/** * @file * * @brief Thread Handler * @ingroup ScoreThread */ /* * COPYRIGHT (c) 1989-2012. * On-Line Applications Research Corporation (OAR). * * The license and distribution terms for this file may be * found in the file LICENSE in this distribution or at * http://www.rtems.org/license/LICENSE. */ #if HAVE_CONFIG_H #include "config.h" #endif #include #include #include #include #include void _Thread_Handler( void ) { Thread_Control *executing = _Thread_Executing; ISR_Level level; Per_CPU_Control *cpu_self; /* * Some CPUs need to tinker with the call frame or registers when the * thread actually begins to execute for the first time. This is a * hook point where the port gets a shot at doing whatever it requires. */ _Context_Initialization_at_thread_begin(); #if defined(RTEMS_SMP) /* On SMP we enter _Thread_Handler() with interrupts disabled */ _Assert( _ISR_Get_level() != 0 ); _Thread_Debug_set_real_processor( executing, _Per_CPU_Get() ); #endif /* * have to put level into a register for those cpu's that use * inline asm here */ level = executing->Start.isr_level; _ISR_Set_level( level ); /* * Initialize the floating point context because we do not come * through _Thread_Dispatch on our first invocation. So the normal * code path for performing the FP context switch is not hit. */ _Thread_Restore_fp( executing ); /* * Take care that 'begin' extensions get to complete before * 'switch' extensions can run. This means must keep dispatch * disabled until all 'begin' extensions complete. */ _User_extensions_Thread_begin( executing ); /* * Do not use the level of the thread control block, since it has a * different format. */ _ISR_Disable_without_giant( level ); /* * At this point, the dispatch disable level BETTER be 1. */ cpu_self = _Per_CPU_Get(); _Assert( cpu_self->thread_dispatch_disable_level == 1 ); /* * Make sure we lose no thread dispatch necessary update and execute the * post-switch actions. As a side-effect change the thread dispatch level * from one to zero. Do not use _Thread_Enable_dispatch() since there is no * valid thread dispatch necessary indicator in this context. */ _Thread_Do_dispatch( cpu_self, level ); /* * RTEMS supports multiple APIs and each API can define a different * thread/task prototype. The following code supports invoking the * user thread entry point using the prototype expected. */ if ( executing->Start.prototype == THREAD_START_NUMERIC ) { executing->Wait.return_argument = (*(Thread_Entry_numeric) executing->Start.entry_point)( executing->Start.numeric_argument ); } #if defined(RTEMS_POSIX_API) else if ( executing->Start.prototype == THREAD_START_POINTER ) { executing->Wait.return_argument = (*(Thread_Entry_pointer) executing->Start.entry_point)( executing->Start.pointer_argument ); } #endif #if defined(FUNCTIONALITY_NOT_CURRENTLY_USED_BY_ANY_API) else if ( executing->Start.prototype == THREAD_START_BOTH_POINTER_FIRST ) { executing->Wait.return_argument = (*(Thread_Entry_both_pointer_first) executing->Start.entry_point)( executing->Start.pointer_argument, executing->Start.numeric_argument ); } else if ( executing->Start.prototype == THREAD_START_BOTH_NUMERIC_FIRST ) { executing->Wait.return_argument = (*(Thread_Entry_both_numeric_first) executing->Start.entry_point)( executing->Start.numeric_argument, executing->Start.pointer_argument ); } #endif /* * In the switch above, the return code from the user thread body * was placed in return_argument. This assumed that if it returned * anything (which is not supporting in all APIs), then it would be * able to fit in a (void *). */ _User_extensions_Thread_exitted( executing ); _Terminate( INTERNAL_ERROR_CORE, true, INTERNAL_ERROR_THREAD_EXITTED ); }