/* SPDX-License-Identifier: BSD-2-Clause */ /* * COPYRIGHT (c) 1989-2012. * On-Line Applications Research Corporation (OAR). * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include #include #include #include "pmacros.h" #include "pritime.h" #include #include const char rtems_test_name[] = "PSXCLOCK"; static void check_enosys(int status) { if ( (status == -1) && (errno == ENOSYS) ) return; puts( "ERROR -- did not return ENOSYS as expected" ); rtems_test_exit(0); } static void wait_ticks( rtems_interval ticks ) { /* * Avoid any clock related sleep calls */ rtems_test_assert( rtems_task_wake_after( ticks ) == RTEMS_SUCCESSFUL ); } struct clock_context; typedef struct clock_context clock_context; typedef void (*clock_sleeper)(clock_context* ctx); struct clock_context { const char* name; int instance; rtems_id tid; int counter; int result; rtems_interval ticks; struct timespec tspec; clock_sleeper sleeper; }; static void clock_context_init( clock_context* ctx, const char* name, int instance, time_t secs, long nsecs, clock_sleeper sleeper) { memset( ctx, 0, sizeof( *ctx ) ); ctx->name = name; ctx->instance = instance; ctx->tspec.tv_sec = secs; ctx->tspec.tv_nsec = nsecs; ctx->sleeper = sleeper; } static void test_nanosleep( clock_context* ctx ) { if ( nanosleep ( &ctx->tspec, NULL ) < 0 ) { ctx->result = errno; } } static void test_clock_nanosleep_realtime( clock_context* ctx ) { if ( clock_nanosleep ( CLOCK_REALTIME, 0, &ctx->tspec, NULL ) < 0 ) { ctx->result = errno; } } static void test_clock_nanosleep_monotonic( clock_context* ctx ) { if ( clock_nanosleep ( CLOCK_MONOTONIC, 0, &ctx->tspec, NULL ) < 0 ) { ctx->result = errno; } } static void test_clock_check( clock_context* ctx, const rtems_interval ticks_per_sec ) { const long tick_period_nsec = 1000000000LLU / ticks_per_sec; rtems_interval ticks = (((ctx->tspec.tv_sec * 1000000000LLU) + ctx->tspec.tv_nsec) / tick_period_nsec) + 1; rtems_test_assert( ctx->result == 0 ); printf( "clock: %s: sec=%" PRIdtime_t" nsec=%li ticks=%u expected-ticks=%u\n", ctx->name, ctx->tspec.tv_sec, ctx->tspec.tv_nsec, ctx->ticks, ticks); rtems_test_assert( ctx->ticks == ticks ); } static void task_clock( rtems_task_argument arg ) { clock_context* ctx = (clock_context*) arg; rtems_interval start = rtems_clock_get_ticks_since_boot(); rtems_interval end; ctx->result = 0; ctx->sleeper( ctx ); end = rtems_clock_get_ticks_since_boot(); ctx->ticks = end - start; ++ctx->counter; rtems_task_delete( RTEMS_SELF ); } static void test_start_task( clock_context* ctx ) { rtems_status_code sc; sc = rtems_task_create( rtems_build_name( 'C', 'R', 'T', '0' + ctx->instance ), 1, RTEMS_MINIMUM_STACK_SIZE, RTEMS_DEFAULT_MODES, RTEMS_DEFAULT_ATTRIBUTES, &ctx->tid ); rtems_test_assert( sc == RTEMS_SUCCESSFUL ); sc = rtems_task_start( ctx->tid, task_clock, (rtems_task_argument) ctx ); rtems_test_assert( sc == RTEMS_SUCCESSFUL ); } static void test_settime_and_sleeping_step( int step ) { const rtems_interval ticks_per_sec = rtems_clock_get_ticks_per_second(); struct timespec tv; clock_context ns_ctx; clock_context cnr_ctx; clock_context