summaryrefslogtreecommitdiffstats
path: root/c/src/lib/libbsp/powerpc/mcp750/bootloader/mm.c
blob: b385b0213634de79f2fdb33cf0c82feffb60b4bb (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
/*
 *  arch/ppc/prepboot/mm.c -- Crude memory management for early boot.
 *
 *  Copyright (C) 1998 Gabriel Paubert, paubert@iram.es
 *
 *  This file is subject to the terms and conditions of the GNU General Public
 *  License.  See the file COPYING in the main directory of this archive
 *  for more details.
 */

/* This code is a crude memory manager for early boot for LinuxPPC.
 * As such, it does not try to perform many optimiztions depending
 * on the processor, it only uses features which are common to
 * all processors (no BATs...).
 *
 * On PreP platorms (the only ones on which it works for now),
 * it maps 1:1 all RAM/ROM and I/O space as claimed by the
 * residual data. The holes between these areas can be virtually
 * remapped to any of these, since for some functions it is very handy
 * to have virtually contiguous but physically discontiguous memory.
 * 
 * Physical memory allocation is also very crude, since it's only
 * designed to manage a small number of large chunks. For valloc/vfree
 * and palloc/pfree, the unit of allocation is the 4kB page.
 * 
 * The salloc/sfree has been added after tracing gunzip and seeing
 * how it performed a very large number of small allocations.
 * For these the unit of allocation is 8 bytes (the s stands for
 * small or subpage). This memory is cleared when allocated. 
 * 
 */

#include <sys/types.h>
#include <libcpu/spr.h>
#include "bootldr.h"
#include <libcpu/mmu.h>
#include <libcpu/page.h>
#include <limits.h>

/* We use our own kind of simple memory areas for the loader, but
 * we want to avoid potential clashes with kernel includes.
 * Here a map maps contiguous areas from base to end,
 * the firstpte entry corresponds to physical address and has the low
 * order bits set for caching and permission. 
 */

typedef struct _map {
	struct _map *next;
  	u_long base;
	u_long end;
        u_long firstpte;
} map;

/* The LSB of the firstpte entries on map lists other than mappings
 * are constants which can be checked for debugging. All these constants
 * have bit of weight 4 set, this bit is zero in the mappings list entries.
 * Actually firstpte&7 value is:
 * - 0 or 1 should not happen
 * - 2 for RW actual virtual->physical mappings
 * - 3 for RO actual virtual->physical mappings
 * - 6 for free areas to be suballocated by salloc
 * - 7 for salloc'ated areas
 * - 4 or 5 for all others, in this case firtpte & 63 is
 *   - 4 for unused maps (on the free list)
 *   - 12 for free physical memory
 *   - 13 for physical memory in use
 *   - 20 for free virtual address space
 *   - 21 for allocated virtual address space
 *   - 28 for physical memory space suballocated by salloc
 *   - 29 for physical memory that can't be freed
 */

#define MAP_FREE_SUBS 6
#define MAP_USED_SUBS 7

#define MAP_FREE 4	
#define MAP_FREE_PHYS 12
#define MAP_USED_PHYS 13
#define MAP_FREE_VIRT 20
#define MAP_USED_VIRT 21
#define MAP_SUBS_PHYS 28
#define MAP_PERM_PHYS 29

SPR_RW(SDR1);
SPR_RO(DSISR);
SPR_RO(DAR);

/* We need a few statically allocated free maps to bootstrap the
 * memory managment */
static map free_maps[4] = {{free_maps+1, 0, 0, MAP_FREE},
			   {free_maps+2, 0, 0, MAP_FREE},
			   {free_maps+3, 0, 0, MAP_FREE},
			   {NULL, 0, 0, MAP_FREE}};
struct _mm_private {
	void *sdr1;
	u_long hashmask;
  	map *freemaps;     /* Pool of unused map structs */
  	map *mappings;     /* Sorted list of virtual->physical mappings */
  	map *physavail;    /* Unallocated physical address space */
	map *physused;     /* Allocated physical address space */
	map *physperm;	   /* Permanently allocated physical space */
  	map *virtavail;    /* Unallocated virtual address space */
	map *virtused;     /* Allocated virtual address space */
  	map *sallocfree;   /* Free maps for salloc */
  	map *sallocused;   /* Used maps for salloc */
  	map *sallocphys;   /* Physical areas used by salloc */
  	u_int hashcnt;     /* Used to cycle in PTEG when they overflow */
} mm_private = {hashmask: 0xffc0, 
		freemaps: free_maps+0};

