/* * Copyright (c) 2014-2015 embedded brains GmbH. All rights reserved. * * embedded brains GmbH * Dornierstr. 4 * 82178 Puchheim * Germany * * * The license and distribution terms for this file may be * found in the file LICENSE in this distribution or at * http://www.rtems.org/license/LICENSE. */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include #include #include #include #include #include #include "tmacros.h" const char rtems_test_name[] = "SMPSCHEDULER 3"; #define CPU_MAX 3 #define SCHED_NAME(i) rtems_build_name(' ', ' ', ' ', (char) ('A' + (i))) typedef struct { rtems_id barrier_id; rtems_id task_id[CPU_MAX]; uint32_t cpu_index[CPU_MAX]; } test_context; static test_context test_instance; static Scheduler_SMP_Node *get_scheduler_node(Thread_Control *thread) { return _Scheduler_SMP_Node_downcast(_Thread_Scheduler_get_home_node(thread)); } static void apply_priority( Thread_Control *thread, Priority_Control new_priority, bool prepend_it, Thread_queue_Context *queue_context ) { _Thread_Wait_acquire(thread, queue_context); _Thread_queue_Context_clear_priority_updates(queue_context); _Thread_Priority_change( thread, &thread->Real_priority, new_priority, prepend_it, queue_context ); _Thread_Wait_release(thread, queue_context); } static void change_priority( Thread_Control *thread, Priority_Control new_priority, bool prepend_it ) { Thread_queue_Context queue_context; apply_priority(thread, new_priority, prepend_it, &queue_context); _Thread_Priority_update(&queue_context); } static void barrier_wait(test_context *ctx) { rtems_status_code sc; sc = rtems_barrier_wait(ctx->barrier_id, RTEMS_NO_TIMEOUT); rtems_test_assert(sc == RTEMS_SUCCESSFUL); } static void task(rtems_task_argument arg) { rtems_test_assert(0); } static rtems_id start_task(rtems_task_priority prio) { rtems_status_code sc; rtems_id task_id; sc = rtems_task_create( rtems_build_name('T', 'A', 'S', 'K'), prio, RTEMS_MINIMUM_STACK_SIZE, RTEMS_DEFAULT_MODES, RTEMS_DEFAULT_ATTRIBUTES, &task_id ); rtems_test_assert(sc == RTEMS_SUCCESSFUL); sc = rtems_task_start(task_id, task, 0); rtems_test_assert(sc == RTEMS_SUCCESSFUL); return task_id; } static Thread_Control *get_thread_by_id(rtems_id task_id) { ISR_lock_Context lock_context; Thread_Control *thread; thread = _Thread_Get(task_id, &lock_context); rtems_test_assert(thread != NULL); _ISR_lock_ISR_enable(&lock_context); return thread; } static void test_case_change_priority( Thread_Control *executing, Scheduler_SMP_Node *executing_node, Scheduler_SMP_Node_state start_state, Priority_Control prio, bool prepend_it, Scheduler_SMP_Node_state new_state ) { Per_CPU_Control *cpu_self; cpu_self = _Thread_Dispatch_disable(); switch (start_state) { case SCHEDULER_SMP_NODE_SCHEDULED: change_priority(executing, 1, true); break; case SCHEDULER_SMP_NODE_READY: change_priority(executing, 4, true); break; default: rtems_test_assert(0); break; } rtems_test_assert(executing_node->state == start_state); change_priority(executing, prio, prepend_it); rtems_test_assert(executing_node->state == new_state); change_priority(executing, 1, true); rtems_test_assert(executing_node->state == SCHEDULER_SMP_NODE_SCHEDULED); _Thread_Dispatch_enable( cpu_self ); } static const Scheduler_SMP_Node_state states[2] = { SCHEDULER_SMP_NODE_SCHEDULED, SCHEDULER_SMP_NODE_READY }; static const Priority_Control priorities[2] = { 2, 5 }; static const bool prepend_it[2] = { true, false }; static void test_change_priority(void) { rtems_status_code sc; rtems_id task_id; Thread_Control *executing; Scheduler_SMP_Node *executing_node; size_t i; size_t j; size_t k; task_id = start_task(3); executing = _Thread_Get_executing(); executing_node = get_scheduler_node(executing); for (i = 0; i < RTEMS_ARRAY_SIZE(states); ++i) { for (j = 0; j < RTEMS_ARRAY_SIZE(priorities); ++j) { for (k = 0; k < RTEMS_ARRAY_SIZE(prepend_it); ++k) { test_case_change_priority( executing, executing_node, states[i], priorities[j], prepend_it[k], states[j] ); } } } sc = rtems_task_delete(task_id); rtems_test_assert(sc == RTEMS_SUCCESSFUL); } static void update_priority_op( Thread_Control *thread, Scheduler_SMP_Node *scheduler_node, Priority_Control new_priority, bool prepend_it ) { const Scheduler_Control *scheduler; ISR_lock_Context state_lock_context; ISR_lock_Context scheduler_lock_context; Thread_queue_Context queue_context; apply_priority(thread, new_priority, prepend_it, &queue_context); _Thread_State_acquire( thread, &state_lock_context ); scheduler = _Thread_Scheduler_get_home( thread ); _Scheduler_Acquire_critical( scheduler, &scheduler_lock_context ); (*scheduler->Operations.update_priority)( scheduler, thread, &scheduler_node->Base ); _Scheduler_Release_critical( scheduler, &scheduler_lock_context ); _Thread_State_release( thread, &state_lock_context ); } static void test_case_update_priority_op( Thread_Control *executing, Scheduler_SMP_Node *executing_node, Thread_Control *other, Scheduler_SMP_Node_state start_state, Priority_Control prio, bool prepend_it, Scheduler_SMP_Node_state new_state ) { Per_CPU_Control *cpu_self; cpu_self = _Thread_Dispatch_disable(); switch (start_state) { case SCHEDULER_SMP_NODE_SCHEDULED: change_priority(executing, 1, true); break; case SCHEDULER_SMP_NODE_READY: change_priority(executing, 4, true); break; default: rtems_test_assert(0); break; } rtems_test_assert(executing_node->state == start_state); update_priority_op(executing, executing_node, prio, prepend_it); rtems_test_assert(executing_node->state == new_state); if (start_state != new_state) { switch (start_state) { case SCHEDULER_SMP_NODE_SCHEDULED: rtems_test_assert(cpu_self->heir == other); break; case SCHEDULER_SMP_NODE_READY: rtems_test_assert(cpu_self->heir == executing); break; default: rtems_test_assert(0); break; } } change_priority(executing, 1, true); rtems_test_assert(executing_node->state == SCHEDULER_SMP_NODE_SCHEDULED); _Thread_Dispatch_enable( cpu_self ); } static void test_update_priority_op(void) { rtems_status_code sc; rtems_id task_id; Thread_Control *executing; Scheduler_SMP_Node *executing_node; Thread_Control *other; size_t i; size_t j; size_t k; task_id = start_task(3); executing = _Thread_Get_executing(); executing_node = get_scheduler_node(executing); other = get_thread_by_id(task_id); for (i = 0; i < RTEMS_ARRAY_SIZE(states); ++i) { for (j = 0; j < RTEMS_ARRAY_SIZE(priorities); ++j) { for (k = 0; k < RTEMS_ARRAY_SIZE(prepend_it); ++k) { test_case_update_priority_op( executing, executing_node, other, states[i], priorities[j], prepend_it[k], states[j] ); } } } sc = rtems_task_delete(task_id); rtems_test_assert(sc == RTEMS_SUCCESSFUL); } static bool yield_op( Thread_Control *thread, Scheduler_SMP_Node *scheduler_node ) { const Scheduler_Control *scheduler; ISR_lock_Context state_lock_context; ISR_lock_Context scheduler_lock_context; bool needs_help; _Thread_State_acquire( thread, &state_lock_context ); scheduler = _Thread_Scheduler_get_home( thread ); _Scheduler_Acquire_critical( scheduler, &scheduler_lock_context ); needs_help = (*scheduler->Operations.yield)( scheduler, thread, &scheduler_node->Base ); _Scheduler_Release_critical( scheduler, &scheduler_lock_context ); _Thread_State_release( thread, &state_lock_context ); return needs_help; } static void test_case_yield_op( Thread_Control *executing, Scheduler_SMP_Node *executing_node, Thread_Control *other, Scheduler_SMP_Node_state start_state, Scheduler_SMP_Node_state new_state ) { bool needs_help; Per_CPU_Control *cpu_self; cpu_self = _Thread_Dispatch_disable(); change_priority(executing, 4, false); change_priority(other, 4, false); switch (start_state) { case SCHEDULER_SMP_NODE_SCHEDULED: switch (new_state) { case SCHEDULER_SMP_NODE_SCHEDULED: change_priority(executing, 2, false); change_priority(other, 3, false); break; case