cnm_ctx; printf( "\nClock settime while sleeping: step=%i\n", step ); clock_context_init( &ns_ctx, "nanosleep", 0, 0, 500000000, test_nanosleep ); clock_context_init( &cnr_ctx, "clock_nanosleep(CLOCK_REALTIME)", 0, 0, 500000000, test_clock_nanosleep_realtime ); clock_context_init( &cnm_ctx, "clock_nanosleep(CLOCK_MONOTONIC)", 0, 0, 500000000, test_clock_nanosleep_monotonic ); /* Sat, 01 Jan 2000 00:00:00 GMT */ tv.tv_sec = 946684800; tv.tv_nsec = 0; rtems_test_assert( clock_settime( CLOCK_REALTIME, &tv ) == 0 ); wait_ticks( 1 ); test_start_task( &ns_ctx ); test_start_task( &cnr_ctx ); test_start_task( &cnm_ctx ); wait_ticks( 2 ); /* * Jump forwards 1 second */ if ( step != 0 ) { tv.tv_sec = 946684800 + step; tv.tv_nsec = 0; rtems_test_assert( clock_settime( CLOCK_REALTIME, &tv ) == 0 ); } while (true) { int counts = 0; wait_ticks( ticks_per_sec / 4 ); counts += ns_ctx.counter; counts += cnr_ctx.counter; counts += cnm_ctx.counter; if (counts == 3) { break; } } test_clock_check( &ns_ctx, ticks_per_sec ); test_clock_check( &cnr_ctx, ticks_per_sec ); test_clock_check( &cnm_ctx, ticks_per_sec ); } static void test_settime_and_sleeping( void ) { test_settime_and_sleeping_step( 0 ); test_settime_and_sleeping_step( 1 ); test_settime_and_sleeping_step( -1 ); } typedef struct { int counter; struct timespec delta; } nanosleep_contex; static void task_nanosleep( rtems_task_argument arg ) { nanosleep_contex *ctx; ctx = (nanosleep_contex *) arg; ++ctx->counter; nanosleep( &ctx->delta, NULL ); } static void test_far_future_nanosleep( void ) { rtems_status_code sc; rtems_id id; nanosleep_contex ctx; sc = rtems_task_create( rtems_build_name( 'N', 'A', 'N', 'O' ), 1, RTEMS_MINIMUM_STACK_SIZE, RTEMS_DEFAULT_MODES, RTEMS_DEFAULT_ATTRIBUTES, &id ); rtems_test_assert( sc == RTEMS_SUCCESSFUL ); ctx.counter = 0; ctx.delta.tv_sec = INT64_MAX; ctx.delta.tv_nsec = 999999999; sc = rtems_task_start( id, task_nanosleep, (rtems_task_argument) &ctx ); rtems_test_assert( sc == RTEMS_SUCCESSFUL ); sc = rtems_task_wake_after( RTEMS_YIELD_PROCESSOR ); rtems_test_assert( sc == RTEMS_SUCCESSFUL ); rtems_test_assert( ctx.counter == 1 ); sc = rtems_task_delete( id ); rtems_test_assert( sc == RTEMS_SUCCESSFUL ); } static rtems_task Init( rtems_task_argument argument ) { struct timespec tv; struct timespec tr; int sc; time_t seconds; time_t seconds1; unsigned int remaining; struct tm tm; struct timespec delay_request; TEST_BEGIN(); tm_build_time( &tm, TM_FRIDAY, TM_MAY, 24, 96, 11, 5, 0 ); /* error cases in clock_gettime and clock_settime */ puts( "Init: clock_gettime - EINVAL (NULL timespec)" ); errno = 0; sc = clock_gettime( CLOCK_REALTIME, NULL ); rtems_test_assert( sc == -1 ); rtems_test_assert( errno == EINVAL ); puts( "Init: clock_gettime - EINVAL (invalid clockid)" ); errno = 0; sc = clock_gettime( (clockid_t)-1, &tv ); rtems_test_assert( sc == -1 ); rtems_test_assert( errno == EINVAL ); puts( "Init: clock_settime - EINVAL (invalid clockid)" ); errno = 0; sc = clock_settime( (clockid_t)-1, &tv ); rtems_test_assert( sc == -1 ); rtems_test_assert( errno == EINVAL ); /* way back near the dawn of time :D */ tv.tv_sec = 1; tv.tv_nsec = 0; printf( ctime( &tv.tv_sec ) ); puts( "Init: clock_settime - before 1988 EINVAL" ); errno = 0; sc = clock_settime( CLOCK_REALTIME, &tv ); rtems_test_assert( sc == -1 ); rtems_test_assert( errno == EINVAL ); puts( "Init: clock_settime - invalid nanoseconds EINVAL" ); tv.tv_sec = 946681200; tv.tv_nsec = 2000000000; errno = 0; sc = clock_settime( CLOCK_REALTIME, &tv ); rtems_test_assert( sc == -1 ); rtems_test_assert( errno == EINVAL ); puts( "Init: clock_settime - 2400-01-01T00:00:00.999999999Z SUCCESSFUL" ); tv.tv_sec = 13569465600; tv.tv_nsec = 999999999; sc = clock_settime( CLOCK_REALTIME, &tv ); rtems_test_assert( sc == 0 ); puts( "Init: clock_settime - 2400-01-01T00:00:01Z EINVAL" ); tv.tv_sec = 13569465601; tv.tv_nsec = 0; errno = 0; sc = clock_settime( CLOCK_REALTIME, &tv ); rtems_test_assert( sc == -1 ); rtems_test_assert( errno == EINVAL ); puts( "Init: clock_settime - far future EINVAL" ); tv.tv_sec = 17179869184; tv.tv_nsec = 0; errno = 0; sc = clock_settime( CLOCK_REALTIME, &tv ); rtems_test_assert( sc == -1 ); rtems_test_assert( errno == EINVAL ); /* exercise clock_getres */ puts( "Init: clock_getres - EINVAL (invalid clockid)" ); errno = 0; sc = clock_getres( (clockid_t) -1, &tv ); rtems_test_assert( sc == -1 ); rtems_test_assert( errno == EINVAL ); puts( "Init: clock_getres - EINVAL (NULL resolution)" ); errno = 0; sc = clock_getres( CLOCK_REALTIME, NULL ); rtems_test_assert( sc == -1 ); rtems_test_assert( errno == EINVAL ); puts( "Init: clock_getres - SUCCESSFUL" ); sc = clock_getres( CLOCK_REALTIME, &tv ); printf( "Init: resolution = sec (%" PRIdtime_t "), nsec (%ld)\n", tv.tv_sec, tv.tv_nsec ); rtems_test_assert( !sc ); /* set the time of day, and print our buffer in multiple ways */ tv.tv_sec = mktime( &tm ); rtems_test_assert( tv.tv_sec != -1 ); tv.tv_nsec = 0; /* now set the time of day */ empty_line(); printf( asctime( &tm ) ); puts( "Init: clock_settime - SUCCESSFUL" ); sc = clock_settime( CLOCK_REALTIME, &tv ); rtems_test_assert( !sc ); printf( asctime( &tm ) ); printf( ctime( &tv.tv_sec ) ); /* use sleep to delay */ remaining = sleep( 3 ); rtems_test_assert( !remaining ); /* print new times to make sure it has changed and we can get the realtime */ sc = clock_gettime( CLOCK_PROCESS_CPUTIME_ID, &tv ); rtems_test_assert( !sc ); printf("Time since boot: (%" PRIdtime_t ", %ld)\n", tv.tv_sec,tv.tv_nsec ); sc = clock_gettime( CLOCK_REALTIME, &tv ); rtems_test_assert( !sc ); printf( ctime( &tv.tv_sec ) ); seconds = time( NULL ); printf( ctime( &seconds ) ); /* just to have the value copied out through the parameter */ seconds = time( &seconds1 ); rtems_test_assert( seconds == seconds1 ); /* check the time remaining */ printf( "Init: seconds remaining (%d)\n", (int)remaining ); rtems_test_assert( !remaining ); test_far_future_nanosleep(); /* error cases in nanosleep */ empty_line(); puts( "Init: nanosleep - EINVAL (NULL time)" ); sc = nanosleep ( NULL, &tr ); rtems_test_assert( sc == -1 ); rtems_test_assert( errno == EINVAL ); tv.tv_sec = 0; tv.tv_nsec = TOD_NANOSECONDS_PER_SECOND * 2; puts( "Init: nanosleep - EINVAL (too many nanoseconds)" ); errno = 0; sc = nanosleep ( &tv, &tr ); rtems_test_assert( sc == -1 ); rtems_test_assert( errno == EINVAL ); /* this is an error */ tv.tv_sec = -1; tv.tv_nsec = 0; puts( "Init: nanosleep - negative seconds - EINVAL" ); errno = 0; sc = nanosleep ( &tv, &tr ); rtems_test_assert( sc == -1 ); rtems_test_assert( errno == EINVAL ); /* this is also an error */ tv.tv_sec = 0; tv.tv_nsec = -1; puts( "Init: nanosleep - negative nanoseconds - EINVAL" ); errno = 0; sc = nanosleep ( &tv, &tr ); rtems_test_assert( sc == -1 ); rtems_test_assert( errno == EINVAL ); /* this is actually a small delay */ tv.tv_sec = 0; tv.tv_nsec = 1; puts( "Init: nanosleep - delay so small results in one tick" ); sc = nanosleep ( &tv, &tr ); rtems_test_assert( !sc ); rtems_test_assert( !tr.tv_sec ); rtems_test_assert( !tr.tv_nsec ); /* use nanosleep to yield */ tv.tv_sec = 0; tv.tv_nsec = 0; puts( "Init: nanosleep - yield with remaining" ); sc = nanosleep ( &tv, &tr ); rtems_test_assert( !sc ); rtems_test_assert( !tr.tv_sec ); rtems_test_assert( !tr.tv_nsec ); puts( "Init: nanosleep - yield with NULL time remaining" ); sc = nanosleep ( &tv, NULL ); rtems_test_assert( !sc ); rtems_test_assert( !tr.tv_sec ); rtems_test_assert( !tr.tv_nsec ); /* use nanosleep to delay */ tv.tv_sec = 3; tv.tv_nsec = 500000; puts( "Init: nanosleep - 1.05 seconds" ); sc = nanosleep ( &tv, &tr ); rtems_test_assert( !sc ); /* print the current real time again */ sc = clock_gettime( CLOCK_REALTIME, &tv ); rtems_test_assert( !sc ); printf( ctime( &tv.tv_sec ) ); /* check the time remaining */ printf( "Init: sec (%" PRIdtime_t "), nsec (%ld) remaining\n", tr.tv_sec, tr.tv_nsec ); rtems_test_assert( !tr.tv_sec && !tr.tv_nsec ); puts( "Init: nanosleep - 1.35 seconds" ); delay_request.tv_sec = 1; delay_request.tv_nsec = 35000000; sc = nanosleep( &delay_request, NULL ); rtems_test_assert( !sc ); /* print the current real time again */ sc = clock_gettime( CLOCK_REALTIME, &tv ); rtems_test_assert( !sc ); printf( ctime( &tv.tv_sec ) ); empty_line(); puts( "clock_gettime - CLOCK_THREAD_CPUTIME_ID -- ENOSYS" ); #if defined(_POSIX_THREAD_CPUTIME) { struct timespec tp; sc = clock_gettime( CLOCK_THREAD_CPUTIME_ID, &tp ); check_enosys( sc ); } #endif puts( "clock_settime - CLOCK_PROCESS_CPUTIME_ID -- ENOSYS" ); #if defined(_POSIX_CPUTIME) { struct timespec tp; sc = clock_settime( CLOCK_PROCESS_CPUTIME_ID, &tp ); check_enosys( sc ); } #endif puts( "clock_settime - CLOCK_THREAD_CPUTIME_ID -- ENOSYS" ); #if defined(_POSIX_THREAD_CPUTIME) { struct timespec tp; sc = clock_settime( CLOCK_THREAD_CPUTIME_ID, &tp ); check_enosys( sc ); } #endif test_settime_and_sleeping( ); TEST_END(); rtems_test_exit(0); } /* configuration information */ #define CONFIGURE_APPLICATION_NEEDS_SIMPLE_CONSOLE_DRIVER #define CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER #define CONFIGURE_INITIAL_EXTENSIONS RTEMS_TEST_INITIAL_EXTENSION #define CONFIGURE_RTEMS_INIT_TASKS_TABLE #define CONFIGURE_MAXIMUM_TASKS 4 #define CONFIGURE_INIT #include