summaryrefslogtreecommitdiffstats
path: root/bsps/arm/imxrt/nxp/devices/MIMXRT1052/drivers/fsl_adc.c
blob: d93de620c0ca0163581f2d1bcfc506c48d8f5265 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
/*
 * Copyright (c) 2016, Freescale Semiconductor, Inc.
 * Copyright 2016-2019 NXP
 * All rights reserved.
 *
 * SPDX-License-Identifier: BSD-3-Clause
 */

#include "fsl_adc.h"

/* Component ID definition, used by tools. */
#ifndef FSL_COMPONENT_ID
#define FSL_COMPONENT_ID "platform.drivers.adc_12b1msps_sar"
#endif

/*******************************************************************************
 * Prototypes
 ******************************************************************************/
/*!
 * @brief Get instance number for ADC module.
 *
 * @param base ADC peripheral base address
 */
static uint32_t ADC_GetInstance(ADC_Type *base);

/*******************************************************************************
 * Variables
 ******************************************************************************/
/*! @brief Pointers to ADC bases for each instance. */
static ADC_Type *const s_adcBases[] = ADC_BASE_PTRS;

#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
/*! @brief Pointers to ADC clocks for each instance. */
static const clock_ip_name_t s_adcClocks[] = ADC_CLOCKS;
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */

/*******************************************************************************
 * Code
 ******************************************************************************/
static uint32_t ADC_GetInstance(ADC_Type *base)
{
    uint32_t instance;

    /* Find the instance index from base address mappings. */
    for (instance = 0; instance < ARRAY_SIZE(s_adcBases); instance++)
    {
        if (s_adcBases[instance] == base)
        {
            break;
        }
    }

    assert(instance < ARRAY_SIZE(s_adcBases));

    return instance;
}

/*!
 * brief Initialize the ADC module.
 *
 * param base ADC peripheral base address.
 * param config Pointer to "adc_config_t" structure.
 */
void ADC_Init(ADC_Type *base, const adc_config_t *config)
{
    assert(NULL != config);

    uint32_t tmp32;

#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
    /* Enable the clock. */
    CLOCK_EnableClock(s_adcClocks[ADC_GetInstance(base)]);
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
    /* ADCx_CFG */
    tmp32 = base->CFG & (ADC_CFG_AVGS_MASK | ADC_CFG_ADTRG_MASK); /* Reserve AVGS and ADTRG bits. */
    tmp32 |= ADC_CFG_REFSEL(config->referenceVoltageSource) | ADC_CFG_ADSTS(config->samplePeriodMode) |
             ADC_CFG_ADICLK(config->clockSource) | ADC_CFG_ADIV(config->clockDriver) | ADC_CFG_MODE(config->resolution);
    if (config->enableOverWrite)
    {
        tmp32 |= ADC_CFG_OVWREN_MASK;
    }
    if (config->enableLongSample)
    {
        tmp32 |= ADC_CFG_ADLSMP_MASK;
    }
    if (config->enableLowPower)
    {
        tmp32 |= ADC_CFG_ADLPC_MASK;
    }
    if (config->enableHighSpeed)
    {
        tmp32 |= ADC_CFG_ADHSC_MASK;
    }
    base->CFG = tmp32;

    /* ADCx_GC  */
    tmp32 = base->GC & ~(ADC_GC_ADCO_MASK | ADC_GC_ADACKEN_MASK);
    if (config->enableContinuousConversion)
    {
        tmp32 |= ADC_GC_ADCO_MASK;
    }
    if (config->enableAsynchronousClockOutput)
    {
        tmp32 |= ADC_GC_ADACKEN_MASK;
    }
    base->GC = tmp32;
}

/*!
 * brief De-initializes the ADC module.
 *
 * param base ADC peripheral base address.
 */
void ADC_Deinit(ADC_Type *base)
{
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
    /* Disable the clock. */
    CLOCK_DisableClock(s_adcClocks[ADC_GetInstance(base)]);
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
}

/*!
 * brief Gets an available pre-defined settings for the converter's configuration.
 *
 * This function initializes the converter configuration structure with available settings. The default values are:
 * code
 *  config->enableAsynchronousClockOutput = true;
 *  config->enableOverWrite =               false;
 *  config->enableContinuousConversion =    false;
 *  config->enableHighSpeed =               false;
 *  config->enableLowPower =                false;
 *  config->enableLongSample =              false;
 *  config->referenceVoltageSource =        kADC_ReferenceVoltageSourceAlt0;
 *  config->samplePeriodMode =              kADC_SamplePeriod2or12Clocks;
 *  config->clockSource =                   kADC_ClockSourceAD;
 *  config->clockDriver =                   kADC_ClockDriver1;
 *  config->resolution =                    kADC_Resolution12Bit;
 * endcode
 * param base   ADC peripheral base address.
 * param config Pointer to the configuration structure.
 */
void ADC_GetDefaultConfig(adc_config_t *config)
{
    assert(NULL != config);

