/* * This file contains information pertaining to the Hitachi SH * processor. * * Authors: Ralf Corsepius (corsepiu@faw.uni-ulm.de) and * Bernd Becker (becker@faw.uni-ulm.de) * * COPYRIGHT (c) 1997-1998, FAW Ulm, Germany * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * * * COPYRIGHT (c) 1998-2001. * On-Line Applications Research Corporation (OAR). * * The license and distribution terms for this file may be * found in the file LICENSE in this distribution or at * http://www.rtems.com/license/LICENSE. * * $Id$ */ #include #include #include #include #include /* referenced in start.S */ extern proc_ptr vectab[] ; proc_ptr vectab[256] ; extern proc_ptr _Hardware_isr_Table[]; /* _CPU_Initialize * * This routine performs processor dependent initialization. * * INPUT PARAMETERS: * thread_dispatch - address of disptaching routine */ void _CPU_Initialize( void (*thread_dispatch) /* ignored on this CPU */ ) { register uint32_t level = 0; /* * The thread_dispatch argument is the address of the entry point * for the routine called at the end of an ISR once it has been * decided a context switch is necessary. On some compilation * systems it is difficult to call a high-level language routine * from assembly. This allows us to trick these systems. * * If you encounter this problem save the entry point in a CPU * dependent variable. */ _CPU_Thread_dispatch_pointer = thread_dispatch; /* * If there is not an easy way to initialize the FP context * during Context_Initialize, then it is usually easier to * save an "uninitialized" FP context here and copy it to * the task's during Context_Initialize. */ /* FP context initialization support goes here */ /* FIXME: When not to use SH4_FPSCR_PR ? */ #ifdef __SH4__ _CPU_Null_fp_context.fpscr = SH4_FPSCR_DN | SH4_FPSCR_RM | SH4_FPSCR_PR; #endif #ifdef __SH3E__ /* FIXME: Wild guess :) */ _CPU_Null_fp_context.fpscr = SH4_FPSCR_DN | SH4_FPSCR_RM; #endif /* enable interrupts */ _CPU_ISR_Set_level( level ) ; } /*PAGE * * _CPU_ISR_Get_level */ uint32_t _CPU_ISR_Get_level( void ) { /* * This routine returns the current interrupt level. */ register uint32_t _mask ; sh_get_interrupt_level( _mask ); return ( _mask); } /*PAGE * * _CPU_ISR_install_raw_handler */ void _CPU_ISR_install_raw_handler( uint32_t vector, proc_ptr new_handler, proc_ptr *old_handler ) { /* * This is where we install the interrupt handler into the "raw" interrupt * table used by the CPU to dispatch interrupt handlers. */ volatile proc_ptr *vbr ; #if SH_PARANOID_ISR uint32_t level ; sh_disable_interrupts( level ); #endif /* get vbr */ asm ( "stc vbr,%0" : "=r" (vbr) ); *old_handler = vbr[vector] ; vbr[vector] = new_handler ; #if SH_PARANOID_ISR sh_enable_interrupts( level ); #endif } /*PAGE * * _CPU_ISR_install_vector * * This kernel routine installs the RTEMS handler for the * specified vector. * * Input parameters: * vector - interrupt vector number * old_handler - former ISR for this vector number * new_handler - replacement ISR for this vector number * * Output parameters: NONE * */ #if defined(__sh1__) || defined(__sh2__) void _CPU_ISR_install_vector( uint32_t vector, proc_ptr new_handler, proc_ptr *old_handler ) { proc_ptr ignored ; #if 0 if(( vector <= 113) && ( vector >= 11)) { #endif *old_handler = _ISR_Vector_table[ vector ]; /* * If the interrupt vector table is a table of pointer to isr entry * points, then we need to install the appropriate RTEMS interrupt * handler for this vector number. */ _CPU_ISR_install_raw_handler(vector, _Hardware_isr_Table[vector], &ignored ); /* * We put the actual user ISR address in '_ISR_Vector_table'. * This will be used by __ISR_Handler so the user gets control. */ _ISR_Vector_table[ vector ] = new_handler; #if 0 } #endif } #endif /* _CPU_ISR_install_vector */ /*PAGE * * _CPU_Thread_Idle_body * * NOTES: * * 1. This is the same as the regular CPU independent algorithm. * * 2. If you implement this using a "halt", "idle", or "shutdown" * instruction, then don't forget to put it in an infinite loop. * * 3. Be warned. Some processors with onboard DMA have been known * to stop the DMA if the CPU were put in IDLE mode. This might * also be a problem with other on-chip peripherals. So use this * hook with caution. */ #if (CPU_PROVIDES_IDLE_THREAD_BODY == TRUE) void *_CPU_Thread_Idle_body( uint32_t ignored ) { for( ; ; ) { asm volatile("nop"); } /* insert your "halt" instruction here */ ; } #endif #if (CPU_USE_GENERIC_BITFIELD_CODE == FALSE) uint8_t _bit_set_table[16] = { 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 2, 2, 1,0}; #endif void _CPU_Context_Initialize( Context_Control *_the_context, void *_stack_base, uint32_t _size, uint32_t _isr, void (*_entry_point)(void), int _is_fp ) { _the_context->r15 = (uint32_t *) ((uint32_t) (_stack_base) + (_size) ); #if defined(__sh1__) || defined(__sh2__) || defined(__SH2E__) _the_context->sr = (_isr << 4) & 0x00f0 ; #else _the_context->sr = SH4_SR_MD | ((_isr << 4) & 0x00f0); #endif _the_context->pr = (uint32_t *) _entry_point ; #if 0 && SH_HAS_FPU /* Disable FPU if it is non-fp task */ if(!_is_fp) _the_context->sr |= SH4_SR_FD; #endif }