/* A simplified hash table entry declaration */
typedef struct _hash_entry {
	int key;
	u_long rpn;
} hash_entry;

void print_maps(map *, const char *);

/* The handler used for all exceptions although for now it is only 
 * designed to properly handle MMU interrupts to fill the hash table.
 */


void _handler(int vec, ctxt *p) {
	map *area;
	struct _mm_private *mm = (struct _mm_private *) bd->mm_private;
	u_long vaddr, cause;
	if (vec==4 || vec==7) {	/* ISI exceptions are different */
		vaddr = p->nip;
		cause = p->msr;
	} else { /* Valid for DSI and alignment exceptions */
		vaddr = _read_DAR();
		cause = _read_DSISR();
	}

	if (vec==3 || vec==4) {
	  	/* Panic if the fault is not PTE not found. */
	  	if (!(cause & 0x40000000)) {
			MMUon();
			printk("\nPanic: vector=%x, cause=%lx\n", vec, cause);
			hang("Memory protection violation at ", vaddr, p);
		}
		
		for(area=mm->mappings; area; area=area->next) {
		  	if(area->base<=vaddr && vaddr<=area->end) break;
		}

		if (area) {
			u_long hash, vsid, rpn;
			hash_entry volatile *hte, *_hte1;
			u_int i, alt=0, flushva;
		
			vsid = _read_SR((void *)vaddr);
			rpn = (vaddr&PAGE_MASK)-area->base+area->firstpte;
			hash = vsid<<6;
			hash ^= (vaddr>>(PAGE_SHIFT-6))&0x3fffc0;
			hash &= mm->hashmask;
			/* Find an empty entry in the PTEG, else 
			 * replace a random one.
			 */
			hte = (hash_entry *) ((u_long)(mm->sdr1)+hash);
			for (i=0; i<8; i++) {
			  	if (hte[i].key>=0) goto found;
			}
			hash ^= mm->hashmask;
			alt = 0x40; _hte1 = hte;
			hte = (hash_entry *) ((u_long)(mm->sdr1)+hash);
			
			for (i=0; i<8; i++) {
				if (hte[i].key>=0) goto found;
			}
			alt = 0;
			hte = _hte1;
			/* Chose a victim entry and replace it. There might be
			 * better policies to choose the victim, but in a boot 
			 * loader we want simplicity as long as it works.
			 *
			 * We would not need to invalidate the TLB entry since
			 * the mapping is still valid. But this would be a mess
			 * when unmapping so we make sure that the TLB is a
			 * subset of the hash table under all circumstances.
			 */
			i = mm->hashcnt;
			mm->hashcnt = (mm->hashcnt+1)%8;
			/* Note that the hash is already complemented here ! */
			flushva = (~(hash<<9)^((hte[i].key)<<5)) &0x3ff000;
			if (hte[i].key&0x40) flushva^=0x3ff000;
			flushva |= ((hte[i].key<<21)&0xf0000000)
			  | ((hte[i].key<<22)&0x0fc00000);
			hte[i].key=0;
			asm volatile("sync; tlbie %0; sync" : : "r" (flushva));
		found:
			hte[i].rpn = rpn;
			asm volatile("eieio": : );
			hte[i].key = 0x80000000|(vsid<<7)|alt|
			  ((vaddr>>22)&0x3f);
			return;
		} else {
		  	MMUon();
			printk("\nPanic: vector=%x, cause=%lx\n", vec, cause);
			hang("\nInvalid memory access attempt at ", vaddr, p);
		}
	} else {
	  MMUon();
	  printk("\nPanic: vector=%x, dsisr=%lx, faultaddr =%lx, msr=%lx opcode=%lx\n", vec, 
		 cause, p->nip, p->msr, * ((unsigned int*) p->nip) );
	  if (vec == 7) {
	    unsigned int* ptr = ((unsigned int*) p->nip) - 4 * 10;
	    for (; ptr <= (((unsigned int*) p->nip) + 4 * 10); ptr ++)
	      printk("Hexdecimal code at address %x = %x\n", ptr, *ptr);
	  }
	  hang("Program or alignment exception at ", vaddr, p);
	}
}

