/* SPDX-License-Identifier: BSD-2-Clause */ /** * @file * * @ingroup ScoreMtxReqSeizeTry */ /* * Copyright (C) 2021 embedded brains GmbH & Co. KG * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * This file is part of the RTEMS quality process and was automatically * generated. If you find something that needs to be fixed or * worded better please post a report or patch to an RTEMS mailing list * or raise a bug report: * * https://www.rtems.org/bugs.html * * For information on updating and regenerating please refer to the How-To * section in the Software Requirements Engineering chapter of the * RTEMS Software Engineering manual. The manual is provided as a part of * a release. For development sources please refer to the online * documentation at: * * https://docs.rtems.org */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "tr-mtx-seize-try.h" #include /** * @defgroup ScoreMtxReqSeizeTry spec:/score/mtx/req/seize-try * * @ingroup TestsuitesValidationNoClock0 * * @{ */ typedef struct { uint16_t Skip : 1; uint16_t Pre_Protocol_NA : 1; uint16_t Pre_Discipline_NA : 1; uint16_t Pre_Recursive_NA : 1; uint16_t Pre_Owner_NA : 1; uint16_t Pre_Priority_NA : 1; uint16_t Post_Status : 3; uint16_t Post_Owner : 2; uint16_t Post_Priority : 2; } ScoreMtxReqSeizeTry_Entry; /** * @brief Test context for spec:/score/mtx/req/seize-try test case. */ typedef struct { /** * @brief If this member is true, then the calling thread shall be the owner * of the mutex. */ bool owner_caller; /** * @brief If this member is true, then a thread other than the calling thread * shall be the owner of the mutex. */ bool owner_other; /** * @brief This member contains the current priority of the calling thread * before the directive call. */ rtems_task_priority priority_before; /** * @brief This member contains the owner of the mutex after the directive * call. */ const rtems_tcb *owner_after; /** * @brief This member contains the current priority of the calling thread * after the directive call. */ rtems_task_priority priority_after; /** * @brief This member contains a copy of the corresponding * ScoreMtxReqSeizeTry_Run() parameter. */ TQMtxContext *tq_ctx; struct { /** * @brief This member defines the pre-condition indices for the next * action. */ size_t pci[ 5 ]; /** * @brief This member defines the pre-condition states for the next action. */ size_t pcs[ 5 ]; /** * @brief If this member is true, then the test action loop is executed. */ bool in_action_loop; /** * @brief This member contains the next transition map index. */ size_t index; /** * @brief This member contains the current transition map entry. */ ScoreMtxReqSeizeTry_Entry entry; /** * @brief If this member is true, then the current transition variant * should be skipped. */ bool skip; } Map; } ScoreMtxReqSeizeTry_Context; static ScoreMtxReqSeizeTry_Context ScoreMtxReqSeizeTry_Instance; static const char * const ScoreMtxReqSeizeTry_PreDesc_Protocol[] = { "Ceiling", "MrsP", "Other", "NA" }; static const char * const ScoreMtxReqSeizeTry_PreDesc_Discipline[] = { "FIFO", "Priority", "NA" }; static const char * const ScoreMtxReqSeizeTry_PreDesc_Recursive[] = { "Allowed", "Unavailable", "Deadlock", "NA" }; static const char * const ScoreMtxReqSeizeTry_PreDesc_Owner[] = { "None", "Caller", "Other", "NA" }; static const char * const ScoreMtxReqSeizeTry_PreDesc_Priority[] = { "High", "Equal", "Low", "NA" }; static const char * const * const ScoreMtxReqSeizeTry_PreDesc[] = { ScoreMtxReqSeizeTry_PreDesc_Protocol, ScoreMtxReqSeizeTry_PreDesc_Discipline, ScoreMtxReqSeizeTry_PreDesc_Recursive, ScoreMtxReqSeizeTry_PreDesc_Owner, ScoreMtxReqSeizeTry_PreDesc_Priority, NULL }; typedef ScoreMtxReqSeizeTry_Context Context; static Status_Control Status( const Context *ctx, Status_Control status ) { return TQConvertStatus( &ctx->tq_ctx->base, status ); } static bool IsEnqueueStatus( const Context *ctx, Status_Control expected ) { return ctx->tq_ctx->base.status[ TQ_BLOCKER_A ] == Status( ctx, expected ); } static void Action( Context *ctx ) { TQSetScheduler( &ctx->tq_ctx->base, TQ_BLOCKER_A, SCHEDULER_A_ID, PRIO_VERY_HIGH ); if ( ctx->owner_caller ) { TQSend( &ctx->tq_ctx->base, TQ_BLOCKER_A, TQ_EVENT_ENQUEUE ); } else if ( ctx->owner_other ) { TQSend( &ctx->tq_ctx->base, TQ_BLOCKER_B, TQ_EVENT_ENQUEUE ); } TQSetPriority( &ctx->tq_ctx->base, TQ_BLOCKER_A, ctx->priority_before ); TQSend( &ctx->tq_ctx->base, TQ_BLOCKER_A, TQ_EVENT_ENQUEUE ); ctx->owner_after = TQGetOwner( &ctx->tq_ctx->base ); ctx->priority_after = TQGetPriority( &ctx->tq_ctx->base, TQ_BLOCKER_A ); if ( ctx->owner_caller ) { TQSend( &ctx->tq_ctx->base, TQ_BLOCKER_A, TQ_EVENT_SURRENDER ); } else if ( ctx->owner_other ) { TQSend( &ctx->tq_ctx->base, TQ_BLOCKER_B, TQ_EVENT_SURRENDER ); } if ( IsEnqueueStatus( ctx, STATUS_SUCCESSFUL ) ) { TQSend( &ctx->tq_ctx->base, TQ_BLOCKER_A, TQ_EVENT_SURRENDER ); } } static void ActionSticky( Context *ctx ) { TQSetScheduler( &ctx->tq_ctx->base, TQ_BLOCKER_A, SCHEDULER_B_ID, PRIO_VERY_HIGH ); if ( ctx->owner_caller ) { TQSendAndSynchronizeRunner( &ctx->tq_ctx->base, TQ_BLOCKER_A, TQ_EVENT_ENQUEUE ); } else if ( ctx->owner_other ) { SetSelfScheduler( SCHEDULER_B_ID, PRIO_ULTRA_HIGH ); TQSendAndSynchronizeRunner( &ctx->tq_ctx->base, TQ_BLOCKER_B, TQ_EVENT_ENQUEUE ); SetSelfScheduler( SCHEDULER_A_ID, PRIO_ULTRA_HIGH ); } TQSetPriority( &ctx->tq_ctx->base, TQ_BLOCKER_A, ctx->priority_before ); TQClearDone( &ctx->tq_ctx->base, TQ_BLOCKER_A ); TQSendAndWaitForExecutionStopOrIntendToBlock( &ctx->tq_ctx->base, TQ_BLOCKER_A, TQ_EVENT_ENQUEUE ); ctx->owner_after = TQGetOwner( &ctx->tq_ctx->base ); ctx->priority_after = TQGetPriority( &ctx->tq_ctx->base, TQ_BLOCKER_A ); if ( ctx->owner_caller ) { TQSendAndSynchronizeRunner( &ctx->tq_ctx->base, TQ_BLOCKER_A, TQ_EVENT_SURRENDER ); } else if ( ctx->owner_other ) { SetSelfScheduler( SCHEDULER_B_ID, PRIO_ULTRA_HIGH ); TQSendAndSynchronizeRunner( &ctx->tq_ctx->base, TQ_BLOCKER_B, TQ_EVENT_SURRENDER ); SetSelfScheduler( SCHEDULER_A_ID, PRIO_NORMAL ); } TQWaitForDone( &ctx->tq_ctx->base, TQ_BLOCKER_A ); if ( IsEnqueueStatus( ctx, STATUS_SUCCESSFUL ) ) { TQSendAndSynchronizeRunner( &ctx->tq_ctx->base, TQ_BLOCKER_A, TQ_EVENT_SURRENDER ); } } static void ScoreMtxReqSeizeTry_Pre_Protocol_Prepare( ScoreMtxReqSeizeTry_Context *ctx, ScoreMtxReqSeizeTry_Pre_Protocol state ) { switch ( state ) { case ScoreMtxReqSeizeTry_Pre_Protocol_Ceiling: { /* * Where the mutex uses the priority ceiling locking protocol. */ if ( ctx->tq_ctx->priority_ceiling == PRIO_INVALID || ctx->tq_ctx->base.enqueue_variant == TQ_ENQUEUE_STICKY ) { ctx->Map.skip = true; } break; } case ScoreMtxReqSeizeTry_Pre_Protocol_MrsP: { /* * Where the mutex uses the MrsP locking protocol. */ if ( ctx->tq_ctx->priority_ceiling == PRIO_INVALID || ctx->tq_ctx->base.enqueue_variant != TQ_ENQUEUE_STICKY ) { ctx->Map.skip = true; } break; } case ScoreMtxReqSeizeTry_Pre_Protocol_Other: { /* * Where the mutex does not use the priority ceiling or MrsP locking * protocol. */ if ( ctx->tq_ctx->priority_ceiling != PRIO_INVALID ) { ctx->Map.skip = true; } break; } case ScoreMtxReqSeizeTry_Pre_Protocol_NA: break; } } static void ScoreMtxReqSeizeTry_Pre_Discipline_Prepare( ScoreMtxReqSeizeTry_Context *ctx, ScoreMtxReqSeizeTry_Pre_Discipline state ) { switch ( state ) { case ScoreMtxReqSeizeTry_Pre_Discipline_FIFO: { /* * Where the thread queue of the mutex uses the FIFO discipline. */ if ( ctx->tq_ctx->base.discipline != TQ_FIFO ) { ctx->Map.skip = true; } break; } case ScoreMtxReqSeizeTry_Pre_Discipline_Priority: { /* * Where the thread queue of the mutex uses the priority discipline. */ if ( ctx->tq_ctx->base.discipline != TQ_PRIORITY ) { ctx->Map.skip = true; } break; } case ScoreMtxReqSeizeTry_Pre_Discipline_NA: break; } } static void ScoreMtxReqSeizeTry_Pre_Recursive_Prepare( ScoreMtxReqSeizeTry_Context *ctx, ScoreMtxReqSeizeTry_Pre_Recursive state ) { switch ( state ) { case ScoreMtxReqSeizeTry_Pre_Recursive_Allowed: { /* * Where a recursive seize of the mutex is allowed. */ if ( ctx->tq_ctx->recursive != TQ_MTX_RECURSIVE_ALLOWED ) { ctx->Map.skip = true; } break; } case ScoreMtxReqSeizeTry_Pre_Recursive_Unavailable: { /* * Where a recursive seize of the mutex results