/* SPDX-License-Identifier: BSD-2-Clause */ /** * @file * * @ingroup ScoreTqReqEnqueueMrsp */ /* * Copyright (C) 2021 embedded brains GmbH & Co. KG * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * This file is part of the RTEMS quality process and was automatically * generated. If you find something that needs to be fixed or * worded better please post a report or patch to an RTEMS mailing list * or raise a bug report: * * https://www.rtems.org/bugs.html * * For information on updating and regenerating please refer to the How-To * section in the Software Requirements Engineering chapter of the * RTEMS Software Engineering manual. The manual is provided as a part of * a release. For development sources please refer to the online * documentation at: * * https://docs.rtems.org */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "tr-tq-enqueue-mrsp.h" #include /** * @defgroup ScoreTqReqEnqueueMrsp spec:/score/tq/req/enqueue-mrsp * * @ingroup TestsuitesValidationNoClock0 * * @{ */ typedef struct { uint8_t Skip : 1; uint8_t Pre_EligibleScheduler_NA : 1; uint8_t Pre_QueueEligible_NA : 1; uint8_t Pre_QueueIneligible_NA : 1; uint8_t Post_Position : 3; } ScoreTqReqEnqueueMrsp_Entry; /** * @brief Test context for spec:/score/tq/req/enqueue-mrsp test case. */ typedef struct { /** * @brief This this member is true, then the enqueueing thread shall have at * least one helping scheduler which is an ineligible scheduler for the * already enqueued threads. */ bool helping; /** * @brief This member specifies the priority of an already enqueued thread * with an eligible scheduler equal to an eligible scheduler of the * enqueueing thread. */ rtems_task_priority priority; /** * @brief If this member is true, then a thread those eligible schedulers are * ineligible scheduler to the enqueueing task should be enqueued before a * thread with an eligible scheduler equal to an eligible scheduler of the * enqueueing thread. */ size_t other_before; /** * @brief If this member is true, then a thread those eligible schedulers are * ineligible scheduler to the enqueueing task should be enqueued after a * thread with an eligible scheduler equal to an eligible scheduler of the * enqueueing thread. */ size_t other_after; /** * @brief This member contains a copy of the corresponding * ScoreTqReqEnqueueMrsp_Run() parameter. */ TQContext *tq_ctx; struct { /** * @brief This member defines the pre-condition states for the next action. */ size_t pcs[ 3 ]; /** * @brief If this member is true, then the test action loop is executed. */ bool in_action_loop; /** * @brief This member contains the next transition map index. */ size_t index; /** * @brief This member contains the current transition map entry. */ ScoreTqReqEnqueueMrsp_Entry entry; /** * @brief If this member is true, then the current transition variant * should be skipped. */ bool skip; } Map; } ScoreTqReqEnqueueMrsp_Context; static ScoreTqReqEnqueueMrsp_Context ScoreTqReqEnqueueMrsp_Instance; static const char * const ScoreTqReqEnqueueMrsp_PreDesc_EligibleScheduler[] = { "Home", "Helping", "NA" }; static const char * const ScoreTqReqEnqueueMrsp_PreDesc_QueueEligible[] = { "None", "Equal", "Low", "NA" }; static