/* * General Serial I/O functions. * * This file contains the functions for performing serial I/O. * The actual system calls (console_*) should be in the BSP part * of the source tree. That way different BSPs can use whichever * SMCs and SCCs they want. Originally, all the stuff was in * this file, and it caused problems with one BSP using SCC2 * as /dev/console, others using SMC1 for /dev/console, etc. * * On-chip resources used: * resource minor note * SMC1 0 * SMC2 1 * SCC1 2 N/A. Hardwired as ethernet port * SCC2 3 * SCC3 4 * SCC4 5 * BRG1 * BRG2 * BRG3 * BRG4 * Author: Jay Monkman (jmonkman@frasca.com) * Copyright (C) 1998 by Frasca International, Inc. * * Derived from c/src/lib/libbsp/m68k/gen360/console/console.c written by: * W. Eric Norum * Saskatchewan Accelerator Laboratory * University of Saskatchewan * Saskatoon, Saskatchewan, CANADA * eric@skatter.usask.ca * * COPYRIGHT (c) 1989-1998. * On-Line Applications Research Corporation (OAR). * * Modifications by Darlene Stewart * and Charles-Antoine Gauthier * Copyright (c) 1999, National Research Council of Canada * * The license and distribution terms for this file may be * found in the file LICENSE in this distribution or at * * http://www.OARcorp.com/rtems/license.html. * * $Id$ */ #include #include #include #include #include #include #include #include #include #include /* for printk */ int BSP_irq_enabled_at_cpm(const rtems_irq_symbolic_name irqLine); extern rtems_cpu_table Cpu_table; /* BSP supplied routine */ extern int mbx8xx_console_get_configuration(); /* * Interrupt-driven input buffer */ #define RXBUFSIZE 16 /* * I/O buffers and pointers to buffer descriptors. * Currently, single buffered input is done. This will work only * if the Rx interrupts are serviced quickly. * * TODO: Add a least double buffering for safety. */ static volatile char rxBuf[NUM_PORTS][RXBUFSIZE]; static volatile char txBuf[NUM_PORTS]; /* SCC/SMC buffer descriptors */ static volatile m8xxBufferDescriptor_t *RxBd[NUM_PORTS], *TxBd[NUM_PORTS]; /* Used to track the usage of the baud rate generators */ static unsigned long brg_spd[4]; static char brg_used[4]; /* Used to track termios private data for callbacks */ struct rtems_termios_tty *ttyp[NUM_PORTS]; /* * Device-specific routines */ static int m8xx_get_brg_cd(int); static unsigned char m8xx_get_brg_clk(int); void m8xx_console_reserve_resources(rtems_configuration_table *); static int m8xx_smc_set_attributes(int, const struct termios*); static int m8xx_scc_set_attributes(int, const struct termios*); static void m8xx_smc1_interrupt_handler(void); static void m8xx_smc2_interrupt_handler(void); static void m8xx_scc2_interrupt_handler(void); #if defined(mpc860) static void m8xx_scc3_interrupt_handler(void); static void m8xx_scc4_interrupt_handler(void); #endif /* * Compute baud-rate-generator configuration register value */ static int m8xx_get_brg_cd (int baud) { int divisor; int div16 = 0; divisor = ((Cpu_table.clock_speed / 16) + (baud / 2)) / baud; if (divisor > 4096) { div16 = 1; divisor = (divisor + 8) / 16; } return M8xx_BRG_EN | M8xx_BRG_EXTC_BRGCLK | ((divisor - 1) << 1) | div16; } /* * This function will fail if more that 4 baud rates have been selected * at any time since the OS started. It needs to be fixed. FIXME */ static unsigned char m8xx_get_brg_clk(int baud) { int i; /* first