summaryrefslogtreecommitdiffstats
path: root/bsps/arm/imxrt/nxp/devices/MIMXRT1052/drivers/fsl_dcp.c
blob: fff5e6fe35325edfa62fe02f60f271e9839bb7b3 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
/*
 * Copyright 2017-2019 NXP
 * All rights reserved.
 *
 *
 * SPDX-License-Identifier: BSD-3-Clause
 */

#include "fsl_dcp.h"

/*******************************************************************************
 * Definitions
 ******************************************************************************/

/* Component ID definition, used by tools. */
#ifndef FSL_COMPONENT_ID
#define FSL_COMPONENT_ID "platform.drivers.dcp"
#endif

#ifndef DCP_USE_DCACHE
#define DCP_USE_DCACHE 0
#endif 
/* 1 - driver supports DCACHE, 0 - drivers does not support DCACHE */
/* When enable (DCP_USE_DCACHE = 1) Input/output buffers and hash ctx should be in */
/* non-cached memory or handled properly (Clean & Invalidate DCACHE) */

/*! Compile time sizeof() check */
#define BUILD_ASSURE(condition, msg) extern int msg[1 - 2 * (!(condition))] __attribute__((unused))

#define dcp_memcpy memcpy

/*! Internal states of the HASH creation process */
typedef enum _dcp_hash_algo_state
{
    kDCP_StateHashInit = 1u, /*!< Init state. */
    kDCP_StateHashUpdate,    /*!< Update state. */
} dcp_hash_algo_state_t;

/*! multiple of 64-byte block represented as byte array of 32-bit words */
typedef union _dcp_hash_block
{
    uint32_t w[DCP_HASH_BLOCK_SIZE / 4]; /*!< array of 32-bit words */
    uint8_t b[DCP_HASH_BLOCK_SIZE];      /*!< byte array */
} dcp_hash_block_t;

/*! internal dcp_hash context structure */
typedef struct _dcp_hash_ctx_internal
{
    dcp_hash_block_t blk;        /*!< memory buffer. only full blocks are written to DCP during hash updates */
    size_t blksz;                /*!< number of valid bytes in memory buffer */
    dcp_hash_algo_t algo;        /*!< selected algorithm from the set of supported algorithms */
    dcp_hash_algo_state_t state; /*!< finite machine state of the hash software process */
    uint32_t fullMessageSize;    /*!< track message size */
    uint32_t ctrl0;              /*!< HASH_INIT and HASH_TERM flags */
    uint32_t runningHash[9];     /*!< running hash. up to SHA-256 plus size, that is 36 bytes. */
    dcp_handle_t *handle;
} dcp_hash_ctx_internal_t;

/*!< SHA-1/SHA-2 digest length in bytes  */
enum _dcp_hash_digest_len
{
    kDCP_OutLenSha1   = 20u,
    kDCP_OutLenSha256 = 32u,
    kDCP_OutLenCrc32  = 4u,
};

enum _dcp_work_packet_bit_definitions
{
    kDCP_CONTROL0_DECR_SEMAPHOR      = 1u << 1,  /* DECR_SEMAPHOR */
    kDCP_CONTROL0_ENABLE_HASH        = 1u << 6,  /* ENABLE_HASH */
    kDCP_CONTROL0_HASH_INIT          = 1u << 12, /* HASH_INIT */
    kDCP_CONTROL0_HASH_TERM          = 1u << 13, /* HASH_TERM */
    kDCP_CONTROL1_HASH_SELECT_SHA256 = 2u << 16,
    kDCP_CONTROL1_HASH_SELECT_SHA1   = 0u << 16,
    kDCP_CONTROL1_HASH_SELECT_CRC32  = 1u << 16,
};

/*! 64-byte block represented as byte array of 16 32-bit words */
typedef union _dcp_sha_block
{
    uint32_t w[64 / 4]; /*!< array of 32-bit words */
    uint8_t b[64];      /*!< byte array */
} dcp_sha_block_t;

#if defined(DCP_HASH_CAVP_COMPATIBLE)
/* result of sha1 hash for message with zero size */
static uint8_t s_nullSha1[] = {0xda, 0x39, 0xa3, 0xee, 0x5e, 0x6b, 0x4b, 0x0d, 0x32, 0x55,
                               0xbf, 0xef, 0x95, 0x60, 0x18, 0x90, 0xaf, 0xd8, 0x07, 0x09};
/* result of sha256 hash for message with zero size */
static uint8_t s_nullSha256[] = {0xe3, 0xb0, 0xc4, 0x42, 0x98, 0xfc, 0x1c, 0x14, 0x9a, 0xfb, 0xf4,
                                 0xc8, 0x99, 0x6f, 0xb9, 0x24, 0x27, 0xae, 0x41, 0xe4, 0x64, 0x9b,
                                 0x93, 0x4c, 0xa4, 0x95, 0x99, 0x1b, 0x78, 0x52, 0xb8, 0x55};
#endif /* DCP_HASH_CAVP_COMPATIBLE */

/*******************************************************************************
 * Variables
 ******************************************************************************/
AT_NONCACHEABLE_SECTION_INIT(static dcp_context_t s_dcpContextSwitchingBuffer);

/*******************************************************************************
 * Code
 ******************************************************************************/

static void dcp_reverse_and_copy(uint8_t *src, uint8_t *dest, size_t src_len)
{
    for (uint32_t i = 0; i < src_len; i++)
    {
        dest[i] = src[src_len - 1U - i];
    }
}

#if defined(__DCACHE_PRESENT) && (__DCACHE_PRESENT == 1U) && defined(DCP_USE_DCACHE) && (DCP_USE_DCACHE == 1U)
static uint32_t *DCP_FindCacheLine(uint8_t *dcpWorkExt)
{
    while ((uint32_t)dcpWorkExt & (FSL_FEATURE_L1DCACHE_LINESIZE_BYTE - 1))
        dcpWorkExt++;
    return (uint32_t *)dcpWorkExt;
}
#endif

static status_t dcp_get_channel_status(DCP_Type *base, dcp_channel_t channel)
{
    uint32_t statReg = 0;
    uint32_t semaReg = 0;
    status_t status  = kStatus_Fail;

    switch (channel)
    {
        case kDCP_Channel0:
            statReg = base->CH0STAT;
            semaReg = base->CH0SEMA;
            break;

        case kDCP_Channel1:
            statReg = base->CH1STAT;
            semaReg = base->CH1SEMA;
            break;

        case kDCP_Channel2:
            statReg = base->CH2STAT;
            semaReg = base->CH2SEMA;
            break;

        case kDCP_Channel3:
            statReg = base->CH3STAT;
            semaReg = base->CH3SEMA;
            break;

        default:
            /* All the cases have been listed above, the default clause should not be reached. */
            break;
    }

    if (!((0U != (semaReg & DCP_CH0SEMA_VALUE_MASK)) || (0U != (statReg & DCP_CH0STAT_ERROR_CODE_MASK))))
    {
        status = kStatus_Success;
    }