const char * const ScoreTqReqEnqueueMrsp_PreDesc_QueueIneligible[] = { "None", "Only", "Before", "After", "NA" }; static const char * const * const ScoreTqReqEnqueueMrsp_PreDesc[] = { ScoreTqReqEnqueueMrsp_PreDesc_EligibleScheduler, ScoreTqReqEnqueueMrsp_PreDesc_QueueEligible, ScoreTqReqEnqueueMrsp_PreDesc_QueueIneligible, NULL }; /* * The MrsP locking protocol uses a sticky thread queue enqueue. This means * that threads waiting for the mutex ownership perform a busy wait and thus * occupy the processor. For a full validation we need at least four * processors. */ static bool CanDoFullValidation( void ) { return rtems_scheduler_get_processor_maximum() >= 4; } static void ScoreTqReqEnqueueMrsp_Pre_EligibleScheduler_Prepare( ScoreTqReqEnqueueMrsp_Context *ctx, ScoreTqReqEnqueueMrsp_Pre_EligibleScheduler state ) { switch ( state ) { case ScoreTqReqEnqueueMrsp_Pre_EligibleScheduler_Home: { /* * While the enqueueing thread has no helping scheduler. */ ctx->helping = false; break; } case ScoreTqReqEnqueueMrsp_Pre_EligibleScheduler_Helping: { /* * While the enqueueing thread has at least one helping scheduler. */ ctx->helping = true; break; } case ScoreTqReqEnqueueMrsp_Pre_EligibleScheduler_NA: break; } } static void ScoreTqReqEnqueueMrsp_Pre_QueueEligible_Prepare( ScoreTqReqEnqueueMrsp_Context *ctx, ScoreTqReqEnqueueMrsp_Pre_QueueEligible state ) { switch ( state ) { case ScoreTqReqEnqueueMrsp_Pre_QueueEligible_None: { /* * While all priority queues of the thread queue associated with eligible * schedulers of the enqueueing thread are empty. */ ctx->priority = PRIO_PSEUDO_ISR; break; } case ScoreTqReqEnqueueMrsp_Pre_QueueEligible_Equal: { /* * While a priority queue of the thread queue associated with an eligible * scheduler of the enqueueing thread is non-empty, while the highest * priority of the priority queue is equal to the priority of the * enqueueing thread with respect to the eligible scheduler. */ ctx->priority = PRIO_VERY_HIGH; break; } case ScoreTqReqEnqueueMrsp_Pre_QueueEligible_Low: { /* * While a priority queue of the thread queue associated with an eligible * scheduler of the enqueueing thread is non-empty, while the highest * priority of the priority queue is lower than the priority of the * enqueueing thread with respect to the eligible scheduler. */ ctx->priority = PRIO_HIGH; break; } case ScoreTqReqEnqueueMrsp_Pre_QueueEligible_NA: break; } } static void ScoreTqReqEnqueueMrsp_Pre_QueueIneligible_Prepare( ScoreTqReqEnqueueMrsp_Context *ctx, ScoreTqReqEnqueueMrsp_Pre_QueueIneligible state ) { switch ( state ) { case ScoreTqReqEnqueueMrsp_Pre_QueueIneligible_None: { /* * While no priority queue of the thread queue exists which is not * associated with an eligible scheduler of the enqueueing thread. */ ctx->other_before = false; ctx->other_after = false; break; } case ScoreTqReqEnqueueMrsp_Pre_QueueIneligible_Only: { /* * While exactly one priority queue of the thread queue exists which is * not associated with an eligible scheduler of the enqueueing thread. */ ctx->other_before = true; ctx->other_after = false; break; } case ScoreTqReqEnqueueMrsp_Pre_QueueIneligible_Before: { /* * While a priority queue of the thread queue exists which is not * associated with an eligible scheduler of the enqueueing thread, while * this priority queue is positioned before all priority queues which are * associated with eligible schedulers of the enqueueing thread. */ ctx->other_before = true; ctx->other_after = false; break; } case ScoreTqReqEnqueueMrsp_Pre_QueueIneligible_After: { /* * While a priority queue of the thread queue exists which is not * associated with an eligible scheduler of the enqueueing thread, while * this priority queue is positioned after all priority queues which are * associated with eligible schedulers of the enqueueing thread. */ ctx->other_before = false; ctx->other_after = true; break; } case ScoreTqReqEnqueueMrsp_Pre_QueueIneligible_NA: break; } } static void ScoreTqReqEnqueueMrsp_Post_Position_Check( ScoreTqReqEnqueueMrsp_Context *ctx, ScoreTqReqEnqueueMrsp_Post_Position state ) { size_t i; i = 0; /* The enqueue is sticky, so no enqueued thread is blocked by the scheduler */ T_null( TQGetNextUnblock( ctx->tq_ctx, &i )->thread ); switch ( state ) { case ScoreTqReqEnqueueMrsp_Post_Position_InitialFirst: { /* * A priority queue associated with the scheduler which contains exactly * the enqueueing thread shall be created as the first priority queue of * the thread queue. */ T_eq_u32( 1, TQGetWorkerCounter( ctx->tq_ctx, TQ_BLOCKER_A ) ); T_eq_u32( 1, TQGetCounter( ctx->tq_ctx ) ); break; } case ScoreTqReqEnqueueMrsp_Post_Position_InitialLast: { /* * A priority queue associated with the scheduler which contains exactly * the enqueueing thread shall be created as the last priority queue of * the thread queue. */ if ( CanDoFullValidation() ) { T_eq_u32( 1, TQGetWorkerCounter( ctx->tq_ctx, TQ_BLOCKER_C ) ); T_eq_u32( 2, TQGetWorkerCounter( ctx->tq_ctx, TQ_BLOCKER_A ) ); T_eq_u32( 2, TQGetCounter( ctx->tq_ctx ) ); } else { T_eq_u32( 1, TQGetWorkerCounter( ctx->tq_ctx, TQ_BLOCKER_A ) ); T_eq_u32( 1, TQGetCounter( ctx->tq_ctx ) ); } break; } case ScoreTqReqEnqueueMrsp_Post_Position_Second: { /* * The enqueueing thread shall be enqueued in the priority queue * associated with the scheduler. */ if ( CanDoFullValidation() ) { T_eq_u32( 1, TQGetWorkerCounter( ctx->tq_ctx, TQ_BLOCKER_B ) ); T_eq_u32( 2, TQGetWorkerCounter( ctx->tq_ctx, TQ_BLOCKER_A ) ); T_eq_u32( 2, TQGetCounter( ctx->tq_ctx ) ); } else { T_eq_u32( 1, TQGetWorkerCounter( ctx->tq_ctx, TQ_BLOCKER_A ) ); T_eq_u32( 1, TQGetCounter( ctx->tq_ctx ) ); } break; } case ScoreTqReqEnqueueMrsp_Post_Position_SecondFirst: { /* * The enqueueing thread shall be enqueued in the priority queue * associated with the scheduler. * * The position of the priority queue in the thread queue shall not * change. */ if ( CanDoFullValidation() ) { T_eq_u32( 1, TQGetWorkerCounter( ctx->tq_ctx, TQ_BLOCKER_B ) ); T_eq_u32( 2, TQGetWorkerCounter( ctx->tq_ctx, TQ_BLOCKER_C ) ); T_eq_u32( 3, TQGetWorkerCounter( ctx->tq_ctx, TQ_BLOCKER_A ) ); T_eq_u32( 3, TQGetCounter( ctx->tq_ctx ) ); } else { T_eq_u32( 1, TQGetWorkerCounter( ctx->tq_ctx, TQ_BLOCKER_A ) ); T_eq_u32( 1, TQGetCounter( ctx->tq_ctx ) ); } break; } case ScoreTqReqEnqueueMrsp_Post_Position_SecondLast: { /* * The enqueueing thread shall be enqueued in the priority queue * associated with the scheduler. * * The position of the priority queue in the thread queue shall not * change. */ if ( CanDoFullValidation() ) { T_eq_u32( 1, TQGetWorkerCounter( ctx->tq_ctx, TQ_BLOCKER_C ) ); T_eq_u32( 2, TQGetWorkerCounter( ctx->tq_ctx, TQ_BLOCKER_B ) ); T_eq_u32( 3, TQGetWorkerCounter( ctx->tq_ctx, TQ_BLOCKER_A ) ); T_eq_u32( 3, TQGetCounter( ctx->tq_ctx ) ); } else { T_eq_u32( 1, TQGetWorkerCounter( ctx->tq_ctx, TQ_BLOCKER_A ) ); T_eq_u32( 1, TQGetCounter( ctx->tq_ctx ) ); } break; } case ScoreTqReqEnqueueMrsp_Post_Position_NA: break; } } static void ScoreTqReqEnqueueMrsp_Setup( ScoreTqReqEnqueueMrsp_Context *ctx ) { if ( CanDoFullValidation() ) { RemoveProcessor( SCHEDULER_C_ID, 2 ); AddProcessor( SCHEDULER_B_ID, 2 ); TQSetScheduler( ctx->tq_ctx, TQ_BLOCKER_C, SCHEDULER_C_ID, PRIO_LOW ); } TQSetScheduler( ctx->tq_ctx, TQ_BLOCKER_A, SCHEDULER_B_ID, PRIO_LOW ); TQSetScheduler( ctx->tq_ctx, TQ_BLOCKER_B, SCHEDULER_B_ID, PRIO_LOW ); TQSetScheduler( ctx->tq_ctx, TQ_BLOCKER_D, SCHEDULER_A_ID, PRIO_ULTRA_HIGH ); } static void ScoreTqReqEnqueueMrsp_Setup_Wrap( void *arg ) { ScoreTqReqEnqueueMrsp_Context *ctx; ctx = arg; ctx->Map.in_action_loop = false; ScoreTqReqEnqueueMrsp_Setup( ctx ); } static void ScoreTqReqEnqueueMrsp_Teardown( ScoreTqReqEnqueueMrsp_Context *ctx ) { if ( CanDoFullValidation() ) { RemoveProcessor( SCHEDULER_B_ID, 2 ); AddProcessor( SCHEDULER_C_ID, 2 ); } TQReset( ctx->tq_ctx ); } static void ScoreTqReqEnqueueMrsp_Teardown_Wrap( void *arg ) { ScoreTqReqEnqueueMrsp_Context *ctx; ctx = arg; ctx->Map.in_action_loop = false; ScoreTqReqEnqueueMrsp_Teardown( ctx ); } static void ScoreTqReqEnqueueMrsp_Action( ScoreTqReqEnqueueMrsp_Context *ctx ) { Status_Control status; TQResetCounter( ctx->tq_ctx ); TQClearDone( ctx->tq_ctx, TQ_BLOCKER_A ); TQClearDone( ctx->tq_ctx, TQ_BLOCKER_B ); TQClearDone( ctx->tq_ctx, TQ_BLOCKER_C ); status = TQEnqueue( ctx->tq_ctx, TQ_WAIT_FOREVER ); T_eq_int( status, TQConvertStatus( ctx->tq_ctx, STATUS_SUCCESSFUL ) ); if ( ctx->helping ) { TQSend( ctx->tq_ctx, TQ_BLOCKER_A, TQ_EVENT_MUTEX_A_OBTAIN | TQ_EVENT_RUNNER_SYNC ); TQSynchronizeRunner(); TQSend( ctx->tq_ctx, TQ_BLOCKER_D, TQ_EVENT_MUTEX_A_OBTAIN | TQ_EVENT_MUTEX_A_RELEASE | TQ_EVENT_RUNNER_SYNC_2 ); } if ( CanDoFullValidation() ) { if ( ctx->other_before ) { TQSendAndWaitForIntendToBlock( ctx->tq_ctx, TQ_BLOCKER_C, TQ_EVENT_ENQUEUE | TQ_EVENT_SURRENDER ); } if ( ctx->priority != PRIO_PSEUDO_ISR ) { TQSendAndWaitForIntendToBlock( ctx->tq_ctx, TQ_BLOCKER_B, TQ_EVENT_ENQUEUE | TQ_EVENT_SURRENDER ); } if ( ctx->other_after ) { TQSendAndWaitForIntendToBlock( ctx->tq_ctx, TQ_BLOCKER_C, TQ_EVENT_ENQUEUE | TQ_EVENT_SURRENDER ); } } TQSendAndWaitForIntendToBlock( ctx->tq_ctx, TQ_BLOCKER_A, TQ_EVENT_ENQUEUE | TQ_EVENT_SURRENDER ); TQSchedulerRecordStart( ctx->tq_ctx ); status = TQSurrender( ctx->tq_ctx ); T_eq_int( status, TQConvertStatus( ctx->tq_ctx, STATUS_SUCCESSFUL ) ); TQWaitForDone( ctx->tq_ctx, TQ_BLOCKER_A ); if ( CanDoFullValidation() ) { if ( ctx->priority != PRIO_PSEUDO_ISR ) { TQWaitForDone( ctx->tq_ctx, TQ_BLOCKER_B ); } if ( ctx->other_before || ctx->other_after ) { TQWaitForDone( ctx->tq_ctx, TQ_BLOCKER_C ); } } TQSchedulerRecordStop( ctx->tq_ctx ); if ( ctx->helping ) { TQSend( ctx->tq_ctx, TQ_BLOCKER_A, TQ_EVENT_MUTEX_A_RELEASE | TQ_EVENT_RUNNER_SYNC ); TQSynchronizeRunner2(); } } static const ScoreTqReqEnqueueMrsp_Entry ScoreTqReqEnqueueMrsp_Entries[] = { { 1, 0, 0, 0, ScoreTqReqEnqueueMrsp_Post_Position_NA }, { 0, 0, 0, 0, ScoreTqReqEnqueueMrsp_Post_Position_Second }, { 0, 0, 0, 0, ScoreTqReqEnqueueMrsp_Post_Position_SecondLast }, { 0, 0, 0, 0, ScoreTqReqEnqueueMrsp_Post_Position_SecondFirst }, { 0, 0, 0, 0, ScoreTqReqEnqueueMrsp_Post_Position_InitialFirst }, { 0, 0, 0, 0, ScoreTqReqEnqueueMrsp_Post_Position_InitialLast } }; static const uint8_t ScoreTqReqEnqueueMrsp_Map[] = { 4, 5, 0, 0, 1, 0, 2, 3, 1, 0, 2, 3, 4, 5, 0, 0, 1, 0, 2, 3, 1, 0, 2, 3 }; static size_t ScoreTqReqEnqueueMrsp_Scope( void *arg, char *buf, size_t n ) { ScoreTqReqEnqueueMrsp_Context *ctx; ctx = arg; if ( ctx->Map.in_action_loop ) { return T_get_scope( ScoreTqReqEnqueueMrsp_PreDesc, buf, n, ctx->Map.pcs ); } return 0; } static T_fixture ScoreTqReqEnqueueMrsp_Fixture = { .setup = ScoreTqReqEnqueueMrsp_Setup_Wrap, .stop = NULL, .teardown = ScoreTqReqEnqueueMrsp_Teardown_Wrap, .scope = ScoreTqReqEnqueueMrsp_Scope, .initial_context = &ScoreTqReqEnqueueMrsp_Instance }; static inline ScoreTqReqEnqueueMrsp_Entry ScoreTqReqEnqueueMrsp_PopEntry( ScoreTqReqEnqueueMrsp_Context *ctx ) { size_t index; index = ctx->Map.index; ctx->Map.index = index + 1; return ScoreTqReqEnqueueMrsp_Entries[ ScoreTqReqEnqueueMrsp_Map[ index ] ]; } static void ScoreTqReqEnqueueMrsp_TestVariant( ScoreTqReqEnqueueMrsp_Context *ctx ) { ScoreTqReqEnqueueMrsp_Pre_EligibleScheduler_Prepare( ctx, ctx->Map.pcs[ 0 ] ); ScoreTqReqEnqueueMrsp_Pre_QueueEligible_Prepare( ctx, ctx->Map.pcs[ 1 ] ); ScoreTqReqEnqueueMrsp_Pre_QueueIneligible_Prepare( ctx, ctx->Map.pcs[ 2 ] ); ScoreTqReqEnqueueMrsp_Action( ctx ); ScoreTqReqEnqueueMrsp_Post_Position_Check( ctx, ctx->Map.entry.Post_Position ); } static T_fixture_node ScoreTqReqEnqueueMrsp_Node; static T_remark ScoreTqReqEnqueueMrsp_Remark = { .next = NULL, .remark = "ScoreTqReqEnqueueMrsp" }; void ScoreTqReqEnqueueMrsp_Run( TQContext *tq_ctx ) { ScoreTqReqEnqueueMrsp_Context *ctx; ctx = &ScoreTqReqEnqueueMrsp_Instance; ctx->tq_ctx = tq_ctx; ctx = T_push_fixture( &ScoreTqReqEnqueueMrsp_Node, &ScoreTqReqEnqueueMrsp_Fixture ); ctx->Map.in_action_loop = true; ctx->Map.index = 0; for ( ctx->Map.pcs[ 0 ] = ScoreTqReqEnqueueMrsp_Pre_EligibleScheduler_Home; ctx->Map.pcs[ 0 ] < ScoreTqReqEnqueueMrsp_Pre_EligibleScheduler_NA; ++ctx->Map.pcs[ 0 ] ) { for ( ctx->Map.pcs[ 1 ] = ScoreTqReqEnqueueMrsp_Pre_QueueEligible_None; ctx->Map.pcs[ 1 ] < ScoreTqReqEnqueueMrsp_Pre_QueueEligible_NA; ++ctx->Map.pcs[ 1 ] ) { for ( ctx->Map.pcs[ 2 ] = ScoreTqReqEnqueueMrsp_Pre_QueueIneligible_None; ctx->Map.pcs[ 2 ] < ScoreTqReqEnqueueMrsp_Pre_QueueIneligible_NA; ++ctx->Map.pcs[ 2 ] ) { ctx->Map.entry = ScoreTqReqEnqueueMrsp_PopEntry( ctx ); ScoreTqReqEnqueueMrsp_TestVariant( ctx ); } } } T_add_remark( &ScoreTqReqEnqueueMrsp_Remark ); T_pop_fixture(); } /** @} */