/* $Id$ */ #ifndef VME_UNIVERSE_UTIL_H #define VME_UNIVERSE_UTIL_H /* Driver for the Tundra Universe II pci-vme bridge */ /* * Authorship * ---------- * This software was created by * Till Straumann , 2000-2007, * Stanford Linear Accelerator Center, Stanford University. * * Acknowledgement of sponsorship * ------------------------------ * This software was produced by * the Stanford Linear Accelerator Center, Stanford University, * under Contract DE-AC03-76SFO0515 with the Department of Energy. * * Government disclaimer of liability * ---------------------------------- * Neither the United States nor the United States Department of Energy, * nor any of their employees, makes any warranty, express or implied, or * assumes any legal liability or responsibility for the accuracy, * completeness, or usefulness of any data, apparatus, product, or process * disclosed, or represents that its use would not infringe privately owned * rights. * * Stanford disclaimer of liability * -------------------------------- * Stanford University makes no representations or warranties, express or * implied, nor assumes any liability for the use of this software. * * Stanford disclaimer of copyright * -------------------------------- * Stanford University, owner of the copyright, hereby disclaims its * copyright and all other rights in this software. Hence, anyone may * freely use it for any purpose without restriction. * * Maintenance of notices * ---------------------- * In the interest of clarity regarding the origin and status of this * SLAC software, this and all the preceding Stanford University notices * are to remain affixed to any copy or derivative of this software made * or distributed by the recipient and are to be affixed to any copy of * software made or distributed by the recipient that contains a copy or * derivative of this software. * * ------------------ SLAC Software Notices, Set 4 OTT.002a, 2004 FEB 03 */ /* Register definitions */ /* NOTE: all registers contents in PCI space are LITTLE ENDIAN */ #ifdef __vxworks #include #else #include #endif /* These bits can be or'ed with the address-modifier when calling * the 'XlateAddr' routine below to further qualify the * search criteria. */ #define VME_MODE_MATCH_MASK (3<<30) #define VME_MODE_EXACT_MATCH (2<<30) /* all bits must match */ #define VME_MODE_AS_MATCH (1<<30) /* only A16/24/32 must match */ typedef unsigned long LERegister; /* emphasize contents are little endian */ /****** NOTE: USE OF VmeUniverseDMAPacket IS DEPRECATED ********* ****** USE API IN VMEDMA.h INSTEAD *********/ /* NOTE: DMA packet descriptors MUST be 32 byte aligned */ typedef struct VmeUniverseDMAPacketRec_ { LERegister dctl __attribute__((aligned(32))); LERegister dtbc __attribute__((packed)); LERegister dla __attribute__((packed)); LERegister dummy1 __attribute__((packed)); LERegister dva __attribute__((packed)); LERegister dummy2 __attribute__((packed)); LERegister dcpp __attribute__((packed)); LERegister dummy3 __attribute__((packed)); } VmeUniverseDMAPacketRec, *VmeUniverseDMAPacket; /* DEPRECATED */ /* PCI CSR register */ #define UNIV_REGOFF_PCI_CSR 0x4 # define UNIV_PCI_CSR_D_PE (1<<31) /* detected parity error; write 1 to clear */ # define UNIV_PCI_CSR_S_SERR (1<<30) /* SERR (signalled error) asserted; write 1 to clear */ # define UNIV_PCI_CSR_R_MA (1<<29) /* received master abort; write 1 to clear */ # define UNIV_PCI_CSR_R_TA (1<<28) /* received target abort; write 1 to clear */ # define UNIV_PCI_CSR_S_TA (1<<27) /* signalled target abort; write 1 to clear */ # define UNIV_PCI_CSR_DEVSEL_MASK (3<<25) /* device select timing (RO) */ # define UNIV_PCI_CSR_DP_D (1<<24) /* data parity error detected; write 1 to clear */ # define UNIV_PCI_CSR_TFBBC (1<<23) /* target fast back to back capable (RO) */ # define UNIV_PCI_CSR_MFBBC (1<<9) /* master fast back to back capable (RO) */ # define UNIV_PCI_CSR_SERR_EN (1<<8) /* enable SERR driver */ # define UNIV_PCI_CSR_WAIT (1<<7) /* wait cycle control (RO) */ # define UNIV_PCI_CSR_PERESP (1<<6) /* parity error response enable */ # define UNIV_PCI_CSR_VGAPS (1<<5) /* VGA palette snoop (RO) */ # define UNIV_PCI_CSR_MWI_EN (1<<4) /* Memory write and invalidate enable (RO) */ # define UNIV_PCI_CSR_SC (1<<3) /* special cycles (RO) */ # define UNIV_PCI_CSR_BM (1<<2) /* master enable (MUST SET TO ENABLE VME SLAVES) */ # define UNIV_PCI_CSR_MS (1<<1) /* target memory enable */ # define UNIV_PCI_CSR_IOS (1<<0) /* target IO enable */ /* Special cycle (ADOH, RMW) control register */ #define UNIV_REGOFF_SCYC_CTL 0x170 /* write 0 to disable */ # define UNIV_SCYC_CTL_LAS_IO (1<<2) /* PCI address space (1: IO, 0: mem) */ # define UNIV_SCYC_CTL_SCYC_RMW (1<<0) /* do a RMW cycle when reading PCI address */ # define UNIV_SCYC_CTL_SCYC_ADOH (2<<0) /* do a ADOH cycle when reading/writing PCI address */ /* Special cycle address register */ #define UNIV_REGOFF_SCYC_ADDR 0x174 /* PCI address (must be long word aligned) */ /* Special cycle Swap/Compare/Enable */ #define UNIV_REGOFF_SCYC_EN 0x178 /* mask determining the bits involved in the compare and swap operations for VME RMW cycles */ /* Special cycle compare data register */ #define UNIV_REGOFF_SCYC_CMP 0x17c /* data to compare with word returned from VME RMW read */ /* Special cycle swap data register */ #define UNIV_REGOFF_SCYC_SWP 0x180 /* If enabled bits of CMP match, corresponding SWP bits are written back to VME (under control of EN) */ /* PCI miscellaneous register */ #define UNIV_REGOFF_LMISC 0x184 # define UNIV_LMISC_CRT_MASK (7<<28) /* Univ. I only, not used on II */ # define UNIV_LMISC_CRT_INF (0<<28) /* Coupled Request Timeout */ # define UNIV_LMISC_CRT_128_US (1<<28) /* Coupled Request Timeout */ # define UNIV_LMISC_CRT_256_US (2<<28) /* Coupled Request Timeout */ # define UNIV_LMISC_CRT_512_US (3<<28) /* Coupled Request Timeout */ # define UNIV_LMISC_CRT_1024_US (4<<28) /* Coupled Request Timeout */ # define UNIV_LMISC_CRT_2048_US (5<<28) /* Coupled Request Timeout */ # define UNIV_LMISC_CRT_4096_US (6<<28) /* Coupled Request Timeout */ # define UNIV_LMISC_CWT_MASK (7<<24) /* coupled window timer */ # define UNIV_LMISC_CWT_DISABLE 0 /* disabled (release VME after 1 coupled xaction) */ # define UNIV_LMISC_CWT_16 (1<<24) /* 16 PCI clock cycles */ # define UNIV_LMISC_CWT_32 (2<<24) /* 32 PCI clock cycles */ # define UNIV_LMISC_CWT_64 (3<<24) /* 64 PCI clock cycles */ # define UNIV_LMISC_CWT_128 (4<<24) /* 128 PCI clock cycles */ # define UNIV_LMISC_CWT_256 (5<<24) /* 256 PCI clock cycles */ # define UNIV_LMISC_CWT_512 (6<<24) /* 512 PCI clock cycles */ /* PCI Command Error Log Register */ #define UNIV_REGOFF_L_CMDERR 0x18c # define UNIV_L_CMDERR_CMDERR(reg) (((reg)>>28)&0xf) /* extract PCI cmd error log */ # define UNIV_L_CMDERR_M_ERR (1<<27) /* multiple errors have occurred */ # define UNIV_L_CMDERR_L_STAT (1<<23) /* PCI error log status valid (write 1 to clear and enable logging) */ /* PCI Address Error Log */ #define UNIV_REGOFF_LAERR 0x190 /* PCI fault address (if L_CMDERR_L_STAT valid) */ /* DMA Xfer Control Register */ #define UNIV_REGOFF_DCTL 0x200 # define UNIV_DCTL_L2V (1<<31) /* PCI->VME if set */ # define UNIV_DCTL_VDW_MSK (3<<22) /* VME max. width mask 0x00c00000 */ # define UNIV_DCTL_VDW_8 (0<<22) /* VME max. width 8 */ # define UNIV_DCTL_VDW_16 (1<<22) /* VME max. width 16 */ # define UNIV_DCTL_VDW_32 (2<<22) /* VME max. width 32 */ # define UNIV_DCTL_VDW_64 (3<<22) /* VME max. width 64 */ # define UNIV_DCTL_VAS_MSK (7<<16) /* VME AS mask 0x00070000 */ # define UNIV_DCTL_VAS_A16 (0<<16) /* VME A16 */ # define UNIV_DCTL_VAS_A24 (1<<16) /* VME A24 */ # define UNIV_DCTL_VAS_A32 (2<<16) /* VME A32 */ # define UNIV_DCTL_PGM_MSK (3<<14) /* VME PGM/DATA mask 0x0000c000 */ # define UNIV_DCTL_PGM (1<<14) /* VME PGM(1)/DATA(0) */ # define UNIV_DCTL_SUPER_MSK (3<<12) /* VME SUPER/USR mask 0x00003000 */ # define UNIV_DCTL_SUPER (1<<12) /* VME SUPER(1)/USR(0) */ # define UNIV_DCTL_NO_VINC (1<<9) /* VME no VME address increment [Universe IIa/b ONLY */ # define UNIV_DCTL_VCT (1<<8) /* VME enable BLT */ # define UNIV_DCTL_LD64EN (1<<7) /* PCI 64 enable */ /* DMA Xfer byte count register (is updated by DMA) */ #define UNIV_REGOFF_DTBC 0x204 /* DMA Xfer local (PCI) address (direction is set in DCTL) */ #define UNIV_REGOFF_DLA 0x208 /* DMA Xfer VME address (direction is set in DCTL) * NOTE: (*UNIV_DVA) & ~7 == (*UNIV_DLA) & ~7 MUST HOLD */ #define UNIV_REGOFF_DVA 0x210 /* DMA Xfer VME command packet pointer * NOTE: The address stored here MUST be 32-byte aligned */ #define UNIV_REGOFF_DCPP 0x218 /* these bits are only used in linked lists */ # define UNIV_DCPP_IMG_NULL (1<<0) /* last packet in list */ # define UNIV_DCPP_IMG_PROCESSED (1<<1) /* packet processed */ /* DMA Xfer General Control/Status register */ #define UNIV_REGOFF_DGCS 0x220 # define UNIV_DGCS_GO (1<<31) /* start xfer */ # define UNIV_DGCS_STOP_REQ (1<<30) /* stop xfer (immediate abort) */ # define UNIV_DGCS_HALT_REQ (1<<29) /* halt xfer (abort after current packet) */ # define UNIV_DGCS_CHAIN (1<<27) /* enable linked list mode */ # define UNIV_DGCS_VON_MSK (7<<20) /* VON mask */ # define UNIV_DGCS_VON_DONE (0<<20) /* VON counter disabled (do until done) */ # define UNIV_DGCS_VON_256 (1<<20) /* VON yield bus after 256 bytes */ # define UNIV_DGCS_VON_512 (2<<20) /* VON yield bus after 512 bytes */ # define UNIV_DGCS_VON_1024 (3<<20) /* VON yield bus after 1024 bytes */ # define UNIV_DGCS_VON_2048 (4<<20) /* VON yield bus after 2048 bytes */ # define UNIV_DGCS_VON_4096 (5<<20) /* VON yield bus after 4096 bytes */ # define UNIV_DGCS_VON_8192 (6<<20) /* VON yield bus after 8192 bytes */ # define UNIV_DGCS_VON_16384 (7<<20) /* VON yield bus after 16384 bytes */ # define UNIV_DGCS_VOFF_MSK (15<<16) /* VOFF mask */ # define UNIV_DGCS_VOFF_0_US (0<<16) /* re-request VME master after 0 us */ # define UNIV_DGCS_VOFF_2_US (8<<16) /* re-request VME master after 2 us */ # define UNIV_DGCS_VOFF_4_US (9<<16) /* re-request VME master after 4 us */ # define UNIV_DGCS_VOFF_8_US (10<<16)/* re-request VME master after 8 us */ # define UNIV_DGCS_VOFF_16_US (1<<16) /* re-request VME master after 16 us */ # define UNIV_DGCS_VOFF_32_US (2<<16) /* re-request VME master after 32 us */ # define UNIV_DGCS_VOFF_64_US (3<<16) /* re-request VME master after 64 us */ # define UNIV_DGCS_VOFF_128_US (4<<16) /* re-request VME master after 128 us */ # define UNIV_DGCS_VOFF_256_US (5<<16) /* re-request VME master after 256 us */ # define UNIV_DGCS_VOFF_512_US (6<<16) /* re-request