    return status;
}

static void dcp_clear_status(DCP_Type *base)
{
    volatile uint32_t *dcpStatClrPtr = (volatile uint32_t *)&base->STAT + 2u;
    *dcpStatClrPtr                   = 0xFFu;

    while ((base->STAT & 0xffu) != 0U)
    {
    }
}

static void dcp_clear_channel_status(DCP_Type *base, uint32_t mask)
{
    volatile uint32_t *chStatClrPtr;

    if (0U != (mask & (uint32_t)kDCP_Channel0))
    {
        chStatClrPtr  = &base->CH0STAT_CLR;
        *chStatClrPtr = 0xFFu;
    }
    if (0U != (mask & (uint32_t)kDCP_Channel1))
    {
        chStatClrPtr  = &base->CH1STAT_CLR;
        *chStatClrPtr = 0xFFu;
    }
    if (0U != (mask & (uint32_t)kDCP_Channel2))
    {
        chStatClrPtr  = &base->CH2STAT_CLR;
        *chStatClrPtr = 0xFFu;
    }
    if (0U != (mask & (uint32_t)kDCP_Channel3))
    {
        chStatClrPtr  = &base->CH3STAT_CLR;
        *chStatClrPtr = 0xFFu;
    }
}

static status_t dcp_aes_set_sram_based_key(DCP_Type *base, dcp_handle_t *handle, const uint8_t *key)
{
    base->KEY = DCP_KEY_INDEX(handle->keySlot) | DCP_KEY_SUBWORD(0);
    /* move the key by 32-bit words */
    int i          = 0;
    size_t keySize = 16u;
    while (keySize != 0U)
    {
        keySize -= sizeof(uint32_t);
        base->KEYDATA = ((uint32_t *)(uintptr_t)key)[i];
        i++;
    }
    return kStatus_Success;
}

/* Disable optimizations for GCC to prevent instruction reordering */
#if defined(__GNUC__)
#pragma GCC push_options
#pragma GCC optimize("O0")
#endif
static status_t dcp_schedule_work(DCP_Type *base, dcp_handle_t *handle, dcp_work_packet_t *dcpPacket)
{
    status_t status;

    /* check if our channel is active */
    if ((base->STAT & (uint32_t)handle->channel) != (uint32_t)handle->channel)
    {
        /* disable global interrupt */
        uint32_t currPriMask = DisableGlobalIRQ();

        /* re-check if our channel is still available */
        if ((base->STAT & (uint32_t)handle->channel) == 0U)
        {
            volatile uint32_t *cmdptr = NULL;
            volatile uint32_t *chsema = NULL;

            switch (handle->channel)
            {
                case kDCP_Channel0:
                    cmdptr = &base->CH0CMDPTR;
                    chsema = &base->CH0SEMA;
                    break;

                case kDCP_Channel1:
                    cmdptr = &base->CH1CMDPTR;
                    chsema = &base->CH1SEMA;
                    break;

                case kDCP_Channel2:
                    cmdptr = &base->CH2CMDPTR;
                    chsema = &base->CH2SEMA;
                    break;

                case kDCP_Channel3:
                    cmdptr = &base->CH3CMDPTR;
                    chsema = &base->CH3SEMA;
                    break;

                default:
                    /* All the cases have been listed above, the default clause should not be reached. */
                    break;
            }

            if ((NULL != cmdptr) && (NULL != chsema))
            {
                /* set out packet to DCP CMDPTR */
                *cmdptr = (uint32_t)dcpPacket;

#if defined(DCP_USE_DCACHE) && (DCP_USE_DCACHE == 1U)
                /* Clean DCACHE before sending DCP packet to engine */
                SCB_CleanDCache_by_Addr((uint32_t *)dcpPacket, sizeof(dcp_work_packet_t));
#endif
                /* Make sure that all data memory accesses are completed before starting of the job */
                __DSB();
                __ISB();

                /* set the channel semaphore to start the job */
                *chsema = 1u;
            }

            status = kStatus_Success;
        }

        else
        {
            status = (int32_t)kStatus_DCP_Again;
        }
        /* global interrupt enable */
        EnableGlobalIRQ(currPriMask);
    }

    else
    {
        return (int32_t)kStatus_DCP_Again;
    }

    return status;
}
#if defined(__GNUC__)
#pragma GCC pop_options
#endif

/*!
 * brief Set AES key to dcp_handle_t struct and optionally to DCP.
 *
 * Sets the AES key for encryption/decryption with the dcp_handle_t structure.
 * The dcp_handle_t input argument specifies keySlot.
 * If the keySlot is kDCP_OtpKey, the function will check the OTP_KEY_READY bit and will return it's ready to use
 * status.
 * For other keySlot selections, the function will copy and hold the key in dcp_handle_t struct.
 * If the keySlot is one of the four DCP SRAM-based keys (one of kDCP_KeySlot0, kDCP_KeySlot1, kDCP_KeySlot2,
 * kDCP_KeySlot3),
 * this function will also load the supplied key to the specified keySlot in DCP.
 *
 * param   base DCP peripheral base address.
 * param   handle Handle used for the request.
 * param   key 0-mod-4 aligned pointer to AES key.
 * param   keySize AES key size in bytes. Shall equal 16.
 * return  status from set key operation
 */
status_t DCP_AES_SetKey(DCP_Type *base, dcp_handle_t *handle, const uint8_t *key, size_t keySize)
{
    status_t status = kStatus_Fail;

    if ((kDCP_OtpKey == handle->keySlot) || (kDCP_OtpUniqueKey == handle->keySlot))
    {
        /* for AES OTP and unique key, check and return read from fuses status */
        if ((base->STAT & DCP_STAT_OTP_KEY_READY_MASK) == DCP_STAT_OTP_KEY_READY_MASK)
        {
            status = kStatus_Success;
        }
    }
    else
    {
        /* only work with aligned key[] */
        if ((0x3U & (uintptr_t)key) != 0U)
        {
            return kStatus_InvalidArgument;
        }

        /* keySize must be 16. */
        if (keySize != 16U)
        {
            return kStatus_InvalidArgument;
        }

        /* move the key by 32-bit words */
        int i = 0;
        while (keySize != 0U)
        {
            keySize -= sizeof(uint32_t);
            handle->keyWord[i] = ((uint32_t *)(uintptr_t)key)[i];
            i++;
        }

        if (kDCP_PayloadKey != handle->keySlot)
        {
            /* move the key by 32-bit words to DCP SRAM-based key storage */
            status = dcp_aes_set_sram_based_key(base, handle, key);
        }
        else
        {
            /* for PAYLOAD_KEY, just return Ok status now */
            status = kStatus_Success;
        }
    }

    return status;
}

/*!
 * brief Encrypts AES on one or multiple 128-bit block(s).
 *
 * Encrypts AES.
 * The source plaintext and destination ciphertext can overlap in system memory.
 *
 * param base DCP peripheral base address
 * param handle Handle used for this request.
 * param plaintext Input plain text to encrypt
 * param[out] ciphertext Output cipher text
 * param size Size of input and output data in bytes. Must be multiple of 16 bytes.
 * return Status from encrypt operation
 */
status_t DCP_AES_EncryptEcb(
    DCP_Type *base, dcp_handle_t *handle, const uint8_t *plaintext, uint8_t *ciphertext, size_t size)
{
    status_t completionStatus = kStatus_Fail;