SCHEDULER_SMP_NODE_READY: change_priority(executing, 2, false); change_priority(other, 2, false); break; default: rtems_test_assert(0); break; } break; case SCHEDULER_SMP_NODE_READY: switch (new_state) { case SCHEDULER_SMP_NODE_SCHEDULED: rtems_test_assert(0); break; case SCHEDULER_SMP_NODE_READY: change_priority(executing, 3, false); change_priority(other, 2, false); break; default: rtems_test_assert(0); break; } break; default: rtems_test_assert(0); break; } rtems_test_assert(executing_node->state == start_state); needs_help = yield_op(executing, executing_node); rtems_test_assert(executing_node->state == new_state); switch (new_state) { case SCHEDULER_SMP_NODE_SCHEDULED: rtems_test_assert(!needs_help); break; case SCHEDULER_SMP_NODE_READY: rtems_test_assert(needs_help); break; default: rtems_test_assert(0); break; } change_priority(executing, 1, true); rtems_test_assert(executing_node->state == SCHEDULER_SMP_NODE_SCHEDULED); _Thread_Dispatch_enable( cpu_self ); } static void test_yield_op(void) { rtems_status_code sc; rtems_id task_id; Thread_Control *executing; Scheduler_SMP_Node *executing_node; Thread_Control *other; size_t i; size_t j; task_id = start_task(2); executing = _Thread_Get_executing(); executing_node = get_scheduler_node(executing); other = get_thread_by_id(task_id); for (i = 0; i < RTEMS_ARRAY_SIZE(states); ++i) { for (j = 0; j < RTEMS_ARRAY_SIZE(states); ++j) { if ( states[i] != SCHEDULER_SMP_NODE_READY || states[j] != SCHEDULER_SMP_NODE_SCHEDULED ) { test_case_yield_op( executing, executing_node, other, states[i], states[j] ); } } } sc = rtems_task_delete(task_id); rtems_test_assert(sc == RTEMS_SUCCESSFUL); } static void block_op( Thread_Control *thread, Scheduler_SMP_Node *scheduler_node ) { const Scheduler_Control *scheduler; ISR_lock_Context state_lock_context; ISR_lock_Context scheduler_lock_context; _Thread_State_acquire( thread, &state_lock_context ); scheduler = _Thread_Scheduler_get_home( thread ); _Scheduler_Acquire_critical( scheduler, &scheduler_lock_context ); (*scheduler->Operations.block)(scheduler, thread, &scheduler_node->Base); _Scheduler_Release_critical( scheduler, &scheduler_lock_context ); _Thread_State_release( thread, &state_lock_context ); } static bool unblock_op( Thread_Control *thread, Scheduler_SMP_Node *scheduler_node ) { const Scheduler_Control *scheduler; ISR_lock_Context state_lock_context; ISR_lock_Context scheduler_lock_context; bool needs_help; _Thread_State_acquire( thread, &state_lock_context ); scheduler = _Thread_Scheduler_get_home( thread ); _Scheduler_Acquire_critical( scheduler, &scheduler_lock_context ); needs_help = (*scheduler->Operations.unblock)( scheduler, thread, &scheduler_node->Base ); _Scheduler_Release_critical( scheduler, &scheduler_lock_context ); _Thread_State_release( thread, &state_lock_context ); return needs_help; } static void test_case_unblock_op( Thread_Control *executing, Scheduler_SMP_Node *executing_node, Thread_Control *other, Scheduler_SMP_Node_state new_state ) { bool needs_help; Per_CPU_Control *cpu_self; cpu_self = _Thread_Dispatch_disable(); switch (new_state) { case SCHEDULER_SMP_NODE_SCHEDULED: change_priority(executing, 2, false); rtems_test_assert(executing_node->state == SCHEDULER_SMP_NODE_SCHEDULED); break; case SCHEDULER_SMP_NODE_READY: change_priority(executing, 4, false); rtems_test_assert(executing_node->state == SCHEDULER_SMP_NODE_READY); break; default: rtems_test_assert(0); break; } block_op(executing, executing_node); rtems_test_assert(executing_node->state == SCHEDULER_SMP_NODE_BLOCKED); needs_help = unblock_op(executing, executing_node); rtems_test_assert(executing_node->state == new_state); switch (new_state) { case SCHEDULER_SMP_NODE_SCHEDULED: rtems_test_assert(!needs_help); break; case SCHEDULER_SMP_NODE_READY: rtems_test_assert(needs_help); break; default: rtems_test_assert(0); break; } change_priority(executing, 