIFO_PIRQ, level);
}

static inline uint32_t
xilinx_axi_i2c_read_tx_space(const xilinx_axi_i2c_bus* bus)
{
  if ((xilinx_axi_i2c_read_sr(bus) & SR_TX_FIFO_EMPTY) != 0)
    return TX_FIFO_SIZE;
  return TX_FIFO_SIZE - xilinx_axi_i2c_reg_read(bus, REG_TX_FIFO_OCY) - 1;
}

static void
xilinx_axi_i2c_write_tx_fifo_data(xilinx_axi_i2c_bus* bus, uint32_t data)
{
  axi_trace_append(AXI_I2C_TX_FIFO, data, 0, 0);
  xilinx_axi_i2c_reg_write(bus, REG_TX_FIFO, data);
}

static inline uint32_t
xilinx_axi_i2c_read_rx_fifo_data(xilinx_axi_i2c_bus* bus)
{
  uint32_t data = xilinx_axi_i2c_reg_read(bus, REG_RX_FIFO);
  axi_trace_append(AXI_I2C_RX_FIFO, data, 0, 0);
  return data;
}

static void
xilinx_axi_i2c_reset(xilinx_axi_i2c_bus* bus)
{
  xilinx_axi_i2c_reg_write(bus, REG_SOFTR, 0x0a);
  if ((bus->timing.valid_mask & XILINX_AIX_I2C_ALL_REGS) != 0)
  {
    static const uint32_t r[8] = {
      REG_TSUSTA,
      REG_TSUSTO,
      REG_THDSTA,
      REG_TSUDAT,
      REG_TBUF,
      REG_THIGH,
      REG_TLOW,
      REG_THDDAT
    };
    static const uint32_t m[8] = {
      XILINX_AIX_I2C_TSUSTA,
      XILINX_AIX_I2C_TSUSTO,
      XILINX_AIX_I2C_THDSTA,
      XILINX_AIX_I2C_TSUDAT,
      XILINX_AIX_I2C_TBUF,
      XILINX_AIX_I2C_THIGH,
      XILINX_AIX_I2C_TLOW,
      XILINX_AIX_I2C_THDDAT
    };
    uint32_t        vm = bus->timing.valid_mask;
    const uint32_t* u = &bus->timing.TSUSTA;
    size_t          i;
    for (i = 0; i < (sizeof(r) / sizeof(r[0])); ++i, ++u) {
      if ((vm & m[i]) != 0) {
        xilinx_axi_i2c_reg_write(bus, r[i], *u);
      }
    }
  }
}


static void
xilinx_axi_i2c_reinit(xilinx_axi_i2c_bus* bus)
{
  drv_printk("axi-i2c: reinit\n");
  xilinx_axi_i2c_reset(bus);
  xilinx_axi_i2c_write_rx_pirq(bus, RX_FIFO_SIZE);
  xilinx_axi_i2c_write_cr(bus, CR_TX_FIFO_RESET);
  xilinx_axi_i2c_write_cr(bus, CR_EN);
  xilinx_axi_i2c_clear_enable_irq(bus, INT_ARB_LOST);
}

static void
xilinx_axi_i2c_wakeup(xilinx_axi_i2c_bus* bus)
{
  axi_trace_append(AXI_I2C_WAKE, bus->task_id, bus->irqstatus, 0);
  drv_printk("axi-i2c: wakeup: irqstatus: %08lx\n", bus->irqstatus);
  rtems_status_code sc = rtems_event_transient_send(bus->task_id);
  _Assert(sc == RTEMS_SUCCESSFUL);
  (void) sc;
}

static void
xilinx_axi_i2c_next_byte(xilinx_axi_i2c_bus* bus)
{
  --bus->current_todo;
  --bus->current_msg_todo;
  ++bus->current_msg_byte;
  if (bus->current_msg_todo == 0) {
    if (bus->msgs_remaining != 0 &&
        (bus->msgs[0].flags & I2C_M_NOSTART) != 0) {
      bus->current_msg_todo = bus->msgs[0].len;
      bus->current_msg_byte = bus->msgs[0].buf;
      ++bus->msgs;
      --bus->msgs_remaining;
    }
  }
}

