summaryrefslogtreecommitdiffstats
path: root/bsps/shared/dev/i2c/cadence-i2c.c
blob: 91774fb9263fd5376beee8b93915a10d0396414f (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
/*
 * SPDX-License-Identifier: BSD-2-Clause
 *
 * Copyright (C) 2014 embedded brains GmbH
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

#include <dev/i2c/cadence-i2c.h>
#include <dev/i2c/cadence-i2c-regs.h>

#include <rtems/irq-extension.h>
#include <rtems/score/assert.h>

#include <dev/i2c/i2c.h>

#define CADENCE_I2C_DIV_A_MAX 4

#define CADENCE_I2C_DIV_B_MAX 64

#define CADENCE_I2C_FIFO_DEPTH 16

#define CADENCE_I2C_DATA_IRQ_DEPTH (CADENCE_I2C_FIFO_DEPTH - 2)

#define CADENCE_I2C_TRANSFER_SIZE_MAX 255

#define CADENCE_I2C_TRANSFER_SIZE_ONCE_MAX (18 * CADENCE_I2C_DATA_IRQ_DEPTH)

#define CADENCE_I2C_IRQ_ERROR \
  (CADENCE_I2C_IXR_ARB_LOST \
    | CADENCE_I2C_IXR_RX_UNF \
    | CADENCE_I2C_IXR_TX_OVR \
    | CADENCE_I2C_IXR_RX_OVR \
    | CADENCE_I2C_IXR_NACK)

#define CADENCE_I2C_IRQ_USED \
  (CADENCE_I2C_IRQ_ERROR \
    | CADENCE_I2C_IXR_DATA \
    | CADENCE_I2C_IXR_COMP)

typedef struct {
  i2c_bus base;
  volatile cadence_i2c *regs;
  i2c_msg *msgs;
  uint32_t msg_todo;
  uint32_t current_msg_todo;
  uint8_t *current_msg_byte;
  uint32_t current_todo;
  uint32_t irqstatus;
  bool read;
  bool hold;
  rtems_id task_id;
  uint32_t input_clock;
  rtems_vector_number irq;
} cadence_i2c_bus;

static void cadence_i2c_disable_interrupts(volatile cadence_i2c *regs)
{
  regs->irqdisable = 0xffff;
}

static void cadence_i2c_clear_irq_status(volatile cadence_i2c *regs)
{
  regs->irqstatus = regs->irqstatus;
}

static void cadence_i2c_reset(cadence_i2c_bus *bus)
{
  volatile cadence_i2c *regs = bus->regs;
  uint32_t val;

  cadence_i2c_disable_interrupts(regs);

  val = regs->control;
  val &= ~CADENCE_I2C_CONTROL_HOLD;
  val |= CADENCE_I2C_CONTROL_ACKEN
    | CADENCE_I2C_CONTROL_MS
    | CADENCE_I2C_CONTROL_CLR_FIFO;
  regs->control = val;

  regs->transfer_size = 0;
  regs->status = regs->status;

  cadence_i2c_clear_irq_status(regs);
}

static uint32_t cadence_i2c_set_address_size(
  const i2c_msg *msg,
  uint32_t control
)
{
  if ((msg->flags & I2C_M_TEN) == 0) {
    control |= CADENCE_I2C_CONTROL_NEA;
  } else {
    control &= ~CADENCE_I2C_CONTROL_NEA;
  }

  return control;
}

static void cadence_i2c_setup_read_transfer(
  cadence_i2c_bus *bus,
  volatile cadence_i2c *regs,
  uint32_t control
)
{
  control |= CADENCE_I2C_CONTROL_RW;
  regs->control = control;

  if (bus->current_todo <= CADENCE_I2C_TRANSFER_SIZE_MAX) {
    regs->transfer_size = bus->current_todo;
  } else {
    regs->transfer_size = CADENCE_I2C_TRANSFER_SIZE_ONCE_MAX;
  }
}

static void cadence_i2c_next_byte(cadence_i2c_bus *bus)
{
  --bus->current_msg_todo;
  ++bus->current_msg_byte;

  if (bus->current_msg_todo == 0) {
    i2c_msg *msg;

    ++bus->msgs;
    --bus->msg_todo;

    msg = &bus->msgs[0];

    bus->current_msg_todo = msg->len;
    bus->current_msg_byte = msg->buf;
  }
}

static void cadence_i2c_write_to_fifo(
  cadence_i2c_bus *bus,
  volatile cadence_i2c *regs
)
{
  uint32_t space_available;
  uint32_t todo_now;
  uint32_t i;

  space_available = CADENCE_I2C_FIFO_DEPTH - regs->transfer_size;

  if (bus->current_todo > space_available) {
    todo_now = space_available;
  } else {
    todo_now = bus->current_todo;
  }

  bus->current_todo -= todo_now;

  for (i = 0; i < todo_now; ++i) {
    regs->data = *bus->current_msg_byte;

