summaryrefslogtreecommitdiffstats
path: root/c/src/lib/libbsp/arm/stm32f4/i2c/i2c.c
blob: 38877a4615a5f2e999d40223081e103a4583ef0d (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
/*
 * Copyright (c) 2013 Christian Mauderer.  All rights reserved.
 *
 *  embedded brains GmbH
 *  Obere Lagerstr. 30
 *  82178 Puchheim
 *  Germany
 *  <rtems@embedded-brains.de>
 *
 * The license and distribution terms for this file may be
 * found in the file LICENSE in this distribution or at
 * http://www.rtems.org/license/LICENSE.
 */

/* The I2C-module can not run with libi2c. The reason for this is, that libi2c
 * needs a possibility to generate a stop condition separately. This controller
 * wants to generate the condition automatically when sending or receiving data.
 */

#include <bsp.h>
#include <bsp/i2c.h>
#include <bsp/rcc.h>
#include <bsp/irq.h>
#include <bsp/irq-generic.h>
#include <assert.h>

#define RTEMS_STATUS_CHECKS_USE_PRINTK

#include <rtems/status-checks.h>

#define STM32F4_I2C_INITIAL_BITRATE 100000

#define I2C_RW_BIT 0x1

stm32f4_rcc_index i2c_rcc_index [] = {
  STM32F4_RCC_I2C1,
  STM32F4_RCC_I2C2,
};

static stm32f4_rcc_index i2c_get_rcc_index(stm32f4_i2c_bus_entry *e)
{
  return i2c_rcc_index [e->index];
}

static uint32_t i2c_get_pclk(stm32f4_i2c_bus_entry *e)
{
  return STM32F4_PCLK1;
}

rtems_status_code stm32f4_i2c_set_bitrate(
  stm32f4_i2c_bus_entry *e,
  uint32_t br
)
{
  volatile stm32f4_i2c *regs = e->regs;
  uint32_t ccr;
  uint32_t trise;
  uint32_t pclk = i2c_get_pclk(e);

  /* Make sure, that the module is disabled */
  if((regs->cr1 & STM32F4_I2C_CR1_PE) != 0)
  {
    return RTEMS_RESOURCE_IN_USE;
  }

  /* Configure clock control register and rise time register */
  ccr = regs->ccr;
  trise = regs->trise;

  if(br <= 100000)
  {
    uint32_t ccr_val = pclk / (2 * br);
    /* according to datasheet, the rise time for standard mode is 1us -> 1MHz */
    uint32_t trise_val = pclk / 1000000 + 1;
    trise = STM32F4_I2C_TRISE_SET(trise, trise_val);

    if(ccr_val > STM32F4_I2C_CCR_CCR_MAX)
    {
      return RTEMS_INVALID_NUMBER;
    }

    /* standard mode */
    ccr &= ~STM32F4_I2C_CCR_FS;
    ccr = STM32F4_I2C_CCR_CCR_SET(ccr, ccr_val);
  }
  else
  {
    /* FIXME: Implement speeds 100kHz < f <= 400kHz (fast mode) */
    return RTEMS_NOT_IMPLEMENTED;
  }

  regs->ccr = ccr;
  regs->trise = trise;

  return RTEMS_SUCCESSFUL;
}

static void stm32f4_i2c_handler(void *arg)
{
  /* This handler implements the suggested read method from stm32f103xx
   * reference manual if the handler is not the one with the highest priority */
  stm32f4_i2c_bus_entry *e = arg;
  volatile stm32f4_i2c *regs = e->regs;
  uint32_t sr1 = regs->sr1;
  uint8_t *data = e->data;
  uint8_t *last = e->last;
  bool read = e->read;
  bool wake_task = false;
  uint32_t cr1;

  if(sr1 & STM32F4_I2C_SR1_SB) {
    /* Start condition sent. */
    regs->dr = e->addr_with_rw;
  }

  if(read) {
    size_t len = e->len;

    if(len == 1) {
      /* special case for one single byte */
      if(sr1 & STM32F4_I2C_SR1_ADDR) {
        cr1 = regs->cr1;
        cr1 &= ~STM32F4_I2C_CR1_ACK;
        regs->cr1 = cr1;

        /* Read sr2 to clear flag */
        regs->sr2;

        cr1 = regs->cr1;
        cr1 |= STM32F4_I2C_CR1_STOP;
        regs->cr1 = cr1;
      } else if(sr1 & STM32F4_I2C_SR1_RxNE) {
        *data = regs->dr;
        wake_task = true;
      }
    } else if (len == 2) {
      /* special case for two bytes */
      if(sr1 & STM32F4_I2C_SR1_ADDR) {
        /* Read sr2 to clear flag */
        regs->sr2;

        cr1 = regs->cr1;
        cr1 &= ~STM32F4_I2C_CR1_ACK;
        regs->cr1 = cr1;
      } else if(sr1 & STM32F4_I2C_SR1_BTF) {
        cr1 = regs->cr1;
        cr1 |= STM32F4_I2C_CR1_STOP;
        regs->cr1 = cr1;

        *data = regs->dr;
        ++data;
        *data = regs->dr;
        wake_task = true;
      }
    } else {
      /* more than two bytes */
      if(sr1 & STM32F4_I2C_SR1_ADDR) {
        /* Read sr2 to clear flag */
        regs->sr2;
      } else if(sr1 & STM32F4_I2C_SR1_BTF && data == last - 2) {
        cr1 = regs->cr1;
        cr1 &= ~STM32F4_I2C_CR1_ACK;
        regs->cr1 = cr1;