/* Generic routines for map handling.
 */

static inline
void free_map(map *p) {
	struct _mm_private *mm = (struct _mm_private *) bd->mm_private;
	if (!p) return;
	p->next=mm->freemaps;
	mm->freemaps=p;
	p->firstpte=MAP_FREE;
}

/* Sorted insertion in linked list */
static
int insert_map(map **head, map *p) {
	map *q = *head;
	if (!p) return 0;
	if (q && (q->base < p->base)) {
        	for(;q->next && q->next->base<p->base; q = q->next);
		if ((q->end >= p->base) ||
		    (q->next && p->end>=q->next->base)) {
			free_map(p);
			printk("Overlapping areas!\n");
			return 1;
		}
		p->next = q->next;
		q->next = p;
	} else { /* Insert at head */
	  	if (q && (p->end >= q->base)) {
		  	free_map(p);
			printk("Overlapping areas!\n");
			return 1;
		}
		p->next = q;
		*head = p;
	}
	return 0;
}


/* Removal from linked list */

static
map *remove_map(map **head, map *p) {
	map *q = *head;

	if (!p || !q) return NULL;
  	if (q==p) {
		*head = q->next;
		return p;
	}
	for(;q && q->next!=p; q=q->next);
	if (q) {
		q->next=p->next;
		return p;
	} else {
		return NULL;
	}
}

static
map *remove_map_at(map **head, void * vaddr) {
	map *p, *q = *head;

	if (!vaddr || !q) return NULL;
  	if (q->base==(u_long)vaddr) {
		*head = q->next;
		return q;
	}
	while (q->next && q->next->base != (u_long)vaddr) q=q->next;
	p=q->next;
	if (p) q->next=p->next;
	return p;
}

static inline
map * alloc_map_page(void) {
	map *from, *p;
	struct _mm_private *mm = (struct _mm_private *) bd->mm_private;

	/* printk("Allocating new map page !"); */
	/* Get the highest page */
	for (from=mm->physavail; from && from->next; from=from->next);
	if (!from) return NULL;

	from->end -= PAGE_SIZE;
	
	mm->freemaps = (map *) (from->end+1);
	
	for(p=mm->freemaps; p<mm->freemaps+PAGE_SIZE/sizeof(map)-1; p++) {
		p->next = p+1;
		p->firstpte = MAP_FREE;
	}  
	(p-1)->next=0;

	/* Take the last one as pointer to self and insert
	 * the map into the permanent map list.
	 */

	p->firstpte = MAP_PERM_PHYS;
	p->base=(u_long) mm->freemaps;
	p->end = p->base+PAGE_SIZE-1;
	
	insert_map(&mm->physperm, p);
	
	if (from->end+1 == from->base) 
		free_map(remove_map(&mm->physavail, from));
	
	return mm->freemaps;
}

static
map * alloc_map(void) {
	map *p;
	struct _mm_private * mm = (struct _mm_private *) bd->mm_private;

	p = mm->freemaps;
	if (!p) {
		p=alloc_map_page();
	}

	if(p) mm->freemaps=p->next;

	return p;
}

static
void coalesce_maps(map *p) {
  	while(p) {
	  	if (p->next && (p->end+1 == p->next->base)) {
			map *q=p->next;
			p->end=q->end;
			p->next=q->next;
			free_map(q);
		} else {
			p = p->next;
		}
	}
}

/* These routines are used to find the free memory zones to avoid
 * overlapping destructive copies when initializing.
 * They work from the top because of the way we want to boot. 
 * In the following the term zone refers to the memory described
 * by one or several contiguous so called segments in the
 * residual data.
 */
#define STACK_PAGES 2
static inline u_long 
find_next_zone(RESIDUAL *res, u_long lowpage, u_long flags) {
	u_long i, newmin=0, size=0;
	for(i=0; i<res->ActualNumMemSegs; i++) {
		if (res->Segs[i].Usage & flags
		    && res->Segs[i].BasePage<lowpage
		    && res->Segs[i].BasePage>newmin) {
			newmin=res->Segs[i].BasePage;
			size=res->Segs[i].PageCount;
		}
	}
	return newmin+size;
}

static inline u_long 
find_zone_start(RESIDUAL *res, u_long highpage, u_long flags) {
	u_long i;
	int progress;
	do {
		progress=0;
		for (i=0; i<res->ActualNumMemSegs; i++) {
		  	if ( (res->Segs[i].BasePage+res->Segs[i].PageCount 
			      == highpage)
			     && res->Segs[i].Usage & flags) {
			  	highpage=res->Segs[i].BasePage;
				progress=1;
			}
		}
	} while(progress);
	return highpage;
}

