// // $Id$ // // do_func.sa 3.4 2/18/91 // // Do_func performs the unimplemented operation. The operation // to be performed is determined from the lower 7 bits of the // extension word (except in the case of fmovecr and fsincos). // The opcode and tag bits form an index into a jump table in // tbldo.sa. Cases of zero, infinity and NaN are handled in // do_func by forcing the default result. Normalized and // denormalized (there are no unnormalized numbers at this // point) are passed onto the emulation code. // // CMDREG1B and STAG are extracted from the fsave frame // and combined to form the table index. The function called // will start with a0 pointing to the ETEMP operand. Dyadic // functions can find FPTEMP at -12(a0). // // Called functions return their result in fp0. Sincos returns // sin(x) in fp0 and cos(x) in fp1. // // Copyright (C) Motorola, Inc. 1990 // All Rights Reserved // // THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA // The copyright notice above does not evidence any // actual or intended publication of such source code. DO_FUNC: //idnt 2,1 | Motorola 040 Floating Point Software Package |section 8 #include "fpsp.defs" |xref t_dz2 |xref t_operr |xref t_inx2 |xref t_resdnrm |xref dst_nan |xref src_nan |xref nrm_set |xref sto_cos |xref tblpre |xref slognp1,slogn,slog10,slog2 |xref slognd,slog10d,slog2d |xref smod,srem |xref sscale |xref smovcr PONE: .long 0x3fff0000,0x80000000,0x00000000 //+1 MONE: .long 0xbfff0000,0x80000000,0x00000000 //-1 PZERO: .long 0x00000000,0x00000000,0x00000000 //+0 MZERO: .long 0x80000000,0x00000000,0x00000000 //-0 PINF: .long 0x7fff0000,0x00000000,0x00000000 //+inf MINF: .long 0xffff0000,0x00000000,0x00000000 //-inf QNAN: .long 0x7fff0000,0xffffffff,0xffffffff //non-signaling nan PPIBY2: .long 0x3FFF0000,0xC90FDAA2,0x2168C235 //+PI/2 MPIBY2: .long 0xbFFF0000,0xC90FDAA2,0x2168C235 //-PI/2 .global do_func do_func: clrb CU_ONLY(%a6) // // Check for fmovecr. It does not follow the format of fp gen // unimplemented instructions. The test is on the upper 6 bits; // if they are $17, the inst is fmovecr. Call entry smovcr // directly. // bfextu CMDREG1B(%a6){#0:#6},%d0 //get opclass and src fields cmpil #0x17,%d0 //if op class and size fields are $17, // ;it is FMOVECR; if not, continue bnes not_fmovecr jmp smovcr //fmovecr; jmp directly to emulation not_fmovecr: movew CMDREG1B(%a6),%d0 andl #0x7F,%d0 cmpil #0x38,%d0 //if the extension is >= $38, bge serror //it is illegal bfextu STAG(%a6){#0:#3},%d1 lsll #3,%d0 //make room for STAG addl %d1,%d0 //combine for final index into table leal tblpre,%a1 //start of monster jump table movel (%a1,%d0.w*4),%a1 //real target address leal ETEMP(%a6),%a0 //a0 is pointer to src op movel USER_FPCR(%a6),%d1 andl #0xFF,%d1 // discard all but rounding mode/prec fmovel #0,%fpcr jmp (%a1) // // ERROR // .global serror serror: st STORE_FLG(%a6) rts // // These routines load forced values into fp0. They are called // by index into tbldo. // // Load a signed zero to fp0 and set inex2/ainex // .global snzrinx snzrinx: btstb #sign_bit,LOCAL_EX(%a0) //get sign of source operand bnes ld_mzinx //if negative, branch bsr ld_pzero //bsr so we can return and set inx bra t_inx2 //now, set the inx for the next inst ld_mzinx: bsr ld_mzero //if neg, load neg zero, return here bra t_inx2 //now, set the inx for the next inst // // Load a signed zero to fp0; do