static void
xilinx_axi_i2c_read_rx_byte(xilinx_axi_i2c_bus* bus)
{
  *bus->current_msg_byte = (uint8_t) xilinx_axi_i2c_read_rx_fifo_data(bus);
  xilinx_axi_i2c_next_byte(bus);
}

static void
xilinx_axi_i2c_read_rx_bytes(xilinx_axi_i2c_bus* bus, uint32_t count)
{
  while (count-- > 0)
    xilinx_axi_i2c_read_rx_byte(bus);
}

static void
xilinx_axi_i2c_set_rx_fifo_level(xilinx_axi_i2c_bus* bus)
{
  uint32_t size;
  if (bus->current_todo > RX_FIFO_SIZE) {
    size = RX_FIFO_SIZE;
  } else {
    size = bus->current_todo - 1;
  }
  axi_trace_append(AXI_I2C_RX_FIFO_LEVEL, size, 0, 0);
  xilinx_axi_i2c_write_rx_pirq(bus, size);
}

static bool xilinx_axi_i2c_start_transfer(xilinx_axi_i2c_bus* bus);

static bool
xilinx_axi_i2c_read_rx_fifo(xilinx_axi_i2c_bus* bus)
{
  drv_printk("axi-i2c: read rx fifo: length:%lu\n", bus->current_todo);

  if (bus->current_todo == 0) {
    return false;
  }

  if ((xilinx_axi_i2c_read_sr(bus) & SR_RX_FIFO_EMPTY) == 0) {
    uint32_t level = xilinx_axi_i2c_read_rx_level(bus);
    bool     active;

    drv_printk("axi-i2c: read rx fifo: level:%lu\n", level);

    if (level > bus->current_todo)
      level = bus->current_todo;

    switch (bus->current_todo - level) {
      case 1:
        drv_printk("axi-i2c: read rx fifo: one more\n");
        /*
         * One more byte to be received. This is set up by programming the RX
         * FIFO programmable depth interrupt register with a value that is 2
         * less than the number we need (the register is minus 1). When we have
         * one byte left, disable the TX error interrupt because setting the NO
         * ACK bit in the command register causes a TX error interrupt. Set the
         * TXAK bit in the CR to not-acknowledge the next byte received telling
         * the slave sender the master accepts no more data, then read the
         * FIFO. If the FIFO is ready before the TXAK bit is set the slave will
         * see a request for more data. We will come back to the next case
         * statement for the last byte once it has been received.
         */
        xilinx_axi_i2c_disable_clear_irq(bus, INT_TX_ERROR);
        xilinx_axi_i2c_set_cr(bus, CR_TXAK);
        xilinx_axi_i2c_read_rx_bytes(bus, level);
        /*
         * Set the RX PIRQ to 0 after the RX data has been read. There is an
         * observed timing issue and glitch if written before.
         */
        xilinx_axi_i2c_write_rx_pirq(bus, 0);
        break;

      case 0:
        drv_printk("axi-i2c: read rx fifo: no more\n");
        /*
         * We should have 1 byte in the FIFO which is the last byte received
         * with a NACK. If there are no more message we need to send a STOP by
         * clearing he MSMS bit in the CR and then waiting for the bus to not
         * be busy.
         */
        xilinx_axi_i2c_disable_clear_irq(bus,
                                         INT_RX_FIFO_FULL | INT_TX_ERROR);
        if (bus->msgs_remaining == 0) {
          xilinx_axi_i2c_clear_cr(bus, CR_MSMS);
          xilinx_axi_i2c_clear_enable_irq(bus, INT_BUS_NOT_BUSY);
          active = true;
        }
        xilinx_axi_i2c_read_rx_byte(bus);
        if (bus->msgs_remaining != 0)
          active = xilinx_axi_i2c_start_transfer(bus);
        return active;