VME master after 512 us */ # define UNIV_DGCS_VOFF_1024_US (7<<16) /* re-request VME master after 1024 us */ /* Status Bits (write 1 to clear) */ # define UNIV_DGCS_ACT (1<<15) /* DMA active */ # define UNIV_DGCS_STOP (1<<14) /* DMA stopped */ # define UNIV_DGCS_HALT (1<<13) /* DMA halted */ # define UNIV_DGCS_DONE (1<<11) /* DMA done (OK) */ # define UNIV_DGCS_LERR (1<<10) /* PCI bus error */ # define UNIV_DGCS_VERR (1<<9) /* VME bus error */ # define UNIV_DGCS_P_ERR (1<<8) /* programming protocol error (e.g. PCI master disabled) */ # define UNIV_DGCS_STATUS_CLEAR\ (UNIV_DGCS_ACT|UNIV_DGCS_STOP|UNIV_DGCS_HALT|\ UNIV_DGCS_DONE|UNIV_DGCS_LERR|UNIV_DGCS_VERR|UNIV_DGCS_P_ERR) # define UNIV_DGCS_P_ERR (1<<8) /* programming protocol error (e.g. PCI master disabled) */ /* Interrupt Mask Bits */ # define UNIV_DGCS_INT_STOP (1<<6) /* interrupt when stopped */ # define UNIV_DGCS_INT_HALT (1<<5) /* interrupt when halted */ # define UNIV_DGCS_INT_DONE (1<<3) /* interrupt when done */ # define UNIV_DGCS_INT_LERR (1<<2) /* interrupt on LERR */ # define UNIV_DGCS_INT_VERR (1<<1) /* interrupt on VERR */ # define UNIV_DGCS_INT_P_ERR (1<<0) /* interrupt on P_ERR */ # define UNIV_DGCS_INT_MSK (0x0000006f) /* interrupt mask */ /* DMA Linked List Update Enable Register */ #define UNIV_REGOFF_D_LLUE 0x224 # define UNIV_D_LLUE_UPDATE (1<<31) /* PCI (local) interrupt enable register */ #define UNIV_REGOFF_LINT_EN 0x300 # define UNIV_LINT_EN_LM3 (1<<23) /* location monitor 3 mask */ # define UNIV_LINT_EN_LM2 (1<<22) /* location monitor 2 mask */ # define UNIV_LINT_EN_LM1 (1<<21) /* location monitor 1 mask */ # define UNIV_LINT_EN_LM0 (1<<20) /* location monitor 0 mask */ # define UNIV_LINT_EN_MBOX3 (1<<19) /* mailbox 3 mask */ # define UNIV_LINT_EN_MBOX2 (1<<18) /* mailbox 2 mask */ # define UNIV_LINT_EN_MBOX1 (1<<17) /* mailbox 1 mask */ # define UNIV_LINT_EN_MBOX0 (1<<16) /* mailbox 0 mask */ # define UNIV_LINT_EN_ACFAIL (1<<15) /* ACFAIL irq mask */ # define UNIV_LINT_EN_SYSFAIL (1<<14) /* SYSFAIL irq mask */ # define UNIV_LINT_EN_SW_INT (1<<13) /* PCI (local) software irq */ # define UNIV_LINT_EN_SW_IACK (1<<12) /* VME software IACK mask */ # define UNIV_LINT_EN_VERR (1<<10) /* PCI VERR irq mask */ # define UNIV_LINT_EN_LERR (1<<9) /* PCI LERR irq mask */ # define UNIV_LINT_EN_DMA (1<<8) /* PCI DMA irq mask */ # define UNIV_LINT_EN_VIRQ7 (1<<7) /* VIRQ7 mask (universe does IACK automatically) */ # define UNIV_LINT_EN_VIRQ6 (1<<6) /* VIRQ6 mask */ # define UNIV_LINT_EN_VIRQ5 (1<<5) /* VIRQ5 mask */ # define UNIV_LINT_EN_VIRQ4 (1<<4) /* VIRQ4 mask */ # define UNIV_LINT_EN_VIRQ3 (1<<3) /* VIRQ3 mask */ # define UNIV_LINT_EN_VIRQ2 (1<<2) /* VIRQ2 mask */ # define UNIV_LINT_EN_VIRQ1 (1<<1) /* VIRQ1 mask */ # define UNIV_LINT_EN_VOWN (1<<0) /* VOWN mask */ /* PCI (local) interrupt status register */ #define UNIV_REGOFF_LINT_STAT 0x304 # define UNIV_LINT_STAT_LM3 (1<<23) /* location monitor 3 status */ # define UNIV_LINT_STAT_LM2 (1<<22) /* location monitor 2 status */ # define UNIV_LINT_STAT_LM1 (1<<21) /* location monitor 1 status */ # define UNIV_LINT_STAT_LM0 (1<<20) /* location monitor 0 status */ # define UNIV_LINT_STAT_MBOX3 (1<<19) /* mailbox 3 status */ # define UNIV_LINT_STAT_MBOX2 (1<<18) /* mailbox 2 status */ # define UNIV_LINT_STAT_MBOX1 (1<<17) /* mailbox 1 status */ # define UNIV_LINT_STAT_MBOX0 (1<<16) /* mailbox 0 status */ # define UNIV_LINT_STAT_ACFAIL (1<<15) /* ACFAIL irq status */ # define UNIV_LINT_STAT_SYSFAIL (1<<14) /* SYSFAIL irq status */ # define UNIV_LINT_STAT_SW_INT (1<<13) /* PCI (local) software irq */ # define UNIV_LINT_STAT_SW_IACK (1<<12) /* VME software IACK status */ # define UNIV_LINT_STAT_VERR (1<<10) /* PCI VERR irq status */ # define UNIV_LINT_STAT_LERR (1<<9) /* PCI LERR irq status */ # define UNIV_LINT_STAT_DMA (1<<8) /* PCI DMA irq status */ # define UNIV_LINT_STAT_VIRQ7 (1<<7) /* VIRQ7 status */ # define UNIV_LINT_STAT_VIRQ6 (1<<6) /* VIRQ6 status */ # define UNIV_LINT_STAT_VIRQ5 (1<<5) /* VIRQ5 status */ # define UNIV_LINT_STAT_VIRQ4 (1<<4) /* VIRQ4 status */ # define UNIV_LINT_STAT_VIRQ3 (1<<3) /* VIRQ3 status */ # define UNIV_LINT_STAT_VIRQ2 (1<<2) /* VIRQ2 status */ # define UNIV_LINT_STAT_VIRQ1 (1<<1) /* VIRQ1 status */ # define UNIV_LINT_STAT_VOWN (1<<0) /* VOWN status */ # define UNIV_LINT_STAT_CLR (0xfff7ff)/* Clear all status bits */ /* PCI (local) interrupt map 0 register */ #define UNIV_REGOFF_LINT_MAP0 0x308 /* mapping of VME IRQ sources to PCI irqs */ # define UNIV_LINT_MAP0_VIRQ7(lint) (((lint)&0x7)<<(7*4)) # define UNIV_LINT_MAP0_VIRQ6(lint) (((lint)&0x7)<<(6*4)) # define UNIV_LINT_MAP0_VIRQ5(lint) (((lint)&0x7)<<(5*4)) # define UNIV_LINT_MAP0_VIRQ4(lint) (((lint)&0x7)<<(4*4)) # define UNIV_LINT_MAP0_VIRQ3(lint) (((lint)&0x7)<<(3*4)) # define UNIV_LINT_MAP0_VIRQ2(lint) (((lint)&0x7)<<(2*4)) # define UNIV_LINT_MAP0_VIRQ1(lint) (((lint)&0x7)<<(1*4)) # define UNIV_LINT_MAP0_VOWN(lint) (((lint)&0x7)<<(0*4)) #define UNIV_REGOFF_LINT_MAP1 0x30c /* mapping of internal / VME IRQ sources to PCI irqs */ # define UNIV_LINT_MAP1_ACFAIL(lint) (((lint)&0x7)<<(7*4)) # define UNIV_LINT_MAP1_SYSFAIL(lint) (((lint)&0x7)<<(6*4)) # define UNIV_LINT_MAP1_SW_INT(lint) (((lint)&0x7)<<(5*4)) # define UNIV_LINT_MAP1_SW_IACK(lint) (((lint)&0x7)<<(4*4)) # define