try to find a BRG that is already at the right speed */ for ( i = 0; i < 4; i++ ) { if ( brg_spd[i] == baud ) { break; } } if ( i == 4 ) { /* I guess we didn't find one */ for ( i = 0; i < 4; i++ ) { if ( brg_used[i] == 0 ) { break; } } } if (i != 4) { brg_used[i]++; brg_spd[i]=baud; switch (i) { case 0: m8xx.brgc1 = M8xx_BRG_RST; m8xx.brgc1 = m8xx_get_brg_cd(baud); break; case 1: m8xx.brgc2 = M8xx_BRG_RST; m8xx.brgc2 = m8xx_get_brg_cd(baud); break; case 2: m8xx.brgc3 = M8xx_BRG_RST; m8xx.brgc3 = m8xx_get_brg_cd(baud); break; case 3: m8xx.brgc4 = M8xx_BRG_RST; m8xx.brgc4 = m8xx_get_brg_cd(baud); break; } return i; } else return 0xff; } /* * Hardware-dependent portion of tcsetattr(). */ static int m8xx_smc_set_attributes (int minor, const struct termios *t) { int baud, brg=0, csize=0, ssize, psize; rtems_unsigned16 clen=0, cstopb, parenb, parodd, cread; /* Baud rate */ switch (t->c_cflag & CBAUD) { default: baud = -1; break; case B50: baud = 50; break; case B75: baud = 75; break; case B110: baud = 110; break; case B134: baud = 134; break; case B150: baud = 150; break; case B200: baud = 200; break; case B300: baud = 300; break; case B600: baud = 600; break; case B1200: baud = 1200; break; case B1800: baud = 1800; break; case B2400: baud = 2400; break; case B4800: baud = 4800; break; case B9600: baud = 9600; break; case B19200: baud = 19200; break; case B38400: baud = 38400; break; case B57600: baud = 57600; break; case B115200: baud = 115200; break; case B230400: baud = 230400; break; case B460800: baud = 460800; break; } if (baud > 0) brg = m8xx_get_brg_clk(baud); /* 4 BRGs, 6 serial ports - hopefully */ /* at least 2 ports will be the same */ /* Number of data bits */ switch ( t->c_cflag & CSIZE ) { case CS5: csize = 5; break; case CS6: csize = 6; break; case CS7: csize = 7; break; case CS8: csize = 8; break; } /* Stop bits */ if ( t->c_cflag & CSTOPB ) { cstopb = 0x0400; /* Two stop bits */ ssize = 2; } else { cstopb = 0x0000; /* One stop bit */ ssize = 1; } /* Parity */ if ( t->c_cflag & PARENB ) { parenb = 0x0200; /* Parity enabled on Tx and Rx */ psize = 1; } else { parenb = 0x0000; /* No parity on Tx and Rx */ psize = 0; } if ( t->c_cflag & PARODD ) parodd = 0x0000; /* Odd parity */ else parodd = 0x0100; /* * Character Length = start + data + parity + stop - 1 */ switch ( 1 + csize + psize + ssize - 1 ) { case 6: clen = 0x3000; break; case 7: clen = 0x3800; break; case 8: clen = 0x4000; break; case 9: clen = 0x4800; break; case 10: clen = 0x5000; break; case 11: clen = 0x5800; break; } if ( t->c_cflag & CREAD ) cread = 0x0023; /* UART normal operation, enable Rx and Tx */ else cread = 0x0021; /* UART normal operation, enable Tx */ /* Write the SIMODE/SMCMR registers */ switch (minor) { case SMC1_MINOR: m8xx.simode = ( (m8xx.simode & 0xffff8fff) | (brg << 12) ); m8xx.smc1.smcmr = clen | cstopb | parenb | parodd | cread; break; case SMC2_MINOR: m8xx.simode = ( (m8xx.simode & 0x8fffffff) | (brg << 28) ); m8xx.smc2.smcmr = clen | cstopb | parenb | parodd | cread; break; } return 0; } static int m8xx_scc_set_attributes (int minor, const struct termios *t) { int baud, brg=0; rtems_unsigned16 csize=0, cstopb, parenb, parodd; /* Baud rate */ switch (t->c_cflag & CBAUD) { default: baud = -1; break; case B50: baud = 50; break; case B75: baud = 75; break; case B110: baud = 