      default:
        drv_printk("axi-i2c: read rx fifo: more:%lu\n", bus->current_todo - level);
        /*
         * All the requested data is in the FIFO so read it and update the PIRQ
         * level. The PIRQ size is always one less than the maximum size.
         */
        xilinx_axi_i2c_read_rx_bytes(bus, level);
        if (bus->current_todo > RX_FIFO_SIZE) {
          xilinx_axi_i2c_write_rx_pirq(bus, RX_FIFO_SIZE);
        } else {
          xilinx_axi_i2c_write_rx_pirq(bus, bus->current_todo - 1);
        }
        break;
    }
  }

  return true;
}

static void
xilinx_axi_i2c_write_tx_byte(xilinx_axi_i2c_bus* bus)
{
  xilinx_axi_i2c_write_tx_fifo_data(bus, *bus->current_msg_byte);
  xilinx_axi_i2c_next_byte(bus);
}

static void
xilinx_axi_i2c_write_tx_bytes(xilinx_axi_i2c_bus* bus)
{
  uint32_t space = xilinx_axi_i2c_read_tx_space(bus);
  uint32_t level = bus->current_todo - 1;
  uint32_t i;
  drv_printk("axi-i2c: tx fifo load: space:%lu level:%lu\n", space, level);
  if (level < space)
    space = level;
  for (i = 0; i < space; ++i)
    xilinx_axi_i2c_write_tx_byte(bus);
}

static bool
xilinx_axi_i2c_write_tx_fifo(xilinx_axi_i2c_bus* bus)
{
  bool more = true;
  drv_printk("axi-i2c: write tx fifo: current_todo: %lu\n", bus->current_todo);
  switch (bus->current_todo) {
    case 0:
      xilinx_axi_i2c_disable_clear_irq(bus,
                                       INT_TX_FIFO_EMPTY |
                                       INT_TX_FIFO_HALF_FULL |
                                       INT_TX_ERROR |
                                       INT_BUS_NOT_BUSY);
      more = xilinx_axi_i2c_start_transfer(bus);
      break;
    case 1:
      /*
       * If transmitting and the last byte issue a stop and wait for the bus to
       * not be busy.
       */
      if (!bus->read && bus->msgs_remaining == 0) {
        xilinx_axi_i2c_clear_cr(bus, CR_MSMS);
        xilinx_axi_i2c_clear_enable_irq(bus, INT_BUS_NOT_BUSY);
      }
      xilinx_axi_i2c_write_tx_byte(bus);
      break;
    default:
      xilinx_axi_i2c_write_tx_bytes(bus);
      break;
  }
  return more;
}

static void
xilinx_axi_i2c_write_address(xilinx_axi_i2c_bus* bus)
{
  if ((bus->addr & ADDR_GPO) != 0)
    xilinx_axi_i2c_reg_write(bus, REG_GPO, (bus->addr >> 12) & 0xf);
  if ((bus->addr & ADDR_TEN) != 0)
    xilinx_axi_i2c_write_tx_fifo_data(bus, (bus->addr >> 8) & 0xff);
  xilinx_axi_i2c_write_tx_fifo_data(bus, bus->addr & 0xff);
}