/* The Motorola NT firmware does not provide any setting in the residual
 * data about memory segment usage. The following table provides enough
 * info so that this bootloader can work.
 */
MEM_MAP seg_fix[] = {
    { 0x2000, 0xFFF00, 0x00100 },
    { 0x0020, 0x02000, 0x7E000 },
    { 0x0008, 0x00800, 0x00168 },
    { 0x0004, 0x00000, 0x00005 },
    { 0x0001, 0x006F1, 0x0010F },
    { 0x0002, 0x006AD, 0x00044 },
    { 0x0010, 0x00005, 0x006A8 },
    { 0x0010, 0x00968, 0x00698 },
    { 0x0800, 0xC0000, 0x3F000 },
    { 0x0600, 0xBF800, 0x00800 },
    { 0x0500, 0x81000, 0x3E800 },
    { 0x0480, 0x80800, 0x00800 },
    { 0x0440, 0x80000, 0x00800 } };


/* The Motorola NT firmware does not set up all required info in the residual
 * data. This routine changes some things in a way that the bootloader and
 * linux are happy.
 */
void
fix_residual( RESIDUAL *res )
{
#if 0
    PPC_DEVICE *hostbridge;
#endif
    int i;

    /* Missing memory segment information */
    res->ActualNumMemSegs = sizeof(seg_fix)/sizeof(MEM_MAP);
    for (i=0; i<res->ActualNumMemSegs; i++) {
	res->Segs[i].Usage = seg_fix[i].Usage;
	res->Segs[i].BasePage = seg_fix[i].BasePage;
	res->Segs[i].PageCount = seg_fix[i].PageCount;
    }
    /* The following should be fixed in the current version of the 
     * kernel and of the bootloader. 
     */
#if 0
    /* PPCBug has this zero */
    res->VitalProductData.CacheLineSize = 0;
    /* Motorola NT firmware sets TimeBaseDivisor to 0 */
    if ( res->VitalProductData.TimeBaseDivisor == 0 ) {
	res->VitalProductData.TimeBaseDivisor = 4000;
    }

    /* Motorola NT firmware records the PCIBridge as a "PCIDEVICE" and
     * sets "PCIBridgeDirect". This bootloader and linux works better if
     * BusId = "PROCESSORDEVICE" and Interface = "PCIBridgeIndirect".
     */
    hostbridge=residual_find_device(PCIDEVICE, NULL,
					BridgeController,
					PCIBridge, -1, 0);
    if (hostbridge) {
	hostbridge->DeviceId.BusId = PROCESSORDEVICE;
	hostbridge->DeviceId.Interface = PCIBridgeIndirect;
    }
#endif
}

/* This routine is the first C code called with very little stack space!
 * Its goal is to find where the boot image can be moved. This will
 * be the highest address with enough room. 
 */
int early_setup(u_long image_size) {
	register RESIDUAL *res = bd->residual; 
	u_long minpages = PAGE_ALIGN(image_size)>>PAGE_SHIFT;

	/* Fix residual if we are loaded by Motorola NT firmware */
	if ( res && res->VitalProductData.FirmwareSupplier == 0x10000 )
	    fix_residual( res );

	/* FIXME: if OF we should do something different */
	if( !bd->of_entry && res &&
	   res->ResidualLength <= sizeof(RESIDUAL) && res->Version == 0 ) {
		u_long lowpage=ULONG_MAX, highpage; 
		u_long imghigh=0, stkhigh=0;
		/* Find the highest and large enough contiguous zone 
		   consisting of free and BootImage sections. */
		/* Find 3 free areas of memory, one for the main image, one 
		 * for the stack (STACK_PAGES), and page one to put the map  
		 * structures. They are allocated from the top of memory. 
		 * In most cases the stack will be put just below the image.
		 */
		while((highpage = 
		       find_next_zone(res, lowpage, BootImage|Free))) {
			lowpage=find_zone_start(res, highpage, BootImage|Free);
			if ((highpage-lowpage)>minpages && 
			    highpage>imghigh) {
				imghigh=highpage;
				highpage -=minpages;
			}
			if ((highpage-lowpage)>STACK_PAGES &&
			    highpage>stkhigh) {
				stkhigh=highpage;
				highpage-=STACK_PAGES;
			}
		}

		bd->image = (void *)((imghigh-minpages)<<PAGE_SHIFT);
		bd->stack=(void *) (stkhigh<<PAGE_SHIFT);

