/* SPDX-License-Identifier: BSD-2-Clause */ /** * @file * * @ingroup RtemsIntrReqRaiseOn */ /* * Copyright (C) 2021 embedded brains GmbH & Co. KG * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * This file is part of the RTEMS quality process and was automatically * generated. If you find something that needs to be fixed or * worded better please post a report or patch to an RTEMS mailing list * or raise a bug report: * * https://www.rtems.org/bugs.html * * For information on updating and regenerating please refer to the How-To * section in the Software Requirements Engineering chapter of the * RTEMS Software Engineering manual. The manual is provided as a part of * a release. For development sources please refer to the online * documentation at: * * https://docs.rtems.org */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include #include #include #include "tx-support.h" #include /** * @defgroup RtemsIntrReqRaiseOn spec:/rtems/intr/req/raise-on * * @ingroup TestsuitesValidationIntr * * @{ */ typedef enum { RtemsIntrReqRaiseOn_Pre_Vector_Valid, RtemsIntrReqRaiseOn_Pre_Vector_Invalid, RtemsIntrReqRaiseOn_Pre_Vector_NA } RtemsIntrReqRaiseOn_Pre_Vector; typedef enum { RtemsIntrReqRaiseOn_Pre_CPU_Online, RtemsIntrReqRaiseOn_Pre_CPU_NotOnline, RtemsIntrReqRaiseOn_Pre_CPU_NotConf, RtemsIntrReqRaiseOn_Pre_CPU_NA } RtemsIntrReqRaiseOn_Pre_CPU; typedef enum { RtemsIntrReqRaiseOn_Pre_CanRaiseOn_Yes, RtemsIntrReqRaiseOn_Pre_CanRaiseOn_No, RtemsIntrReqRaiseOn_Pre_CanRaiseOn_NA } RtemsIntrReqRaiseOn_Pre_CanRaiseOn; typedef enum { RtemsIntrReqRaiseOn_Post_Status_Ok, RtemsIntrReqRaiseOn_Post_Status_InvId, RtemsIntrReqRaiseOn_Post_Status_NotConf, RtemsIntrReqRaiseOn_Post_Status_IncStat, RtemsIntrReqRaiseOn_Post_Status_Unsat, RtemsIntrReqRaiseOn_Post_Status_NA } RtemsIntrReqRaiseOn_Post_Status; typedef enum { RtemsIntrReqRaiseOn_Post_Pending_Yes, RtemsIntrReqRaiseOn_Post_Pending_No, RtemsIntrReqRaiseOn_Post_Pending_NA } RtemsIntrReqRaiseOn_Post_Pending; typedef struct { uint16_t Skip : 1; uint16_t Pre_Vector_NA : 1; uint16_t Pre_CPU_NA : 1; uint16_t Pre_CanRaiseOn_NA : 1; uint16_t Post_Status : 3; uint16_t Post_Pending : 2; } RtemsIntrReqRaiseOn_Entry; /** * @brief Test context for spec:/rtems/intr/req/raise-on test case. */ typedef struct { /** * @brief This member contains the count of serviced interrupts. */ volatile uint32_t interrupt_count; /** * @brief If this member is true, then the interrupt shall be cleared. */ bool do_clear; /** * @brief This member contains the current vector number. */ rtems_vector_number vector; /** * @brief This member contains some valid vector number. */ rtems_vector_number some_vector; /** * @brief If this member is true, then the ``vector`` parameter shall be * valid. */ bool valid_vector; /** * @brief This member specifies the ``cpu_index`` parameter. */ uint32_t cpu_index; /** * @brief This member contains the return value of the * rtems_interrupt_raise_on() call. */ rtems_status_code status; struct { /** * @brief This member defines the pre-condition indices for the next * action. */ size_t pci[ 3 ]; /** * @brief This member defines the pre-condition states for the next action. */ size_t