static void
xilinx_axi_i2c_start_read(xilinx_axi_i2c_bus* bus)
{
  uint32_t cr;
  uint32_t set = INT_RX_FIFO_FULL;
  axi_trace_append(AXI_I2C_READ, bus->current_todo, 0, 0);
  drv_printk("axi-i2c: start read: size: %lu\n", bus->current_todo);
  /*
   * Is this a restart? If there is no active STOP it is a restart.
   */
  cr = xilinx_axi_i2c_read_cr(bus);
  if ((cr & CR_MSMS) != 0) {
    cr |= CR_RSTA;
    xilinx_axi_i2c_write_cr(bus, cr);
  }
  xilinx_axi_i2c_write_address(bus);
  xilinx_axi_i2c_set_rx_fifo_level(bus);
  /*
   * We must NACK the last byte so if we are receiving a single byte issue a
   * NACK.
   */
  cr &= ~(CR_TX | CR_TXAK);
  if (bus->current_todo == 1) {
    cr |= CR_TXAK;
  } else {
    set |= INT_TX_ERROR;
  }
  /*
   * Issue a start.
   */
  cr |= CR_MSMS;
  xilinx_axi_i2c_clear_enable_irq(bus, set);
  xilinx_axi_i2c_write_cr(bus, cr);
}

static void
xilinx_axi_i2c_start_write(xilinx_axi_i2c_bus* bus)
{
  uint32_t space;
  uint32_t enable;
  uint32_t cr;
  axi_trace_append(AXI_I2C_WRITE, bus->current_todo, 0, 0);
  cr = xilinx_axi_i2c_read_cr(bus);
  /*
   * If a master issue a restart if there is no active STOP on the bus.
   */
  if ((cr & CR_MSMS) != 0) {
    cr |= CR_RSTA;
    xilinx_axi_i2c_write_cr(bus, cr);
  }
  xilinx_axi_i2c_write_address(bus);
  if (bus->current_todo > 1)
    xilinx_axi_i2c_write_tx_bytes(bus);
  space = xilinx_axi_i2c_read_tx_space(bus);
  enable = INT_TX_FIFO_EMPTY | INT_TX_ERROR;
  if (space > TX_FIFO_HALF_SIZE && bus->current_todo > 1) {
    enable |= INT_TX_FIFO_HALF_FULL;
  }
  xilinx_axi_i2c_clear_enable_irq(bus, enable);
  cr &= ~CR_TXAK;
  cr |= CR_MSMS | CR_TX;
  xilinx_axi_i2c_write_cr(bus, cr);
}

static bool
xilinx_axi_i2c_start_transfer(xilinx_axi_i2c_bus* bus)
{
  const i2c_msg* msgs = bus->msgs;
  uint32_t       msg_todo = bus->msgs_remaining;
  uint32_t       i;

  axi_trace_append(AXI_I2C_START_TRANSFER, msg_todo, 0, 0);
  drv_printk("axi-i2c: start transfer: messages: %lu\n", msg_todo);

  if (msg_todo == 0) {
    xilinx_axi_i2c_clear_cr(bus, CR_MSMS);
    return false;
  }

  /*
   * Get the amount of data to transfer. It can span message buffers if the
   * I2C_M_NOSTART flag is set.
   */
  bus->current_todo = msgs[0].len;
  for (i = 1; i < msg_todo && (msgs[i].flags & I2C_M_NOSTART) != 0; ++i) {
    bus->current_todo += msgs[i].len;
  }

  bus->read = (msgs->flags & I2C_M_RD) != 0;

  if ((msgs->flags & I2C_M_TEN) != 0) {
    bus->addr = (ADDR_TEN |
                 ((msgs->addr & (3 << 8)) << 1) |
                 ((bus->read ? 1 : 0) << 8) |
                 (msgs->addr & 0xff));
  }
  else {
    bus->addr = (msgs->addr & 0x7f) << 1 | (bus->read ? 1 : 0);
  }

  if (bus->gpo_address)
    bus->addr |= ADDR_GPO | (msgs->addr & 0xf000);

  axi_trace_append(AXI_I2C_TRANSFER,
                   bus->msgs_remaining,
                   bus->current_todo, bus->addr);

