/* SPDX-License-Identifier: BSD-2-Clause */ /** * @file * * @ingroup ScoreThreadValSmp */ /* * Copyright (C) 2021 embedded brains GmbH & Co. KG * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * This file is part of the RTEMS quality process and was automatically * generated. If you find something that needs to be fixed or * worded better please post a report or patch to an RTEMS mailing list * or raise a bug report: * * https://www.rtems.org/bugs.html * * For information on updating and regenerating please refer to the How-To * section in the Software Requirements Engineering chapter of the * RTEMS Software Engineering manual. The manual is provided as a part of * a release. For development sources please refer to the online * documentation at: * * https://docs.rtems.org */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include #include #include #include #include "ts-config.h" #include "tx-support.h" #include /** * @defgroup ScoreThreadValSmp spec:/score/thread/val/smp * * @ingroup TestsuitesValidationSmpOnly0 * * @brief Tests SMP-specific thread behaviour. * * This test case performs the following actions: * * - Create three worker threads and a mutex. Use the mutex and the worker to * move to a helping scheduler. * * - Pin the runner thread while it executes on a processor owned by a * helping scheduler. * * - Pin and unpin the runner thread. This is a nested operation. * * - Preempt the pinned runner thread. Worker B and C execute at the same * time on processor 0 and 1 respectively for some point in time. This * shows that the pinning of the runner thread is maintained. * * - Unpin the runner thread. The runner moves back to its home scheduler. * * - Release the mutex. * * - Pin the runner thread. Unpin the runner thread while it is suspended. * * - Make sure the worker released the mutex. * * - Clean up all used resources. * * - Create three worker threads and a mutex. Use the mutex and the worker to * check that a suspended thread does not reconsider help requests. * * - Let worker B help worker A through the mutex. Preempt worker A. Delay * the thread switch to worker A. * * - Suspend worker A and let it wait on its thread state lock. Check that * worker A did not reconsider help requests. * * - Resume worker A. Check that worker A did reconsider help requests after * the thread dispatch. * * - Clean up all used resources. * * @{ */ /** * @brief Test context for spec:/score/thread/val/smp test case. */ typedef struct { /** * @brief This member contains the worker A identifier. */ rtems_id worker_a_id; /** * @brief This member contains the worker B identifier. */ rtems_id worker_b_id; /** * @brief This member contains the worker C identifier. */ rtems_id worker_c_id; /** * @brief This member contains the mutex identifier. */ rtems_id mutex_id; /** * @brief If this member is true, then the worker shall busy wait. */ volatile bool busy; /** * @brief This member contains a counter for EVENT_COUNT. */ volatile uint32_t counter; /** * @brief This member contains the barrier to synchronize the runner and the * workers. */ SMP_barrier_Control barrier; /** * @brief This member contains the barrier state for the runner processor. */ SMP_barrier_State