    /* Use extended  DCACHE line size aligned structure */
#if defined(__DCACHE_PRESENT) && (__DCACHE_PRESENT == 1U) && defined(DCP_USE_DCACHE) && (DCP_USE_DCACHE == 1U)
    dcp_work_packet_t *dcpWork;
    uint8_t dcpWorkExt[sizeof(dcp_work_packet_t) + FSL_FEATURE_L1DCACHE_LINESIZE_BYTE] = {0U};
    dcpWork = (dcp_work_packet_t *)DCP_FindCacheLine(dcpWorkExt);
#else
    dcp_work_packet_t dcpWorkPacket = {0};
    dcp_work_packet_t *dcpWork      = &dcpWorkPacket;
#endif

    do
    {
        completionStatus = DCP_AES_EncryptEcbNonBlocking(base, handle, dcpWork, plaintext, ciphertext, size);
    } while (completionStatus == (int32_t)kStatus_DCP_Again);

    if (completionStatus != kStatus_Success)
    {
        return completionStatus;
    }

    return DCP_WaitForChannelComplete(base, handle);
}

/*!
 * brief Encrypts AES using the ECB block mode.
 *
 * Puts AES ECB encrypt work packet to DCP channel.
 *
 * param base DCP peripheral base address
 * param handle Handle used for this request.
 * param[out] dcpPacket Memory for the DCP work packet.
 * param plaintext Input plain text to encrypt.
 * param[out] ciphertext Output cipher text
 * param size Size of input and output data in bytes. Must be multiple of 16 bytes.
 * return kStatus_Success The work packet has been scheduled at DCP channel.
 * return kStatus_DCP_Again The DCP channel is busy processing previous request.
 */
status_t DCP_AES_EncryptEcbNonBlocking(DCP_Type *base,
                                       dcp_handle_t *handle,
                                       dcp_work_packet_t *dcpPacket,
                                       const uint8_t *plaintext,
                                       uint8_t *ciphertext,
                                       size_t size)
{
    /* Size must be 16-byte multiple */
    if ((size < 16u) || (0U != (size % 16u)))
    {
        return kStatus_InvalidArgument;
    }

    dcpPacket->control0 =
        0x122u | (handle->swapConfig & 0xFC0000u); /* CIPHER_ENCRYPT | ENABLE_CIPHER | DECR_SEMAPHORE */
    dcpPacket->sourceBufferAddress      = (uint32_t)plaintext;
    dcpPacket->destinationBufferAddress = (uint32_t)ciphertext;
    dcpPacket->bufferSize               = (uint32_t)size;

    if (handle->keySlot == kDCP_OtpKey)
    {
        dcpPacket->control0 |= ((uint32_t)1u << 10);  /* OTP_KEY */
        dcpPacket->control1 = ((uint32_t)0xFFu << 8); /* KEY_SELECT = OTP_KEY */
    }
    else if (handle->keySlot == kDCP_OtpUniqueKey)
    {
        dcpPacket->control0 |= ((uint32_t)1u << 10);  /* OTP_KEY */
        dcpPacket->control1 = ((uint32_t)0xFEu << 8); /* KEY_SELECT = UNIQUE_KEY */
    }
    else if (handle->keySlot == kDCP_PayloadKey)
    {
        /* ECB does not have IV, so we can point payload directly to keyWord[] stored in handle. */
        dcpPacket->payloadPointer = (uint32_t)&handle->keyWord[0];
        dcpPacket->control0 |= ((uint32_t)1u << 11); /* PAYLOAD_KEY */
    }
    else
    {
        dcpPacket->control1 = ((uint32_t)handle->keySlot << 8); /* KEY_SELECT = keySlot */
    }

    return dcp_schedule_work(base, handle, dcpPacket);
}

/*!
 * brief Decrypts AES on one or multiple 128-bit block(s).
 *
 * Decrypts AES.
 * The source ciphertext and destination plaintext can overlap in system memory.
 *
 * param base DCP peripheral base address
 * param handle Handle used for this request.
 * param ciphertext Input plain text to encrypt
 * param[out] plaintext Output cipher text
 * param size Size of input and output data in bytes. Must be multiple of 16 bytes.
 * return Status from decrypt operation
 */
status_t DCP_AES_DecryptEcb(
    DCP_Type *base, dcp_handle_t *handle, const uint8_t *ciphertext, uint8_t *plaintext, size_t size)
{
    status_t completionStatus = kStatus_Fail;

    /* Use extended  DCACHE line size aligned structure */
#if defined(__DCACHE_PRESENT) && (__DCACHE_PRESENT == 1U) && defined(DCP_USE_DCACHE) && (DCP_USE_DCACHE == 1U)
    dcp_work_packet_t *dcpWork;
    uint8_t dcpWorkExt[sizeof(dcp_work_packet_t) + FSL_FEATURE_L1DCACHE_LINESIZE_BYTE] = {0U};
    dcpWork = (dcp_work_packet_t *)DCP_FindCacheLine(dcpWorkExt);
#else
    dcp_work_packet_t dcpWorkPacket = {0};
    dcp_work_packet_t *dcpWork      = &dcpWorkPacket;
#endif

    do
    {
        completionStatus = DCP_AES_DecryptEcbNonBlocking(base, handle, dcpWork, ciphertext, plaintext, size);
    } while (completionStatus == (int32_t)(kStatus_DCP_Again));

    if (completionStatus != kStatus_Success)
    {
        return completionStatus;
    }

    return DCP_WaitForChannelComplete(base, handle);
}

/*!
 * brief Decrypts AES using ECB block mode.
 *
 * Puts AES ECB decrypt dcpPacket to DCP input job ring.
 *
 * param base DCP peripheral base address
 * param handle Handle used for this request.
 * param[out] dcpPacket Memory for the DCP work packet.
 * param ciphertext Input cipher text to decrypt
 * param[out] plaintext Output plain text
 * param size Size of input and output data in bytes. Must be multiple of 16 bytes.
 * return kStatus_Success The work packet has been scheduled at DCP channel.
 * return kStatus_DCP_Again The DCP channel is busy processing previous request.
 */
status_t DCP_AES_DecryptEcbNonBlocking(DCP_Type *base,
                                       dcp_handle_t *handle,
                                       dcp_work_packet_t *dcpPacket,
                                       const uint8_t *ciphertext,
                                       uint8_t *plaintext,
                                       size_t size)
{
    /* Size must be 16-byte multiple */
    if ((size < 16u) || (0U != (size % 16u)))
    {
        return kStatus_InvalidArgument;
    }

    dcpPacket->control0                 = 0x22u | (handle->swapConfig & 0xFC0000u); /* ENABLE_CIPHER | DECR_SEMAPHORE */
    dcpPacket->sourceBufferAddress      = (uint32_t)ciphertext;
    dcpPacket->destinationBufferAddress = (uint32_t)plaintext;
    dcpPacket->bufferSize               = (uint32_t)size;