    /* Initializes the configure structure to zero. */
    (void)memset(config, 0, sizeof(*config));

    config->enableAsynchronousClockOutput = true;
    config->enableOverWrite               = false;
    config->enableContinuousConversion    = false;
    config->enableHighSpeed               = false;
    config->enableLowPower                = false;
    config->enableLongSample              = false;
    config->referenceVoltageSource        = kADC_ReferenceVoltageSourceAlt0;
    config->samplePeriodMode              = kADC_SamplePeriod2or12Clocks;
    config->clockSource                   = kADC_ClockSourceAD;
    config->clockDriver                   = kADC_ClockDriver1;
    config->resolution                    = kADC_Resolution12Bit;
}

/*!
 * brief Configures the conversion channel.
 *
 * This operation triggers the conversion when in software trigger mode. When in hardware trigger mode, this API
 * configures the channel while the external trigger source helps to trigger the conversion.
 *
 * Note that the "Channel Group" has a detailed description.
 * To allow sequential conversions of the ADC to be triggered by internal peripherals, the ADC has more than one
 * group of status and control registers, one for each conversion. The channel group parameter indicates which group of
 * registers are used, for example channel group 0 is for Group A registers and channel group 1 is for Group B
 * registers. The
 * channel groups are used in a "ping-pong" approach to control the ADC operation.  At any point, only one of
 * the channel groups is actively controlling ADC conversions. The channel group 0 is used for both software and
 * hardware
 * trigger modes. Channel groups 1 and greater indicate potentially multiple channel group registers for
 * use only in hardware trigger mode. See the chip configuration information in the appropriate MCU reference manual
 * about the
 * number of SC1n registers (channel groups) specific to this device.  None of the channel groups 1 or greater are used
 * for software trigger operation. Therefore, writing to these channel groups does not initiate a new conversion.
 * Updating the channel group 0 while a different channel group is actively controlling a conversion is allowed and
 * vice versa. Writing any of the channel group registers while that specific channel group is actively controlling a
 * conversion aborts the current conversion.
 *
 * param base          ADC peripheral base address.
 * param channelGroup  Channel group index.
 * param config        Pointer to the "adc_channel_config_t" structure for the conversion channel.
 */
void ADC_SetChannelConfig(ADC_Type *base, uint32_t channelGroup, const adc_channel_config_t *config)
{
    assert(NULL != config);
    assert(channelGroup < FSL_FEATURE_ADC_CONVERSION_CONTROL_COUNT);

    uint32_t tmp32;

    tmp32 = ADC_HC_ADCH(config->channelNumber);
    if (config->enableInterruptOnConversionCompleted)
    {
        tmp32 |= ADC_HC_AIEN_MASK;
    }
    base->HC[channelGroup] = tmp32;
}

/*
 *To complete calibration, the user must follow the below procedure:
 *  1. Configure ADC_CFG with actual operating values for maximum accuracy.
 *  2. Configure the ADC_GC values along with CAL bit.
 *  3. Check the status of CALF bit in ADC_GS and the CAL bit in ADC_GC.
 *  4. When CAL bit becomes '0' then check the CALF status and COCO[0] bit status.
 */
/*!
 * brief  Automates the hardware calibration.
 *
 * This auto calibration helps to adjust the plus/minus side gain automatically.
 * Execute the calibration before using the converter. Note that the software trigger should be used
 * during calibration.
 *
 * param  base ADC peripheral base address.
 *
 * return                 Execution status.
 * retval kStatus_Success Calibration is done successfully.
 * retval kStatus_Fail    Calibration has failed.
 */
status_t ADC_DoAutoCalibration(ADC_Type *base)
{
    status_t status = kStatus_Success;
#if !(defined(FSL_FEATURE_ADC_SUPPORT_HARDWARE_TRIGGER_REMOVE) && FSL_FEATURE_ADC_SUPPORT_HARDWARE_TRIGGER_REMOVE)
    bool bHWTrigger = false;

    /* The calibration would be failed when in hardwar mode.
     * Remember the hardware trigger state here and restore it later if the hardware trigger is enabled.*/
    if (0U != (ADC_CFG_ADTRG_MASK & base->CFG))
    {
        bHWTrigger = true;
        ADC_EnableHardwareTrigger(base, false);
    }
#endif

    /* Clear the CALF and launch the calibration. */
    base->GS = ADC_GS_CALF_MASK; /* Clear the CALF. */
    base->GC |= ADC_GC_CAL_MASK; /* Launch the calibration. */

    /* Check the status of CALF bit in ADC_GS and the CAL bit in ADC_GC. */
    while (0U != (base->GC & ADC_GC_CAL_MASK))
    {
        /* Check the CALF when the calibration is active. */
        if (0U != (ADC_GetStatusFlags(base) & (uint32_t)kADC_CalibrationFailedFlag))
        {
            status = kStatus_Fail;
            break;
        }
    }