barrier_state; } ScoreThreadValSmp_Context; static ScoreThreadValSmp_Context ScoreThreadValSmp_Instance; #define EVENT_OBTAIN RTEMS_EVENT_0 #define EVENT_RELEASE RTEMS_EVENT_1 #define EVENT_COUNT_EARLY RTEMS_EVENT_2 #define EVENT_BUSY RTEMS_EVENT_3 #define EVENT_COUNT RTEMS_EVENT_4 #define EVENT_LET_WORKER_C_COUNT RTEMS_EVENT_5 #define EVENT_SET_TASK_SWITCH_EXTENSION RTEMS_EVENT_6 typedef ScoreThreadValSmp_Context Context; static void TaskSwitchExtension( rtems_tcb *executing, rtems_tcb *heir ) { Context *ctx; Thread_Control *thread; (void) executing; (void) heir; ctx = T_fixture_context(); thread = GetThread( ctx->worker_a_id ); if ( thread == heir ) { SMP_barrier_State state; _SMP_barrier_State_initialize( &state ); /* B0 */ _SMP_barrier_Wait( &ctx->barrier, &state, 2 ); /* B1 */ _SMP_barrier_Wait( &ctx->barrier, &state, 2 ); } } static void WorkerTask( rtems_task_argument arg ) { Context *ctx; ctx = (Context *) arg; while ( true ) { rtems_event_set events; events = ReceiveAnyEvents(); if ( ( events & EVENT_OBTAIN ) != 0 ) { ObtainMutex( ctx->mutex_id ); } if ( ( events & EVENT_RELEASE ) != 0 ) { ReleaseMutex( ctx->mutex_id ); } if ( ( events & EVENT_COUNT_EARLY ) != 0 ) { ++ctx->counter; } if ( ( events & EVENT_BUSY ) != 0 ) { while ( ctx->busy ) { /* Do nothing */ } } if ( ( events & EVENT_COUNT ) != 0 ) { ++ctx->counter; } if ( ( events & EVENT_LET_WORKER_C_COUNT ) != 0 ) { uint32_t counter; counter = ctx->counter; SendEvents( ctx->worker_c_id, EVENT_COUNT ); while ( ctx->counter == counter ) { /* Wait */ } } if ( ( events & EVENT_SET_TASK_SWITCH_EXTENSION ) != 0 ) { SetTaskSwitchExtension( TaskSwitchExtension ); } } } static void SchedulerBlock( void *arg, const T_scheduler_event *event, T_scheduler_when when ) { Context *ctx; ctx = arg; if ( when == T_SCHEDULER_BEFORE && event->operation == T_SCHEDULER_BLOCK ) { Thread_Control *thread; T_scheduler_set_event_handler( NULL, NULL ); /* B1 */ _SMP_barrier_Wait( &ctx->barrier, &ctx->barrier_state, 2 ); thread = GetThread( ctx->worker_a_id ); TicketLockWaitForOthers( &thread->Join_queue.Queue.Lock, 1 ); } } static void Suspend( void *arg ) { Thread_Control *thread; thread = arg; SuspendTask( thread->Object.id ); } static void Resume( void *arg ) { Thread_Control *thread; thread = arg; ResumeTask( thread->Object.id ); } static void WaitForCounter( const Context *ctx, uint32_t expected ) { while ( ctx->counter != expected ) { /* Wait */ } } static void ScoreThreadValSmp_Setup( ScoreThreadValSmp_Context *ctx ) { SetSelfPriority( PRIO_NORMAL ); } static void ScoreThreadValSmp_Setup_Wrap( void *arg ) { ScoreThreadValSmp_Context *ctx; ctx = arg; ScoreThreadValSmp_Setup( ctx ); } static void ScoreThreadValSmp_Teardown( ScoreThreadValSmp_Context *ctx ) { RestoreRunnerPriority(); } static void ScoreThreadValSmp_Teardown_Wrap( void *arg ) { ScoreThreadValSmp_Context *ctx; ctx = arg; ScoreThreadValSmp_Teardown( ctx ); } static T_fixture ScoreThreadValSmp_Fixture = { .setup = ScoreThreadValSmp_Setup_Wrap, .stop = NULL, .teardown = ScoreThreadValSmp_Teardown_Wrap, .scope = NULL, .initial_context = &ScoreThreadValSmp_Instance }; /** * @brief Create three worker threads and a mutex. Use the mutex and the * worker to move to a helping