UNIV_LINT_MAP1_VERR(lint) (((lint)&0x7)<<(2*4)) # define UNIV_LINT_MAP1_LERR(lint) (((lint)&0x7)<<(1*4)) # define UNIV_LINT_MAP1_DMA(lint) (((lint)&0x7)<<(0*4)) /* enabling of generation of VME bus IRQs, TODO */ #define UNIV_REGOFF_VINT_EN 0x310 # define UNIV_VINT_EN_DISABLE_ALL 0 # define UNIV_VINT_EN_SWINT (1<<12) # define UNIV_VINT_EN_SWINT_LVL(l) (1<<(((l)&7)+24)) /* universe II only */ /* status of generation of VME bus IRQs */ #define UNIV_REGOFF_VINT_STAT 0x314 # define UNIV_VINT_STAT_LINT(lint) (1<<((lint)&7)) # define UNIV_VINT_STAT_LINT_MASK (0xff) # define UNIV_VINT_STAT_CLR (0xfe0f17ff) # define UNIV_VINT_STAT_SWINT(l) (1<<(((l)&7)+24)) #define UNIV_REGOFF_VINT_MAP0 0x318 /* VME destination of PCI IRQ source, TODO */ #define UNIV_REGOFF_VINT_MAP1 0x31c /* VME destination of PCI IRQ source, TODO */ # define UNIV_VINT_MAP1_SWINT(level) (((level)&0x7)<<16) /* NOTE: The universe seems to always set LSB (which has a special purpose in * the STATID register: enable raising a SW_INT on IACK) on the * vector it puts out on the bus... */ #define UNIV_REGOFF_VINT_STATID 0x320 /* our status/id response to IACK, TODO */ # define UNIV_VINT_STATID(id) ((id)<<24) #define UNIV_REGOFF_VIRQ1_STATID 0x324 /* status/id of VME IRQ level 1 */ #define UNIV_REGOFF_VIRQ2_STATID 0x328 /* status/id of VME IRQ level 2 */ #define UNIV_REGOFF_VIRQ3_STATID 0x32c /* status/id of VME IRQ level 3 */ #define UNIV_REGOFF_VIRQ4_STATID 0x330 /* status/id of VME IRQ level 4 */ #define UNIV_REGOFF_VIRQ5_STATID 0x334 /* status/id of VME IRQ level 5 */ #define UNIV_REGOFF_VIRQ6_STATID 0x338 /* status/id of VME IRQ level 6 */ #define UNIV_REGOFF_VIRQ7_STATID 0x33c /* status/id of VME IRQ level 7 */ # define UNIV_VIRQ_ERR (1<<8) /* set if universe encountered a bus error when doing IACK */ # define UNIV_VIRQ_STATID_MASK (0xff) #define UNIV_REGOFF_LINT_MAP2 0x340 /* mapping of internal sources to PCI irqs */ # define UNIV_LINT_MAP2_LM3(lint) (((lint)&0x7)<<7*4) /* location monitor 3 */ # define UNIV_LINT_MAP2_LM2(lint) (((lint)&0x7)<<6*4) /* location monitor 2 */ # define UNIV_LINT_MAP2_LM1(lint) (((lint)&0x7)<<5*4) /* location monitor 1 */ # define UNIV_LINT_MAP2_LM0(lint) (((lint)&0x7)<<4*4) /* location monitor 0 */ # define UNIV_LINT_MAP2_MBOX3(lint) (((lint)&0x7)<<3*4) /* mailbox 3 */ # define UNIV_LINT_MAP2_MBOX2(lint) (((lint)&0x7)<<2*4) /* mailbox 2 */ # define UNIV_LINT_MAP2_MBOX1(lint) (((lint)&0x7)<<1*4) /* mailbox 1 */ # define UNIV_LINT_MAP2_MBOX0(lint) (((lint)&0x7)<<0*4) /* mailbox 0 */ #define UNIV_REGOFF_VINT_MAP2 0x344 /* mapping of internal sources to VME irqs */ # define UNIV_VINT_MAP2_MBOX3(vint) (((vint)&0x7)<<3*4) /* mailbox 3 */ # define UNIV_VINT_MAP2_MBOX2(vint) (((vint)&0x7)<<2*4) /* mailbox 2 */ # define UNIV_VINT_MAP2_MBOX1(vint) (((vint)&0x7)<<1*4) /* mailbox 1 */ # define UNIV_VINT_MAP2_MBOX0(vint) (((vint)&0x7)<<0*4) /* mailbox 0 */ #define UNIV_REGOFF_MBOX0 0x348 /* mailbox 0 */ #define UNIV_REGOFF_MBOX1 0x34c /* mailbox 1 */ #define UNIV_REGOFF_MBOX2 0x350 /* mailbox 2 */ #define UNIV_REGOFF_MBOX3 0x354 /* mailbox 3 */ #define UNIV_REGOFF_SEMA0 0x358 /* semaphore 0 */ #define UNIV_REGOFF_SEMA1 0x35c /* semaphore 0 */ /* TODO define semaphore register bits */ #define UNIV_REGOFF_MAST_CTL 0x400 /* master control register */ # define UNIV_MAST_CTL_MAXRTRY(val) (((val)&0xf)<<7*4) /* max # of pci master retries */ # define UNIV_MAST_CTL_PWON(val) (((val)&0xf)<<6*4) /* posted write xfer count */ # define UNIV_MAST_CTL_VRL(val) (((val)&0x3)<<22) /* VME bus request level */ # define UNIV_MAST_CTL_VRM (1<<21) /* bus request mode (demand = 0, fair = 1) */ # define UNIV_MAST_CTL_VREL (1<<20) /* bus release mode (when done = 0, on request = 1) */ # define UNIV_MAST_CTL_VOWN (1<<19) /* bus ownership (release = 0, acquire/hold = 1) */ # define UNIV_MAST_CTL_VOWN_ACK (1<<18) /* bus ownership (not owned = 0, acquired/held = 1) */ # define UNIV_MAST_CTL_PABS(val) (((val)&0x3)<<3*4) /* PCI aligned burst size (32,64,128 byte / 0x3 is reserved) */ # define UNIV_MAST_CTL_BUS_NO(val) (((val)&0xff)<<0*4) /* PCI bus number */ #define UNIV_REGOFF_MISC_CTL 0x404 /* misc control register */ # define UNIV_MISC_CTL_VBTO(val) (((val)&0x7)<<7*4) /* VME bus timeout (0=disable, 16*2^(val-1) us) */ # define UNIV_MISC_CTL_VARB (1<<26) /* VME bus arbitration mode (0=round robin, 1= priority) */ # define UNIV_MISC_CTL_VARBTO(val) (((val)&0x3)<<6*4) /* arbitration time out: disable, 16us, 256us, reserved */ # define UNIV_MISC_CTL_SW_LRST (1<<23) /* software PCI reset */ # define UNIV_MISC_CTL_SW_SYSRST (1<<22) /* software VME reset */ # define UNIV_MISC_CTL_BI (1<<20) /* BI mode */ # define UNIV_MISC_CTL_ENGBI (1<<19) /* enable global BI mode initiator */ # define UNIV_MISC_CTL_SYSCON (1<<17) /* (R/W) 1:universe is system controller */ # define UNIV_MISC_CTL_V64AUTO (1<<16) /* (R/W) 1:initiate VME64 auto id slave participation */ /* U2SPEC described in VGM manual */ /* NOTE: the Joerger vtr10012_8 needs the timing to be tweaked!!!! READt27 must be _no_delay_ */ #define UNIV_REGOFF_U2SPEC 0x4fc # define UNIV_U2SPEC_DTKFLTR (1<<12) /* DTAck filter: 0: slow, better filter; 1: fast, poorer filter */ # define UNIV_U2SPEC_MASt11 (1<<10) /* Master parameter t11 (DS hi time during BLT and