/* * Copyright (c) 2005 Martin Decky * Copyright (c) 2006 Jakub Jermar * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * - The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * Modifications are made to switch to using printk rather than printf, * and to remove portions of the HelenOS bootstrap process that are * unnecessary on RTEMS. The removed code is elided with #if 0 ... #endif * blocks. * * Removes some header files. Adds back some missing defines. */ #define RTEMS #include #include #include #include #include #include #include #include #include #include #if 0 #include "asm.h" #include #include "_components.h" #include #include #include #endif #include #if 0 #define PAGE_WIDTH 14 #define PAGE_SIZE (1 << PAGE_WIDTH) #endif static bootinfo_t bootinfo; #if 0 static component_t components[COMPONENTS]; static char *release = STRING(RELEASE); #ifdef REVISION static char *revision = ", revision " STRING(REVISION); #else static char *revision = ""; #endif #ifdef TIMESTAMP static char *timestamp = "\nBuilt on " STRING(TIMESTAMP); #else static char *timestamp = ""; #endif #endif #if 0 /** UltraSPARC subarchitecture - 1 for US, 3 for US3, 0 for other */ static uint8_t subarchitecture = 0; #endif #if 0 /** * mask of the MID field inside the ICBUS_CONFIG register shifted by * MID_SHIFT bits to the right */ static uint16_t mid_mask; #endif #if 0 /** Print version information. */ static void version_print(void) { printk("HelenOS SPARC64 Bootloader\nRelease %s%s%s\n" "Copyright (c) 2006 HelenOS project\n", release, revision, timestamp); } #endif /* the lowest ID (read from the VER register) of some US3 CPU model */ #define FIRST_US3_CPU 0x14 /* the greatest ID (read from the VER register) of some US3 CPU model */ #define LAST_US3_CPU 0x19 /* UltraSPARC IIIi processor implementation code */ #define US_IIIi_CODE 0x15 /* max. length of the "compatible" property of the root node */ #define COMPATIBLE_PROP_MAXLEN 64 /* * HelenOS bootloader will use these constants to distinguish particular * UltraSPARC architectures */ #define COMPATIBLE_SUN4U 10 #define COMPATIBLE_SUN4V 20 /** US architecture. COMPATIBLE_SUN4U for sun4v, COMPATIBLE_SUN4V for sun4u */ static uint8_t architecture; /** * Detects the UltraSPARC architecture (sun4u and sun4v currently supported) * by inspecting the property called "compatible" in the OBP root node. */ static void detect_architecture(void) { phandle root = ofw_find_device("/"); char compatible[COMPATIBLE_PROP_MAXLEN]; if (ofw_get_property(root, "compatible", compatible, COMPATIBLE_PROP_MAXLEN) <= 0) { printk("Unable to determine architecture, default: sun4u.\n"); architecture = COMPATIBLE_SUN4U; return; } if (strcmp(compatible, "sun4v") == 0) { architecture = COMPATIBLE_SUN4V; } else { /* * As not all sun4u machines have "sun4u" in their "compatible" * OBP property (e.g. Serengeti's OBP "compatible" property is * "SUNW,Serengeti"), we will by default fallback to sun4u if * an unknown value of the "compatible" property is encountered. */ architecture = COMPATIBLE_SUN4U; } } #if 0 /** * Detects the subarchitecture (US, US3) of the sun4u * processor. Sets the global variables "subarchitecture" and "mid_mask" to * correct values. */ static void detect_subarchitecture(void) { uint64_t v; asm volatile ( "rdpr %%ver, %0\n" : "=r" (v) ); v = (v << 16) >> 48; if ((v >= FIRST_US3_CPU) && (v <= LAST_US3_CPU)) { subarchitecture = SUBARCH_US3; if (v == US_IIIi_CODE) mid_mask = (1 << 5) - 1; else mid_mask = (1 << 10) - 1; } else if (v < FIRST_US3_CPU) { subarchitecture = SUBARCH_US; mid_mask = (1 << 5) - 1; } else printk("\nThis CPU is not supported by