		/* The code mover is put at the lowest possible place
		 * of free memory. If this corresponds to the loaded boot
		 * partition image it does not matter because it overrides 
		 * the unused part of it (x86 code). 
		 */
		bd->mover=(void *) (lowpage<<PAGE_SHIFT);

		/* Let us flush the caches in all cases. After all it should 
		 * not harm even on 601 and we don't care about performance. 
		 * Right now it's easy since all processors have a line size 
		 * of 32 bytes. Once again residual data has proved unreliable.
		 */
		bd->cache_lsize = 32;
	}
	/* For now we always assume that it's succesful, we should
	 * handle better the case of insufficient memory.
	 */
	return 0;
}

void * valloc(u_long size) {
	map *p, *q;
	struct _mm_private * mm = (struct _mm_private *) bd->mm_private;

	if (size==0) return NULL;
	size=PAGE_ALIGN(size)-1;
	for (p=mm->virtavail; p; p=p->next) {
		if (p->base+size <= p->end) break;
	}
	if(!p) return NULL;
	q=alloc_map();
	q->base=p->base;
	q->end=q->base+size;
	q->firstpte=MAP_USED_VIRT;
	insert_map(&mm->virtused, q);
	if (q->end==p->end) free_map(remove_map(&mm->virtavail, p));
	else p->base += size+1;
	return (void *)q->base;
}

static 
void vflush(map *virtmap) {
	struct _mm_private * mm = (struct _mm_private *) bd->mm_private;
	u_long i, limit=(mm->hashmask>>3)+8;
	hash_entry volatile *p=(hash_entry *) mm->sdr1;

	/* PTE handling is simple since the processor never update
	 * the entries. Writable pages always have the C bit set and 
	 * all valid entries have the R bit set. From the processor
	 * point of view the hash table is read only.
	 */
	for (i=0; i<limit; i++) {
	  	if (p[i].key<0) {
			u_long va;
			va = ((i<<9)^((p[i].key)<<5)) &0x3ff000;
			if (p[i].key&0x40) va^=0x3ff000;
			va |= ((p[i].key<<21)&0xf0000000)
			  | ((p[i].key<<22)&0x0fc00000);
			if (va>=virtmap->base && va<=virtmap->end) {
				p[i].key=0;
				asm volatile("sync; tlbie %0; sync" : :
					     "r" (va));
			}
		}
	}
}

void vfree(void *vaddr) {
	map *physmap, *virtmap; /* Actual mappings pertaining to this vm */
	struct _mm_private * mm = (struct _mm_private *) bd->mm_private;
	
	/* Flush memory queues */
	asm volatile("sync": : : "memory");

	virtmap = remove_map_at(&mm->virtused, vaddr);
	if (!virtmap) return;

	/* Remove mappings corresponding to virtmap */
	for (physmap=mm->mappings; physmap; ) {
		map *nextmap=physmap->next;
		if (physmap->base>=virtmap->base 
		    && physmap->base<virtmap->end) {
			free_map(remove_map(&mm->mappings, physmap));
		}
		physmap=nextmap;
	}

	vflush(virtmap);

	virtmap->firstpte= MAP_FREE_VIRT;
	insert_map(&mm->virtavail, virtmap); 
	coalesce_maps(mm->virtavail);
}

void vunmap(void *vaddr) {
	map *physmap, *virtmap; /* Actual mappings pertaining to this vm */
	struct _mm_private *mm = (struct _mm_private *) bd->mm_private;
	
	/* Flush memory queues */
	asm volatile("sync": : : "memory");