    /* When CAL bit becomes '0' then check the CALF status and COCO[0] bit status. */
    if (0U == ADC_GetChannelStatusFlags(base, 0U)) /* Check the COCO[0] bit status. */
    {
        status = kStatus_Fail;
    }
    if (0U != (ADC_GetStatusFlags(base) & (uint32_t)kADC_CalibrationFailedFlag)) /* Check the CALF status. */
    {
        status = kStatus_Fail;
    }

    /* Clear conversion done flag. */
    (void)ADC_GetChannelConversionValue(base, 0U);

#if !(defined(FSL_FEATURE_ADC_SUPPORT_HARDWARE_TRIGGER_REMOVE) && FSL_FEATURE_ADC_SUPPORT_HARDWARE_TRIGGER_REMOVE)
    /* Restore original trigger mode. */
    if (true == bHWTrigger)
    {
        ADC_EnableHardwareTrigger(base, true);
    }
#endif

    return status;
}

/*!
 * brief Set user defined offset.
 *
 * param base   ADC peripheral base address.
 * param config Pointer to "adc_offest_config_t" structure.
 */
void ADC_SetOffsetConfig(ADC_Type *base, const adc_offest_config_t *config)
{
    assert(NULL != config);

    uint32_t tmp32;

    tmp32 = ADC_OFS_OFS(config->offsetValue);
    if (config->enableSigned)
    {
        tmp32 |= ADC_OFS_SIGN_MASK;
    }
    base->OFS = tmp32;
}

/*!
 * brief Configures the hardware compare mode.
 *
 * The hardware compare mode provides a way to process the conversion result automatically by using hardware. Only the
 * result
 * in the compare range is available. To compare the range, see "adc_hardware_compare_mode_t" or the appopriate
 * reference
 * manual for more information.
 *
 * param base ADC peripheral base address.
 * param Pointer to "adc_hardware_compare_config_t" structure.
 *
 */
void ADC_SetHardwareCompareConfig(ADC_Type *base, const adc_hardware_compare_config_t *config)
{
    uint32_t tmp32;

    tmp32 = base->GC & ~(ADC_GC_ACFE_MASK | ADC_GC_ACFGT_MASK | ADC_GC_ACREN_MASK);
    if (NULL == config) /* Pass "NULL" to disable the feature. */
    {
        base->GC = tmp32;
        return;
    }
    /* Enable the feature. */
    tmp32 |= ADC_GC_ACFE_MASK;

    /* Select the hardware compare working mode. */
    switch (config->hardwareCompareMode)
    {
        case kADC_HardwareCompareMode0:
            break;
        case kADC_HardwareCompareMode1:
            tmp32 |= ADC_GC_ACFGT_MASK;
            break;
        case kADC_HardwareCompareMode2:
            tmp32 |= ADC_GC_ACREN_MASK;
            break;
        case kADC_HardwareCompareMode3:
            tmp32 |= ADC_GC_ACFGT_MASK | ADC_GC_ACREN_MASK;
            break;
        default:
            assert(false);
            break;
    }
    base->GC = tmp32;

    /* Load the compare values. */
    tmp32    = ADC_CV_CV1(config->value1) | ADC_CV_CV2(config->value2);
    base->CV = tmp32;
}

/*!
 * brief Configures the hardware average mode.
 *
 * The hardware average mode provides a way to process the conversion result automatically by using hardware. The
 * multiple
 * conversion results are accumulated and averaged internally making them easier to read.
 *
 * param base ADC peripheral base address.
 * param mode Setting the hardware average mode. See "adc_hardware_average_mode_t".
 */
void ADC_SetHardwareAverageConfig(ADC_Type *base, adc_hardware_average_mode_t mode)
{
    uint32_t tmp32;

    if (mode == kADC_HardwareAverageDiasable)
    {
        base->GC &= ~ADC_GC_AVGE_MASK;
    }
    else
    {
        tmp32 = base->CFG & ~ADC_CFG_AVGS_MASK;
        tmp32 |= ADC_CFG_AVGS(mode);
        base->CFG = tmp32;
        base->GC |= ADC_GC_AVGE_MASK; /* Enable the hardware compare. */
    }
}

/*!
 * brief Clears the converter's status falgs.
 *
 * param base ADC peripheral base address.
 * param mask Mask value for the cleared flags. See "adc_status_flags_t".
 */
void ADC_ClearStatusFlags(ADC_Type *base, uint32_t mask)
{
    uint32_t tmp32 = 0;

    if (0U != (mask & (uint32_t)kADC_CalibrationFailedFlag))
    {
        tmp32 |= ADC_GS_CALF_MASK;
    }
    if (0U != (mask & (uint32_t)kADC_ConversionActiveFlag))
    {
        tmp32 |= ADC_GS_ADACT_MASK;
    }
    base->GS = tmp32;
}