    if (handle->keySlot == kDCP_OtpKey)
    {
        dcpPacket->control0 |= ((uint32_t)1u << 10);  /* OTP_KEY */
        dcpPacket->control1 = ((uint32_t)0xFFu << 8); /* KEY_SELECT = OTP_KEY */
    }
    else if (handle->keySlot == kDCP_OtpUniqueKey)
    {
        dcpPacket->control0 |= ((uint32_t)1u << 10);  /* OTP_KEY */
        dcpPacket->control1 = ((uint32_t)0xFEu << 8); /* KEY_SELECT = UNIQUE_KEY */
    }
    else if (handle->keySlot == kDCP_PayloadKey)
    {
        /* ECB does not have IV, so we can point payload directly to keyWord[] stored in handle. */
        dcpPacket->payloadPointer = (uint32_t)&handle->keyWord[0];
        dcpPacket->control0 |= ((uint32_t)1u << 11); /* PAYLOAD_KEY */
    }
    else
    {
        dcpPacket->control1 = ((uint32_t)handle->keySlot << 8); /* KEY_SELECT = keySlot */
    }

    return dcp_schedule_work(base, handle, dcpPacket);
}

/*!
 * brief Encrypts AES using CBC block mode.
 *
 * Encrypts AES using CBC block mode.
 * The source plaintext and destination ciphertext can overlap in system memory.
 *
 * param base DCP peripheral base address
 * param handle Handle used for this request.
 * param plaintext Input plain text to encrypt
 * param[out] ciphertext Output cipher text
 * param size Size of input and output data in bytes. Must be multiple of 16 bytes.
 * param iv Input initial vector to combine with the first input block.
 * return Status from encrypt operation
 */
status_t DCP_AES_EncryptCbc(DCP_Type *base,
                            dcp_handle_t *handle,
                            const uint8_t *plaintext,
                            uint8_t *ciphertext,
                            size_t size,
                            const uint8_t iv[16])
{
    status_t completionStatus = kStatus_Fail;

    /* Use extended  DCACHE line size aligned structure */
#if defined(__DCACHE_PRESENT) && (__DCACHE_PRESENT == 1U) && defined(DCP_USE_DCACHE) && (DCP_USE_DCACHE == 1U)
    dcp_work_packet_t *dcpWork;
    uint8_t dcpWorkExt[sizeof(dcp_work_packet_t) + FSL_FEATURE_L1DCACHE_LINESIZE_BYTE] = {0U};
    dcpWork = (dcp_work_packet_t *)DCP_FindCacheLine(dcpWorkExt);
#else
    dcp_work_packet_t dcpWorkPacket = {0};
    dcp_work_packet_t *dcpWork      = &dcpWorkPacket;
#endif

    do
    {
        completionStatus = DCP_AES_EncryptCbcNonBlocking(base, handle, dcpWork, plaintext, ciphertext, size, iv);
    } while (completionStatus == (int32_t)kStatus_DCP_Again);

    if (completionStatus != kStatus_Success)
    {
        return completionStatus;
    }

    return DCP_WaitForChannelComplete(base, handle);
}

/*!
 * brief Encrypts AES using CBC block mode.
 *
 * Puts AES CBC encrypt dcpPacket to DCP input job ring.
 *
 * param base DCP peripheral base address
 * param handle Handle used for this request. Specifies jobRing.
 * param[out] dcpPacket Memory for the DCP work packet.
 * param plaintext Input plain text to encrypt
 * param[out] ciphertext Output cipher text
 * param size Size of input and output data in bytes. Must be multiple of 16 bytes.
 * param iv Input initial vector to combine with the first input block.
 * return kStatus_Success The work packet has been scheduled at DCP channel.
 * return kStatus_DCP_Again The DCP channel is busy processing previous request.
 */
status_t DCP_AES_EncryptCbcNonBlocking(DCP_Type *base,
                                       dcp_handle_t *handle,
                                       dcp_work_packet_t *dcpPacket,
                                       const uint8_t *plaintext,
                                       uint8_t *ciphertext,
                                       size_t size,
                                       const uint8_t *iv)
{
    /* Size must be 16-byte multiple */
    if ((size < 16u) || (0U != (size % 16u)))
    {
        return kStatus_InvalidArgument;
    }

    dcpPacket->control0 =
        0x322u | (handle->swapConfig & 0xFC0000u); /* CIPHER_INIT | CIPHER_ENCRYPT | ENABLE_CIPHER | DECR_SEMAPHORE */
    dcpPacket->control1                 = 0x10u;   /* CBC */
    dcpPacket->sourceBufferAddress      = (uint32_t)plaintext;
    dcpPacket->destinationBufferAddress = (uint32_t)ciphertext;
    dcpPacket->bufferSize               = (uint32_t)size;

    if (handle->keySlot == kDCP_OtpKey)
    {
        dcpPacket->payloadPointer = (uint32_t)iv;
        dcpPacket->control0 |= ((uint32_t)1u << 10);   /* OTP_KEY */
        dcpPacket->control1 |= ((uint32_t)0xFFu << 8); /* KEY_SELECT = OTP_KEY */
    }
    else if (handle->keySlot == kDCP_OtpUniqueKey)
    {
        dcpPacket->payloadPointer = (uint32_t)iv;
        dcpPacket->control0 |= ((uint32_t)1u << 10);   /* OTP_KEY */
        dcpPacket->control1 |= ((uint32_t)0xFEu << 8); /* KEY_SELECT = UNIQUE_KEY */
    }
    else if (handle->keySlot == kDCP_PayloadKey)
    {
        /* In this case payload must contain key & iv in one array. */
        /* Copy iv into handle right behind the keyWord[] so we can point payload to keyWord[]. */
        (void)dcp_memcpy(handle->iv, (const uint32_t *)(uintptr_t)iv, 16);
        dcpPacket->payloadPointer = (uint32_t)&handle->keyWord[0];
        dcpPacket->control0 |= ((uint32_t)1u << 11); /* PAYLOAD_KEY */
    }
    else
    {
        dcpPacket->payloadPointer = (uint32_t)iv;
        dcpPacket->control1 |= ((uint32_t)handle->keySlot << 8); /* KEY_SELECT = keySlot */
    }

    return dcp_schedule_work(base, handle, dcpPacket);
}

/*!
 * brief Decrypts AES using CBC block mode.
 *
 * Decrypts AES using CBC block mode.
 * The source ciphertext and destination plaintext can overlap in system memory.
 *
 * param base DCP peripheral base address
 * param handle Handle used for this request.
 * param ciphertext Input cipher text to decrypt
 * param[out] plaintext Output plain text
 * param size Size of input and output data in bytes. Must be multiple of 16 bytes.
 * param iv Input initial vector to combine with the first input block.
 * return Status from decrypt operation
 */
status_t DCP_AES_DecryptCbc(DCP_Type *base,
                            dcp_handle_t *handle,
                            const uint8_t *ciphertext,
                            uint8_t *plaintext,
                            size_t size,
                            const uint8_t iv[16])
{
    status_t completionStatus = kStatus_Fail;

