/** * @brief A heuristic example to demonstrate how the postponed jobs are handled. * * Given two tasks with implicit deadline under fixed-priority scheudling. * Task 1 has (6, 10) and task 2 has (1, 2), where (execution time, deadline/period). * To force deadline misses, we reverse the rate-monotonic priority assignment * and only execute the highest priority task twice. * * In the original implementation in v4.11, no matter how many periods are * expired, RMS manager only releases a job with a shifted deadline assignment * in the watchdog. As the results written in sprmsched01.scn, we can see that * the timeout of task 2 period will be detected right after Job3 of Task2 is finished. * If the overrun handling is correct, the status of task 2 period will return back to * RTEMS_SUCCESSFUL after periodically releasing those postponed jobs (the last one is Job 9). * * Otherwise, we can see that the release time of Job 4 is no longer periodic, * and the RTEMS returns back to RTEMS_SUCCESSFUL right after Job 4 is finished * without releasing all the other postponed jobs. * */ /* * COPYRIGHT (c) 2016 Kuan-Hsun Chen. * * The license and distribution terms for this file may be * found in the file LICENSE in this distribution or at * http://www.rtems.com/license/LICENSE. */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include #include #include #include #include "tmacros.h" const char rtems_test_name[] = "SPRMSCHED 1"; static const uint32_t Periods[] = { 10000, 2000 }; static const uint32_t Iterations[] = { 6000, 1000 }; static const rtems_name Task_name[] = { rtems_build_name( 'T', 'A', '1', ' ' ), rtems_build_name( 'T', 'A', '2', ' ' ) }; static const rtems_task_priority Prio[3] = { 2, 5 }; static const uint32_t testnumber = 11; /* stop condition */ static uint32_t tsk_counter[] = { 0, 0 }; static rtems_id Task_id[ 2 ]; /** * @brief Task body */ static rtems_task Task( rtems_task_argument argument ) { rtems_status_code status; rtems_id RM_period; rtems_id selfid=rtems_task_self(); uint32_t start, end, flag=0, index; rtems_counter_ticks t0; t0 = rtems_counter_nanoseconds_to_ticks( 1000000 ); //1ms ticks counter /*create period*/ status = rtems_rate_monotonic_create( Task_name[ argument ], &RM_period ); directive_failed( status, "rtems_rate_monotonic_create" ); while ( FOREVER ) { status = rtems_rate_monotonic_period( RM_period, Periods[ argument ] ); //directive_failed( status, "rtems_rate_monotonic_period" ); let TIMEOUT pass if( argument == 1 && flag == 0 && status == RTEMS_TIMEOUT ){ flag = 1; printf( "RTEMS_TIMEOUT\n" ); } else if ( flag == 1 && status == RTEMS_SUCCESSFUL ) { flag = 0; printf( "RTEMS_SUCCESSFUL\n" ); } start = rtems_clock_get_ticks_since_boot(); if ( argument == 1 ) printf( "Job %" PRIu32 " Task %" PRIuPTR " starts at tick %" PRIu32 ".\n", tsk_counter[ argument ]+1, argument, start ); else printf( "Task %" PRIuPTR " starts at tick %" PRIu32 ".\n", argument, start ); for( index = 0; index < Iterations[ argument ]; index++ ){ rtems_counter_delay_ticks( t0 ); } end = rtems_clock_get_ticks_since_boot(); printf( " Job %" PRIu32" Task %" PRIuPTR " ends at tick %" PRIu32".\n", tsk_counter[ argument ]+1, argument, end ); if( argument == 1 ){ if( tsk_counter[ argument ] == testnumber ){ TEST_END(); status = rtems_rate_monotonic_delete( RM_period ); directive_failed( status, "rtems_rate_monotonic_delete" ); rtems_test_exit( 0 ); } } tsk_counter[ argument ]+=1; if ( argument == 0 ){ if( tsk_counter[ argument ] == 2 ){ status = rtems_rate_monotonic_delete( RM_period ); directive_failed( status, "rtems_rate_monotonic_delete" ); status = rtems_task_delete( selfid ); directive_failed( status, "rtems_task_delete" ); } } } } static rtems_task Init( rtems_task_argument argument ) { uint32_t index; rtems_status_code status; TEST_BEGIN(); printf( "\nTicks per second in your system: %" PRIu32 "\n", rtems_clock_get_ticks_per_second() ); /* Create two tasks */ for ( index = 0; index < RTEMS_ARRAY_SIZE(Task_name); ++index ){ status = rtems_task_create( Task_name[ index ], Prio[index], RTEMS_MINIMUM_STACK_SIZE, RTEMS_DEFAULT_MODES, RTEMS_DEFAULT_ATTRIBUTES, &Task_id[ index ] ); directive_failed( status, "rtems_task_create loop" ); } /* After creating the periods for tasks, start to run them sequencially. */ for ( index = 0; index < RTEMS_ARRAY_SIZE(Task_name); ++index ){ status = rtems_task_start( Task_id[ index ], Task, index); directive_failed( status, "rtems_task_start loop"); } status = rtems_task_delete( RTEMS_SELF ); directive_failed( status, "rtems_task_delete of RTEMS_SELF" ); } #define CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER #define CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER #define CONFIGURE_MICROSECONDS_PER_TICK 1000 #define CONFIGURE_MAXIMUM_TASKS 3 #define CONFIGURE_MAXIMUM_PERIODS 2 #define CONFIGURE_RTEMS_INIT_TASKS_TABLE #define CONFIGURE_INITIAL_EXTENSIONS \ RTEMS_TEST_INITIAL_EXTENSION #define CONFIGURE_INIT #include