not set inex2/ainex // .global szero szero: btstb #sign_bit,LOCAL_EX(%a0) //get sign of source operand bne ld_mzero //if neg, load neg zero bra ld_pzero //load positive zero // // Load a signed infinity to fp0; do not set inex2/ainex // .global sinf sinf: btstb #sign_bit,LOCAL_EX(%a0) //get sign of source operand bne ld_minf //if negative branch bra ld_pinf // // Load a signed one to fp0; do not set inex2/ainex // .global sone sone: btstb #sign_bit,LOCAL_EX(%a0) //check sign of source bne ld_mone bra ld_pone // // Load a signed pi/2 to fp0; do not set inex2/ainex // .global spi_2 spi_2: btstb #sign_bit,LOCAL_EX(%a0) //check sign of source bne ld_mpi2 bra ld_ppi2 // // Load either a +0 or +inf for plus/minus operand // .global szr_inf szr_inf: btstb #sign_bit,LOCAL_EX(%a0) //check sign of source bne ld_pzero bra ld_pinf // // Result is either an operr or +inf for plus/minus operand // [Used by slogn, slognp1, slog10, and slog2] // .global sopr_inf sopr_inf: btstb #sign_bit,LOCAL_EX(%a0) //check sign of source bne t_operr bra ld_pinf // // FLOGNP1 // .global sslognp1 sslognp1: fmovemx (%a0),%fp0-%fp0 fcmpb #-1,%fp0 fbgt slognp1 fbeq t_dz2 //if = -1, divide by zero exception fmovel #0,%FPSR //clr N flag bra t_operr //take care of operands < -1 // // FETOXM1 // .global setoxm1i setoxm1i: btstb #sign_bit,LOCAL_EX(%a0) //check sign of source bne ld_mone bra ld_pinf // // FLOGN // // Test for 1.0 as an input argument, returning +zero. Also check // the sign and return operr if negative. // .global sslogn sslogn: btstb #sign_bit,LOCAL_EX(%a0) bne t_operr //take care of operands < 0 cmpiw #0x3fff,LOCAL_EX(%a0) //test for 1.0 input bne slogn cmpil #0x80000000,LOCAL_HI(%a0) bne slogn tstl LOCAL_LO(%a0) bne slogn fmovex PZERO,%fp0 rts .global sslognd sslognd: btstb #sign_bit,LOCAL_EX(%a0) beq slognd bra t_operr //take care of operands < 0 // // FLOG10 // .global sslog10 sslog10: btstb #sign_bit,LOCAL_EX(%a0) bne t_operr //take care of operands < 0 cmpiw #0x3fff,LOCAL_EX(%a0) //test for 1.0 input bne slog10 cmpil #0x80000000,LOCAL_HI(%a0) bne slog10 tstl LOCAL_LO(%a0) bne slog10 fmovex PZERO,%fp0 rts .global sslog10d sslog10d: btstb #sign_bit,LOCAL_EX(%a0) beq slog10d bra t_operr //take care of operands < 0 // // FLOG2 // .global sslog2 sslog2: btstb #sign_bit,LOCAL_EX(%a0) bne t_operr //take care of operands < 0 cmpiw #0x3fff,LOCAL_EX(%a0) //test for 1.0 input bne slog2 cmpil #0x80000000,LOCAL_HI(%a0) bne slog2 tstl LOCAL_LO(%a0) bne slog2 fmovex PZERO,%fp0 rts .global sslog2d sslog2d: btstb #sign_bit,LOCAL_EX(%a0) beq slog2d bra t_operr //take care of operands < 0 // // FMOD // pmodt: // ;$21 fmod // ;dtag,stag .long smod // 00,00 norm,norm = normal .long smod_oper // 00,01 norm,zero = nan with operr .long smod_fpn // 00,10 norm,inf = fpn .long smod_snan // 00,11 norm,nan = nan .long smod_zro // 01,00 zero,norm = +-zero .long smod_oper // 01,01 zero,zero = nan with operr .long smod_zro // 01,10 zero,inf = +-zero .long smod_snan // 01,11 zero,nan = nan .long smod_oper // 10,00 inf,norm = nan with operr .long smod_oper // 10,01 inf,zero = nan with operr .long smod_oper // 10,10 inf,inf = nan with operr .long smod_snan // 10,11 inf,nan = nan .long smod_dnan // 11,00 nan,norm = nan .long smod_dnan // 11,01 nan,zero = nan .long smod_dnan // 11,10 nan,inf = nan .long smod_dnan // 11,11 nan,nan = nan .global pmod pmod: clrb