/* * Copyright (c) 2013 embedded brains GmbH. All rights reserved. * * embedded brains GmbH * Dornierstr. 4 * 82178 Puchheim * Germany * * * The license and distribution terms for this file may be * found in the file LICENSE in this distribution or at * http://www.rtems.com/license/LICENSE. */ #include #include #include static volatile zynq_uart *zynq_uart_get_regs(int minor) { const console_tbl *ct = Console_Port_Tbl != NULL ? Console_Port_Tbl[minor] : &Console_Configuration_Ports[minor]; return (volatile zynq_uart *) ct->ulCtrlPort1; } /* * Make weak and let the user override. */ uint32_t zynq_uart_input_clock(void) __attribute__ ((weak)); uint32_t zynq_uart_input_clock(void) { return 100000000UL; } static int zynq_cal_baud_rate(uint32_t baudrate, uint32_t* brgr, uint32_t* bauddiv, uint32_t modereg) { uint32_t brgr_value; /* Calculated value for baud rate generator */ uint32_t calcbaudrate; /* Calculated baud rate */ uint32_t bauderror; /* Diff between calculated and requested baud rate */ uint32_t best_error = 0xFFFFFFFF; uint32_t percenterror; uint32_t bdiv; uint32_t inputclk = zynq_uart_input_clock(); /* * Make sure the baud rate is not impossilby large. * Fastest possible baud rate is Input Clock / 2. */ if ((baudrate * 2) > inputclk) { return -1; } /* * Check whether the input clock is divided by 8 */ if(modereg & ZYNQ_UART_MODE_CLKS) { inputclk = inputclk / 8; } /* * Determine the Baud divider. It can be 4to 254. * Loop through all possible combinations */ for (bdiv = 4; bdiv < 255; bdiv++) { /* * Calculate the value for BRGR register */ brgr_value = inputclk / (baudrate * (bdiv + 1)); /* * Calculate the baud rate from the BRGR value */ calcbaudrate = inputclk/ (brgr_value * (bdiv + 1)); /* * Avoid unsigned integer underflow */ if (baudrate > calcbaudrate) { bauderror = baudrate - calcbaudrate; } else { bauderror = calcbaudrate - baudrate; } /* * Find the calculated baud rate closest to requested baud rate. */ if (best_error > bauderror) { *brgr = brgr_value; *bauddiv = bdiv; best_error = bauderror; } } /* * Make sure the best error is not too large. */ percenterror = (best_error * 100) / baudrate; #define XUARTPS_MAX_BAUD_ERROR_RATE 3 /* max % error allowed */ if (XUARTPS_MAX_BAUD_ERROR_RATE < percenterror) { return -1; } return 0; } static void zynq_uart_initialize(int minor) { volatile zynq_uart *regs = zynq_uart_get_regs(minor); uint32_t brgr = 0x3e; uint32_t bauddiv = 0x6; zynq_cal_baud_rate(115200, &brgr, &bauddiv, regs->mode); regs->control &= ~(ZYNQ_UART_CONTROL_RXEN | ZYNQ_UART_CONTROL_TXEN); regs->control = ZYNQ_UART_CONTROL_RXDIS | ZYNQ_UART_CONTROL_TXDIS | ZYNQ_UART_CONTROL_RXRES | ZYNQ_UART_CONTROL_TXRES; regs->mode = ZYNQ_UART_MODE_CHMODE(ZYNQ_UART_MODE_CHMODE_NORMAL) | ZYNQ_UART_MODE_PAR(ZYNQ_UART_MODE_PAR_NONE) | ZYNQ_UART_MODE_CHRL(ZYNQ_UART_MODE_CHRL_8); regs->baud_rate_gen = ZYNQ_UART_BAUD_RATE_GEN_CD(brgr); regs->baud_rate_div = ZYNQ_UART_BAUD_RATE_DIV_BDIV(bauddiv); regs->rx_fifo_trg_lvl = ZYNQ_UART_RX_FIFO_TRG_LVL_RTRIG(0); regs->rx_timeout = ZYNQ_UART_RX_TIMEOUT_RTO(0); regs->control = ZYNQ_UART_CONTROL_RXEN | ZYNQ_UART_CONTROL_TXEN | ZYNQ_UART_CONTROL_RSTTO; } static int zynq_uart_first_open(int major, int minor, void *arg) { rtems_libio_open_close_args_t *oc = (rtems_libio_open_close_args_t *) arg; struct rtems_termios_tty *tty = (struct rtems_termios_tty *) oc->iop->data1; console_data *cd = &Console_Port_Data[minor]; const console_tbl *ct = Console_Port_Tbl[minor]; cd->termios_data = tty; rtems_termios_set_initial_baud(tty, (rtems_termios_baud_t) ct->pDeviceParams); return 0; } static int zynq_uart_last_close(int major, int minor, void *arg) { return 0; } static int zynq_uart_read_polled(int minor) { volatile zynq_uart *regs = zynq_uart_get_regs(minor); if ((regs->channel_sts & ZYNQ_UART_CHANNEL_STS_REMPTY) != 0) { return -1; } else { return ZYNQ_UART_TX_RX_FIFO_FIFO_GET(regs->tx_rx_fifo); } } static void zynq_uart_write_polled(int minor, char c) { volatile zynq_uart *regs = zynq_uart_get_regs(minor); while ((regs->channel_sts & ZYNQ_UART_CHANNEL_STS_TFUL) != 0) { /* Wait */ } regs->tx_rx_fifo = ZYNQ_UART_TX_RX_FIFO_FIFO(c); } static ssize_t zynq_uart_write_support_polled( int minor, const char *s, size_t n ) { ssize_t i = 0; for (i = 0; i < n; ++i) { zynq_uart_write_polled(minor, s[i]); } return n; } static int zynq_uart_set_attribues(int minor, const struct termios *term) { #if 0 volatile zynq_uart *regs = zynq_uart_get_regs(minor); uint32_t brgr = 0; uint32_t bauddiv = 0; int rc; rc = zynq_cal_baud_rate(115200, &brgr, &bauddiv, regs->mode); if (rc != 0) return rc; regs->control &= ~(ZYNQ_UART_CONTROL_RXEN | ZYNQ_UART_CONTROL_TXEN); regs->baud_rate_gen = ZYNQ_UART_BAUD_RATE_GEN_CD(brgr); regs->baud_rate_div = ZYNQ_UART_BAUD_RATE_DIV_BDIV(bauddiv); regs->control |= ZYNQ_UART_CONTROL_RXEN | ZYNQ_UART_CONTROL_TXEN; return 0; #else return -1; #endif } const console_fns zynq_uart_fns = { .deviceProbe = libchip_serial_default_probe, .deviceFirstOpen = zynq_uart_first_open, .deviceLastClose = zynq_uart_last_close, .deviceRead = zynq_uart_read_polled, .deviceWrite = zynq_uart_write_support_polled, .deviceInitialize = zynq_uart_initialize, .deviceWritePolled = zynq_uart_write_polled, .deviceSetAttributes = zynq_uart_set_attribues, .deviceOutputUsesInterrupts = false };