MBLTs) */ # define UNIV_U2SPEC_READt27_DEFAULT (0<<8) /* VME master parameter t27: (latch data after DTAck + 25ns) */ # define UNIV_U2SPEC_READt27_FAST (1<<8) /* VME master parameter t27: (latch data faster than 25ns) */ # define UNIV_U2SPEC_READt27_NODELAY (2<<8) /* VME master parameter t27: (latch data without any delay) */ # define UNIV_U2SPEC_POSt28_FAST (1<<2) /* VME slave parameter t28: (faster time of DS to DTAck for posted write) */ # define UNIV_U2SPEC_PREt28_FAST (1<<0) /* VME slave parameter t28: (faster time of DS to DTAck for prefetch read) */ /* Location Monitor control register */ #define UNIV_REGOFF_LM_CTL 0xf64 # define UNIV_LM_CTL_EN (1<<31) /* image enable */ # define UNIV_LM_CTL_PGM (1<<23) /* program AM */ # define UNIV_LM_CTL_DATA (1<<22) /* data AM */ # define UNIV_LM_CTL_SUPER (1<<21) /* supervisor AM */ # define UNIV_LM_CTL_USER (1<<20) /* user AM */ # define UNIV_LM_CTL_VAS_A16 (0<<16) /* A16 */ # define UNIV_LM_CTL_VAS_A24 (1<<16) /* A16 */ # define UNIV_LM_CTL_VAS_A32 (2<<16) /* A16 */ /* Location Monitor base address */ #define UNIV_REGOFF_LM_BS 0xf68 /* VMEbus register access image control register */ #define UNIV_REGOFF_VRAI_CTL 0xf70 # define UNIV_VRAI_CTL_EN (1<<31) /* image enable */ # define UNIV_VRAI_CTL_PGM (1<<23) /* program AM */ # define UNIV_VRAI_CTL_DATA (1<<22) /* data AM */ # define UNIV_VRAI_CTL_SUPER (1<<21) /* supervisor AM */ # define UNIV_VRAI_CTL_USER (1<<20) /* user AM */ # define UNIV_VRAI_CTL_VAS_A16 (0<<16) /* A16 */ # define UNIV_VRAI_CTL_VAS_A24 (1<<16) /* A14 */ # define UNIV_VRAI_CTL_VAS_A32 (2<<16) /* A32 */ # define UNIV_VRAI_CTL_VAS_MSK (3<<16) /* VMEbus register acces image base address register */ #define UNIV_REGOFF_VRAI_BS 0xf74 /* VMEbus CSR control register */ #define UNIV_REGOFF_VCSR_CTL 0xf80 # define UNIV_VCSR_CTL_EN (1<<31) /* image enable */ # define UNIV_VCSR_CTL_LAS_PCI_MEM (0<<0) /* pci mem space */ # define UNIV_VCSR_CTL_LAS_PCI_IO (1<<0) /* pci IO space */ # define UNIV_VCSR_CTL_LAS_PCI_CFG (2<<0) /* pci config space */ /* VMEbus CSR translation offset */ #define UNIV_REGOFF_VCSR_TO 0xf84 /* VMEbus AM code error log */ #define UNIV_REGOFF_V_AMERR 0xf88 # define UNIV_V_AMERR_AMERR(reg) (((reg)>>26)&0x3f) /* extract error log code */ # define UNIV_V_AMERR_IACK (1<<25) /* VMEbus IACK signal */ # define UNIV_V_AMERR_M_ERR (1<<24) /* multiple errors occurred */ # define UNIV_V_AMERR_V_STAT (1<<23) /* log status valid (write 1 to clear) */ /* VMEbus address error log */ #define UNIV_REGOFF_VAERR 0xf8c /* address of fault address (if MERR_V_STAT valid) */ /* VMEbus CSR bit clear register */ #define UNIV_REGOFF_VCSR_CLR 0xff4 # define UNIV_VCSR_CLR_RESET (1<<31) /* read/negate LRST (can only be written from VME bus */ # define UNIV_VCSR_CLR_SYSFAIL (1<<30) /* read/negate SYSFAIL */ # define UNIV_VCSR_CLR_FAIL (1<<29) /* read: board has failed */ /* VMEbus CSR bit set register */ #define UNIV_REGOFF_VCSR_SET (0xff8) # define UNIV_VCSR_SET_RESET (1<<31) /* read/assert LRST (can only be written from VME bus */ # define UNIV_VCSR_SET_SYSFAIL (1<<30) /* read/assert SYSFAIL */ # define UNIV_VCSR_SET_FAIL (1<<29) /* read: board has failed */ /* VMEbus CSR base address register */ #define UNIV_REGOFF_VCSR_BS 0xffc #define UNIV_VCSR_BS_MASK (0xf8000000) /* offset of universe registers in VME-CSR slot */ #define UNIV_CSR_OFFSET 0x7f000 #ifdef __cplusplus extern "C" { #endif /* base address and IRQ line of 1st universe bridge * NOTE: vmeUniverseInit() must be called before * these may be used. */ extern volatile LERegister *vmeUniverse0BaseAddr; extern int vmeUniverse0PciIrqLine; /* Initialize the driver */ int vmeUniverseInit(void); /* setup the universe chip, i.e. disable most of its * mappings, reset interrupts etc. */ void vmeUniverseReset(void); /* avoid pulling stdio.h into this header. * Applications that want a declaration of the * following routines should * #include * #define _VME_UNIVERSE_DECLARE_SHOW_ROUTINES * #include */ /* print the current configuration of all master ports to * f (stderr if NULL) */ void vmeUniverseMasterPortsShow(FILE *f); /* print the current configuration of all slave ports to * f (stderr if NULL) */ void vmeUniverseSlavePortsShow(FILE *f); /* disable all master or slave ports, respectively */ void vmeUniverseDisableAllMasters(void); void vmeUniverseDisableAllSlaves(void); /* configure a master port * * port: port number 0..3 (0..7 for a UniverseII) * * address_space: vxWorks compliant addressing mode identifier * (see vme.h). The most important are: * 0x0d - A32, Sup, Data * 0x3d - A24, Sup, Data * 0x2d - A16, Sup, Data * additionally, the value 0 is accepted; it will * disable this port. * vme_address: address on the vme_bus of this port. * local_address: address on the pci_bus of this port. * length: size of this port. * * NOTE: the addresses and length parameters must be aligned on a * 2^16 byte (0x10000) boundary, except for port 4 (only available * on a UniverseII), where the alignment can be 4k (4096). * * RETURNS: 0 on success, -1 on failure. Error messages printed to stderr. */ int vmeUniverseMasterPortCfg( unsigned long port, unsigned long address_space, unsigned long vme_address, unsigned long local_address, unsigned long length); /* translate an address