	/* vaddr must be within one of the vm areas in use and
	 * then must correspond to one of the physical areas 
	 */
	for (virtmap=mm->virtused; virtmap; virtmap=virtmap->next) {
	  	if (virtmap->base<=(u_long)vaddr && 
		    virtmap->end>=(u_long)vaddr) break;
	}
	if (!virtmap) return;

	physmap = remove_map_at(&mm->mappings, vaddr);
	if(!physmap) return;
	vflush(physmap);
	free_map(physmap);
}

int vmap(void *vaddr, u_long p, u_long size) {
	map *q;
	struct _mm_private *mm = (struct _mm_private *) bd->mm_private;

	size=PAGE_ALIGN(size);
	if(!size) return 1;
	/* Check that the requested area fits in one vm image */
	for (q=mm->virtused; q; q=q->next) {
	  	if ((q->base <= (u_long)vaddr) && 
		    (q->end>=(u_long)vaddr+size -1)) break;
	}
	if (!q) return 1;
	q= alloc_map();
	if (!q) return 1;
	q->base = (u_long)vaddr;
	q->end = (u_long)vaddr+size-1;
	q->firstpte = p;
	return insert_map(&mm->mappings, q);
}

static
void create_identity_mappings(int type, int attr) {
	u_long lowpage=ULONG_MAX, highpage;
	struct _mm_private *mm = (struct _mm_private *) bd->mm_private;
	RESIDUAL * res=bd->residual;

	while((highpage = find_next_zone(res, lowpage, type))) {
		map *p;
		lowpage=find_zone_start(res, highpage, type);
		p=alloc_map();
		/* Do not map page 0 to catch null pointers */
		lowpage = lowpage ? lowpage : 1;
		p->base=lowpage<<PAGE_SHIFT;
		p->end=(highpage<<PAGE_SHIFT)-1;
		p->firstpte = (lowpage<<PAGE_SHIFT)|attr;
		insert_map(&mm->mappings, p);
	}
}

static inline
void add_free_map(u_long base, u_long end) {
	map *q=NULL;
	struct _mm_private *mm = (struct _mm_private *) bd->mm_private;

	if (base<end) q=alloc_map();
	if (!q) return;
	q->base=base;
	q->end=end-1;
	q->firstpte=MAP_FREE_VIRT;
	insert_map(&mm->virtavail, q); 
}

static inline
void create_free_vm(void) {
	map *p;
	struct _mm_private *mm = (struct _mm_private *) bd->mm_private;

	u_long vaddr=PAGE_SIZE;	/* Never map vaddr 0 */
	for(p=mm->mappings; p; p=p->next) {
		add_free_map(vaddr, p->base);
		vaddr=p->end+1;
	}
	/* Special end of memory case */
	if (vaddr) add_free_map(vaddr,0);
}

/* Memory management initialization.
 * Set up the mapping lists. 
 */

static inline 
void add_perm_map(u_long start, u_long size) {
	struct _mm_private *mm = (struct _mm_private *) bd->mm_private;
	map *p=alloc_map();
	p->base = start;
	p->end = start + size - 1;
	p->firstpte = MAP_PERM_PHYS;
	insert_map(& mm->physperm , p);
}

void mm_init(u_long image_size) 
{
	u_long lowpage=ULONG_MAX, highpage;
	struct _mm_private *mm = (struct _mm_private *) bd->mm_private;
	RESIDUAL * res=bd->residual;
	extern void (tlb_handlers)(void);
	extern void (_handler_glue)(void);
	int i;
	map *p;

	/* The checks are simplified by the fact that the image
	 * and stack area are always allocated at the upper end
	 * of a free block. 
	 */
	while((highpage = find_next_zone(res, lowpage, BootImage|Free))) {
		lowpage=find_zone_start(res, highpage, BootImage|Free);
		if ( ( ((u_long)bd->image+PAGE_ALIGN(image_size))>>PAGE_SHIFT)
		     == highpage) {
		  	highpage=(u_long)(bd->image)>>PAGE_SHIFT;
			add_perm_map((u_long)bd->image, image_size);
		}
		if ( (( u_long)bd->stack>>PAGE_SHIFT) == highpage) {
		  	highpage -= STACK_PAGES;
			add_perm_map(highpage<<PAGE_SHIFT, 
				     STACK_PAGES*PAGE_SIZE);
		}
		/* Protect the interrupt handlers that we need ! */
		if (lowpage<2) lowpage=2;
		/* Check for the special case of full area! */
		if (highpage>lowpage) {
			p = alloc_map();
			p->base = lowpage<<PAGE_SHIFT;
			p->end = (highpage<<PAGE_SHIFT)-1;
			p->firstpte=MAP_FREE_PHYS;
			insert_map(&mm->physavail, p);
		}
	}

	/* Allocate the hash table */
	mm->sdr1=__palloc(0x10000, PA_PERM|16);
	_write_SDR1((u_long)mm->sdr1);
	memset(mm->sdr1, 0, 0x10000);
	mm->hashmask = 0xffc0;