110; break; case B134: baud = 134; break; case B150: baud = 150; break; case B200: baud = 200; break; case B300: baud = 300; break; case B600: baud = 600; break; case B1200: baud = 1200; break; case B1800: baud = 1800; break; case B2400: baud = 2400; break; case B4800: baud = 4800; break; case B9600: baud = 9600; break; case B19200: baud = 19200; break; case B38400: baud = 38400; break; case B57600: baud = 57600; break; case B115200: baud = 115200; break; case B230400: baud = 230400; break; case B460800: baud = 460800; break; } if (baud > 0) brg = m8xx_get_brg_clk(baud); /* 4 BRGs, 5 serial ports - hopefully */ /* at least 2 ports will be the same */ /* Write the SICR register below */ /* Number of data bits */ switch ( t->c_cflag & CSIZE ) { case CS5: csize = 0x0000; break; case CS6: csize = 0x1000; break; case CS7: csize = 0x2000; break; case CS8: csize = 0x3000; break; } /* Stop bits */ if ( t->c_cflag & CSTOPB ) cstopb = 0x4000; /* Two stop bits */ else cstopb = 0x0000; /* One stop bit */ /* Parity */ if ( t->c_cflag & PARENB ) parenb = 0x0010; /* Parity enabled on Tx and Rx */ else parenb = 0x0000; /* No parity on Tx and Rx */ if ( t->c_cflag & PARODD ) parodd = 0x0000; /* Odd parity */ else parodd = 0x000a; /* Write the SICR/PSMR Registers */ switch (minor) { case SCC2_MINOR: m8xx.sicr = ( (m8xx.sicr & 0xffffc0ff) | (brg << 11) | (brg << 8) ); m8xx.scc2.psmr = ( (cstopb | csize | parenb | parodd) | (m8xx.scc2.psmr & 0x8fe0) ); break; #if defined(mpc860) case SCC3_MINOR: m8xx.sicr = ( (m8xx.sicr & 0xffc0ffff) | (brg << 19) | (brg << 16) ); m8xx.scc3.psmr = ( (cstopb | csize | parenb | parodd) | (m8xx.scc3.psmr & 0x8fe0) ); break; case SCC4_MINOR: m8xx.sicr = ( (m8xx.sicr & 0xc0ffffff) | (brg << 27) | (brg << 24) ); m8xx.scc4.psmr = ( (cstopb | csize | parenb | parodd) | (m8xx.scc4.psmr & 0x8fe0) ); break; #endif } return 0; } int m8xx_uart_setAttributes( int minor, const struct termios *t ) { /* * Check that port number is valid */ if ( (minor < SMC1_MINOR) || (minor > NUM_PORTS-1) ) return 0; switch (minor) { case SMC1_MINOR: case SMC2_MINOR: return m8xx_smc_set_attributes( minor, t ); case SCC2_MINOR: case SCC3_MINOR: case SCC4_MINOR: return m8xx_scc_set_attributes( minor, t ); } return 0; } /* * Interrupt handlers */ static void m8xx_scc2_interrupt_handler () { int nb_overflow; /* * Buffer received? */ if ((m8xx.scc2.sccm & M8xx_SCCE_RX) && (m8xx.scc2.scce & M8xx_SCCE_RX)) { m8xx.scc2.scce = M8xx_SCCE_RX; /* Clear the event */ /* Check that the buffer is ours */ if ((RxBd[SCC2_MINOR]->status & M8xx_BD_EMPTY) == 0) { rtems_cache_invalidate_multiple_data_lines( (const void *) RxBd[SCC2_MINOR]->buffer, RxBd[SCC2_MINOR]->length ); nb_overflow = rtems_termios_enqueue_raw_characters( (void *)ttyp[SCC2_MINOR], (char *)RxBd[SCC2_MINOR]->buffer, (int)RxBd[SCC2_MINOR]->length ); RxBd[SCC2_MINOR]->status = M8xx_BD_EMPTY | M8xx_BD_WRAP | M8xx_BD_INTERRUPT; } } /* * Buffer transmitted? */ if (m8xx.scc2.scce & M8xx_SCCE_TX) { m8xx.scc2.scce = M8xx_SCCE_TX; /* Clear the event */ /* Check that the buffer is ours */ if ((TxBd[SCC2_MINOR]->status & M8xx_BD_READY) == 0) rtems_termios_dequeue_characters ( (void *)ttyp[SCC2_MINOR], (int)TxBd[SCC2_MINOR]->length); } } #ifdef mpc860 static void m8xx_scc3_interrupt_handler (void) { int nb_overflow; /* * Buffer received? */ if ((m8xx.scc3.sccm & M8xx_SCCE_RX) && (m8xx.scc3.scce & M8xx_SCCE_RX)) { m8xx.scc3.scce = M8xx_SCCE_RX; /* Clear the event */ /* Check that the buffer is ours */ if ((RxBd[SCC3_MINOR]->status & M8xx_BD_EMPTY) == 0) { rtems_cache_invalidate_multiple_data_lines( (const void *) RxBd[SCC3_MINOR]->buffer, RxBd[SCC3_MINOR]->length ); nb_overflow = rtems_termios_enqueue_raw_characters( (void *)ttyp[SCC3_MINOR], (char *)RxBd[SCC3_MINOR]->buffer, (int)RxBd[SCC3_MINOR]->length ); RxBd[SCC3_MINOR]->status = M8xx_BD_EMPTY | M8xx_BD_WRAP | M8xx_BD_INTERRUPT; } } /* * Buffer transmitted? */ if (m8xx.scc3.scce & M8xx_SCCE_TX) { m8xx.scc3.scce = M8xx_SCCE_TX; /* Clear the event */ /* Check that the buffer is ours */ if ((TxBd[SCC3_MINOR]->status & M8xx_BD_READY) == 0) rtems_termios_dequeue_characters ( (void *)ttyp[SCC3_MINOR], (int)TxBd[SCC3_MINOR]->length); } } static void m8xx_scc4_interrupt_handler (void) { int nb_overflow; /* * Buffer received? */ if ((m8xx.scc4.sccm & M8xx_SCCE_RX) && (m8xx.scc4.scce & M8xx_SCCE_RX)) { m8xx.scc4.scce = M8xx_SCCE_RX; /* Clear the event */ /* Check that the buffer is ours */ if ((RxBd[SCC4_MINOR]->status & M8xx_BD_EMPTY) == 0) { rtems_cache_invalidate_multiple_data_lines( (const void *) RxBd[SCC4_MINOR]->buffer, RxBd[SCC4_MINOR]->length ); nb_overflow = rtems_termios_enqueue_raw_characters( (void *)ttyp[SCC4_MINOR], (char *)RxBd[SCC4_MINOR]->buffer, (int)RxBd[SCC4_MINOR]->length ); RxBd[SCC4_MINOR]->status = M8xx_BD_EMPTY | M8xx_BD_WRAP | M8xx_BD_INTERRUPT; } } /* * Buffer transmitted? */ if (m8xx.scc4.scce & M8xx_SCCE_TX) { m8xx.scc4.scce = M8xx_SCCE_TX; /* Clear the event */ /* Check that the buffer is ours */ if ((TxBd[SCC4_MINOR]->status & M8xx_BD_READY) == 0) rtems_termios_dequeue_characters ( (void *)ttyp[SCC4_MINOR], (int)TxBd[SCC4_MINOR]->length); } } #endif static void m8xx_smc1_interrupt_handler (void) { int nb_overflow; /* * Buffer received? */ if (m8xx.smc1.smce & M8xx_SMCE_RX) { m8xx.smc1.smce = M8xx_SMCE_RX; /* Clear the event */ /* Check that the buffer is ours */ if ((RxBd[SMC1_MINOR]->status & M8xx_BD_EMPTY) == 0) { rtems_cache_invalidate_multiple_data_lines( (const void *) RxBd[SMC1_MINOR]->buffer, RxBd[SMC1_MINOR]->length ); nb_overflow = rtems_termios_enqueue_raw_characters( (void *)ttyp[SMC1_MINOR], (char *)RxBd[SMC1_MINOR]->buffer, (int)RxBd[SMC1_MINOR]->length ); RxBd[SMC1_MINOR]->status = M8xx_BD_EMPTY | M8xx_BD_WRAP | M8xx_BD_INTERRUPT; } } /* * Buffer transmitted? */ if (m8xx.smc1.smce & M8xx_SMCE_TX) { m8xx.smc1.smce = M8xx_SMCE_TX; /* Clear the event */ /* Check that the buffer is ours */ if ((TxBd[SMC1_MINOR]->status & M8xx_BD_READY) == 0) rtems_termios_dequeue_characters ( (void *)ttyp[SMC1_MINOR], (int)TxBd[SMC1_MINOR]->length); } } static void m8xx_smc2_interrupt_handler (void) { int nb_overflow; /* * Buffer received? */ if (m8xx.smc2.smce & M8xx_SMCE_RX) { m8xx.smc2.smce = M8xx_SMCE_RX; /* Clear the event */ /* Check that the buffer is ours */ if ((RxBd[SMC2_MINOR]->status & M8xx_BD_EMPTY) == 0) { rtems_cache_invalidate_multiple_data_lines( (const void *) RxBd[SMC2_MINOR]->buffer, RxBd[SMC2_MINOR]->length ); nb_overflow = rtems_termios_enqueue_raw_characters( (void *)ttyp[SMC2_MINOR], (char *)RxBd[SMC2_MINOR]->buffer, (int)RxBd[SMC2_MINOR]->length ); RxBd[SMC2_MINOR]->status = M8xx_BD_EMPTY | M8xx_BD_WRAP | M8xx_BD_INTERRUPT; } } /* * Buffer