/* cache.c * * Cache Manager * * COPYRIGHT (c) 1989-1999. * On-Line Applications Research Corporation (OAR). * * The license and distribution terms for this file may be * found in the file LICENSE in this distribution or at * http://www.OARcorp.com/rtems/license.html. * * * The functions in this file define the API to the RTEMS Cache Manager and * are divided into data cache and instruction cache functions. Data cache * functions are only declared if a data cache is supported. Instruction * cache functions are only declared if an instruction cache is supported. * Support for a particular cache exists only if _CPU_x_CACHE_ALIGNMENT is * defined, where x E {DATA, INST}. These definitions are found in the CPU * dependent source files in the supercore, often * * rtems/c/src/exec/score/cpu/CPU/rtems/score/CPU.h * * The functions below are implemented with CPU dependent inline routines * also found in the above file. In the event that a CPU does not support a * specific function, the CPU dependent routine does nothing (but does exist). * * At this point, the Cache Manager makes no considerations, and provides no * support for BSP specific issues such as a secondary cache. In such a system, * the CPU dependent routines would have to be modified, or a BSP layer added * to this Manager. */ #include #include #include /* * THESE FUNCTIONS ONLY EXIST IF WE HAVE A DATA CACHE */ #if defined(_CPU_DATA_CACHE_ALIGNMENT) /* * This function is called to flush the data cache by performing cache * copybacks. It must determine how many cache lines need to be copied * back and then perform the copybacks. */ void rtems_flush_multiple_data_cache_lines( const void * d_addr, size_t n_bytes ) { const void * final_address; /* * Set d_addr to the beginning of the cache line; final_address indicates * the last address_t which needs to be pushed. Increment d_addr and push * the resulting line until final_address is passed. */ final_address = (void *)((size_t)d_addr + n_bytes - 1); d_addr = (void *)((size_t)d_addr & ~(_CPU_DATA_CACHE_ALIGNMENT - 1)); while( d_addr <= final_address ) { _CPU_flush_1_data_cache_line( d_addr ); d_addr = (void *)((size_t)d_addr + _CPU_DATA_CACHE_ALIGNMENT); } } /* * This function is responsible for performing a data cache invalidate. * It must determine how many cache lines need to be invalidated and then * perform the invalidations. */ void rtems_invalidate_multiple_data_cache_lines( const void * d_addr, size_t n_bytes ) { const void * final_address; /* * Set d_addr to the beginning of the cache line; final_address indicates * the last address_t which needs to be invalidated. Increment d_addr and * invalidate the resulting line until final_address is passed. */ final_address = (void *)((size_t)d_addr + n_bytes - 1); d_addr = (void *)((size_t)d_addr & ~(_CPU_DATA_CACHE_ALIGNMENT - 1)); while( final_address > d_addr ) { _CPU_invalidate_1_data_cache_line( d_addr ); d_addr = (void *)((size_t)d_addr + _CPU_DATA_CACHE_ALIGNMENT); } } /* * This function is responsible for performing a data cache flush. * It flushes the entire cache. */ void rtems_flush_entire_data_cache( void ) { /* * Call the CPU-specific routine */ _CPU_flush_entire_data_cache(); } /* * This function is responsible for performing a data cache * invalidate. It invalidates the entire cache. */ void rtems_invalidate_entire_data_cache( void ) { /* * Call the CPU-specific routine */ _CPU_invalidate_entire_data_cache(); } /* * This function returns the data cache granularity. */ int rtems_get_data_cache_line_size( void ) { return _CPU_DATA_CACHE_ALIGNMENT; } /* * This function freezes the data cache; cache lines * are not replaced. */ void rtems_freeze_data_cache( void ) { _CPU_freeze_data_cache(); } /* * This function unfreezes the instruction cache. */ void rtems_unfreeze_data_cache( void ) { _CPU_unfreeze_data_cache(); } /* Turn on the data cache. */ void rtems_enable_data_cache( void ) { _CPU_enable_data_cache(); } /* Turn off the data cache. */ void rtems_disable_data_cache( void ) { _CPU_disable_data_cache(); } #endif /* * THESE FUNCTIONS ONLY EXIST IF WE HAVE AN INSTRUCTION CACHE */ #if defined(_CPU_INST_CACHE_ALIGNMENT) /* * This function is responsible for performing an instruction cache * invalidate. It must determine how many cache lines need to be invalidated * and then perform the invalidations. */ void rtems_invalidate_multiple_inst_cache_lines( const void * i_addr, size_t n_bytes ) { const void * final_address; /* * Set i_addr to the beginning of the cache line; final_address indicates * the last address_t which needs to be invalidated. Increment i_addr and * invalidate the resulting line until final_address is passed. */ final_address = (void *)((size_t)i_addr + n_bytes - 1); i_addr = (void *)((size_t)i_addr & ~(_CPU_INST_CACHE_ALIGNMENT - 1)); while( final_address > i_addr ) { _CPU_invalidate_1_inst_cache_line( i_addr ); i_addr = (void *)((size_t)i_addr + _CPU_INST_CACHE_ALIGNMENT); } } /* * This function is responsible for performing an instruction cache * invalidate. It invalidates the entire cache. */ void rtems_invalidate_entire_inst_cache( void ) { /* * Call the CPU-specific routine */ _CPU_invalidate_entire_inst_cache(); } /* * This function returns the instruction cache granularity. */ int rtems_get_inst_cache_line_size( void ) { return _CPU_INST_CACHE_ALIGNMENT; } /* * This function freezes the instruction cache; cache lines * are not replaced. */ void rtems_freeze_inst_cache( void ) { _CPU_freeze_inst_cache(); } /* * This function unfreezes the instruction cache. */ void rtems_unfreeze_inst_cache( void ) { _CPU_unfreeze_inst_cache(); } /* Turn on the instruction cache. */ void rtems_enable_inst_cache( void ) { _CPU_enable_inst_cache(); } /* Turn off the instruction cache. */ void rtems_disable_inst_cache( void ) { _CPU_disable_inst_cache(); } #endif