scheduler. */ static void ScoreThreadValSmp_Action_0( ScoreThreadValSmp_Context *ctx ) { Per_CPU_Control*cpu_self; Thread_Control *executing; executing = _Thread_Get_executing(); ctx->counter = 0; ctx->mutex_id = CreateMutex(); ctx->worker_a_id = CreateTask( "WRKA", PRIO_NORMAL ); SetScheduler( ctx->worker_a_id, SCHEDULER_B_ID, PRIO_NORMAL ); StartTask( ctx->worker_a_id, WorkerTask, ctx ); ctx->worker_b_id = CreateTask( "WRKB", PRIO_HIGH ); StartTask( ctx->worker_b_id, WorkerTask, ctx ); ctx->worker_c_id = CreateTask( "WRKC", PRIO_LOW ); StartTask( ctx->worker_c_id, WorkerTask, ctx ); ObtainMutex( ctx->mutex_id ); SendEvents( ctx->worker_a_id, EVENT_OBTAIN | EVENT_RELEASE ); ctx->busy = true; SendEvents( ctx->worker_b_id, EVENT_BUSY ); /* * Pin the runner thread while it executes on a processor owned by a helping * scheduler. */ T_eq_u32( rtems_scheduler_get_processor(), 1 ); _Thread_Pin( executing ); /* * Pin and unpin the runner thread. This is a nested operation. */ T_eq_u32( rtems_scheduler_get_processor(), 1 ); _Thread_Pin( executing ); _Thread_Unpin( executing, _Per_CPU_Get_snapshot() ); /* * Preempt the pinned runner thread. Worker B and C execute at the same time * on processor 0 and 1 respectively for some point in time. This shows that * the pinning of the runner thread is maintained. */ ctx->busy = false; SetScheduler( ctx->worker_b_id, SCHEDULER_B_ID, PRIO_HIGH ); SendEvents( ctx->worker_b_id, EVENT_LET_WORKER_C_COUNT ); T_eq_u32( rtems_scheduler_get_processor(), 1 ); T_eq_u32( ctx->counter, 1 ); /* * Unpin the runner thread. The runner moves back to its home scheduler. */ cpu_self = _Thread_Dispatch_disable(); _Thread_Unpin( executing, cpu_self ); _Thread_Dispatch_direct( cpu_self ); T_eq_u32( rtems_scheduler_get_processor(), 0 ); /* * Release the mutex. */ ReleaseMutex( ctx->mutex_id); T_eq_u32( rtems_scheduler_get_processor(), 0 ); /* * Pin the runner thread. Unpin the runner thread while it is suspended. */ _Thread_Pin( executing ); /* We have to preempt the runner to end up in _Thread_Do_unpin() */ SetPriority( ctx->worker_c_id, PRIO_HIGH ); SendEvents( ctx->worker_c_id, EVENT_COUNT ); T_eq_u32( ctx->counter, 2 ); cpu_self = _Thread_Dispatch_disable(); CallWithinISR( Suspend, executing ); _Thread_Unpin( executing, cpu_self ); CallWithinISR( Resume, executing ); _Thread_Dispatch_direct( cpu_self ); /* * Make sure the worker released the mutex. */ SetSelfScheduler( SCHEDULER_B_ID, PRIO_LOW ); SetSelfScheduler( SCHEDULER_A_ID, PRIO_NORMAL ); /* * Clean up all used resources. */ DeleteTask( ctx->worker_a_id ); DeleteTask( ctx->worker_b_id ); DeleteTask( ctx->worker_c_id ); DeleteMutex( ctx->mutex_id ); } /** * @brief Create three worker threads and a mutex. Use the mutex and the * worker to check that a suspended thread does not reconsider help requests. */ static void ScoreThreadValSmp_Action_1( ScoreThreadValSmp_Context *ctx ) { T_scheduler_log_10 scheduler_log; size_t index; const T_scheduler_event *event; _SMP_barrier_Control_initialize( &ctx->barrier ); _SMP_barrier_State_initialize( &ctx->barrier_state ); ctx->counter = 0; ctx->mutex_id = CreateMutex(); ctx->worker_a_id = CreateTask( "WRKA", PRIO_NORMAL ); SetScheduler( ctx->worker_a_id, SCHEDULER_B_ID, PRIO_NORMAL ); StartTask( ctx->worker_a_id, WorkerTask, ctx ); ctx->worker_b_id = CreateTask( "WRKB", PRIO_HIGH ); StartTask( ctx->worker_b_id, WorkerTask, ctx ); ctx->worker_c_id = CreateTask( "WRKC", PRIO_NORMAL ); SetScheduler( ctx->worker_c_id, SCHEDULER_B_ID, PRIO_HIGH ); StartTask( ctx->worker_c_id, WorkerTask, ctx ); /* * Let worker B help worker A through the mutex. Preempt worker A. Delay * the thread switch to worker A. */ ctx->busy = true; SendEvents( ctx->worker_a_id, EVENT_OBTAIN | EVENT_COUNT_EARLY | EVENT_BUSY | EVENT_COUNT ); WaitForCounter( ctx, 1 ); SendEvents( ctx->worker_b_id, EVENT_OBTAIN ); SetPriority( ctx->worker_b_id, PRIO_LOW ); SendEvents( ctx->worker_c_id, EVENT_SET_TASK_SWITCH_EXTENSION ); /* B0 */ _SMP_barrier_Wait( &ctx->barrier, &ctx->barrier_state, 2 ); /* * Suspend worker A and let it wait on its thread state lock. Check that * worker A did not reconsider help requests. */ T_scheduler_record_10( &scheduler_log ); T_scheduler_set_event_handler( SchedulerBlock, ctx ); SuspendTask( ctx->worker_a_id ); WaitForExecutionStop( ctx->worker_a_id ); T_scheduler_record( NULL ); T_eq_sz( scheduler_log.header.recorded, 2 ); index = 0; event = T_scheduler_next_any( &scheduler_log.header, &index ); T_eq_int( event->operation, T_SCHEDULER_BLOCK ); event = T_scheduler_next_any( &scheduler_log.header, &index ); T_eq_int( event->operation, T_SCHEDULER_WITHDRAW_NODE ); event = T_scheduler_next_any( &scheduler_log.header, &index ); T_eq_ptr( event, &T_scheduler_event_null ); SetTaskSwitchExtension( NULL ); /* * Resume worker A. Check that worker A did reconsider help requests after * the thread dispatch. */ T_scheduler_record_10( &scheduler_log ); ResumeTask( ctx->worker_a_id ); ctx->busy = false; WaitForCounter( ctx, 2 ); WaitForExecutionStop( ctx->worker_a_id ); T_scheduler_record( NULL ); T_eq_sz( scheduler_log.header.recorded, 5 ); index = 0; event = T_scheduler_next_any( &scheduler_log.header, &index ); T_eq_int( event->operation, T_SCHEDULER_UNBLOCK ); event = T_scheduler_next_any( &scheduler_log.header, &index ); T_eq_int( event->operation, T_SCHEDULER_RECONSIDER_HELP_REQUEST ); event = T_scheduler_next_any( &scheduler_log.header, &index ); T_eq_int( event->operation, T_SCHEDULER_RECONSIDER_HELP_REQUEST ); event = T_scheduler_next_any( &scheduler_log.header, &index ); T_eq_int( event->operation, T_SCHEDULER_BLOCK ); event = T_scheduler_next_any( &scheduler_log.header, &index ); T_eq_int( event->operation, T_SCHEDULER_WITHDRAW_NODE ); event = T_scheduler_next_any( &scheduler_log.header, &index ); T_eq_ptr( event, &T_scheduler_event_null ); /* * Clean up all used resources. */ SendEvents( ctx->worker_a_id, EVENT_RELEASE | EVENT_COUNT ); WaitForCounter( ctx, 3 ); SetPriority( ctx->worker_b_id, PRIO_HIGH ); SendEvents( ctx->worker_b_id, EVENT_RELEASE ); DeleteTask( ctx->worker_a_id ); DeleteTask( ctx->worker_b_id ); DeleteTask( ctx->worker_c_id ); DeleteMutex( ctx->mutex_id ); } /** * @fn void T_case_body_ScoreThreadValSmp( void ) */ T_TEST_CASE_FIXTURE( ScoreThreadValSmp, &ScoreThreadValSmp_Fixture ) { ScoreThreadValSmp_Context *ctx; ctx = T_fixture_context(); ScoreThreadValSmp_Action_0( ctx ); ScoreThreadValSmp_Action_1( ctx ); } /** @} */