	/* Setup the segment registers as we want them */
	for (i=0; i<16; i++) _write_SR(i, (void *)(i<<28));
	/* Create the maps for the physical memory, firwmarecode does not
	 * seem to be necessary. ROM is mapped read-only to reduce the risk 
	 * of reprogramming it because it's often Flash and some are 
	 * amazingly easy to overwrite.
	 */
	create_identity_mappings(BootImage|Free|FirmwareCode|FirmwareHeap|
				 FirmwareStack, PTE_RAM);
	create_identity_mappings(SystemROM, PTE_ROM);
	create_identity_mappings(IOMemory|SystemIO|SystemRegs|
				 PCIAddr|PCIConfig|ISAAddr, PTE_IO);

	create_free_vm();
	
	/* Install our own MMU and trap handlers. */
	codemove((void *) 0x300, _handler_glue, 0x100, bd->cache_lsize); 
	codemove((void *) 0x400, _handler_glue, 0x100, bd->cache_lsize); 
	codemove((void *) 0x600, _handler_glue, 0x100, bd->cache_lsize); 
	codemove((void *) 0x700, _handler_glue, 0x100, bd->cache_lsize); 
}
  
void * salloc(u_long size) {
	map *p, *q;
	struct _mm_private *mm = (struct _mm_private *) bd->mm_private;

	if (size==0) return NULL;

	size = (size+7)&~7;

	for (p=mm->sallocfree; p; p=p->next) {
		if (p->base+size <= p->end) break;
	}
	if(!p) {
		void *m;
		m = __palloc(size, PA_SUBALLOC);
		p = alloc_map();
		if (!m && !p) return NULL;
		p->base = (u_long) m;
		p->firstpte = MAP_FREE_SUBS;
		p->end = (u_long)m+PAGE_ALIGN(size)-1;
		insert_map(&mm->sallocfree, p);
		coalesce_maps(mm->sallocfree);
		coalesce_maps(mm->sallocphys);
	};
	q=alloc_map();
	q->base=p->base;
	q->end=q->base+size-1;
	q->firstpte=MAP_USED_SUBS;
	insert_map(&mm->sallocused, q);
	if (q->end==p->end) free_map(remove_map(&mm->sallocfree, p));
	else p->base += size;
	memset((void *)q->base, 0, size);
	return (void *)q->base;
}

void sfree(void *p) {
	map *q;
	struct _mm_private *mm = (struct _mm_private *) bd->mm_private;

	q=remove_map_at(&mm->sallocused, p);
	if (!q) return;
	q->firstpte=MAP_FREE_SUBS;
	insert_map(&mm->sallocfree, q);
	coalesce_maps(mm->sallocfree);
}

/* first/last area fit, flags is a power of 2 indicating the required
 * alignment. The algorithms are stupid because we expect very little 
 * fragmentation of the areas, if any. The unit of allocation is the page.
 * The allocation is by default performed from higher addresses down,
 * unless flags&PA_LOW is true. 
 */

void * __palloc(u_long size, int flags) 
{
	u_long mask = ((1<<(flags&PA_ALIGN_MASK))-1);
	map *newmap, *frommap, *p, *splitmap=0;
	map **queue; 
	u_long qflags;
	struct _mm_private *mm = (struct _mm_private *) bd->mm_private;

	/* Asking for a size which is not a multiple of the alignment
	   is likely to be an error. */

	if (size & mask) return NULL;
	size = PAGE_ALIGN(size);
	if(!size) return NULL;

	if (flags&PA_SUBALLOC) {
		queue = &mm->sallocphys;
		qflags = MAP_SUBS_PHYS;
	} else if (flags&PA_PERM) {
	  	queue = &mm->physperm;
		qflags = MAP_PERM_PHYS;
	} else {
	  	queue = &mm->physused;
		qflags = MAP_USED_PHYS;
	}
	/* We need to allocate that one now so no two allocations may attempt
	 * to take the same memory simultaneously. Alloc_map_page does
	 * not call back here to avoid infinite recursion in alloc_map. 
	 */

	if (mask&PAGE_MASK) {
		splitmap=alloc_map();
		if (!splitmap) return NULL;
	}

	for (p=mm->physavail, frommap=NULL; p; p=p->next) {
		u_long high = p->end;
		u_long limit  = ((p->base+mask)&~mask) + size-1;
		if (high>=limit && ((p->base+mask)&~mask)+size>p->base) {
			frommap = p;
			if (flags&PA_LOW) break;
		}
	}

	if (!frommap) {
		if (splitmap) free_map(splitmap);
		return NULL;  
	}
	
	newmap=alloc_map();
	
	if (flags&PA_LOW) {
		newmap->base = (frommap->base+mask)&~mask;
	} else {
	  	newmap->base = (frommap->end +1 - size) & ~mask;
	}

	newmap->end = newmap->base+size-1;
	newmap->firstpte = qflags;