in an unavailable status. */ if ( ctx->tq_ctx->recursive != TQ_MTX_RECURSIVE_UNAVAILABLE ) { ctx->Map.skip = true; } break; } case ScoreMtxReqSeizeTry_Pre_Recursive_Deadlock: { /* * Where a recursive seize of the mutex results in a deadlock status. */ if ( ctx->tq_ctx->recursive != TQ_MTX_RECURSIVE_DEADLOCK ) { ctx->Map.skip = true; } break; } case ScoreMtxReqSeizeTry_Pre_Recursive_NA: break; } } static void ScoreMtxReqSeizeTry_Pre_Owner_Prepare( ScoreMtxReqSeizeTry_Context *ctx, ScoreMtxReqSeizeTry_Pre_Owner state ) { switch ( state ) { case ScoreMtxReqSeizeTry_Pre_Owner_None: { /* * While the mutex has no owner. */ /* This is the default */ break; } case ScoreMtxReqSeizeTry_Pre_Owner_Caller: { /* * While the owner of the mutex is the calling thread. */ ctx->owner_caller = true; break; } case ScoreMtxReqSeizeTry_Pre_Owner_Other: { /* * While the owner of the mutex is a thread other than the calling * thread. */ ctx->owner_other = true; break; } case ScoreMtxReqSeizeTry_Pre_Owner_NA: break; } } static void ScoreMtxReqSeizeTry_Pre_Priority_Prepare( ScoreMtxReqSeizeTry_Context *ctx, ScoreMtxReqSeizeTry_Pre_Priority state ) { switch ( state ) { case ScoreMtxReqSeizeTry_Pre_Priority_High: { /* * While the calling thread has a current priority higher than the * priority ceiling. */ ctx->priority_before = ctx->tq_ctx->priority_ceiling - 1; break; } case ScoreMtxReqSeizeTry_Pre_Priority_Equal: { /* * While the calling thread has a current priority equal to the priority * ceiling. */ ctx->priority_before = ctx->tq_ctx->priority_ceiling; break; } case ScoreMtxReqSeizeTry_Pre_Priority_Low: { /* * While the calling thread has a current priority lower than the * priority ceiling. */ ctx->priority_before = ctx->tq_ctx->priority_ceiling + 1; break; } case ScoreMtxReqSeizeTry_Pre_Priority_NA: break; } } static void ScoreMtxReqSeizeTry_Post_Status_Check( ScoreMtxReqSeizeTry_Context *ctx, ScoreMtxReqSeizeTry_Post_Status state ) { switch ( state ) { case ScoreMtxReqSeizeTry_Post_Status_Ok: { /* * The return status of the directive call shall be derived from * STATUS_SUCCESSFUL. */ T_true( IsEnqueueStatus( ctx, STATUS_SUCCESSFUL ) ); break; } case ScoreMtxReqSeizeTry_Post_Status_MutexCeilingViolated: { /* * The return status of the directive call shall be derived from * STATUS_MUTEX_CEILING_VIOLATED. */ T_true( IsEnqueueStatus( ctx, STATUS_MUTEX_CEILING_VIOLATED ) ); break; } case ScoreMtxReqSeizeTry_Post_Status_Deadlock: { /* * The return status of the directive call shall be derived from * STATUS_DEADLOCK. */ T_true( IsEnqueueStatus( ctx, STATUS_DEADLOCK ) ); break; } case ScoreMtxReqSeizeTry_Post_Status_Unavailable: { /* * The return status of the directive call shall be derived from * STATUS_UNAVAILABLE. */ T_true( IsEnqueueStatus( ctx, STATUS_UNAVAILABLE ) ); break; } case ScoreMtxReqSeizeTry_Post_Status_NA: break; } } static void ScoreMtxReqSeizeTry_Post_Owner_Check( ScoreMtxReqSeizeTry_Context *ctx, ScoreMtxReqSeizeTry_Post_Owner state ) { switch ( state ) { case ScoreMtxReqSeizeTry_Post_Owner_Other: { /* * The owner of the mutex shall not be modified. */ T_eq_ptr( ctx->owner_after, ctx->tq_ctx->base.worker_tcb[ TQ_BLOCKER_B ] ); break; } case ScoreMtxReqSeizeTry_Post_Owner_Caller: { /* * The owner of the mutex shall be the calling thread. */ T_eq_ptr( ctx->owner_after, ctx->tq_ctx->base.worker_tcb[ TQ_BLOCKER_A ] ); break; } case ScoreMtxReqSeizeTry_Post_Owner_None: { /* * The mutex shall have no owner. */ T_null( ctx->owner_after ); break; } case ScoreMtxReqSeizeTry_Post_Owner_NA: break; } } static void ScoreMtxReqSeizeTry_Post_Priority_Check( ScoreMtxReqSeizeTry_Context *ctx, ScoreMtxReqSeizeTry_Post_Priority state ) { switch ( state ) { case ScoreMtxReqSeizeTry_Post_Priority_Nop: { /* * The priorities of the calling thread shall not be modified. */ T_eq_u32( ctx->priority_after, ctx->priority_before ); break; } case ScoreMtxReqSeizeTry_Post_Priority_Ceiling: { /* * The calling thread shall use the priority ceiling of the mutex. */ T_eq_u32( ctx->priority_after, ctx->tq_ctx->priority_ceiling ); break; } case ScoreMtxReqSeizeTry_Post_Priority_NA: break; } } static void ScoreMtxReqSeizeTry_Prepare( ScoreMtxReqSeizeTry_Context *ctx ) { ctx->owner_caller = false; ctx->owner_other = false; ctx->priority_before = PRIO_VERY_HIGH; } static void ScoreMtxReqSeizeTry_Action( ScoreMtxReqSeizeTry_Context *ctx ) { TQSetScheduler( &ctx->tq_ctx->base, TQ_BLOCKER_B, SCHEDULER_A_ID, PRIO_VERY_HIGH ); if ( ctx->tq_ctx->base.enqueue_variant == TQ_ENQUEUE_STICKY ) { ActionSticky( ctx ); } else { Action( ctx ); } } static const ScoreMtxReqSeizeTry_Entry ScoreMtxReqSeizeTry_Entries[] = { { 1, 0, 0, 0, 0, 0, ScoreMtxReqSeizeTry_Post_Status_NA, ScoreMtxReqSeizeTry_Post_Owner_NA, ScoreMtxReqSeizeTry_Post_Priority_NA }, { 0, 0, 0, 0, 0, 1, ScoreMtxReqSeizeTry_Post_Status_Ok, ScoreMtxReqSeizeTry_Post_Owner_Caller, ScoreMtxReqSeizeTry_Post_Priority_Nop }, { 0, 0, 0, 0, 0, 0, ScoreMtxReqSeizeTry_Post_Status_Unavailable, ScoreMtxReqSeizeTry_Post_Owner_Other, ScoreMtxReqSeizeTry_Post_Priority_Nop }, { 0, 0, 0, 0, 0, 1, ScoreMtxReqSeizeTry_Post_Status_Unavailable, ScoreMtxReqSeizeTry_Post_Owner_Other, ScoreMtxReqSeizeTry_Post_Priority_Nop }, { 0, 0, 0, 0, 0, 0, ScoreMtxReqSeizeTry_Post_Status_Ok, ScoreMtxReqSeizeTry_Post_Owner_Caller, ScoreMtxReqSeizeTry_Post_Priority_Ceiling }, { 0, 0, 0, 0, 0, 0, ScoreMtxReqSeizeTry_Post_Status_MutexCeilingViolated, ScoreMtxReqSeizeTry_Post_Owner_None, ScoreMtxReqSeizeTry_Post_Priority_Nop }, { 1, 0, 0, 0, 0, 0, ScoreMtxReqSeizeTry_Post_Status_NA, ScoreMtxReqSeizeTry_Post_Owner_NA, ScoreMtxReqSeizeTry_Post_Priority_NA }, { 0, 0, 0, 0, 0, 1, ScoreMtxReqSeizeTry_Post_Status_Unavailable, ScoreMtxReqSeizeTry_Post_Owner_Caller, ScoreMtxReqSeizeTry_Post_Priority_Nop }, { 0, 0, 0, 0, 0, 1, ScoreMtxReqSeizeTry_Post_Status_Deadlock, ScoreMtxReqSeizeTry_Post_Owner_Caller, ScoreMtxReqSeizeTry_Post_Priority_Nop }, { 0, 0, 0, 0, 0, 0, ScoreMtxReqSeizeTry_Post_Status_Ok, ScoreMtxReqSeizeTry_Post_Owner_Caller, ScoreMtxReqSeizeTry_Post_Priority_Nop }, { 0, 0, 0, 0, 0, 0, ScoreMtxReqSeizeTry_Post_Status_Unavailable, ScoreMtxReqSeizeTry_Post_Owner_Caller, ScoreMtxReqSeizeTry_Post_Priority_Nop }, { 0, 0, 0, 0, 0, 0, ScoreMtxReqSeizeTry_Post_Status_Deadlock, ScoreMtxReqSeizeTry_Post_Owner_Caller, ScoreMtxReqSeizeTry_Post_Priority_Nop } }; static const uint8_t ScoreMtxReqSeizeTry_Map[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 4, 4, 9, 9, 6, 2, 2, 2, 5, 4, 4, 10, 10, 6, 2, 2, 2, 5, 4, 4, 11, 11, 6, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 4, 4, 9, 9, 6, 2, 2, 2, 5, 4, 4, 10, 10, 6, 2, 2, 2, 5, 4, 4, 11, 11, 6, 2, 2, 2, 1, 1, 1, 1, 1, 1, 3, 3, 3, 1, 1, 1, 7, 7, 7, 3, 3, 3, 1, 1, 1, 8, 8, 8, 3, 3, 3, 1, 1, 1, 1, 1, 1, 3, 3, 3, 1, 1, 1, 7, 7, 7, 3, 3, 3, 1, 1, 1, 8, 8, 8, 3, 3, 3 }; static size_t ScoreMtxReqSeizeTry_Scope( void *arg, char *buf, size_t n ) { ScoreMtxReqSeizeTry_Context *ctx; ctx = arg; if ( ctx->Map.in_action_loop ) { return T_get_scope( ScoreMtxReqSeizeTry_PreDesc, buf, n, ctx->Map.pcs ); } return 0; } static T_fixture ScoreMtxReqSeizeTry_Fixture = { .setup = NULL, .stop = NULL, .teardown = NULL, .scope = ScoreMtxReqSeizeTry_Scope, .initial_context = &ScoreMtxReqSeizeTry_Instance }; static const uint8_t ScoreMtxReqSeizeTry_Weights[] = { 54, 27, 9, 3, 1 }; static void ScoreMtxReqSeizeTry_Skip( ScoreMtxReqSeizeTry_Context *ctx, size_t index ) { switch ( index + 1 ) { case 1: ctx->Map.pci[ 1 ] = ScoreMtxReqSeizeTry_Pre_Discipline_NA - 1; /* Fall through */ case 2: ctx->Map.pci[ 2 ] = ScoreMtxReqSeizeTry_Pre_Recursive_NA - 1; /* Fall through */ case 3: ctx->Map.pci[ 3 ] = ScoreMtxReqSeizeTry_Pre_Owner_NA - 1; /* Fall through */ case 4: ctx->Map.pci[ 4 ] = ScoreMtxReqSeizeTry_Pre_Priority_NA - 1; break; } } static inline ScoreMtxReqSeizeTry_Entry ScoreMtxReqSeizeTry_PopEntry( ScoreMtxReqSeizeTry_Context *ctx ) { size_t index; if ( ctx->Map.skip ) { size_t i; ctx->Map.skip = false; index = 0; for ( i = 0; i < 5; ++i ) { index += ScoreMtxReqSeizeTry_Weights[ i ] * ctx->Map.pci[ i ]; } } else { index = ctx->Map.index; } ctx->Map.index = index + 1; return ScoreMtxReqSeizeTry_Entries[ ScoreMtxReqSeizeTry_Map[ index ] ]; } static void