HelenOS."); } #endif #if 0 /** * Performs sun4u-specific initialization. The components are expected * to be already copied and boot allocator initialized. * * @param base kernel base virtual address * @param top virtual address above which the boot allocator * can make allocations */ static void bootstrap_sun4u(void *base, unsigned int top) { void *balloc_base; /* * Claim and map the physical memory for the boot allocator. * Initialize the boot allocator. */ balloc_base = base + ALIGN_UP(top, PAGE_SIZE); (void) ofw_claim_phys(bootinfo.physmem_start + balloc_base, BALLOC_MAX_SIZE); (void) ofw_map(bootinfo.physmem_start + balloc_base, balloc_base, BALLOC_MAX_SIZE, -1); balloc_init(&bootinfo.ballocs, (uintptr_t) balloc_base, (uintptr_t) balloc_base); #if 0 printf("Setting up screens..."); ofw_setup_screens(); printf("done.\n"); #endif #if 0 printf("Canonizing OpenFirmware device tree..."); #endif bootinfo.ofw_root = ofw_tree_build(); #if 0 printf("done.\n"); #endif #if 0 #ifdef CONFIG_AP printf("Checking for secondary processors..."); if (!ofw_cpu(mid_mask, bootinfo.physmem_start)) printf("Error: unable to get CPU properties\n"); printf("done.\n"); #endif #endif } #endif #if 0 /** * * Performs sun4v-specific initialization. The components are expected * * to be already copied and boot allocator initialized. * */ static void bootstrap_sun4v(void) { /* * When SILO booted, the OBP had established a virtual to physical * memory mapping. This mapping is not an identity (because the * physical memory starts on non-zero address) - this is not * surprising. But! The mapping even does not map virtual address * 0 onto the starting address of the physical memory, but onto an * address which is 0x400000 bytes higher. The reason is that the * OBP had already used the memory just at the beginning of the * physical memory, so that memory cannot be used by SILO (nor * bootloader). As for now, we solve it by a nasty workaround: * we pretend that the physical memory starts 0x400000 bytes further * than it actually does (and hence pretend that the physical memory * is 0x400000 bytes smaller). Of course, the value 0x400000 will most * probably depend on the machine and OBP version (the workaround now * works on Simics). A solution would be to inspect the "available" * property of the "/memory" node to find out which parts of memory * are used by OBP and redesign the algorithm of copying * kernel/init tasks/ramdisk from the bootable image to memory * (which we must do anyway because of issues with claiming the memory * on Serengeti). */ bootinfo.physmem_start += 0x400000; bootinfo.memmap.zones[0].start += 0x400000; bootinfo.memmap.zones[0].size -= 0x400000; #if 0 printf("The sun4v init finished."); #endif } #endif void bootstrap(void) { #if 0 void *base = (void *) KERNEL_VIRTUAL_ADDRESS; unsigned int top = 0; unsigned int i; unsigned int j; #endif detect_architecture(); #if 0 init_components(components); #endif if (!ofw_get_physmem_start(&bootinfo.physmem_start)) { printk("Error: unable to get start of physical memory.\n"); halt(); } if (!ofw_memmap(&bootinfo.memmap)) { printk("Error: unable to get memory map, halting.\n"); halt(); } if (bootinfo.memmap.total == 0) { printk("Error: no memory detected, halting.\n"); halt(); } /* * SILO for some reason adds 0x400000 and subtracts * bootinfo.physmem_start to/from silo_ramdisk_image. * We just need plain physical address so we fix it up. */ if (silo_ramdisk_image) { silo_ramdisk_image += bootinfo.physmem_start; silo_ramdisk_image -= 0x400000; /* Install 1:1 mapping for the RAM disk. */ if (ofw_map((void *) ((uintptr_t) silo_ramdisk_image), (void *) ((uintptr_t) silo_ramdisk_image), silo_ramdisk_size, -1) != 0) { printk("Failed to map RAM disk.