	/* Add a fragment if we don't allocate until the end. */
	
	if (splitmap) {
		splitmap->base=newmap->base+size;
		splitmap->end=frommap->end;
		splitmap->firstpte= MAP_FREE_PHYS;
		frommap->end=newmap->base-1;
	} else if (flags & PA_LOW) {
		frommap->base=newmap->base+size;
	} else {
	  	frommap->end=newmap->base-1;
	}

        /* Remove a fragment if it becomes empty. */
 	if (frommap->base == frommap->end+1) {
		free_map(remove_map(&mm->physavail, frommap));
	}

	if (splitmap) {
	  	if (splitmap->base == splitmap->end+1) {
			free_map(remove_map(&mm->physavail, splitmap));
		} else {
			insert_map(&mm->physavail, splitmap);  
		}
	}

	insert_map(queue, newmap);
	return (void *) newmap->base;
		
}

void pfree(void * p) {
	map *q;
	struct _mm_private *mm = (struct _mm_private *) bd->mm_private;
	q=remove_map_at(&mm->physused, p);
	if (!q) return;
	q->firstpte=MAP_FREE_PHYS;
	insert_map(&mm->physavail, q);
	coalesce_maps(mm->physavail);
}

#ifdef DEBUG 
/* Debugging functions */
void print_maps(map *chain, const char *s) {
	map *p;
	printk("%s",s);
	for(p=chain; p; p=p->next) {
		printk("    %08lx-%08lx: %08lx\n", 
		       p->base, p->end, p->firstpte);
	}
}

void print_all_maps(const char * s) {
	u_long freemaps;
	struct _mm_private *mm = (struct _mm_private *) bd->mm_private;
	map *free;
	printk("%s",s);
	print_maps(mm->mappings, "  Currently defined mappings:\n");
	print_maps(mm->physavail, "  Currently available physical areas:\n");
	print_maps(mm->physused, "  Currently used physical areas:\n");
	print_maps(mm->virtavail, "  Currently available virtual areas:\n");
	print_maps(mm->virtused, "  Currently used virtual areas:\n");
	print_maps(mm->physperm, "  Permanently used physical areas:\n");
	print_maps(mm->sallocphys, "  Physical memory used for salloc:\n");
	print_maps(mm->sallocfree, "  Memory available for salloc:\n");
	print_maps(mm->sallocused, "  Memory allocated through salloc:\n");
	for (freemaps=0, free=mm->freemaps; free; freemaps++, free=free->next);
	printk("  %ld free maps.\n", freemaps);
}

void print_hash_table(void) {
	struct _mm_private *mm = (struct _mm_private *) bd->mm_private;
	hash_entry *p=(hash_entry *) mm->sdr1;
	u_int i, valid=0;
	for (i=0; i<((mm->hashmask)>>3)+8; i++) {
		if (p[i].key<0) valid++;
	}
	printk("%u valid hash entries on pass 1.\n", valid);
	valid = 0;
	for (i=0; i<((mm->hashmask)>>3)+8; i++) {
		if (p[i].key<0) valid++;
	}
	printk("%u valid hash entries on pass 2.\n"
	       "     vpn:rpn_attr, p/s, pteg.i\n", valid);
	for (i=0; i<((mm->hashmask)>>3)+8; i++) {
	  	if (p[i].key<0) {
			u_int pteg=(i>>3);
			u_long vpn;
			vpn = (pteg^((p[i].key)>>7)) &0x3ff;
			if (p[i].key&0x40) vpn^=0x3ff;
			vpn |= ((p[i].key<<9)&0xffff0000)
			  | ((p[i].key<<10)&0xfc00);
			printk("%08lx:%08lx, %s, %5d.%d\n",
			       vpn,  p[i].rpn, p[i].key&0x40 ? "sec" : "pri",
			       pteg, i%8);
		}
	}
}

#endif