    /* Use extended  DCACHE line size aligned structure */
#if defined(__DCACHE_PRESENT) && (__DCACHE_PRESENT == 1U) && defined(DCP_USE_DCACHE) && (DCP_USE_DCACHE == 1U)
    dcp_work_packet_t *dcpWork;
    uint8_t dcpWorkExt[sizeof(dcp_work_packet_t) + FSL_FEATURE_L1DCACHE_LINESIZE_BYTE] = {0U};
    dcpWork = (dcp_work_packet_t *)DCP_FindCacheLine(dcpWorkExt);
#else
    dcp_work_packet_t dcpWorkPacket = {0};
    dcp_work_packet_t *dcpWork      = &dcpWorkPacket;
#endif

    do
    {
        completionStatus = DCP_AES_DecryptCbcNonBlocking(base, handle, dcpWork, ciphertext, plaintext, size, iv);
    } while (completionStatus == (int32_t)kStatus_DCP_Again);

    if (completionStatus != (int32_t)kStatus_Success)
    {
        return completionStatus;
    }

    return DCP_WaitForChannelComplete(base, handle);
}

/*!
 * brief Decrypts AES using CBC block mode.
 *
 * Puts AES CBC decrypt dcpPacket to DCP input job ring.
 *
 * param base DCP peripheral base address
 * param handle Handle used for this request. Specifies jobRing.
 * param[out] dcpPacket Memory for the DCP work packet.
 * param ciphertext Input cipher text to decrypt
 * param[out] plaintext Output plain text
 * param size Size of input and output data in bytes. Must be multiple of 16 bytes.
 * param iv Input initial vector to combine with the first input block.
 * return kStatus_Success The work packet has been scheduled at DCP channel.
 * return kStatus_DCP_Again The DCP channel is busy processing previous request.
 */
status_t DCP_AES_DecryptCbcNonBlocking(DCP_Type *base,
                                       dcp_handle_t *handle,
                                       dcp_work_packet_t *dcpPacket,
                                       const uint8_t *ciphertext,
                                       uint8_t *plaintext,
                                       size_t size,
                                       const uint8_t *iv)
{
    /* Size must be 16-byte multiple */
    if ((size < 16u) || (0U != (size % 16u)))
    {
        return kStatus_InvalidArgument;
    }

    dcpPacket->control0 = 0x222u | (handle->swapConfig & 0xFC0000u); /* CIPHER_INIT | ENABLE_CIPHER | DECR_SEMAPHORE */
    dcpPacket->control1 = 0x10u;                                     /* CBC */
    dcpPacket->sourceBufferAddress      = (uint32_t)ciphertext;
    dcpPacket->destinationBufferAddress = (uint32_t)plaintext;
    dcpPacket->bufferSize               = (uint32_t)size;

    if (handle->keySlot == kDCP_OtpKey)
    {
        dcpPacket->payloadPointer = (uint32_t)iv;
        dcpPacket->control0 |= ((uint32_t)1u << 10);   /* OTP_KEY */
        dcpPacket->control1 |= ((uint32_t)0xFFu << 8); /* OTP_KEY */
    }
    else if (handle->keySlot == kDCP_OtpUniqueKey)
    {
        dcpPacket->payloadPointer = (uint32_t)iv;
        dcpPacket->control0 |= ((uint32_t)1u << 10);   /* OTP_KEY */
        dcpPacket->control1 |= ((uint32_t)0xFEu << 8); /* UNIQUE_KEY */
    }
    else if (handle->keySlot == kDCP_PayloadKey)
    {
        /* in this case payload must contain KEY + IV together */
        /* copy iv into handle struct so we can point payload directly to keyWord[]. */
        (void)dcp_memcpy(handle->iv, (const uint32_t *)(uintptr_t)iv, 16);
        dcpPacket->payloadPointer = (uint32_t)&handle->keyWord[0];
        dcpPacket->control0 |= ((uint32_t)1u << 11); /* PAYLOAD_KEY */
    }
    else
    {
        dcpPacket->payloadPointer = (uint32_t)iv;
        dcpPacket->control1 |= ((uint32_t)handle->keySlot << 8); /* KEY_SELECT */
    }

    return dcp_schedule_work(base, handle, dcpPacket);
}

/*!
 * brief Gets the default configuration structure.
 *
 * This function initializes the DCP configuration structure to a default value. The default
 * values are as follows.
 *   dcpConfig->gatherResidualWrites = true;
 *   dcpConfig->enableContextCaching = true;
 *   dcpConfig->enableContextSwitching = true;
 *   dcpConfig->enableChannnel = kDCP_chEnableAll;
 *   dcpConfig->enableChannelInterrupt = kDCP_chIntDisable;
 *
 * param[out] config Pointer to configuration structure.
 */
void DCP_GetDefaultConfig(dcp_config_t *config)
{
    /* ENABLE_CONTEXT_CACHING is disabled by default as the DCP Hash driver uses
     * dcp_hash_save_running_hash() and dcp_hash_restore_running_hash() to support
     * Hash context switch (different messages interleaved) on the same channel.
     */

    /* Initializes the configure structure to zero. */
    (void)memset(config, 0, sizeof(*config));

    dcp_config_t userConfig = {
        true, false, true, (uint8_t)kDCP_chEnableAll, (uint8_t)kDCP_chIntDisable,
    };

    *config = userConfig;
}

/*!
 * brief   Enables clock to and enables DCP
 *
 * Enable DCP clock and configure DCP.
 *
 * param base DCP base address
 * param config Pointer to configuration structure.
 */
void DCP_Init(DCP_Type *base, const dcp_config_t *config)
{
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
    CLOCK_EnableClock(kCLOCK_Dcp);
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */

    base->CTRL = 0xF0800000u; /* reset value */
    base->CTRL = 0x30800000u; /* default value */

    dcp_clear_status(base);
    dcp_clear_channel_status(
        base, (uint32_t)kDCP_Channel0 | (uint32_t)kDCP_Channel1 | (uint32_t)kDCP_Channel2 | (uint32_t)kDCP_Channel3);

    base->CTRL = DCP_CTRL_GATHER_RESIDUAL_WRITES(config->gatherResidualWrites) |
                 DCP_CTRL_ENABLE_CONTEXT_CACHING(config->enableContextCaching) |
                 DCP_CTRL_ENABLE_CONTEXT_SWITCHING(config->enableContextSwitching) |
                 DCP_CTRL_CHANNEL_INTERRUPT_ENABLE(config->enableChannelInterrupt);

    /* enable DCP channels */
    base->CHANNELCTRL = DCP_CHANNELCTRL_ENABLE_CHANNEL(config->enableChannel);

    /* use context switching buffer */
    base->CONTEXT = (uint32_t)&s_dcpContextSwitchingBuffer;
}

/*!
 * brief   Disable DCP clock
 *
 * Reset DCP and Disable DCP clock.
 *
 * param base DCP base address
 */
void DCP_Deinit(DCP_Type *base)
{
    base->CTRL = 0xF0800000u; /* reset value */
    (void)memset(&s_dcpContextSwitchingBuffer, 0, sizeof(s_dcpContextSwitchingBuffer));