through the bridge * * vmeUniverseXlateAddr(0,0,as,addr,&result) * yields a VME a address that reflects * a local memory location as seen from the VME bus through the universe * VME slave. * * likewise does vmeUniverseXlateAddr(1,0,as,addr,&result) * translate a VME bus addr (through the VME master) to the * PCI side of the bridge. * * a valid address space modifier must be specified. * * The 'reverse' parameter may be used to find a reverse * mapping, i.e. the pci address in a master window can be * found if the respective vme address is known etc. * * RETURNS: translated address in *pbusAdrs / *plocalAdrs * * 0: success * -1: address/modifier not found in any bridge port * -2: invalid modifier */ int vmeUniverseXlateAddr( int master, /* look in the master windows */ int reverse, /* reverse mapping; for masters: map local to VME */ unsigned long as, /* address space */ unsigned long addr, /* address to look up */ unsigned long *paOut/* where to put result */ ); /* configure a VME slave (PCI master) port */ int vmeUniverseSlavePortCfg( unsigned long port, unsigned long address_space, unsigned long vme_address, unsigned long local_address, unsigned long length); /****** NOTE: USE OF vmeUniverseStartDMA IS DEPRECATED ********* ****** USE API IN VMEDMA.h/vmeUniverseDMA.h INSTEAD *********/ /* start a (direct, not linked) DMA transfer * * NOTE: DCTL and DGCS must be set up * prior to calling this routine */ int vmeUniverseStartDMA( unsigned long local_addr, unsigned long vme_addr, unsigned long count); /* DEPRECATED */ int vmeUniverseStartDMAXX( volatile LERegister *ubase, unsigned long local_addr, unsigned long vme_addr, unsigned long count); /* DEPRECATED */ /* read a register in PCI memory space * (offset being one of the declared constants) */ unsigned long vmeUniverseReadReg(unsigned long offset); /* write a register in PCI memory space */ void vmeUniverseWriteReg(unsigned long value, unsigned long offset); /* convert an array of unsigned long values to LE (as needed * when the universe reads e.g. DMA descriptors from PCI) */ void vmeUniverseCvtToLE(unsigned long *ptr, unsigned long num); /* reset the VME bus */ void vmeUniverseResetBus(void); /* The ...XX routines take the universe base address as an additional * argument - this allows for programming secondary devices. */ unsigned long vmeUniverseReadRegXX(volatile LERegister *ubase, unsigned long offset); void vmeUniverseWriteRegXX(volatile LERegister *ubase, unsigned long value, unsigned long offset); int vmeUniverseXlateAddrXX( volatile LERegister *ubase, int master, int reverse, unsigned long as, unsigned long addr, unsigned long *paOut ); int vmeUniverseMasterPortCfgXX( volatile LERegister *ubase, unsigned long port, unsigned long address_space, unsigned long vme_address, unsigned long local_address, unsigned long length); int vmeUniverseSlavePortCfgXX( volatile LERegister *ubase, unsigned long port, unsigned long address_space, unsigned long vme_address, unsigned long local_address, unsigned long length); void vmeUniverseDisableAllMastersXX(volatile LERegister *ubase); void vmeUniverseDisableAllSlavesXX(volatile LERegister *ubase); /* print the current configuration of all master ports to * f (stderr if NULL) */ void vmeUniverseMasterPortsShowXX( volatile LERegister *ubase,FILE *f); /* print the current configuration of all slave ports to * f (stderr if NULL) */ void vmeUniverseSlavePortsShowXX( volatile LERegister *ubase,FILE *f); /* Raise a VME Interrupt at 'level' and respond with 'vector' to a * handler on the VME bus. (The handler could be a different board * or the universe itself - [only works with universe II]). * * Note that you could install a interrupt handler at UNIV_VME_SW_IACK_INT_VEC * to be notified of an IACK cycle having completed. * * This routine is mainly FOR TESTING. * * NOTES: * - several registers are modified: the vector is written to VINT_STATID * and (universe 1 chip only) the level is written to the SW_INT bits * int VINT_MAP1 * - NO MUTUAL EXCLUSION PROTECTION (reads VINT_EN, modifies then writes back). * If several users need access to VINT_EN and/or VINT_STATID (and VINT_MAP1 * on the universe 1) it is their responsibility to serialize access. * * Arguments: * 'level': interrupt level, 1..7 * 'vector': vector number (0..254) that the universe puts on the bus in response to * an IACK cycle. NOTE: the vector number *must be even* (hardware restriction * of the universe -- it always clears the LSB when the interrupter is * a software interrupt). * * RETURNS: * 0: Success * -1: Invalid argument (level not 1..7, vector odd or >= 256) * -2: Interrupt 'level' already asserted (maybe nobody handles it). * You can manually clear it be writing the respective bit in * VINT_STAT. Make sure really nobody responds to avoid spurious * interrupts (consult universe docs). */ int vmeUniverseIntRaiseXX(volatile LERegister *base, int level, unsigned vector); int vmeUniverseIntRaise(int level, unsigned vector); /* Map internal register block to VME. * * This routine is intended for BSP implementors. The registers can be * made accessible from VME so that the interrupt handler can flush the * bridge FIFO (see below). The preferred method is by accessing VME CSR, * though, if these are mapped [and the BSP provides an outbound window]. * On the universe we can also disable posted writes in the 'ordinary' * outbound windows. * * vme_base: VME address where the universe registers (4k) can be mapped. * This VME address must fall into a range covered by * any pre-configured outbound window. * address_space: The desired VME address space. * (all of SUP/USR/PGM/DATA are always accepted). * * See NOTES [vmeUniverseInstallIrqMgrAlt()] below for further information. * * RETURNS: 0 on success, nonzero on error. It is not possible (and results * in a non-zero return code) to change the CRG VME address after * initializing the interrupt manager as it uses the CRG. */ int vmeUniverseMapCRGXX(volatile LERegister *base, unsigned long vme_base, unsigned long address_space); int vmeUniverseMapCRG(unsigned long vme_base, unsigned long address_space); #ifdef __rtems__ /* VME Interrupt Handler functionality */ /* we dont use the current RTEMS/BSP interrupt API for the * following reasons: * * - RTEMS/BSP API does not pass an argument to the ISR :-( :-( * - no separate vector space for VME vectors. Some vectors would * have to overlap with existing PCI/ISA vectors. * - RTEMS/BSP API allocates a structure for every possible vector * - the irq_on(), irq_off() functions add more bloat than helping. * They are (currently) only used by the framework to disable * interrupts at the device level before removing a handler * and to enable interrupts after installing a handler. * These operations may as well be done by the driver itself. * * Hence, we maintain our own (VME) handler table and hook our PCI * handler into the standard RTEMS/BSP environment. Our handler then * dispatches VME interrupts. */ typedef void (*VmeUniverseISR) (void *usrArg, unsigned long vector); /* use these special vectors to connect a handler to the * universe specific interrupts (such as "DMA done", * VOWN, error irqs etc.) * NOTE: The wrapper clears all status LINT bits (except * for regular VME irqs). Also note that it is the user's * responsibility to enable the necessary interrupts in * LINT_EN * * !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! * DO NOT CHANGE THE ORDER OF THESE VECTORS - THE DRIVER * DEPENDS ON IT * !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! * */ #define UNIV_VOWN_INT_VEC 256 #define UNIV_DMA_INT_VEC 257 #define UNIV_LERR_INT_VEC 258 #define UNIV_VERR_INT_VEC 259 /* 260 is reserved */ #define UNIV_VME_SW_IACK_INT_VEC 261 #define UNIV_PCI_SW_INT_VEC 262 #define UNIV_SYSFAIL_INT_VEC 263 #define UNIV_ACFAIL_INT_VEC 264 #define UNIV_MBOX0_INT_VEC 265 #define UNIV_MBOX1_INT_VEC 266 #define UNIV_MBOX2_INT_VEC 267 #define UNIV_MBOX3_INT_VEC 268 #define UNIV_LM0_INT_VEC 269 #define UNIV_LM1_INT_VEC 270 #define UNIV_LM2_INT_VEC 271 #define UNIV_LM3_INT_VEC 272 #define UNIV_NUM_INT_VECS 273 /* install a handler for a VME vector * RETURNS 0 on success, nonzero on failure. */ int vmeUniverseInstallISR(unsigned long vector, VmeUniverseISR handler, void *usrArg); /* remove a handler for a VME vector. The vector and usrArg parameters * must match the respective parameters used when installing the handler. * RETURNS 0 on success, nonzero on failure. */ int vmeUniverseRemoveISR(unsigned long vector, VmeUniverseISR handler, void *usrArg); /* query for the currently installed ISR and usr parameter at a given vector * RETURNS: ISR or 0 (vector too big or no ISR installed) */ VmeUniverseISR vmeUniverseISRGet(unsigned long vector, void **parg); /* utility routines to enable/disable a VME IRQ level. * * To enable/disable the internal interrupt sources (special vectors above) * pass a vector argument > 255. * * RETURNS 0 on success, nonzero on failure */ int vmeUniverseIntEnable(unsigned int level); int vmeUniverseIntDisable(unsigned int level); /* Check if an interrupt level or internal source is enabled: * * 'level': VME level 1..7 or internal special vector > 255 * * RETURNS: value > 0 if interrupt is currently enabled, * zero if interrupt is currently disabled, * -1 on error (invalid argument). */ int vmeUniverseIntIsEnabled(unsigned int level); /* Change the routing of IRQ 'level' to 'pin'. * If the BSP connects more than one of the eight * physical interrupt lines from the universe to * the board's PIC then you may change the physical * line a given 'level' is using. By default, * all 7 VME levels use the first wire (pin==0) and * all internal sources use the (optional) second * wire (pin==1). * This feature is useful if you want to make use of * different hardware priorities of the PIC. Let's * say you want to give IRQ level 7 the highest priority. * You could then give 'pin 0' a higher priority (at the * PIC) and 'pin 1' a lower priority and issue. * * for ( i=1; i<7; i++ ) vmeUniverseIntRoute(i, 1); * * PARAMETERS: * 'level' : VME interrupt level '1..7' or one of * the internal sources. Pass the internal * source's vector number (>=256). * 'pin' : a value of 0 routes the requested IRQ to * the first line registered with the manager * (vmeIrqUnivOut parameter), a value of 1 * routes it to the alternate wire * (specialIrqUnivOut) * RETURNS: 0 on success, nonzero on error (invalid arguments) * * NOTES: - DONT change the universe 'map' registers * directly. The driver caches