  /*
   * The bus->msgs is left pointing to the next message because we may need to
   * start a new message while completing the current message.
   */
  bus->current_msg_todo = msgs[0].len;
  bus->current_msg_byte = msgs[0].buf;
  ++bus->msgs;
  --bus->msgs_remaining;

  if (bus->read) {
    xilinx_axi_i2c_start_read(bus);
  } else {
    xilinx_axi_i2c_start_write(bus);
  }

  return true;
}

static void
  xilinx_axi_i2c_interrupt(void* arg)
{
  xilinx_axi_i2c_bus* bus = arg;
  uint32_t            status = xilinx_axi_i2c_read_irq_status(bus);
  uint32_t            enabled = xilinx_axi_i2c_read_irq_enabled(bus);
  uint32_t            active = status & enabled;
  uint32_t            clear = 0;
  int                 done = 0;

  axi_trace_append(AXI_I2C_INT, active, status, enabled);

  drv_printk("axi-i2c: interrupt: active:%02lx isr:%02lx ier:%02lx\n",
             active, status, enabled);

  /*
   * An error or we lost arbitration. If transmitting and there is more data to
   * send a INT_TX_ERROR means the slave issue a NOT ACK because there was not
   * slave at the address or the addressed slave will not accept any more data.
   *
   * Clean up and wake the user.
   */
  if (((active & INT_ARB_LOST) != 0) ||
      (!bus->read && (active & INT_TX_ERROR) != 0)) {
    bus->irqstatus = active & (INT_ARB_LOST | INT_TX_ERROR);
    axi_trace_append(AXI_I2C_INT_ERROR, bus->irqstatus, 0, 0);
    xilinx_axi_i2c_reinit(bus);
    xilinx_axi_i2c_clear_cr(bus, CR_EN);
    xilinx_axi_i2c_wakeup(bus);
    return;
  }

  /*
   * RX FIFO full?
   */
  if ((active & INT_RX_FIFO_FULL) != 0) {
    clear |= INT_RX_FIFO_FULL;

    if (bus->read && !xilinx_axi_i2c_read_rx_fifo(bus)) {
      ++done;
      axi_trace_append(AXI_I2C_INT_DONE, done, clear, 0);
    }

    if (bus->current_todo == 0) {
      clear |= status & INT_TX_ERROR;
    }
  }

  /*
   * TX FIFO empty or half empty?
   */
  if ((active & (INT_TX_FIFO_EMPTY | INT_TX_FIFO_HALF_FULL)) != 0) {
    clear |= active & (INT_TX_FIFO_EMPTY | INT_TX_FIFO_HALF_FULL);

    if (!bus->read && !xilinx_axi_i2c_write_tx_fifo(bus)) {
      ++done;
      axi_trace_append(AXI_I2C_INT_DONE, done, clear, 1);
    }
  }

  /*
   * Gate the bus not busy interrupt with the bus busy status to know the bus
   * is really not busy. It could be an interrupt left over from starting the
   * transmission.
   */
  if ((active & INT_BUS_NOT_BUSY) != 0) {
    if ((xilinx_axi_i2c_read_sr(bus) & SR_BB) == 0) {
      xilinx_axi_i2c_disable_clear_irq(bus, INT_BUS_NOT_BUSY);
      if (bus->read && !xilinx_axi_i2c_read_rx_fifo(bus)) {
        ++done;
        axi_trace_append(AXI_I2C_BUS_NOT_BUSY, done, clear, 0);
      }
      else if (!bus->read && !xilinx_axi_i2c_write_tx_fifo(bus)) {
        ++done;
        axi_trace_append(AXI_I2C_BUS_NOT_BUSY, done, clear, 1);
      }
    }
    else {
      clear |= INT_BUS_NOT_BUSY;
    }
  }

  if (clear != 0)
    xilinx_axi_i2c_clear_irq(bus, clear);

  if (done != 0) {
    xilinx_axi_i2c_disable_interrupts(bus);
    xilinx_axi_i2c_clear_cr(bus, CR_EN);
    xilinx_axi_i2c_wakeup(bus);
  }
}

static int xilinx_axi_i2c_transfer(i2c_bus* base,
                                   i2c_msg* msgs,
                                   uint32_t msg_count)
{
  xilinx_axi_i2c_bus* bus = (xilinx_axi_i2c_bus *) base;
  rtems_status_code   sc;
  int                 r = 0;

  axi_trace_reset();
  axi_trace_append(AXI_I2C_BEGIN, msg_count, 0, 0);

  drv_printk("axi-i2c: i2c transfer\n");