1, true); rtems_test_assert(executing_node->state == SCHEDULER_SMP_NODE_SCHEDULED); _Thread_Dispatch_enable( cpu_self ); } static void test_unblock_op(void) { rtems_status_code sc; rtems_id task_id; Thread_Control *executing; Scheduler_SMP_Node *executing_node; Thread_Control *other; size_t i; task_id = start_task(3); executing = _Thread_Get_executing(); executing_node = get_scheduler_node(executing); other = get_thread_by_id(task_id); for (i = 0; i < RTEMS_ARRAY_SIZE(states); ++i) { test_case_unblock_op( executing, executing_node, other, states[i] ); } sc = rtems_task_delete(task_id); rtems_test_assert(sc == RTEMS_SUCCESSFUL); } static void tests(void) { test_change_priority(); test_update_priority_op(); test_yield_op(); test_unblock_op(); } static void test_task(rtems_task_argument arg) { test_context *ctx = &test_instance; tests(); ctx->cpu_index[arg] = rtems_get_current_processor(); barrier_wait(ctx); rtems_task_suspend(RTEMS_SELF); rtems_test_assert(0); } static void done(uint32_t cpu_index) { printf("test done on processor %" PRIu32 "\n", cpu_index); } static void Init(rtems_task_argument arg) { test_context *ctx = &test_instance; rtems_status_code sc; rtems_resource_snapshot snapshot; uint32_t cpu_count = rtems_get_processor_count(); uint32_t cpu_index; TEST_BEGIN(); rtems_resource_snapshot_take(&snapshot); sc = rtems_barrier_create( rtems_build_name('B', 'A', 'R', 'I'), RTEMS_BARRIER_AUTOMATIC_RELEASE, cpu_count, &ctx->barrier_id ); rtems_test_assert(sc == RTEMS_SUCCESSFUL); for (cpu_index = 1; cpu_index < cpu_count; ++cpu_index) { rtems_id scheduler_id; sc = rtems_task_create( rtems_build_name('T', 'A', 'S', 'K'), 255, RTEMS_MINIMUM_STACK_SIZE, RTEMS_DEFAULT_MODES, RTEMS_DEFAULT_ATTRIBUTES, &ctx->task_id[cpu_index] ); rtems_test_assert(sc == RTEMS_SUCCESSFUL); sc = rtems_scheduler_ident(SCHED_NAME(cpu_index), &scheduler_id); rtems_test_assert(sc == RTEMS_SUCCESSFUL); sc = rtems_task_set_scheduler(ctx->task_id[cpu_index], scheduler_id, 1); rtems_test_assert(sc == RTEMS_SUCCESSFUL); sc = rtems_task_start(ctx->task_id[cpu_index], test_task, cpu_index); rtems_test_assert(sc == RTEMS_SUCCESSFUL); } tests(); barrier_wait(ctx); sc = rtems_barrier_delete(ctx->barrier_id); rtems_test_assert(sc == RTEMS_SUCCESSFUL); done(0); for (cpu_index = 1; cpu_index < cpu_count; ++cpu_index) { sc = rtems_task_delete(ctx->task_id[cpu_index]); rtems_test_assert(sc == RTEMS_SUCCESSFUL); rtems_test_assert(ctx->cpu_index[cpu_index] == cpu_index); done(cpu_index); } rtems_test_assert(rtems_resource_snapshot_check(&snapshot)); TEST_END(); rtems_test_exit(0); } #define CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER #define CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER #define CONFIGURE_SMP_APPLICATION #define CONFIGURE_SMP_MAXIMUM_PROCESSORS CPU_MAX #define CONFIGURE_MAXIMUM_PRIORITY 255 #define CONFIGURE_SCHEDULER_PRIORITY_SMP #define CONFIGURE_SCHEDULER_SIMPLE_SMP #define CONFIGURE_SCHEDULER_PRIORITY_AFFINITY_SMP #include RTEMS_SCHEDULER_CONTEXT_PRIORITY_SMP(a, CONFIGURE_MAXIMUM_PRIORITY + 1); RTEMS_SCHEDULER_CONTEXT_SIMPLE_SMP(b); RTEMS_SCHEDULER_CONTEXT_PRIORITY_AFFINITY_SMP( c, CONFIGURE_MAXIMUM_PRIORITY + 1 ); #define CONFIGURE_SCHEDULER_CONTROLS \ RTEMS_SCHEDULER_CONTROL_PRIORITY_SMP(a, SCHED_NAME(0)), \ RTEMS_SCHEDULER_CONTROL_SIMPLE_SMP(b, SCHED_NAME(1)), \ RTEMS_SCHEDULER_CONTROL_PRIORITY_AFFINITY_SMP(c, SCHED_NAME(2)) #define CONFIGURE_SMP_SCHEDULER_ASSIGNMENTS \ RTEMS_SCHEDULER_ASSIGN(0, RTEMS_SCHEDULER_ASSIGN_PROCESSOR_MANDATORY), \ RTEMS_SCHEDULER_ASSIGN(1, RTEMS_SCHEDULER_ASSIGN_PROCESSOR_OPTIONAL), \ RTEMS_SCHEDULER_ASSIGN(2, RTEMS_SCHEDULER_ASSIGN_PROCESSOR_OPTIONAL) #define CONFIGURE_MAXIMUM_TASKS 6 #define CONFIGURE_MAXIMUM_BARRIERS 1 #define CONFIGURE_INITIAL_EXTENSIONS RTEMS_TEST_INITIAL_EXTENSION #define CONFIGURE_RTEMS_INIT_TASKS_TABLE #define CONFIGURE_INIT #include