/* * Clock Tick Device Driver * * This routine initializes LEON timer 1 which used for the clock tick. * * The tick frequency is directly programmed to the configured number of * microseconds per tick. * * COPYRIGHT (c) 1989-1998. * On-Line Applications Research Corporation (OAR). * * Modified for LEON3 BSP. * COPYRIGHT (c) 2004. * Gaisler Research. * * The license and distribution terms for this file may be * found in the file LICENSE in this distribution or at * http://www.rtems.com/license/LICENSE. * * * $Id$ */ #include #include #include /* * The Real Time Clock Counter Timer uses this trap type. */ extern rtems_configuration_table Configuration; #define LEON3_CLOCK_INDEX (Configuration.User_multiprocessing_table ? LEON3_Cpu_Index : 0) #define CLOCK_VECTOR LEON_TRAP_TYPE( LEON_INTERRUPT_TIMER1 ) /* * Clock ticks since initialization */ volatile rtems_unsigned32 Clock_driver_ticks; volatile LEON3_Timer_Regs_Map *LEON3_Timer_Regs = 0; static int clkirq; /* * This is the value programmed into the count down timer. It * is artificially lowered when SIMSPARC_FAST_IDLE is defined to * cut down how long we spend in the idle task while executing on * the simulator. */ extern rtems_unsigned32 CPU_SPARC_CLICKS_PER_TICK; rtems_isr_entry Old_ticker; void Clock_exit( void ); /* * These are set by clock driver during its init */ rtems_device_major_number rtems_clock_major = ~0; rtems_device_minor_number rtems_clock_minor; /* * Clock_isr * * This is the clock tick interrupt handler. * * Input parameters: * vector - vector number * * Output parameters: NONE * * Return values: NONE * */ rtems_isr Clock_isr( rtems_vector_number vector ) { /* * If we are in "fast idle" mode, then the value for clicks per tick * is lowered to decrease the amount of time spent executing the idle * task while using the SPARC Instruction Simulator. */ #if SIMSPARC_FAST_IDLE LEON_REG.Real_Time_Clock_Counter = CPU_SPARC_CLICKS_PER_TICK; LEON_REG_Set_Real_Time_Clock_Timer_Control( LEON_REG_TIMER_COUNTER_ENABLE_COUNTING | LEON_REG_TIMER_COUNTER_LOAD_COUNTER ); #endif /* * The driver has seen another tick. */ Clock_driver_ticks += 1; /* * Real Time Clock counter/timer is set to automatically reload. */ rtems_clock_tick(); } /* * Install_clock * * This routine actually performs the hardware initialization for the clock. * * Input parameters: * clock_isr - clock interrupt service routine entry point * * Output parameters: NONE * * Return values: NONE * */ void Install_clock( rtems_isr_entry clock_isr ) { int i; unsigned int iobar, conf; Clock_driver_ticks = 0; /* Find GP Timer */ i = 0; while (i < amba_conf.apbslv.devnr) { conf = amba_get_confword(amba_conf.apbslv, i, 0); if ((amba_vendor(conf) == VENDOR_GAISLER) && (amba_device(conf) == GAISLER_GPTIMER)) { iobar = amba_apb_get_membar(amba_conf.apbslv, i); LEON3_Timer_Regs = (volatile LEON3_Timer_Regs_Map *) amba_iobar_start(amba_conf.apbmst, iobar); break; } i++; } clkirq = (LEON3_Timer_Regs->status & 0xfc) >> 3; /* MP */ if (Configuration.User_multiprocessing_table != NULL) { clkirq += LEON3_Cpu_Index; } if ( BSP_Configuration.ticks_per_timeslice ) { Old_ticker = (rtems_isr_entry) set_vector( clock_isr, LEON_TRAP_TYPE(clkirq), 1 ); LEON3_Timer_Regs->timer[LEON3_CLOCK_INDEX].reload = CPU_SPARC_CLICKS_PER_TICK - 1; LEON3_Timer_Regs->timer[LEON3_CLOCK_INDEX].conf = LEON3_GPTIMER_EN | LEON3_GPTIMER_RL | LEON3_GPTIMER_LD | LEON3_GPTIMER_IRQEN; atexit( Clock_exit ); } } /* * Clock_exit * * This routine allows the clock driver to exit by masking the interrupt and * disabling the clock's counter. * * Input parameters: NONE * * Output parameters: NONE * * Return values: NONE * */ void Clock_exit( void ) { if ( BSP_Configuration.ticks_per_timeslice ) { LEON_Mask_interrupt(LEON_TRAP_TYPE(clkirq)); LEON3_Timer_Regs->timer[LEON3_CLOCK_INDEX].conf = 0; /* do not restore old vector */ } } /* * Clock_initialize * * This routine initializes the clock driver. * * Input parameters: * major - clock device major number * minor - clock device minor number * parg - pointer to optional device driver arguments * * Output parameters: NONE * * Return values: * rtems_device_driver status code */ rtems_device_driver Clock_initialize( rtems_device_major_number major, rtems_device_minor_number minor, void *pargp ) { Install_clock( Clock_isr ); /* * make major/minor avail to others such as shared memory driver */ rtems_clock_major = major; rtems_clock_minor = minor; return RTEMS_SUCCESSFUL; } /* * Clock_control * * This routine is the clock device driver control entry point. * * Input parameters: * major - clock device major number * minor - clock device minor number * parg - pointer to optional device driver arguments * * Output parameters: NONE * * Return values: * rtems_device_driver status code */ rtems_device_driver Clock_control( rtems_device_major_number major, rtems_device_minor_number minor, void *pargp ) { rtems_unsigned32 isrlevel; rtems_libio_ioctl_args_t *args = pargp; if (args == 0) goto done; /* * This is hokey, but until we get a defined interface * to do this, it will just be this simple... */ if (args->command == rtems_build_name('I', 'S', 'R', ' ')) { Clock_isr(LEON_TRAP_TYPE(clkirq)); } else if (args->command == rtems_build_name('N', 'E', 'W', ' ')) { rtems_interrupt_disable( isrlevel ); (void) set_vector( args->buffer, LEON_TRAP_TYPE(clkirq), 1 ); rtems_interrupt_enable( isrlevel ); } done: return RTEMS_SUCCESSFUL; }