#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
    CLOCK_DisableClock(kCLOCK_Dcp);
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
}

/*!
 * brief Poll and wait on DCP channel.
 *
 * Polls the specified DCP channel until current it completes activity.
 *
 * param   base DCP peripheral base address.
 * param   handle Specifies DCP channel.
 * return  kStatus_Success When data processing completes without error.
 * return  kStatus_Fail When error occurs.
 */
status_t DCP_WaitForChannelComplete(DCP_Type *base, dcp_handle_t *handle)
{
    /* wait if our channel is still active */
    while ((base->STAT & (uint32_t)handle->channel) == (uint32_t)handle->channel)
    {
    }

    if (dcp_get_channel_status(base, handle->channel) != kStatus_Success)
    {
        dcp_clear_status(base);
        dcp_clear_channel_status(base, (uint32_t)handle->channel);
        return kStatus_Fail;
    }

    dcp_clear_status(base);
    return kStatus_Success;
}

/*!
 * @brief Check validity of algoritm.
 *
 * This function checks the validity of input argument.
 *
 * @param algo Tested algorithm value.
 * @return kStatus_Success if valid, kStatus_InvalidArgument otherwise.
 */
static status_t dcp_hash_check_input_alg(dcp_hash_algo_t algo)
{
    if ((algo != kDCP_Sha256) && (algo != kDCP_Sha1) && (algo != kDCP_Crc32))
    {
        return kStatus_InvalidArgument;
    }
    return kStatus_Success;
}

/*!
 * @brief Check validity of input arguments.
 *
 * This function checks the validity of input arguments.
 *
 * @param base DCP peripheral base address.
 * @param ctx Memory buffer given by user application where the DCP_HASH_Init/DCP_HASH_Update/DCP_HASH_Finish store
 * context.
 * @param algo Tested algorithm value.
 * @return kStatus_Success if valid, kStatus_InvalidArgument otherwise.
 */
static status_t dcp_hash_check_input_args(DCP_Type *base, dcp_hash_ctx_t *ctx, dcp_hash_algo_t algo)
{
    /* Check validity of input algorithm */
    if (kStatus_Success != dcp_hash_check_input_alg(algo))
    {
        return kStatus_InvalidArgument;
    }

    if ((NULL == ctx) || (NULL == base))
    {
        return kStatus_InvalidArgument;
    }

    return kStatus_Success;
}

/*!
 * @brief Check validity of internal software context.
 *
 * This function checks if the internal context structure looks correct.
 *
 * @param ctxInternal Internal context.
 * @param message Input message address.
 * @return kStatus_Success if valid, kStatus_InvalidArgument otherwise.
 */
static status_t dcp_hash_check_context(dcp_hash_ctx_internal_t *ctxInternal, const uint8_t *message)
{
    if ((NULL == message) || (NULL == ctxInternal) || (kStatus_Success != dcp_hash_check_input_alg(ctxInternal->algo)))
    {
        return kStatus_InvalidArgument;
    }

#if defined(__DCACHE_PRESENT) && (__DCACHE_PRESENT == 1U) && defined(DCP_USE_DCACHE) && (DCP_USE_DCACHE == 1U)
    else if ((uint32_t)ctxInternal & (FSL_FEATURE_L1DCACHE_LINESIZE_BYTE - 1))
    {
        /* ctx must be cache line aligned when using DCACHE */
        return kStatus_InvalidArgument;
    }
#endif

    return kStatus_Success;
}

/*!
 * @brief Initialize the SHA engine for new hash.
 *
 * This function sets kDCP_CONTROL0_HASH_INIT for control0 in work packet to start a new hash.
 *
 * @param base SHA peripheral base address.
 * @param ctxInternal Internal context.
 */
static status_t dcp_hash_engine_init(DCP_Type *base, dcp_hash_ctx_internal_t *ctxInternal)
{
    status_t status;

    status = kStatus_InvalidArgument;

    if ((kDCP_Sha256 == ctxInternal->algo) || (kDCP_Sha1 == ctxInternal->algo) || (kDCP_Crc32 == ctxInternal->algo))
    {
        ctxInternal->ctrl0 = (uint32_t)kDCP_CONTROL0_HASH_INIT;
        status             = kStatus_Success;
    }

    return status;
}

static status_t dcp_hash_update_non_blocking(
    DCP_Type *base, dcp_hash_ctx_internal_t *ctxInternal, dcp_work_packet_t *dcpPacket, const uint8_t *msg, size_t size)
{
    dcpPacket->control0 = ctxInternal->ctrl0 | (ctxInternal->handle->swapConfig & 0xFC0000u) |
                          (uint32_t)kDCP_CONTROL0_ENABLE_HASH | (uint32_t)kDCP_CONTROL0_DECR_SEMAPHOR;
    if (ctxInternal->algo == kDCP_Sha256)
    {
        dcpPacket->control1 = (uint32_t)kDCP_CONTROL1_HASH_SELECT_SHA256;
    }
    else if (ctxInternal->algo == kDCP_Sha1)
    {
        dcpPacket->control1 = (uint32_t)kDCP_CONTROL1_HASH_SELECT_SHA1;
    }
    else if (ctxInternal->algo == kDCP_Crc32)
    {
        /* In CRC-32 case if size is zero, do not schedule other computing */
        if (size == 0U)
        {
#if defined(DCP_USE_DCACHE) && (DCP_USE_DCACHE == 1U)
            /* Clear DCACHE memory before starting the engine */
            SCB_CleanDCache_by_Addr((uint32_t *)ctxInternal, sizeof(dcp_hash_ctx_internal_t));
#endif
            /* Make sure that all data memory accesses are completed before starting of the job */
            __DSB();
            __ISB();
            return kStatus_Success;
        }
        dcpPacket->control1 = (uint32_t)kDCP_CONTROL1_HASH_SELECT_CRC32;
    }
    else
    {
        return kStatus_Fail;
    }
    dcpPacket->sourceBufferAddress      = (uint32_t)msg;
    dcpPacket->destinationBufferAddress = 0;
    dcpPacket->bufferSize               = size;
    dcpPacket->payloadPointer           = (uint32_t)ctxInternal->runningHash;

#if defined(DCP_USE_DCACHE) && (DCP_USE_DCACHE == 1U)
    /* Clear DCACHE memory before starting the engine */
    SCB_CleanDCache_by_Addr((uint32_t *)ctxInternal, sizeof(dcp_hash_ctx_internal_t));
#endif
    /* Make sure that all data memory accesses are completed before starting of the job */
    __DSB();
    __ISB();

    return dcp_schedule_work(base, ctxInternal->handle, dcpPacket);
}

static status_t dcp_hash_update(DCP_Type *base, dcp_hash_ctx_internal_t *ctxInternal, const uint8_t *msg, size_t size)
{
    status_t completionStatus = kStatus_Fail;