    cadence_i2c_next_byte(bus);
  }
}

static void cadence_i2c_setup_write_transfer(
  cadence_i2c_bus *bus,
  volatile cadence_i2c *regs,
  uint32_t control
)
{
  control &= ~CADENCE_I2C_CONTROL_RW;
  regs->control = control;

  cadence_i2c_write_to_fifo(bus, regs);
}

static void cadence_i2c_setup_transfer(
  cadence_i2c_bus *bus,
  volatile cadence_i2c *regs
)
{
  const i2c_msg *msgs = bus->msgs;
  uint32_t msg_todo = bus->msg_todo;
  uint32_t i;
  uint32_t control;

  bus->current_todo = msgs[0].len;
  for (i = 1; i < msg_todo && (msgs[i].flags & I2C_M_NOSTART) != 0; ++i) {
    bus->current_todo += msgs[i].len;
  }

  regs = bus->regs;

  control = regs->control;
  control |= CADENCE_I2C_CONTROL_CLR_FIFO;

  bus->hold = i < msg_todo;

  if (bus->hold || bus->current_todo > CADENCE_I2C_FIFO_DEPTH) {
    control |= CADENCE_I2C_CONTROL_HOLD;
  } else {
    control &= ~CADENCE_I2C_CONTROL_HOLD;
  }

  control = cadence_i2c_set_address_size(msgs, control);

  bus->read = (msgs->flags & I2C_M_RD) != 0;
  if (bus->read) {
    cadence_i2c_setup_read_transfer(bus, regs, control);
  } else {
    cadence_i2c_setup_write_transfer(bus, regs, control);
  }

  cadence_i2c_clear_irq_status(regs);

  regs->address = CADENCE_I2C_ADDRESS(msgs->addr);
}

static void cadence_i2c_continue_read_transfer(
  cadence_i2c_bus *bus,
  volatile cadence_i2c *regs
)
{
  uint32_t i;

  bus->current_todo -= CADENCE_I2C_DATA_IRQ_DEPTH;

  /*
   * This works since CADENCE_I2C_TRANSFER_SIZE_ONCE_MAX is an integral
   * multiple of CADENCE_I2C_DATA_IRQ_DEPTH.
   *
   * FIXME: Tests with a 1024 byte EEPROM show that this doesn't work.  Needs
   * further investigations with an I2C analyser or an oscilloscope.
   */
  if (regs->transfer_size == 0) {
    if (bus->current_todo <= CADENCE_I2C_TRANSFER_SIZE_MAX) {
      regs->transfer_size = bus->current_todo;
    } else {
      regs->transfer_size = CADENCE_I2C_TRANSFER_SIZE_ONCE_MAX;
    }
  }

  for (i = 0; i < CADENCE_I2C_DATA_IRQ_DEPTH; ++i) {
    *bus->current_msg_byte = (uint8_t) regs->data;

    cadence_i2c_next_byte(bus);
  }

  if (!bus->hold && bus->current_todo <= CADENCE_I2C_FIFO_DEPTH) {
    regs->control &= ~CADENCE_I2C_CONTROL_HOLD;
  }
}

static void cadence_i2c_interrupt(void *arg)
{
  cadence_i2c_bus *bus = arg;
  volatile cadence_i2c *regs = bus->regs;
  uint32_t irqstatus = regs->irqstatus;
  bool done = false;

  /* Clear interrupts */
  regs->irqstatus = irqstatus;

  if ((irqstatus & (CADENCE_I2C_IXR_ARB_LOST | CADENCE_I2C_IXR_NACK)) != 0) {
    done = true;
  }

  if (
    (irqstatus & CADENCE_I2C_IXR_DATA) != 0
      && bus->read
      && bus->current_todo >= CADENCE_I2C_DATA_IRQ_DEPTH
  ) {
    cadence_i2c_continue_read_transfer(bus, regs);
  }

  if ((irqstatus & CADENCE_I2C_IXR_COMP) != 0) {
    if (bus->read) {
      uint32_t todo_now = bus->current_todo;
      uint32_t i;

      for (i = 0; i < todo_now; ++i) {
        *bus->current_msg_byte = (uint8_t) regs->data;

        cadence_i2c_next_byte(bus);
      }

      bus->current_todo = 0;

      done = true;
    } else {
      if (bus->current_todo > 0) {
        cadence_i2c_write_to_fifo(bus, regs);
      } else {
        done = true;
      }

      if (!bus->hold && bus->current_todo == 0) {
        regs->control &= ~CADENCE_I2C_CONTROL_HOLD;
      }
    }
  }

  if (done) {
    uint32_t err = irqstatus & CADENCE_I2C_IRQ_ERROR;

    if (bus->msg_todo == 0 || err != 0) {
      rtems_status_code sc;

      cadence_i2c_disable_interrupts(regs);

      bus->irqstatus = err;

      sc = rtems_event_transient_send(bus->task_id);
      _Assert(sc == RTEMS_SUCCESSFUL);
      (void) sc;
    } else {
      cadence_i2c_setup_transfer(bus, regs);
    }
  }
}

static int cadence_i2c_transfer(
  i2c_bus *base,
  i2c_msg *msgs,
  uint32_t msg_count
)
{
  cadence_i2c_bus *bus = (cadence_i2c_bus *) base;
  volatile cadence_i2c *regs;
  rtems_status_code sc;
  uint32_t i;