  _Assert(msg_count > 0);

  bus->msgs = &msgs[0];
  bus->msgs_remaining = msg_count;
  bus->irqstatus = 0;
  bus->task_id = rtems_task_self();

  xilinx_axi_i2c_reinit(bus);
  xilinx_axi_i2c_start_transfer(bus);
  xilinx_axi_i2c_enable_interrupts(bus);

  sc = rtems_event_transient_receive(RTEMS_WAIT, bus->base.timeout);
  if (sc != RTEMS_SUCCESSFUL) {
    axi_trace_append(AXI_I2C_TIMEOUT, 0, 0, 0);
    xilinx_axi_i2c_reinit(bus);
    rtems_event_transient_clear();
    r = -ETIMEDOUT;
  }

  if (r == 0 && bus->irqstatus != 0)
    r = -EIO;

  axi_trace_append(AXI_I2C_END, bus->irqstatus, r, 0);

  return r;
}

static int xilinx_axi_i2c_set_clock(i2c_bus *base, unsigned long clock)
{
  xilinx_axi_i2c_bus* bus = (xilinx_axi_i2c_bus*) base;

  if ((bus->timing.valid_mask & XILINX_AIX_I2C_AXI_CLOCK) == 0)
    return -EIO;

  bus->timing.THIGH =
    (bus->timing.AXI_CLOCK / (2 * clock)) - 7 - bus->timing.SCL_INERTIAL_DELAY;
  bus->timing.TLOW = bus->timing.THIGH;

  bus->timing.valid_mask |= XILINX_AIX_I2C_THIGH | XILINX_AIX_I2C_TLOW;

  return 0;
}

static void xilinx_axi_i2c_destroy(i2c_bus* base)
{
  xilinx_axi_i2c_bus* bus = (xilinx_axi_i2c_bus*) base;
  rtems_status_code sc;

  sc = rtems_interrupt_handler_remove(bus->irq, xilinx_axi_i2c_interrupt, bus);
  _Assert(sc == RTEMS_SUCCESSFUL);
  (void) sc;

  i2c_bus_destroy_and_free(&bus->base);
}

int
i2c_bus_register_xilinx_aix_i2c(const char*                  bus_path,
                                uintptr_t                    register_base,
                                rtems_vector_number          irq,
                                bool                         gpo_address,
                                const xilinx_aix_i2c_timing* timing)
{
  xilinx_axi_i2c_bus* bus;
  rtems_status_code   sc;

  bus = (xilinx_axi_i2c_bus*) i2c_bus_alloc_and_init(sizeof(*bus));
  if (bus == NULL) {
    return -1;
  }

  bus->regs = register_base;
  bus->irq = irq;
  bus->gpo_address = gpo_address;
  bus->timing = *timing;

  sc = rtems_interrupt_handler_install(irq,
                                       "Xilinx AXI I2C",
                                       RTEMS_INTERRUPT_UNIQUE,
                                       xilinx_axi_i2c_interrupt,
                                       bus);
  if (sc != RTEMS_SUCCESSFUL) {
    drv_printk("axi-i2c: interrupt attach failed\n");
    (*bus->base.destroy)(&bus->base);
    rtems_set_errno_and_return_minus_one(EIO);
  }

  bus->base.transfer = xilinx_axi_i2c_transfer;
  bus->base.set_clock = xilinx_axi_i2c_set_clock;
  bus->base.destroy = xilinx_axi_i2c_destroy;

  axi_i2c_bus = bus;

  return i2c_bus_register(&bus->base, bus_path);
}