ScoreMtxReqSeizeTry_SetPreConditionStates( ScoreMtxReqSeizeTry_Context *ctx ) { ctx->Map.pcs[ 0 ] = ctx->Map.pci[ 0 ]; ctx->Map.pcs[ 1 ] = ctx->Map.pci[ 1 ]; ctx->Map.pcs[ 2 ] = ctx->Map.pci[ 2 ]; ctx->Map.pcs[ 3 ] = ctx->Map.pci[ 3 ]; if ( ctx->Map.entry.Pre_Priority_NA ) { ctx->Map.pcs[ 4 ] = ScoreMtxReqSeizeTry_Pre_Priority_NA; } else { ctx->Map.pcs[ 4 ] = ctx->Map.pci[ 4 ]; } } static void ScoreMtxReqSeizeTry_TestVariant( ScoreMtxReqSeizeTry_Context *ctx ) { ScoreMtxReqSeizeTry_Pre_Protocol_Prepare( ctx, ctx->Map.pcs[ 0 ] ); if ( ctx->Map.skip ) { ScoreMtxReqSeizeTry_Skip( ctx, 0 ); return; } ScoreMtxReqSeizeTry_Pre_Discipline_Prepare( ctx, ctx->Map.pcs[ 1 ] ); if ( ctx->Map.skip ) { ScoreMtxReqSeizeTry_Skip( ctx, 1 ); return; } ScoreMtxReqSeizeTry_Pre_Recursive_Prepare( ctx, ctx->Map.pcs[ 2 ] ); if ( ctx->Map.skip ) { ScoreMtxReqSeizeTry_Skip( ctx, 2 ); return; } ScoreMtxReqSeizeTry_Pre_Owner_Prepare( ctx, ctx->Map.pcs[ 3 ] ); ScoreMtxReqSeizeTry_Pre_Priority_Prepare( ctx, ctx->Map.pcs[ 4 ] ); ScoreMtxReqSeizeTry_Action( ctx ); ScoreMtxReqSeizeTry_Post_Status_Check( ctx, ctx->Map.entry.Post_Status ); ScoreMtxReqSeizeTry_Post_Owner_Check( ctx, ctx->Map.entry.Post_Owner ); ScoreMtxReqSeizeTry_Post_Priority_Check( ctx, ctx->Map.entry.Post_Priority ); } static T_fixture_node ScoreMtxReqSeizeTry_Node; static T_remark ScoreMtxReqSeizeTry_Remark = { .next = NULL, .remark = "ScoreMtxReqSeizeTry" }; void ScoreMtxReqSeizeTry_Run( TQMtxContext *tq_ctx ) { ScoreMtxReqSeizeTry_Context *ctx; ctx = &ScoreMtxReqSeizeTry_Instance; ctx->tq_ctx = tq_ctx; ctx = T_push_fixture( &ScoreMtxReqSeizeTry_Node, &ScoreMtxReqSeizeTry_Fixture ); ctx->Map.in_action_loop = true; ctx->Map.index = 0; ctx->Map.skip = false; for ( ctx->Map.pci[ 0 ] = ScoreMtxReqSeizeTry_Pre_Protocol_Ceiling; ctx->Map.pci[ 0 ] < ScoreMtxReqSeizeTry_Pre_Protocol_NA; ++ctx->Map.pci[ 0 ] ) { for ( ctx->Map.pci[ 1 ] = ScoreMtxReqSeizeTry_Pre_Discipline_FIFO; ctx->Map.pci[ 1 ] < ScoreMtxReqSeizeTry_Pre_Discipline_NA; ++ctx->Map.pci[ 1 ] ) { for ( ctx->Map.pci[ 2 ] = ScoreMtxReqSeizeTry_Pre_Recursive_Allowed; ctx->Map.pci[ 2 ] < ScoreMtxReqSeizeTry_Pre_Recursive_NA; ++ctx->Map.pci[ 2 ] ) { for ( ctx->Map.pci[ 3 ] = ScoreMtxReqSeizeTry_Pre_Owner_None; ctx->Map.pci[ 3 ] < ScoreMtxReqSeizeTry_Pre_Owner_NA; ++ctx->Map.pci[ 3 ] ) { for ( ctx->Map.pci[ 4 ] = ScoreMtxReqSeizeTry_Pre_Priority_High; ctx->Map.pci[ 4 ] < ScoreMtxReqSeizeTry_Pre_Priority_NA; ++ctx->Map.pci[ 4 ] ) { ctx->Map.entry = ScoreMtxReqSeizeTry_PopEntry( ctx ); if ( ctx->Map.entry.Skip ) { continue; } ScoreMtxReqSeizeTry_SetPreConditionStates( ctx ); ScoreMtxReqSeizeTry_Prepare( ctx ); ScoreMtxReqSeizeTry_TestVariant( ctx ); } } } } } T_add_remark( &ScoreMtxReqSeizeTry_Remark ); T_pop_fixture(); } /** @} */