FPSR_QBYTE(%a6) // clear quotient field bfextu STAG(%a6){#0:#3},%d0 //stag = d0 bfextu DTAG(%a6){#0:#3},%d1 //dtag = d1 // // Alias extended denorms to norms for the jump table. // bclrl #2,%d0 bclrl #2,%d1 lslb #2,%d1 orb %d0,%d1 //d1{3:2} = dtag, d1{1:0} = stag // ;Tag values: // ;00 = norm or denorm // ;01 = zero // ;10 = inf // ;11 = nan lea pmodt,%a1 movel (%a1,%d1.w*4),%a1 jmp (%a1) smod_snan: bra src_nan smod_dnan: bra dst_nan smod_oper: bra t_operr smod_zro: moveb ETEMP(%a6),%d1 //get sign of src op moveb FPTEMP(%a6),%d0 //get sign of dst op eorb %d0,%d1 //get exor of sign bits btstl #7,%d1 //test for sign beqs smod_zsn //if clr, do not set sign big bsetb #q_sn_bit,FPSR_QBYTE(%a6) //set q-byte sign bit smod_zsn: btstl #7,%d0 //test if + or - beq ld_pzero //if pos then load +0 bra ld_mzero //else neg load -0 smod_fpn: moveb ETEMP(%a6),%d1 //get sign of src op moveb FPTEMP(%a6),%d0 //get sign of dst op eorb %d0,%d1 //get exor of sign bits btstl #7,%d1 //test for sign beqs smod_fsn //if clr, do not set sign big bsetb #q_sn_bit,FPSR_QBYTE(%a6) //set q-byte sign bit smod_fsn: tstb DTAG(%a6) //filter out denormal destination case bpls smod_nrm // leal FPTEMP(%a6),%a0 //a0<- addr(FPTEMP) bra t_resdnrm //force UNFL(but exact) result smod_nrm: fmovel USER_FPCR(%a6),%fpcr //use user's rmode and precision fmovex FPTEMP(%a6),%fp0 //return dest to fp0 rts // // FREM // premt: // ;$25 frem // ;dtag,stag .long srem // 00,00 norm,norm = normal .long srem_oper // 00,01 norm,zero = nan with operr .long srem_fpn // 00,10 norm,inf = fpn .long srem_snan // 00,11 norm,nan = nan .long srem_zro // 01,00 zero,norm = +-zero .long srem_oper // 01,01 zero,zero = nan with operr .long srem_zro // 01,10 zero,inf = +-zero .long srem_snan // 01,11 zero,nan = nan .long srem_oper // 10,00 inf,norm = nan with operr .long srem_oper // 10,01 inf,zero = nan with operr .long srem_oper // 10,10 inf,inf = nan with operr .long srem_snan // 10,11 inf,nan = nan .long srem_dnan // 11,00 nan,norm = nan .long srem_dnan // 11,01 nan,zero = nan .long srem_dnan // 11,10 nan,inf = nan .long srem_dnan // 11,11 nan,nan = nan .global prem prem: clrb FPSR_QBYTE(%a6) //clear quotient field bfextu STAG(%a6){#0:#3},%d0 //stag = d0 bfextu DTAG(%a6){#0:#3},%d1 //dtag = d1 // // Alias extended denorms to norms for the jump table. // bclr #2,%d0 bclr #2,%d1 lslb #2,%d1 orb %d0,%d1 //d1{3:2} = dtag, d1{1:0} = stag // ;Tag values: // ;00 = norm or denorm // ;01 = zero // ;10 = inf // ;11 = nan lea premt,%a1 movel (%a1,%d1.w*4),%a1 jmp (%a1) srem_snan: bra src_nan srem_dnan: bra dst_nan srem_oper: bra t_operr srem_zro: moveb ETEMP(%a6),%d1 //get sign of src op moveb FPTEMP(%a6),%d0 //get sign of dst op eorb %d0,%d1 //get exor of sign bits btstl #7,%d1 //test for sign beqs srem_zsn //if clr, do not set sign big bsetb #q_sn_bit,FPSR_QBYTE(%a6) //set q-byte sign bit srem_zsn: btstl #7,%d0 //test if + or - beq ld_pzero //if pos then load +0 bra ld_mzero //else neg load -0 srem_fpn: moveb ETEMP(%a6),%d1 //get sign of src op moveb FPTEMP(%a6),%d0 //get sign of dst op eorb %d0,%d1 //get exor of sign bits btstl #7,%d1 //test for sign beqs srem_fsn //if clr, do not set sign big bsetb #q_sn_bit,FPSR_QBYTE(%a6) //set q-byte sign bit srem_fsn: tstb DTAG(%a6) //filter out denormal destination case bpls srem_nrm // leal FPTEMP(%a6),%a0 //a0<- addr(FPTEMP) bra t_resdnrm //force UNFL(but exact) result