routing internally. * - support for the 'specialIrqUnivOut' wire is * board dependent. If the board only provides * a single physical wire from the universe to * the PIC then the feature might not be available. */ int vmeUniverseIntRoute(unsigned int level, unsigned int pin); /* Loopback test of the VME interrupt subsystem. * - installs ISRs on 'vector' and on UNIV_VME_SW_IACK_INT_VEC * - asserts VME interrupt 'level' * - waits for both interrupts: 'ordinary' VME interrupt of 'level' and * IACK completion interrupt ('special' vector UNIV_VME_SW_IACK_INT_VEC). * * NOTES: * - make sure no other handler responds to 'level'. * - make sure no ISR is installed on both vectors yet. * - ISRs installed by this routine are removed after completion. * - no concurrent access protection of all involved resources * (levels, vectors and registers [see vmeUniverseIntRaise()]) * is implemented. * - this routine is intended for TESTING (when implementing new BSPs etc.). * - one RTEMS message queue is temporarily used (created/deleted). * - the universe 1 always yields a zero vector (VIRQx_STATID) in response * to a self-generated VME interrupt. As a workaround, the routine * only accepts a zero vector when running on a universe 1. * * RETURNS: * 0: Success. * -1: Invalid arguments. * 1: Test failed (outstanding interrupts). * rtems_status_code: Failed RTEMS directive. */ int vmeUniverseIntLoopbackTst(int level, unsigned vector); /* the universe interrupt handler is capable of routing all sorts of * (VME) interrupts to 8 different lines (some of) which may be hooked up * in a (board specific) way to a PIC. * * This driver only supports at most two lines. By default, it routes the * 7 VME interrupts to the main line and optionally, it routes the 'special' * interrupts generated by the universe itself (DMA done, VOWN etc.) * to a second line. If no second line is available, all IRQs are routed * to the main line. * * The routing of interrupts to the two lines can be modified (using * the vmeUniverseIntRoute() call - see above - i.e., to make use of * different hardware priorities of the two pins. * * Because the driver has no way to figure out which lines are actually * wired to the PIC, this information has to be provided when installing * the manager. * * Hence the manager sets up routing VME interrupts to 1 or 2 universe * OUTPUTS. However, it must also be told to which PIC INPUTS they * are wired. * Optionally, the first PIC input line can be read from PCI config space * but the second must be passed to this routine. Note that the info read * from PCI config space is wrong for many boards! * * PARAMETERS: * vmeIrqUnivOut: to which output pin (of the universe) should the 7 * VME irq levels be routed. * vmeIrqPicLine: specifies to which PIC input the 'main' output is * wired. If passed a value < 0, the driver reads this * information from PCI config space ("IRQ line"). * specialIrqUnivOut: to which output pin (of the universe) should the * internally irqs be routed. Use 'vmeIRQunivOut' * if < 0. * specialIrqPicLine: specifies to which PIC input the 'special' output * pin is wired. The wiring of the 'vmeIRQunivOut' to * the PIC is determined by reading PCI config space. * * RETURNS: 0 on success, -1 on failure. * */ /* This routine is outside of the __INSIDE_RTEMS_BSP__ test for bwrds compatibility ONLY */ int vmeUniverseInstallIrqMgr(int vmeIrqUnivOut, int vmeIrqPicLine, int specialIrqUnivOut, int specialIrqPicLine); #if defined(__INSIDE_RTEMS_BSP__) #include /* up to 4 universe outputs are now supported by this alternate * entry point. * Terminate the vararg list (uni_pin/pic_pin pairs) with a * '-1' uni_pin. * E.g., the old interface is now just a wrapper to * vmeUniverseInstallIrqMgrAlt(0, vmeUnivOut, vmePicLint, specUnivOut, specPicLine, -1); * * The 'IRQ_MGR_SHARED' flag uses the BSP_install_rtems_shared_irq_handler() * API. CAVEAT: shared interrupts need RTEMS workspace, i.e., the * VME interrupt manager can only be installed *after workspace is initialized* * if 'shared' is nonzero (i.e., *not* from bspstart()). * * If 'PW_WORKAROUND' flag is set then the interrupt manager will try to * find a way to access the control registers from VME so that the universe's * posted write FIFO can be flushed after the user ISR returns: * * The installation routine looks first for CSR registers in CSR space (this * requires: * - a VME64 crate with autoid or geographical addressing * - the firmware or BSP to figure out the slot number and program the CSR base * in the universe. * - the BSP to open an outbound window to CSR space. * * If CSR registers cannot be found then the installation routine looks for CRG registers: * - BSP must map CRG on VME * - CRG must be visible in outbound window * CAVEAT: multiple boards with same BSP on single backplane must not map their CRG * to the same address! */ #define VMEUNIVERSE_IRQ_MGR_FLAG_SHARED 1 /* use shared interrupts */ #define VMEUNIVERSE_IRQ_MGR_FLAG_PW_WORKAROUND 2 /* use shared interrupts */ int vmeUniverseInstallIrqMgrAlt(int flags, int uni_pin0, int pic_pin0, ...); int vmeUniverseInstallIrqMgrVa(int flags, int uni_pin0, int pic_pin0, va_list ap); #endif /* __INSIDE_RTEMS_BSP__ */ #endif /* __rtems__ */ #ifdef __cplusplus } #endif #endif