  _Assert(msg_count > 0);

  for (i = 0; i < msg_count; ++i) {
    /* FIXME: Not sure if we can support this. */
    if ((msgs[i].flags & I2C_M_RECV_LEN) != 0) {
      return -EINVAL;
    }
  }

  bus->msgs = &msgs[0];
  bus->msg_todo = msg_count;
  bus->current_msg_todo = msgs[0].len;
  bus->current_msg_byte = msgs[0].buf;
  bus->task_id = rtems_task_self();

  regs = bus->regs;
  cadence_i2c_setup_transfer(bus, regs);
  regs->irqenable = CADENCE_I2C_IRQ_USED;

  sc = rtems_event_transient_receive(RTEMS_WAIT, bus->base.timeout);
  if (sc != RTEMS_SUCCESSFUL) {
    cadence_i2c_reset(bus);
    rtems_event_transient_clear();

    return -ETIMEDOUT;
  }

  return bus->irqstatus == 0 ? 0 : -EIO;
}

static int cadence_i2c_set_clock(i2c_bus *base, unsigned long clock)
{
  cadence_i2c_bus *bus = (cadence_i2c_bus *) base;
  volatile cadence_i2c *regs = bus->regs;
  uint32_t error = 0xffffffff;
  uint32_t best_div_a = CADENCE_I2C_DIV_A_MAX - 1;
  uint32_t best_div_b = CADENCE_I2C_DIV_B_MAX - 1;
  uint32_t div = bus->input_clock / (22 * clock);
  uint32_t div_a;
  uint32_t control;

  if (div <= 0 || div > (CADENCE_I2C_DIV_A_MAX * CADENCE_I2C_DIV_B_MAX)) {
    return -EIO;
  }

  for (div_a = 0; div_a < CADENCE_I2C_DIV_A_MAX; ++div_a) {
    uint32_t a = 22 * clock * (div_a + 1);
    uint32_t b = (bus->input_clock + a - 1) / a;

    if (b > 0 && b <= CADENCE_I2C_DIV_B_MAX) {
      uint32_t actual_clock = bus->input_clock / (22 * (div_a + 1) * b);
      uint32_t e = clock < actual_clock ?
        actual_clock - clock : clock - actual_clock;

      /*
       * Favour greater div_a values according to UG585, Zynq-7000 AP SoC
       * Technical Reference Manual, Table 20-1: Calculated Values for Standard
       * and High Speed SCL Clock Values".
       */
      if (e <= error && actual_clock <= clock) {
        error = e;
        best_div_a = div_a;
        best_div_b = b - 1;
      }
    }
  }

  control = regs->control;
  control = CADENCE_I2C_CONTROL_DIV_A_SET(control, best_div_a);
  control = CADENCE_I2C_CONTROL_DIV_B_SET(control, best_div_b);
  regs->control = control;

  return 0;
}

static void cadence_i2c_destroy(i2c_bus *base)
{
  cadence_i2c_bus *bus = (cadence_i2c_bus *) base;
  rtems_status_code sc;

  sc = rtems_interrupt_handler_remove(bus->irq, cadence_i2c_interrupt, bus);
  _Assert(sc == RTEMS_SUCCESSFUL);
  (void) sc;

  i2c_bus_destroy_and_free(&bus->base);
}

int i2c_bus_register_cadence(
  const char *bus_path,
  uintptr_t register_base,
  uint32_t input_clock,
  rtems_vector_number irq
)
{
  cadence_i2c_bus *bus;
  rtems_status_code sc;
  int err;

  bus = (cadence_i2c_bus *) i2c_bus_alloc_and_init(sizeof(*bus));
  if (bus == NULL) {
    return -1;
  }

  bus->regs = (volatile cadence_i2c *) register_base;
  bus->input_clock = input_clock;
  bus->irq = irq;

  cadence_i2c_reset(bus);

  err = cadence_i2c_set_clock(&bus->base, I2C_BUS_CLOCK_DEFAULT);
  if (err != 0) {
    (*bus->base.destroy)(&bus->base);

    rtems_set_errno_and_return_minus_one(-err);
  }

  sc = rtems_interrupt_handler_install(
    irq,
    "Cadence I2C",
    RTEMS_INTERRUPT_UNIQUE,
    cadence_i2c_interrupt,
    bus
  );
  if (sc != RTEMS_SUCCESSFUL) {
    (*bus->base.destroy)(&bus->base);

    rtems_set_errno_and_return_minus_one(EIO);
  }

  bus->base.transfer = cadence_i2c_transfer;
  bus->base.set_clock = cadence_i2c_set_clock;
  bus->base.destroy = cadence_i2c_destroy;

  return i2c_bus_register(&bus->base, bus_path);
}