        *data = regs->dr;
        ++data;

        cr1 = regs->cr1;
        cr1 |= STM32F4_I2C_CR1_STOP;
        regs->cr1 = cr1;

        *data = regs->dr;
        ++data;
      } else if((sr1 & STM32F4_I2C_SR1_RxNE) && (data != last - 2)) {
        *data = regs->dr;

        if(data == last) {
          wake_task = true;
        } else {
          ++data;
        }
      }
    }
  } else /* write */ {
    if(sr1 & STM32F4_I2C_SR1_ADDR) {
      /* Address sent */
      regs->sr2;
    }

    if((sr1 & (STM32F4_I2C_SR1_ADDR | STM32F4_I2C_SR1_TxE)) && (data <= last)) {
      regs->dr = *data;
      ++data;
    } else if(sr1 & STM32F4_I2C_SR1_BTF) {
      uint32_t cr1 = regs->cr1;
      cr1 |= STM32F4_I2C_CR1_STOP;
      regs->cr1 = cr1;
      wake_task = true;
    }
  }

  e->data = data;

  if(wake_task) {
    bsp_interrupt_vector_disable(e->vector);
    rtems_event_transient_send(e->task_id);
  }
}

static rtems_status_code i2c_wait_done(stm32f4_i2c_bus_entry *e)
{
  rtems_status_code sc = RTEMS_SUCCESSFUL;

  bsp_interrupt_vector_enable(e->vector);
  e->task_id = rtems_task_self();
  return rtems_event_transient_receive(RTEMS_WAIT, RTEMS_NO_TIMEOUT);
}

rtems_status_code stm32f4_i2c_init(stm32f4_i2c_bus_entry *e)
{
  rtems_status_code sc = RTEMS_SUCCESSFUL;
  volatile stm32f4_i2c *regs = e->regs;
  stm32f4_rcc_index rcc_index = i2c_get_rcc_index(e);
  uint32_t pclk = i2c_get_pclk(e);
  uint32_t cr1 = 0;
  uint32_t cr2 = 0;

  assert(pclk >= 2000000);

  /* Create mutex */
  sc = rtems_semaphore_create (
    rtems_build_name ('I', '2', 'C', '1' + e->index),
    0,
    RTEMS_BINARY_SEMAPHORE | RTEMS_PRIORITY | RTEMS_INHERIT_PRIORITY,
    0,
    &e->mutex
  );
  RTEMS_CHECK_SC(sc, "create mutex");

  /* Install interrupt handler and disable this vector */
  sc = rtems_interrupt_handler_install(
    e->vector,
    "I2C",
    RTEMS_INTERRUPT_UNIQUE,
    stm32f4_i2c_handler,
    e
  );
  RTEMS_CHECK_SC(sc, "install interrupt handler");
  bsp_interrupt_vector_disable(e->vector);

  /* Enable module clock */
  stm32f4_rcc_set_clock(rcc_index, true);

  /* Setup initial bit rate */
  sc = stm32f4_i2c_set_bitrate(e, STM32F4_I2C_INITIAL_BITRATE);
  RTEMS_CHECK_SC(sc, "set bitrate");

  /* Set config registers */
  cr2 = regs->cr2;
  cr2 = STM32F4_I2C_CR2_FREQ_SET(cr2, pclk / 1000000);
  cr2 |= STM32F4_I2C_CR2_ITEVTEN;
  cr2 |= STM32F4_I2C_CR2_ITBUFEN;
  regs->cr2 = cr2;

  cr1 = regs->cr1;
  cr1 |= STM32F4_I2C_CR1_PE;
  regs->cr1 = cr1;

  return RTEMS_SUCCESSFUL;
}

rtems_status_code stm32f4_i2c_process_message(
  stm32f4_i2c_bus_entry *e,
  stm32f4_i2c_message *msg
)
{
  rtems_status_code sc = RTEMS_SUCCESSFUL;
  rtems_status_code sc_return = RTEMS_SUCCESSFUL;
  volatile stm32f4_i2c *regs = e->regs;
  uint16_t max_7_bit_address = (1 << 7) - 1;
  uint32_t cr1 = regs->cr1;

  if(msg->addr > max_7_bit_address) {
    return RTEMS_NOT_IMPLEMENTED;
  }

  if(msg->len == 0) {
    return RTEMS_INVALID_SIZE;
  }

  sc = rtems_semaphore_obtain(e->mutex, RTEMS_WAIT, RTEMS_NO_TIMEOUT);
  RTEMS_CHECK_SC(sc, "obtaining mutex");

  e->data = msg->buf;
  e->last = msg->buf + msg->len - 1;
  e->len = msg->len;

  e->addr_with_rw = msg->addr << 1;
  if(msg->read) {
    e->addr_with_rw |= I2C_RW_BIT;
  }
  e->read = msg->read;

  /* Check if no stop is active. */
  if(cr1 & STM32F4_I2C_CR1_STOP) {
    return RTEMS_IO_ERROR;
  }

  /* Start */
  cr1 = regs->cr1;
  if(e->len == 2) {
    cr1 |= STM32F4_I2C_CR1_POS;
  } else {
    cr1 &= ~STM32F4_I2C_CR1_POS;
  }
  cr1 |= STM32F4_I2C_CR1_ACK;
  cr1 |= STM32F4_I2C_CR1_START;
  regs->cr1 = cr1;

  /* Wait for end of message */
  sc = i2c_wait_done(e);

  if(sc != RTEMS_SUCCESSFUL) {
    sc_return = sc;
  }

  sc = rtems_semaphore_release(e->mutex);
  RTEMS_CHECK_SC(sc, "releasing mutex");

  return sc_return;
}