transmitted? */ if (m8xx.smc2.smce & M8xx_SMCE_TX) { m8xx.smc2.smce = M8xx_SMCE_TX; /* Clear the event */ /* Check that the buffer is ours */ if ((TxBd[SMC2_MINOR]->status & M8xx_BD_READY) == 0) rtems_termios_dequeue_characters ( (void *)ttyp[SMC2_MINOR], (int)TxBd[SMC2_MINOR]->length); } } void m8xx_scc_enable(const rtems_irq_connect_data* ptr) { volatile m8xxSCCRegisters_t *sccregs = 0; switch (ptr->name) { #if defined(mpc860) case BSP_CPM_IRQ_SCC4 : sccregs = &m8xx.scc4; break; case BSP_CPM_IRQ_SCC3 : sccregs = &m8xx.scc3; break; #endif case BSP_CPM_IRQ_SCC2 : sccregs = &m8xx.scc2; break; case BSP_CPM_IRQ_SCC1 : sccregs = &m8xx.scc1; break; default: break; } sccregs->sccm = 3; } void m8xx_scc_disable(const rtems_irq_connect_data* ptr) { volatile m8xxSCCRegisters_t *sccregs = 0; switch (ptr->name) { #if defined(mpc860) case BSP_CPM_IRQ_SCC4 : sccregs = &m8xx.scc4; break; case BSP_CPM_IRQ_SCC3 : sccregs = &m8xx.scc3; break; #endif case BSP_CPM_IRQ_SCC2 : sccregs = &m8xx.scc2; break; case BSP_CPM_IRQ_SCC1 : sccregs = &m8xx.scc1; break; default: break; } sccregs->sccm &= (~3); } int m8xx_scc_isOn(const rtems_irq_connect_data* ptr) { return BSP_irq_enabled_at_cpm (ptr->name); } static rtems_irq_connect_data consoleIrqData; void m8xx_uart_scc_initialize (int minor) { unsigned char brg; volatile m8xxSCCparms_t *sccparms = 0; volatile m8xxSCCRegisters_t *sccregs = 0; /* * Check that minor number is valid */ if ( (minor < SCC2_MINOR) || (minor > NUM_PORTS-1) ) return; /* Get the sicr clock source bit values for 9600 bps */ brg = m8xx_get_brg_clk(9600); /* * Allocate buffer descriptors */ RxBd[minor] = m8xx_bd_allocate(1); TxBd[minor] = m8xx_bd_allocate(1); /* * Get the address of the parameter RAM for the specified port, * configure I/O port A,C & D and put SMC in NMSI mode, connect * the SCC to the appropriate BRG. * * SCC2 TxD is shared with port A bit 12 * SCC2 RxD is shared with port A bit 13 * SCC1 TxD is shared with port A bit 14 * SCC1 RxD is shared with port A bit 15 * SCC4 DCD is shared with port C bit 4 * SCC4 CTS is shared with port C bit 5 * SCC3 DCD is shared with port C bit 6 * SCC3 CTS is shared with port C bit 7 * SCC2 DCD is shared with port C bit 8 * SCC2 CTS is shared with port C bit 9 * SCC1 DCD is shared with port C bit 10 * SCC1 CTS is shared with port C bit 11 * SCC2 RTS is shared with port C bit 14 * SCC1 RTS is shared with port C bit 15 * SCC4 RTS is shared with port D bit 6 * SCC3 RTS is shared with port D bit 7 * SCC4 TxD is shared with port D bit 8 * SCC4 RxD is shared with port D bit 9 * SCC3 TxD is shared with port D bit 10 * SCC3 RxD is shared with port D bit 11 */ switch (minor) { case SCC2_MINOR: sccparms = &m8xx.scc2p; sccregs = &m8xx.scc2; m8xx.papar |= 0x000C; /* PA12 & PA13 are dedicated peripheral pins */ m8xx.padir &= ~0x000C; /* PA13 & PA12 must not drive the UART lines */ m8xx.paodr &= ~0x000C; /* PA12 & PA13 are not open drain */ m8xx.pcpar |= 0x0002; /* PC14 is SCC2 RTS */ m8xx.pcpar &= ~0x00C0; /* PC8 & PC9 are SCC2 DCD and CTS */ m8xx.pcdir &= ~0x00C2; /* PC8, PC9 & PC14 must not drive the UART lines */ m8xx.pcso |= 0x00C0; /* Enable DCD and CTS inputs */ m8xx.sicr &= 0xFFFF00FF; /* Clear TCS2 & RCS2, GR2=no grant, SC2=NMSI mode */ m8xx.sicr |= (brg<<11) | (brg<<8); /* TCS2 = RCS2 = brg */ break; #ifdef mpc860 case SCC3_MINOR: sccparms = &m8xx.scc3p; sccregs = &m8xx.scc3; m8xx.pcpar &= ~0x0300; /* PC6 & PC7 are SCC3 DCD and CTS */ m8xx.pcdir &= ~0x0300; /* PC6 & PC7 must not drive the UART lines */ m8xx.pcso |= 0x0300; /* Enable DCD and CTS inputs */ m8xx.pdpar |= 0x0130; /* PD7, PD10 & PD11 are dedicated peripheral pins */ m8xx.sicr &= 0xFF00FFFF; /* Clear TCS3 & RCS3, GR3=no grant, SC3=NMSI mode */ m8xx.sicr |= (brg<<19) | (brg<<16); /* TCS3 = RCS3 = brg */ break; case SCC4_MINOR: sccparms = &m8xx.scc4p; sccregs = &m8xx.scc4; m8xx.pcpar &= ~0x0C00; /* PC4 & PC5 are SCC4 DCD and CTS */ m8xx.pcdir &= ~0x0C00; /* PC4 & PC5 must not drive the UART lines */ m8xx.pcso |= 0x0C00; /* Enable DCD and CTS inputs */ m8xx.pdpar |= 0x02C0; /* PD6, PD8 & PD9 are dedicated peripheral pins */ m8xx.sicr &= 0x00FFFFFF; /* Clear TCS4 & RCS4, GR4=no grant, SC4=NMSI mode */ m8xx.sicr |= (brg<<27) | (brg<<24); /* TCS4 = RCS4 = brg */ break; #endif } /* * Set up SDMA */ m8xx.sdcr = 0x01; /* as per section 16.10.2.1 MPC821UM/AD */ /* * Set up the SCC parameter RAM. */ sccparms->rbase = (char *)RxBd[minor] - (char *)&m8xx; sccparms->tbase = (char *)TxBd[minor] - (char *)&m8xx; sccparms->rfcr = M8xx_RFCR_MOT | M8xx_RFCR_DMA_SPACE(0); sccparms->tfcr = M8xx_TFCR_MOT | M8xx_TFCR_DMA_SPACE(0); if ( (mbx8xx_console_get_configuration() & 0x06) == 0x02 ) sccparms->mrblr = RXBUFSIZE; /* Maximum Rx buffer size */ else sccparms->mrblr = 1; /* Maximum Rx buffer size */ sccparms->un.uart.max_idl = 10; /* Set nb of idle chars to close buffer */ sccparms->un.uart.brkcr = 0; /* Set nb of breaks to send for STOP Tx */ sccparms->un.uart.parec = 0; /* Clear parity error counter */ sccparms->un.uart.frmec = 0; /* Clear framing error counter */ sccparms->un.uart.nosec = 0; /* Clear noise counter */ sccparms->un.uart.brkec = 0; /* Clear break counter */ sccparms->un.uart.uaddr[0] = 0; /* Not in multidrop mode, so clear */ sccparms->un.uart.uaddr[1] = 0; /* Not in multidrop mode, so clear */ sccparms->un.uart.toseq = 0; /* Tx Out-Of-SEQuence--no XON/XOFF now */ sccparms->un.uart.character[0] = 0x8000; /* Entry is invalid */ sccparms->un.uart.character[1] = 0x8000; /* Entry is invalid */ sccparms->un.uart.character[2] = 0x8000; /* Entry is invalid */ sccparms->un.uart.character[3] = 0x8000; /* Entry is invalid */ sccparms->un.uart.character[4] = 0x8000; /* Entry is invalid */ sccparms->un.uart.character[5] = 0x8000; /* Entry is invalid */ sccparms->un.uart.character[6] = 0x8000; /* Entry is invalid */ sccparms->un.uart.character[7] = 0x8000; /* Entry is invalid */ sccparms->un.uart.rccm = 0xc0ff; /* No masking */ /* * Set up the Receive Buffer Descriptor */ RxBd[minor]->status = M8xx_BD_EMPTY | M8xx_BD_WRAP | M8xx_BD_INTERRUPT; RxBd[minor]->length = 0; RxBd[minor]->buffer = rxBuf[minor]; /* * Setup the Transmit Buffer Descriptor */ TxBd[minor]->status = M8xx_BD_WRAP; /* * Set up SCCx general and protocol-specific mode registers */ sccregs->gsmr_h = 0x00000020; /* RFW=low latency operation */ sccregs->gsmr_l = 0x00028004; /* TDCR=RDCR=16x clock mode, MODE=uart*/ sccregs->scce = ~0; /* Clear any pending event */ sccregs->sccm = 0; /* Mask all interrupt/event sources */ sccregs->psmr = 0x3000; /* Normal operation & mode, 1 stop bit, 8 data bits, no parity */ sccregs->dsr = 0x7E7E; /* No fractional stop bits */ sccregs->gsmr_l = 0x00028034; /* ENT=enable Tx, ENR=enable