srem_nrm: fmovel USER_FPCR(%a6),%fpcr //use user's rmode and precision fmovex FPTEMP(%a6),%fp0 //return dest to fp0 rts // // FSCALE // pscalet: // ;$26 fscale // ;dtag,stag .long sscale // 00,00 norm,norm = result .long sscale // 00,01 norm,zero = fpn .long scl_opr // 00,10 norm,inf = nan with operr .long scl_snan // 00,11 norm,nan = nan .long scl_zro // 01,00 zero,norm = +-zero .long scl_zro // 01,01 zero,zero = +-zero .long scl_opr // 01,10 zero,inf = nan with operr .long scl_snan // 01,11 zero,nan = nan .long scl_inf // 10,00 inf,norm = +-inf .long scl_inf // 10,01 inf,zero = +-inf .long scl_opr // 10,10 inf,inf = nan with operr .long scl_snan // 10,11 inf,nan = nan .long scl_dnan // 11,00 nan,norm = nan .long scl_dnan // 11,01 nan,zero = nan .long scl_dnan // 11,10 nan,inf = nan .long scl_dnan // 11,11 nan,nan = nan .global pscale pscale: bfextu STAG(%a6){#0:#3},%d0 //stag in d0 bfextu DTAG(%a6){#0:#3},%d1 //dtag in d1 bclrl #2,%d0 //alias denorm into norm bclrl #2,%d1 //alias denorm into norm lslb #2,%d1 orb %d0,%d1 //d1{4:2} = dtag, d1{1:0} = stag // ;dtag values stag values: // ;000 = norm 00 = norm // ;001 = zero 01 = zero // ;010 = inf 10 = inf // ;011 = nan 11 = nan // ;100 = dnrm // // leal pscalet,%a1 //load start of jump table movel (%a1,%d1.w*4),%a1 //load a1 with label depending on tag jmp (%a1) //go to the routine scl_opr: bra t_operr scl_dnan: bra dst_nan scl_zro: btstb #sign_bit,FPTEMP_EX(%a6) //test if + or - beq ld_pzero //if pos then load +0 bra ld_mzero //if neg then load -0 scl_inf: btstb #sign_bit,FPTEMP_EX(%a6) //test if + or - beq ld_pinf //if pos then load +inf bra ld_minf //else neg load -inf scl_snan: bra src_nan // // FSINCOS // .global ssincosz ssincosz: btstb #sign_bit,ETEMP(%a6) //get sign beqs sincosp fmovex MZERO,%fp0 bras sincoscom sincosp: fmovex PZERO,%fp0 sincoscom: fmovemx PONE,%fp1-%fp1 //do not allow FPSR to be affected bra sto_cos //store cosine result .global ssincosi ssincosi: fmovex QNAN,%fp1 //load NAN bsr sto_cos //store cosine result fmovex QNAN,%fp0 //load NAN bra t_operr .global ssincosnan ssincosnan: movel ETEMP_EX(%a6),FP_SCR1(%a6) movel ETEMP_HI(%a6),FP_SCR1+4(%a6) movel ETEMP_LO(%a6),FP_SCR1+8(%a6) bsetb #signan_bit,FP_SCR1+4(%a6) fmovemx FP_SCR1(%a6),%fp1-%fp1 bsr sto_cos bra src_nan // // This code forces default values for the zero, inf, and nan cases // in the transcendentals code. The CC bits must be set in the // stacked FPSR to be correctly reported. // //**Returns +PI/2 .global ld_ppi2 ld_ppi2: fmovex PPIBY2,%fp0 //load +pi/2 bra t_inx2 //set inex2 exc //**Returns -PI/2 .global ld_mpi2 ld_mpi2: fmovex MPIBY2,%fp0 //load -pi/2 orl #neg_mask,USER_FPSR(%a6) //set N bit bra t_inx2 //set inex2 exc //**Returns +inf .global ld_pinf ld_pinf: fmovex PINF,%fp0 //load +inf orl #inf_mask,USER_FPSR(%a6) //set I bit rts //**Returns -inf .global ld_minf ld_minf: fmovex MINF,%fp0 //load -inf orl #neg_mask+inf_mask,USER_FPSR(%a6) //set N and I bits rts //**Returns +1 .global ld_pone ld_pone: fmovex PONE,%fp0 //load +1 rts //**Returns -1 .global ld_mone ld_mone: fmovex MONE,%fp0 //load -1 orl #neg_mask,USER_FPSR(%a6) //set N bit rts //**Returns +0 .global ld_pzero ld_pzero: fmovex PZERO,%fp0 //load +0 orl #z_mask,USER_FPSR(%a6) //set Z bit rts //**Returns -0 .global ld_mzero ld_mzero: fmovex MZERO,%fp0 //load -0 orl #neg_mask+z_mask,USER_FPSR(%a6) //set N and Z bits rts |end