\n"); halt(); } } printk("\nMemory statistics (total %d MB, starting at %" PRIxPTR ")\n", bootinfo.memmap.total >> 20, bootinfo.physmem_start); printk(" %x: kernel entry point\n", KERNEL_VIRTUAL_ADDRESS); printk(" %p: boot info structure\n", &bootinfo); #if 0 /* * Figure out destination address for each component. * In this phase, we don't copy the components yet because we want to * to be careful not to overwrite anything, especially the components * which haven't been copied yet. */ bootinfo.taskmap.count = 0; for (i = 0; i < COMPONENTS; i++) { printf(" %P: %s image (size %d bytes)\n", components[i].start, components[i].name, components[i].size); top = ALIGN_UP(top, PAGE_SIZE); if (i > 0) { if (bootinfo.taskmap.count == TASKMAP_MAX_RECORDS) { printf("Skipping superfluous components.\n"); break; } bootinfo.taskmap.tasks[bootinfo.taskmap.count].addr = base + top; bootinfo.taskmap.tasks[bootinfo.taskmap.count].size = components[i].size; strncpy(bootinfo.taskmap.tasks[ bootinfo.taskmap.count].name, components[i].name, BOOTINFO_TASK_NAME_BUFLEN); bootinfo.taskmap.count++; } top += components[i].size; } printf("\n"); /* Do not consider RAM disk */ j = bootinfo.taskmap.count - 1; if (silo_ramdisk_image) { /* Treat the RAM disk as the last bootinfo task. */ if (bootinfo.taskmap.count == TASKMAP_MAX_RECORDS) { printf("Skipping RAM disk.\n"); goto skip_ramdisk; } top = ALIGN_UP(top, PAGE_SIZE); bootinfo.taskmap.tasks[bootinfo.taskmap.count].addr = base + top; bootinfo.taskmap.tasks[bootinfo.taskmap.count].size = silo_ramdisk_size; bootinfo.taskmap.count++; printf("Copying RAM disk..."); /* * Claim and map the whole ramdisk as it may exceed the area * given to us by SILO. */ (void) ofw_claim_phys(base + top, silo_ramdisk_size); (void) ofw_map(bootinfo.physmem_start + base + top, base + top, silo_ramdisk_size, -1); memmove(base + top, (void *) ((uintptr_t) silo_ramdisk_image), silo_ramdisk_size); printf("done.\n"); top += silo_ramdisk_size; } skip_ramdisk: /* * Now we can proceed to copy the components. We do it in reverse order * so that we don't overwrite anything even if the components overlap * with base. */ printf("Copying tasks..."); for (i = COMPONENTS - 1; i > 0; i--, j--) { printf("%s ", components[i].name); /* * At this point, we claim the physical memory that we are * going to use. We should be safe in case of the virtual * address space because the OpenFirmware, according to its * SPARC binding, should restrict its use of virtual memory * to addresses from [0xffd00000; 0xffefffff] and * [0xfe000000; 0xfeffffff]. * * XXX We don't map this piece of memory. We simply rely on * SILO to have it done for us already in this case. */ (void) ofw_claim_phys(bootinfo.physmem_start + bootinfo.taskmap.tasks[j].addr, ALIGN_UP(components[i].size, PAGE_SIZE)); memcpy((void *) bootinfo.taskmap.tasks[j].addr, components[i].start, components[i].size); } printf(".\n"); printf("Copying kernel..."); (void) ofw_claim_phys(bootinfo.physmem_start + base, ALIGN_UP(components[0].size, PAGE_SIZE)); memcpy(base, components[0].start, components[0].size); printf("done.\n"); /* perform architecture-specific initialization */ if (architecture == COMPATIBLE_SUN4U) { bootstrap_sun4u(base, top); } else if (architecture == COMPATIBLE_SUN4V) { bootstrap_sun4v(); } else { printf("Unknown architecture.\n"); halt(); } printf("Booting the kernel...\n"); jump_to_kernel((void *) KERNEL_VIRTUAL_ADDRESS, bootinfo.physmem_start | BSP_PROCESSOR, &bootinfo, sizeof(bootinfo), subarchitecture); #endif }