    /* Use extended  DCACHE line size aligned structure */
#if defined(__DCACHE_PRESENT) && (__DCACHE_PRESENT == 1U) && defined(DCP_USE_DCACHE) && (DCP_USE_DCACHE == 1U)
    dcp_work_packet_t *dcpWork;
    uint8_t dcpWorkExt[sizeof(dcp_work_packet_t) + FSL_FEATURE_L1DCACHE_LINESIZE_BYTE] = {0U};
    dcpWork = (dcp_work_packet_t *)DCP_FindCacheLine(dcpWorkExt);
#else
    dcp_work_packet_t dcpWorkPacket = {0};
    dcp_work_packet_t *dcpWork      = &dcpWorkPacket;
#endif

    do
    {
        completionStatus = dcp_hash_update_non_blocking(base, ctxInternal, dcpWork, msg, size);
    } while (completionStatus == (int32_t)kStatus_DCP_Again);

    completionStatus = DCP_WaitForChannelComplete(base, ctxInternal->handle);

    ctxInternal->ctrl0 = 0; /* clear kDCP_CONTROL0_HASH_INIT and kDCP_CONTROL0_HASH_TERM flags */
    return (completionStatus);
}

/*!
 * @brief Adds message to current hash.
 *
 * This function merges the message to fill the internal buffer, empties the internal buffer if
 * it becomes full, then process all remaining message data.
 *
 *
 * @param base DCP peripheral base address.
 * @param ctxInternal Internal context.
 * @param message Input message.
 * @param messageSize Size of input message in bytes.
 * @return kStatus_Success.
 */
static status_t dcp_hash_process_message_data(DCP_Type *base,
                                              dcp_hash_ctx_internal_t *ctxInternal,
                                              const uint8_t *message,
                                              size_t messageSize)
{
    status_t status = kStatus_Fail;

    /* if there is partially filled internal buffer, fill it to full block */
    if (ctxInternal->blksz > 0U)
    {
        size_t toCopy = DCP_HASH_BLOCK_SIZE - ctxInternal->blksz;
        (void)dcp_memcpy(&ctxInternal->blk.b[ctxInternal->blksz], message, toCopy);
        message += toCopy;
        messageSize -= toCopy;

        /* process full internal block */
        status = dcp_hash_update(base, ctxInternal, &ctxInternal->blk.b[0], DCP_HASH_BLOCK_SIZE);
        if (kStatus_Success != status)
        {
            return status;
        }
    }

    /* process all full blocks in message[] */
    uint32_t fullBlocksSize = ((messageSize >> 6) << 6); /* (X / 64) * 64 */
    if (fullBlocksSize > 0U)
    {
        status = dcp_hash_update(base, ctxInternal, message, fullBlocksSize);
        if (kStatus_Success != status)
        {
            return status;
        }
        message += fullBlocksSize;
        messageSize -= fullBlocksSize;
    }

    /* copy last incomplete message bytes into internal block */
    (void)dcp_memcpy(&ctxInternal->blk.b[0], message, messageSize);
    ctxInternal->blksz = messageSize;

    return status;
}

/*!
 * @brief Finalize the running hash to make digest.
 *
 * This function empties the internal buffer, adds padding bits, and generates final digest.
 *
 * @param base SHA peripheral base address.
 * @param ctxInternal Internal context.
 * @return kStatus_Success.
 */
static status_t dcp_hash_finalize(DCP_Type *base, dcp_hash_ctx_internal_t *ctxInternal)
{
    status_t status;

    ctxInternal->ctrl0 |= (uint32_t)kDCP_CONTROL0_HASH_TERM;
    status = dcp_hash_update(base, ctxInternal, &ctxInternal->blk.b[0], ctxInternal->blksz);

    return status;
}

static void dcp_hash_save_running_hash(dcp_hash_ctx_internal_t *ctxInternal)
{
    uint32_t *srcAddr = NULL;

    switch (ctxInternal->handle->channel)
    {
        case kDCP_Channel0:
            srcAddr = &s_dcpContextSwitchingBuffer.x[43];
            break;

        case kDCP_Channel1:
            srcAddr = &s_dcpContextSwitchingBuffer.x[30];
            break;

        case kDCP_Channel2:
            srcAddr = &s_dcpContextSwitchingBuffer.x[17];
            break;

        case kDCP_Channel3:
            srcAddr = &s_dcpContextSwitchingBuffer.x[4];
            break;

        default:
            /* All the cases have been listed above, the default clause should not be reached. */
            break;
    }
    if (srcAddr != NULL)
    {
        (void)dcp_memcpy(ctxInternal->runningHash, srcAddr, sizeof(ctxInternal->runningHash));
    }
}

static void dcp_hash_restore_running_hash(dcp_hash_ctx_internal_t *ctxInternal)
{
    uint32_t *destAddr = NULL;

    switch (ctxInternal->handle->channel)
    {
        case kDCP_Channel0:
            destAddr = &s_dcpContextSwitchingBuffer.x[43];
            break;

        case kDCP_Channel1:
            destAddr = &s_dcpContextSwitchingBuffer.x[30];
            break;

        case kDCP_Channel2:
            destAddr = &s_dcpContextSwitchingBuffer.x[17];
            break;

        case kDCP_Channel3:
            destAddr = &s_dcpContextSwitchingBuffer.x[4];
            break;

        default:
            /* No valid channel */
            break;
    }
    if (destAddr != NULL)
    {
        (void)dcp_memcpy(destAddr, ctxInternal->runningHash, sizeof(ctxInternal->runningHash));
    }
}

/*!
 * brief Initialize HASH context
 *
 * This function initializes the HASH.
 *
 * param base DCP peripheral base address
 * param handle Specifies the DCP channel used for hashing.
 * param[out] ctx Output hash context
 * param algo Underlaying algorithm to use for hash computation.
 * return Status of initialization
 */
status_t DCP_HASH_Init(DCP_Type *base, dcp_handle_t *handle, dcp_hash_ctx_t *ctx, dcp_hash_algo_t algo)
{
    status_t status;

    dcp_hash_ctx_internal_t *ctxInternal;
#ifndef __rtems__
    /* compile time check for the correct structure size */
    BUILD_ASSURE(sizeof(dcp_hash_ctx_t) >= sizeof(dcp_hash_ctx_internal_t), dcp_hash_ctx_t_size);
#else /* __rtems__ */
    assert(sizeof(dcp_hash_ctx_t) >= sizeof(dcp_hash_ctx_internal_t));
#endif /* __rtems__ */
    uint32_t i;

    status = dcp_hash_check_input_args(base, ctx, algo);
    if (status != kStatus_Success)
    {
        return status;
    }

    /* set algorithm in context struct for later use */
    ctxInternal        = (dcp_hash_ctx_internal_t *)(uint32_t)ctx;
    ctxInternal->algo  = algo;
    ctxInternal->blksz = 0u;

    const uint32_t j = sizeof(ctxInternal->blk.w) / sizeof(ctxInternal->blk.w[0]);
    for (i = 0; i < j; i++)
    {
        ctxInternal->blk.w[i] = 0u;
    }
    ctxInternal->state           = kDCP_StateHashInit;
    ctxInternal->fullMessageSize = 0;
    ctxInternal->handle          = handle;
    return status;
}