Rx */ /* * Initialize the Rx and Tx with the new parameters. */ switch (minor) { case SCC2_MINOR: m8xx_cp_execute_cmd (M8xx_CR_OP_INIT_RX_TX | M8xx_CR_CHAN_SCC2); break; #ifdef mpc860 case SCC3_MINOR: m8xx_cp_execute_cmd (M8xx_CR_OP_INIT_RX_TX | M8xx_CR_CHAN_SCC3); break; case SCC4_MINOR: m8xx_cp_execute_cmd (M8xx_CR_OP_INIT_RX_TX | M8xx_CR_CHAN_SCC4); break; #endif } if ( (mbx8xx_console_get_configuration() & 0x06) == 0x02 ) { consoleIrqData.on = m8xx_scc_enable; consoleIrqData.off = m8xx_scc_disable; consoleIrqData.isOn = m8xx_scc_isOn; switch (minor) { case SCC2_MINOR: consoleIrqData.name = BSP_CPM_IRQ_SCC2; consoleIrqData.hdl = m8xx_scc2_interrupt_handler; break; #ifdef mpc860 case SCC3_MINOR: consoleIrqData.name = BSP_CPM_IRQ_SCC3; consoleIrqData.hdl = m8xx_scc3_interrupt_handler; break; case SCC4_MINOR: consoleIrqData.name = BSP_CPM_IRQ_SCC4; consoleIrqData.hdl = m8xx_scc4_interrupt_handler; break; #endif /* mpc860 */ } if (!BSP_install_rtems_irq_handler (&consoleIrqData)) { printk("Unable to connect SCC Irq handler\n"); rtems_fatal_error_occurred(1); } } } void m8xx_smc_enable(const rtems_irq_connect_data* ptr) { volatile m8xxSMCRegisters_t *smcregs = 0; switch (ptr->name) { case BSP_CPM_IRQ_SMC1 : smcregs = &m8xx.smc1; break; case BSP_CPM_IRQ_SMC2_OR_PIP : smcregs = &m8xx.smc2; break; default: break; } smcregs->smcm = 3; } void m8xx_smc_disable(const rtems_irq_connect_data* ptr) { volatile m8xxSMCRegisters_t *smcregs = 0; switch (ptr->name) { case BSP_CPM_IRQ_SMC1 : smcregs = &m8xx.smc1; break; case BSP_CPM_IRQ_SMC2_OR_PIP : smcregs = &m8xx.smc2; break; default: break; } smcregs->smcm &= (~3); } int m8xx_smc_isOn(const rtems_irq_connect_data* ptr) { return BSP_irq_enabled_at_cpm (ptr->name); } void m8xx_uart_smc_initialize (int minor) { unsigned char brg; volatile m8xxSMCparms_t *smcparms = 0; volatile m8xxSMCRegisters_t *smcregs = 0; /* * Check that minor number is valid */ if ( (minor < SMC1_MINOR) || (minor > SMC2_MINOR) ) return; m8xx.sdcr = 0x01; /* as per section 16.10.2.1 MPC821UM/AD */ /* Get the simode clock source bit values for 9600 bps */ brg = m8xx_get_brg_clk(9600); /* * Allocate buffer descriptors */ RxBd[minor] = m8xx_bd_allocate (1); TxBd[minor] = m8xx_bd_allocate (1); /* * Get the address of the parameter RAM for the specified port, * configure I/O port B and put SMC in NMSI mode, connect the * SMC to the appropriate BRG. * * SMC2 RxD is shared with port B bit 20 * SMC2 TxD is shared with port B bit 21 * SMC1 RxD is shared with port B bit 24 * SMC1 TxD is shared with port B bit 25 */ switch (minor) { case SMC1_MINOR: smcparms = &m8xx.smc1p; smcregs = &m8xx.smc1; m8xx.pbpar |= 0x000000C0; /* PB24 & PB25 are dedicated peripheral pins */ m8xx.pbdir &= ~0x000000C0; /* PB24 & PB25 must not drive UART lines */ m8xx.pbodr &= ~0x000000C0; /* PB24 & PB25 are not open drain */ m8xx.simode &= 0xFFFF0FFF; /* Clear SMC1CS & SMC1 for NMSI mode */ m8xx.simode |= brg << 12; /* SMC1CS = brg */ break; case SMC2_MINOR: smcparms = &m8xx.smc2p; smcregs = &m8xx.smc2; m8xx.pbpar |= 0x00000C00; /* PB20 & PB21 are dedicated peripheral pins */ m8xx.pbdir &= ~0x00000C00; /* PB20 & PB21 must not drive the UART lines */ m8xx.pbodr &= ~0x00000C00; /* PB20 & PB21 are not open drain */ m8xx.simode &= 0x0FFFFFFF; /* Clear SMC2CS & SMC2 for NMSI mode */ m8xx.simode |= brg << 28; /* SMC2CS = brg */ break; } /* * Set up SMC1 parameter RAM common to all protocols */ smcparms->rbase = (char *)RxBd[minor] - (char *)&m8xx; smcparms->tbase = (char *)TxBd[minor] - (char *)&m8xx; smcparms->rfcr = M8xx_RFCR_MOT | M8xx_RFCR_DMA_SPACE(0); smcparms->tfcr = M8xx_TFCR_MOT | M8xx_TFCR_DMA_SPACE(0); if ( (mbx8xx_console_get_configuration() & 0x06) == 0x02 ) smcparms->mrblr = RXBUFSIZE; /* Maximum Rx buffer size */ else smcparms->mrblr = 1; /* Maximum Rx buffer size */ /* * Set up SMC1 parameter RAM UART-specific parameters */ smcparms->un.uart.max_idl = 10; /* Set nb of idle chars to close buffer */ smcparms->un.uart.brkcr = 0; /* Set nb of breaks to send for STOP Tx */ smcparms->un.uart.brkec = 0; /* Clear break counter */ /* * Set up the Receive Buffer Descriptor */ RxBd[minor]->status = M8xx_BD_EMPTY | M8xx_BD_WRAP | M8xx_BD_INTERRUPT; RxBd[minor]->length = 0; RxBd[minor]->buffer = rxBuf[minor]; /* * Setup the Transmit Buffer Descriptor */ TxBd[minor]->status = M8xx_BD_WRAP; /* * Set up SMCx general and protocol-specific mode registers */ smcregs->smce = ~0; /* Clear any pending events */ smcregs->smcm = 0; /* Enable SMC Rx & Tx interrupts */ smcregs->smcmr = M8xx_SMCMR_CLEN(9) | M8xx_SMCMR_SM_UART; /* * Send "Init parameters" command */ switch (minor) { case SMC1_MINOR: m8xx_cp_execute_cmd (M8xx_CR_OP_INIT_RX_TX | M8xx_CR_CHAN_SMC1); break; case SMC2_MINOR: m8xx_cp_execute_cmd (M8xx_CR_OP_INIT_RX_TX | M8xx_CR_CHAN_SMC2); break; } /* * Enable receiver and transmitter */ smcregs->smcmr |= M8xx_SMCMR_TEN | M8xx_SMCMR_REN; if ( (mbx8xx_console_get_configuration() & 0x06) == 0x02 ) { consoleIrqData.on = m8xx_smc_enable; consoleIrqData.off = m8xx_smc_disable; consoleIrqData.isOn = m8xx_smc_isOn; switch (minor) { case SMC1_MINOR: consoleIrqData.name = BSP_CPM_IRQ_SMC1; consoleIrqData.hdl = m8xx_smc1_interrupt_handler; break; case SMC2_MINOR: consoleIrqData.name = BSP_CPM_IRQ_SMC2_OR_PIP; consoleIrqData.hdl = m8xx_smc2_interrupt_handler; break; } if (!BSP_install_rtems_irq_handler (&consoleIrqData)) { printk("Unable to connect SMC Irq handler\n"); rtems_fatal_error_occurred(1); } } } void m8xx_uart_initialize(void) { int i; for (i=0; i < 4; i++) { brg_spd[i] = 0; brg_used[i] = 0; } } int m8xx_uart_pollRead( int minor ) { unsigned char c; if (RxBd[minor]->status & M8xx_BD_EMPTY) { return -1; } rtems_cache_invalidate_multiple_data_lines( (const void *) RxBd[minor]->buffer, RxBd[minor]->length ); c = ((char *)RxBd[minor]->buffer)[0]; RxBd[minor]->status = M8xx_BD_EMPTY | M8xx_BD_WRAP; return c; } /* * TODO: Get a free buffer and set it up. */ int m8xx_uart_write( int minor, const char *buf, int len ) { rtems_cache_flush_multiple_data_lines( buf, len ); TxBd[minor]->buffer = (char *) buf; TxBd[minor]->length = len; TxBd[minor]->status = M8xx_BD_READY | M8xx_BD_WRAP | M8xx_BD_INTERRUPT; return 0; } int m8xx_uart_pollWrite( int minor, const char *buf, int len ) { while (len--) { while (TxBd[minor]->status & M8xx_BD_READY) continue; txBuf[minor] = *buf++; rtems_cache_flush_multiple_data_lines( (void *)&txBuf[minor], 1 ); TxBd[minor]->buffer = &txBuf[minor]; TxBd[minor]->length = 1; TxBd[minor]->status = M8xx_BD_READY | M8xx_BD_WRAP; } return 0; } void m8xx_uart_reserve_resources( rtems_configuration_table *configuration ) { rtems_termios_reserve_resources (configuration, NUM_PORTS); }