pcs[ 3 ]; /** * @brief If this member is true, then the test action loop is executed. */ bool in_action_loop; /** * @brief This member contains the next transition map index. */ size_t index; /** * @brief This member contains the current transition map entry. */ RtemsIntrReqRaiseOn_Entry entry; /** * @brief If this member is true, then the current transition variant * should be skipped. */ bool skip; } Map; } RtemsIntrReqRaiseOn_Context; static RtemsIntrReqRaiseOn_Context RtemsIntrReqRaiseOn_Instance; static const char * const RtemsIntrReqRaiseOn_PreDesc_Vector[] = { "Valid", "Invalid", "NA" }; static const char * const RtemsIntrReqRaiseOn_PreDesc_CPU[] = { "Online", "NotOnline", "NotConf", "NA" }; static const char * const RtemsIntrReqRaiseOn_PreDesc_CanRaiseOn[] = { "Yes", "No", "NA" }; static const char * const * const RtemsIntrReqRaiseOn_PreDesc[] = { RtemsIntrReqRaiseOn_PreDesc_Vector, RtemsIntrReqRaiseOn_PreDesc_CPU, RtemsIntrReqRaiseOn_PreDesc_CanRaiseOn, NULL }; typedef RtemsIntrReqRaiseOn_Context Context; static bool IsEnabled( const Context *ctx ) { rtems_status_code sc; bool enabled; enabled = false; sc = rtems_interrupt_vector_is_enabled( ctx->vector, &enabled ); T_rsc_success( sc ); return enabled; } static bool IsPending( const Context *ctx ) { rtems_status_code sc; bool pending; pending = false; sc = rtems_interrupt_is_pending( ctx->vector, &pending ); T_rsc_success( sc ); return pending; } static void Disable( const Context *ctx ) { rtems_status_code sc; sc = rtems_interrupt_vector_disable( ctx->vector ); T_rsc_success( sc ); } static void RaiseOn( const Context *ctx ) { rtems_status_code sc; sc = rtems_interrupt_raise_on( ctx->vector, ctx->cpu_index ); T_rsc_success( sc ); } static void EntryRoutine( void *arg ) { Context *ctx; uint32_t count; (void) arg; ctx = T_fixture_context(); count = ctx->interrupt_count; ctx->interrupt_count = count + 1; if ( ctx->do_clear ) { rtems_status_code sc; sc = rtems_interrupt_clear( ctx->vector ); T_rsc_success( sc ); } if ( count > 2 ) { /* Some interrupts are probably cased by a peripheral */ Disable( ctx ); } } static void CheckUnsatisfied( const Context *ctx ) { rtems_status_code sc; bool pending_before; bool pending_after; pending_before = true; sc = rtems_interrupt_is_pending( ctx->vector, &pending_before ); T_rsc_success( sc ); sc = rtems_interrupt_raise_on( ctx->vector, ctx->cpu_index ); T_rsc( sc, RTEMS_UNSATISFIED ); pending_after = !pending_before; sc = rtems_interrupt_is_pending( ctx->vector, &pending_after ); T_rsc_success( sc ); T_eq( pending_before, pending_after ); } static void CheckRaiseOn( Context *ctx, const rtems_interrupt_attributes *attr, bool has_installed_entries ) { rtems_status_code sc; if ( !attr->can_raise_on ) { CheckUnsatisfied( ctx ); } else if ( has_installed_entries ) { /* We cannot test this vector, since it is used by a device driver */ } else if ( !attr->is_maskable ) { /* We can only safely test maskable interrupts */ } else if ( IsPending( ctx ) ) { /* * If there is already an interrupt pending, then it is probably raised * by a peripheral which we cannot control. */ } else if ( attr->can_disable && ( attr->can_clear || attr->cleared_by_acknowledge ) ) { rtems_interrupt_entry entry; rtems_interrupt_level level; ctx->interrupt_count = 0; ctx->do_clear = attr->can_clear && !attr->cleared_by_acknowledge; rtems_interrupt_entry_initialize( &entry, EntryRoutine, ctx, "Info" ); sc = rtems_interrupt_entry_install( ctx->vector, RTEMS_INTERRUPT_UNIQUE, &entry ); T_rsc_success( sc ); if ( !IsPending( ctx) && ( attr->can_enable || IsEnabled( ctx ) ) ) { Disable( ctx ); RaiseOn( ctx ); /* * Some interrupt controllers will signal a pending interrupt if it is * disabled (for example ARM GIC), others will not signal a pending * interrupt if it is disabled (for example Freescale/NXP MPIC). */ (void) IsPending( ctx ); sc = rtems_interrupt_vector_enable( ctx->vector ); T_rsc_success( sc ); while ( ctx->interrupt_count < 1 ) { /* Wait */ } T_false( IsPending( ctx ) ); rtems_interrupt_local_disable( level ); RaiseOn( ctx ); T_true( IsPending( ctx ) ); rtems_interrupt_local_enable( level ); while ( ctx->interrupt_count < 2 ) { /* Wait */ } T_false( IsPending( ctx ) ); } sc = rtems_interrupt_entry_remove( ctx->vector, &entry ); T_rsc_success( sc ); } } static void RtemsIntrReqRaiseOn_Pre_Vector_Prepare( RtemsIntrReqRaiseOn_Context *ctx, RtemsIntrReqRaiseOn_Pre_Vector state ) { switch ( state ) { case RtemsIntrReqRaiseOn_Pre_Vector_Valid: { /* * While the ``vector`` parameter is associated with an interrupt vector. */ ctx->valid_vector = true; break; } case RtemsIntrReqRaiseOn_Pre_Vector_Invalid: { /* * While the ``vector`` parameter is not associated with an interrupt * vector. */ ctx->valid_vector = false; break; } case RtemsIntrReqRaiseOn_Pre_Vector_NA: break; } } static void RtemsIntrReqRaiseOn_Pre_CPU_Prepare( RtemsIntrReqRaiseOn_Context *ctx, RtemsIntrReqRaiseOn_Pre_CPU state ) { switch ( state ) { case RtemsIntrReqRaiseOn_Pre_CPU_Online: { /* * While the ``cpu_index`` parameter is associated with a configured * processor, while the processor specified by ``cpu_index`` is not * online. */ ctx->cpu_index = 0; break; } case RtemsIntrReqRaiseOn_Pre_CPU_NotOnline: { /* * While the ``cpu_index`` parameter is associated with a configured * processor, while the processor specified by ``cpu_index`` is not * online. */ ctx->cpu_index = 4; break; } case RtemsIntrReqRaiseOn_Pre_CPU_NotConf: { /* * While the ``cpu_index`` parameter is not associated with a configured * processor. */ ctx->cpu_index = 5; break; } case RtemsIntrReqRaiseOn_Pre_CPU_NA: break; } } static void RtemsIntrReqRaiseOn_Pre_CanRaiseOn_Prepare( RtemsIntrReqRaiseOn_Context *ctx, RtemsIntrReqRaiseOn_Pre_CanRaiseOn state ) { switch ( state ) { case RtemsIntrReqRaiseOn_Pre_CanRaiseOn_Yes: { /* * While the interrupt vector associated with the ``vector`` parameter * can be raised on a processor. */ /* * This pre-condition depends on the attributes of an interrupt vector, * see CheckRaiseOn(). */ break; } case RtemsIntrReqRaiseOn_Pre_CanRaiseOn_No: { /* * While the interrupt vector associated with the ``vector`` parameter * cannot be raised on a processor. */ /* * This pre-condition depends on the attributes of an interrupt vector, * see CheckRaiseOn(). */ break; } case RtemsIntrReqRaiseOn_Pre_CanRaiseOn_NA: break; } } static void RtemsIntrReqRaiseOn_Post_Status_Check( RtemsIntrReqRaiseOn_Context *ctx, RtemsIntrReqRaiseOn_Post_Status state ) { switch ( state ) { case RtemsIntrReqRaiseOn_Post_Status_Ok: { /* * The return status of rtems_interrupt_raise_on() shall be * RTEMS_SUCCESSFUL. */ /* Validation is done by CheckRaiseOn() for each interrupt vector */ break; } case RtemsIntrReqRaiseOn_Post_Status_InvId: { /* * The return status of rtems_interrupt_raise_on() shall be * RTEMS_INVALID_ID. */ T_rsc( ctx->status, RTEMS_INVALID_ID ); break; } case RtemsIntrReqRaiseOn_Post_Status_NotConf: { /* * The return status of rtems_interrupt_raise_on() shall be * RTEMS_NOT_CONFIGURED. */ T_rsc( ctx->status, RTEMS_NOT_CONFIGURED ); break; } case RtemsIntrReqRaiseOn_Post_Status_IncStat: { /* * The return status of rtems_interrupt_raise_on() shall be * RTEMS_INCORRECT_STATE. */ T_rsc( ctx->status, RTEMS_INCORRECT_STATE ); break; } case RtemsIntrReqRaiseOn_Post_Status_Unsat: { /* * The return status of rtems_interrupt_raise_on() shall be * RTEMS_UNSATISFIED. */ /* Validation is done by CheckRaiseOn() for each interrupt vector */ break; } case RtemsIntrReqRaiseOn_Post_Status_NA: break; } } static void RtemsIntrReqRaiseOn_Post_Pending_Check( RtemsIntrReqRaiseOn_Context *ctx, RtemsIntrReqRaiseOn_Post_Pending state ) { switch ( state ) { case RtemsIntrReqRaiseOn_Post_Pending_Yes: { /* * The interrupt associated with the interrupt vector specified by * ``vector`` shall be made pending by the rtems_interrupt_raise_on() * call. */ /* Validation is done by CheckRaiseOn() for each interrupt vector */ break; } case RtemsIntrReqRaiseOn_Post_Pending_No: { /* * The interrupt associated with the interrupt vector specified by * ``vector`` shall not be made pending by the rtems_interrupt_raise_on() * call. */ /* Validation is done by CheckRaiseOn() for each interrupt vector */ break; } case RtemsIntrReqRaiseOn_Post_Pending_NA: break; } } static void RtemsIntrReqRaiseOn_Setup( RtemsIntrReqRaiseOn_Context *ctx ) { ctx->some_vector = GetValidInterruptVectorNumber( NULL ); } static void RtemsIntrReqRaiseOn_Setup_Wrap( void *arg ) { RtemsIntrReqRaiseOn_Context *ctx; ctx = arg; ctx->Map.in_action_loop = false; RtemsIntrReqRaiseOn_Setup( ctx ); } static void RtemsIntrReqRaiseOn_Action( RtemsIntrReqRaiseOn_Context *ctx ) { if ( ctx->valid_vector && ctx->cpu_index == 0 ) { for ( ctx->vector = 0; ctx->vector < BSP_INTERRUPT_VECTOR_COUNT; ++ctx->vector ) { rtems_status_code sc; rtems_interrupt_attributes attr; bool has_installed_entries; memset( &attr, 0, sizeof( attr ) ); sc = rtems_interrupt_get_attributes( ctx->vector, &attr ); if ( sc == RTEMS_INVALID_ID ) { continue; } T_rsc_success( sc ); has_installed_entries = HasInterruptVectorEntriesInstalled( ctx->vector ); CheckRaiseOn( ctx, &attr, has_installed_entries ); } } else { if ( ctx->valid_vector ) { ctx->vector = ctx->some_vector; } else { ctx->vector = BSP_INTERRUPT_VECTOR_COUNT; } ctx->status = rtems_interrupt_raise_on( ctx->vector, ctx->cpu_index ); } } static const RtemsIntrReqRaiseOn_Entry RtemsIntrReqRaiseOn_Entries[] = { { 0, 0, 0, 1, RtemsIntrReqRaiseOn_Post_Status_InvId, RtemsIntrReqRaiseOn_Post_Pending_NA }, #if defined(RTEMS_SMP) { 0, 0, 0, 0, RtemsIntrReqRaiseOn_Post_Status_IncStat, RtemsIntrReqRaiseOn_Post_Pending_No }, #else { 1, 0, 0, 0, RtemsIntrReqRaiseOn_Post_Status_NA, RtemsIntrReqRaiseOn_Post_Pending_NA }, #endif { 0, 0, 0, 0, RtemsIntrReqRaiseOn_Post_Status_NotConf, RtemsIntrReqRaiseOn_Post_Pending_No }, #if defined(RTEMS_SMP) { 0, 0, 0, 1, RtemsIntrReqRaiseOn_Post_Status_InvId, RtemsIntrReqRaiseOn_Post_Pending_NA }, #else { 1, 0, 0, 0, RtemsIntrReqRaiseOn_Post_Status_NA, RtemsIntrReqRaiseOn_Post_Pending_NA }, #endif { 0, 0, 0, 0, RtemsIntrReqRaiseOn_Post_Status_Ok, RtemsIntrReqRaiseOn_Post_Pending_Yes }, { 0, 0, 0, 0, RtemsIntrReqRaiseOn_Post_Status_Unsat, RtemsIntrReqRaiseOn_Post_Pending_No } }; static const uint8_t RtemsIntrReqRaiseOn_Map[] = { 4, 5, 1, 1, 2, 2, 0, 0, 3, 3, 0, 0 }; static size_t RtemsIntrReqRaiseOn_Scope( void *arg, char *buf, size_t n ) { RtemsIntrReqRaiseOn_Context *ctx; ctx = arg; if ( ctx->Map.in_action_loop ) { return T_get_scope( RtemsIntrReqRaiseOn_PreDesc, buf, n, ctx->Map.pcs ); } return 0; } static T_fixture RtemsIntrReqRaiseOn_Fixture = { .setup = RtemsIntrReqRaiseOn_Setup_Wrap, .stop = NULL, .teardown = NULL, .scope = RtemsIntrReqRaiseOn_Scope, .initial_context = &RtemsIntrReqRaiseOn_Instance }; static inline RtemsIntrReqRaiseOn_Entry RtemsIntrReqRaiseOn_PopEntry( RtemsIntrReqRaiseOn_Context *ctx ) { size_t index; index = ctx->Map.index; ctx->Map.index = index + 1; return RtemsIntrReqRaiseOn_Entries[ RtemsIntrReqRaiseOn_Map[ index ] ]; } static void RtemsIntrReqRaiseOn_SetPreConditionStates( RtemsIntrReqRaiseOn_Context *ctx ) { ctx->Map.pcs[ 0 ] = ctx->Map.pci[ 0 ]; ctx->Map.pcs[ 1 ] = ctx->Map.pci[ 1 ]; if ( ctx->Map.entry.Pre_CanRaiseOn_NA ) { ctx->Map.pcs[ 2 ] = RtemsIntrReqRaiseOn_Pre_CanRaiseOn_NA; } else { ctx->Map.pcs[ 2 ] = ctx->Map.pci[ 2 ]; } } static void RtemsIntrReqRaiseOn_TestVariant( RtemsIntrReqRaiseOn_Context *ctx ) { RtemsIntrReqRaiseOn_Pre_Vector_Prepare( ctx, ctx->Map.pcs[ 0 ] ); RtemsIntrReqRaiseOn_Pre_CPU_Prepare( ctx, ctx->Map.pcs[ 1 ] ); RtemsIntrReqRaiseOn_Pre_CanRaiseOn_Prepare( ctx, ctx->Map.pcs[ 2 ] ); RtemsIntrReqRaiseOn_Action( ctx ); RtemsIntrReqRaiseOn_Post_Status_Check( ctx, ctx->Map.entry.Post_Status ); RtemsIntrReqRaiseOn_Post_Pending_Check( ctx, ctx->Map.entry.Post_Pending ); } /** * @fn void T_case_body_RtemsIntrReqRaiseOn( void ) */ T_TEST_CASE_FIXTURE( RtemsIntrReqRaiseOn, &RtemsIntrReqRaiseOn_Fixture ) { RtemsIntrReqRaiseOn_Context *ctx; ctx = T_fixture_context(); ctx->Map.in_action_loop = true; ctx->Map.index = 0; for ( ctx->Map.pci[ 0 ] = RtemsIntrReqRaiseOn_Pre_Vector_Valid; ctx->Map.pci[ 0 ] < RtemsIntrReqRaiseOn_Pre_Vector_NA; ++ctx->Map.pci[ 0 ] ) { for ( ctx->Map.pci[ 1 ] = RtemsIntrReqRaiseOn_Pre_CPU_Online; ctx->Map.pci[ 1 ] < RtemsIntrReqRaiseOn_Pre_CPU_NA; ++ctx->Map.pci[ 1 ] ) { for ( ctx->Map.pci[ 2 ] = RtemsIntrReqRaiseOn_Pre_CanRaiseOn_Yes; ctx->Map.pci[ 2 ] < RtemsIntrReqRaiseOn_Pre_CanRaiseOn_NA; ++ctx->Map.pci[ 2 ] ) { ctx->Map.entry = RtemsIntrReqRaiseOn_PopEntry( ctx ); if ( ctx->Map.entry.Skip ) { continue; } RtemsIntrReqRaiseOn_SetPreConditionStates( ctx ); RtemsIntrReqRaiseOn_TestVariant( ctx ); } } } } /** @} */