/*!
 * brief Add data to current HASH
 *
 * Add data to current HASH. This can be called repeatedly with an arbitrary amount of data to be
 * hashed. The functions blocks. If it returns kStatus_Success, the running hash
 * has been updated (DCP has processed the input data), so the memory at ref input pointer
 * can be released back to system. The DCP context buffer is updated with the running hash
 * and with all necessary information to support possible context switch.
 *
 * param base DCP peripheral base address
 * param[in,out] ctx HASH context
 * param input Input data
 * param inputSize Size of input data in bytes
 * return Status of the hash update operation
 */
status_t DCP_HASH_Update(DCP_Type *base, dcp_hash_ctx_t *ctx, const uint8_t *input, size_t inputSize)
{
    bool isUpdateState;
    status_t status;
    dcp_hash_ctx_internal_t *ctxInternal;
    size_t blockSize;

    if (inputSize == 0U)
    {
        return kStatus_Success;
    }

    ctxInternal = (dcp_hash_ctx_internal_t *)(uint32_t)ctx;
    status      = dcp_hash_check_context(ctxInternal, input);
    if (kStatus_Success != status)
    {
        return status;
    }

    ctxInternal->fullMessageSize += inputSize;
    blockSize = DCP_HASH_BLOCK_SIZE;
    /* if we are still less than DCP_HASH_BLOCK_SIZE bytes, keep only in context */
    if ((ctxInternal->blksz + inputSize) <= blockSize)
    {
        (void)dcp_memcpy((&ctxInternal->blk.b[0]) + ctxInternal->blksz, input, inputSize);
        ctxInternal->blksz += inputSize;
        return status;
    }
    else
    {
        isUpdateState = ctxInternal->state == kDCP_StateHashUpdate;
        if (!isUpdateState)
        {
            /* start NEW hash */
            status = dcp_hash_engine_init(base, ctxInternal);
            if (status != kStatus_Success)
            {
                return status;
            }
            ctxInternal->state = kDCP_StateHashUpdate;
        }
        else
        {
            dcp_hash_restore_running_hash(ctxInternal);
        }
    }

    /* process input data */
    status = dcp_hash_process_message_data(base, ctxInternal, input, inputSize);
    dcp_hash_save_running_hash(ctxInternal);
    return status;
}

/*!
 * brief Finalize hashing
 *
 * Outputs the final hash (computed by DCP_HASH_Update()) and erases the context.
 *
 * param[in,out] ctx Input hash context
 * param[out] output Output hash data
 * param[in,out] outputSize Optional parameter (can be passed as NULL). On function entry, it specifies the size of
 * output[] buffer. On function return, it stores the number of updated output bytes.
 * return Status of the hash finish operation
 */
status_t DCP_HASH_Finish(DCP_Type *base, dcp_hash_ctx_t *ctx, uint8_t *output, size_t *outputSize)
{
    size_t algOutSize = 0;
    status_t status;
    dcp_hash_ctx_internal_t *ctxInternal;

    ctxInternal = (dcp_hash_ctx_internal_t *)(uint32_t)ctx;
    status      = dcp_hash_check_context(ctxInternal, output);

    if (kStatus_Success != status)
    {
        return status;
    }

    if (ctxInternal->state == kDCP_StateHashInit)
    {
        status = dcp_hash_engine_init(base, ctxInternal);
        if (status != kStatus_Success)
        {
            return status;
        }
    }
    else
    {
        dcp_hash_restore_running_hash(ctxInternal);
    }

    size_t outSize = 0u;

    /* compute algorithm output length */
    switch (ctxInternal->algo)
    {
        case kDCP_Sha256:
            outSize = (uint32_t)kDCP_OutLenSha256;
            break;
        case kDCP_Sha1:
            outSize = (uint32_t)kDCP_OutLenSha1;
            break;
        case kDCP_Crc32:
            outSize = (uint32_t)kDCP_OutLenCrc32;
            break;
        default:
            /* All the cases have been listed above, the default clause should not be reached. */
            break;
    }
    algOutSize = outSize;

#if defined(DCP_HASH_CAVP_COMPATIBLE)
    if (ctxInternal->fullMessageSize == 0U)
    {
        switch (ctxInternal->algo)
        {
            case kDCP_Sha256:
                (void)dcp_memcpy(&output[0], &s_nullSha256, 32);
                break;
            case kDCP_Sha1:
                (void)dcp_memcpy(&output[0], &s_nullSha1, 20);
                break;
            default:
                /* All the cases have been listed above, the default clause should not be reached. */
                break;
        }

        return kStatus_Success;
    }
#endif /* DCP_HASH_CAVP_COMPATIBLE */

    /* flush message last incomplete block, if there is any, and add padding bits */
    status = dcp_hash_finalize(base, ctxInternal);

    if (outputSize != NULL)
    {
        if (algOutSize < *outputSize)
        {
            *outputSize = algOutSize;
        }
        else
        {
            algOutSize = *outputSize;
        }
    }

#if defined(DCP_USE_DCACHE) && (DCP_USE_DCACHE == 1U)
    SCB_InvalidateDCache_by_Addr(ctx, sizeof(dcp_hash_ctx_t));
#endif
    /* Reverse and copy result to output[] */
    dcp_reverse_and_copy((uint8_t *)ctxInternal->runningHash, &output[0], algOutSize);

    (void)memset(ctx, 0, sizeof(dcp_hash_ctx_t));
    return status;
}

/*!
 * brief Create HASH on given data
 *
 * Perform the full SHA or CRC32 in one function call. The function is blocking.
 *
 * param base DCP peripheral base address
 * param handle Handle used for the request.
 * param algo Underlaying algorithm to use for hash computation.
 * param input Input data
 * param inputSize Size of input data in bytes
 * param[out] output Output hash data
 * param[out] outputSize Output parameter storing the size of the output hash in bytes
 * return Status of the one call hash operation.
 */
status_t DCP_HASH(DCP_Type *base,
                  dcp_handle_t *handle,
                  dcp_hash_algo_t algo,
                  const uint8_t *input,
                  size_t inputSize,
                  uint8_t *output,
                  size_t *outputSize)
{
    /* Use extended  DCACHE line size aligned structure */
#if defined(__DCACHE_PRESENT) && (__DCACHE_PRESENT == 1U) && defined(DCP_USE_DCACHE) && (DCP_USE_DCACHE == 1U)
    dcp_hash_ctx_t *hashCtx;
    uint8_t hashCtxExt[sizeof(dcp_hash_ctx_t) + FSL_FEATURE_L1DCACHE_LINESIZE_BYTE] = {0U};
    hashCtx = (dcp_hash_ctx_t *)DCP_FindCacheLine(hashCtxExt);
#else
    dcp_hash_ctx_t hashCtxStruct    = {0};
    dcp_hash_ctx_t *hashCtx         = &hashCtxStruct;
#endif

    status_t status;

    status = DCP_HASH_Init(base, handle, hashCtx, algo);
    if (status != kStatus_Success)
    {
        return status;
    }

    status = DCP_HASH_Update(base, hashCtx, input, inputSize);
    if (status != kStatus_Success)
    {
        return status;
    }

    status = DCP_HASH_Finish(base, hashCtx, output, outputSize);

    return status;
}