/* SPDX-License-Identifier: BSD-2-Clause */ /** * @file * * @ingroup arm_gic * * @brief This header file contains interfaces to access an Arm GICv3. */ /* * Copyright (C) 2022 embedded brains GmbH (http://www.embedded-brains.de) * Copyright (C) 2019 On-Line Applications Research Corporation (OAR) * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #ifndef _RTEMS_DEV_IRQ_ARM_GICV3_H #define _RTEMS_DEV_IRQ_ARM_GICV3_H #include #include #ifdef __cplusplus extern "C" { #endif #define PRIORITY_DEFAULT 127 #define MPIDR_AFFINITY2(val) BSP_FLD64(val, 16, 23) #define MPIDR_AFFINITY2_GET(reg) BSP_FLD64GET(reg, 16, 23) #define MPIDR_AFFINITY2_SET(reg, val) BSP_FLD64SET(reg, val, 16, 23) #define MPIDR_AFFINITY1(val) BSP_FLD64(val, 8, 15) #define MPIDR_AFFINITY1_GET(reg) BSP_FLD64GET(reg, 8, 15) #define MPIDR_AFFINITY1_SET(reg, val) BSP_FLD64SET(reg, val, 8, 15) #define MPIDR_AFFINITY0(val) BSP_FLD64(val, 0, 7) #define MPIDR_AFFINITY0_GET(reg) BSP_FLD64GET(reg, 0, 7) #define MPIDR_AFFINITY0_SET(reg, val) BSP_FLD64SET(reg, val, 0, 7) #define ICC_SGIR_AFFINITY3(val) BSP_FLD64(val, 48, 55) #define ICC_SGIR_AFFINITY3_GET(reg) BSP_FLD64GET(reg, 48, 55) #define ICC_SGIR_AFFINITY3_SET(reg, val) BSP_FLD64SET(reg, val, 48, 55) #define ICC_SGIR_IRM BSP_BIT32(40) #define ICC_SGIR_AFFINITY2(val) BSP_FLD64(val, 32, 39) #define ICC_SGIR_AFFINITY2_GET(reg) BSP_FLD64GET(reg, 32, 39) #define ICC_SGIR_AFFINITY2_SET(reg, val) BSP_FLD64SET(reg, val, 32, 39) #define ICC_SGIR_INTID(val) BSP_FLD64(val, 24, 27) #define ICC_SGIR_INTID_GET(reg) BSP_FLD64GET(reg, 24, 27) #define ICC_SGIR_INTID_SET(reg, val) BSP_FLD64SET(reg, val, 24, 27) #define ICC_SGIR_AFFINITY1(val) BSP_FLD64(val, 16, 23) #define ICC_SGIR_AFFINITY1_GET(reg) BSP_FLD64GET(reg, 16, 23) #define ICC_SGIR_AFFINITY1_SET(reg, val) BSP_FLD64SET(reg, val, 16, 23) #define ICC_SGIR_CPU_TARGET_LIST(val) BSP_FLD64(val, 0, 15) #define ICC_SGIR_CPU_TARGET_LIST_GET(reg) BSP_FLD64GET(reg, 0, 15) #define ICC_SGIR_CPU_TARGET_LIST_SET(reg, val) BSP_FLD64SET(reg, val, 0, 15) #ifdef ARM_MULTILIB_ARCH_V4 /* cpuif->iccicr */ #define ICC_CTLR "p15, 0, %0, c12, c12, 4" /* cpuif->iccpmr */ #define ICC_PMR "p15, 0, %0, c4, c6, 0" /* cpuif->iccbpr */ #define ICC_BPR0 "p15, 0, %0, c12, c8, 3" #define ICC_BPR1 "p15, 0, %0, c12, c12, 3" /* cpuif->icciar */ #define ICC_IAR0 "p15, 0, %0, c12, c8, 0" #define ICC_IAR1 "p15, 0, %0, c12, c12, 0" /* cpuif->icceoir */ #define ICC_EOIR0 "p15, 0, %0, c12, c8, 1" #define ICC_EOIR1 "p15, 0, %0, c12, c12, 1" #define ICC_SRE "p15, 0, %0, c12, c12, 5" #define ICC_IGRPEN0 "p15, 0, %0, c12, c12, 6" #define ICC_IGRPEN1 "p15, 0, %0, c12, c12, 7" #define MPIDR "p15, 0, %0, c0, c0, 5" #define READ_SR(SR_NAME) \ ({ \ uint32_t value; \ __asm__ volatile("mrc " SR_NAME : "=r" (value) ); \ value; \ }) #define WRITE_SR(SR_NAME, VALUE) \ __asm__ volatile("mcr " SR_NAME " \n" : : "r" (VALUE) ); #define ICC_SGI1 "p15, 0, %Q0, %R0, c12" #define WRITE64_SR(SR_NAME, VALUE) \ __asm__ volatile("mcrr " SR_NAME " \n" : : "r" (VALUE) ); #else /* ARM_MULTILIB_ARCH_V4 */ /* AArch64 GICv3 registers are not named in GCC */ #define ICC_IGRPEN0 "S3_0_C12_C12_6, %0" #define ICC_IGRPEN1 "S3_0_C12_C12_7, %0" #define ICC_IGRPEN1_EL3 "S3_6_C12_C12_7, %0" #define ICC_PMR "S3_0_C4_C6_0, %0" #define ICC_EOIR1 "S3_0_C12_C12_1, %0" #define ICC_SRE "S3_0_C12_C12_5, %0" #define ICC_BPR0 "S3_0_C12_C8_3, %0" #define ICC_CTLR "S3_0_C12_C12_4, %0" #define ICC_IAR1 "%0, S3_0_C12_C12_0" #define MPIDR "%0, mpidr_el1" #define MPIDR_AFFINITY3(val) BSP_FLD64(val, 32, 39) #define MPIDR_AFFINITY3_GET(reg) BSP_FLD64GET(reg, 32, 39) #define MPIDR_AFFINITY3_SET(reg, val) BSP_FLD64SET(reg, val, 32, 39) #define ICC_SGI1 "S3_0_C12_C11_5, %0" #define WRITE64_SR(SR_NAME, VALUE) \ __asm__ volatile("msr " SR_NAME " \n" : : "r" (VALUE) ); #define WRITE_SR(SR_NAME, VALUE) WRITE64_SR(SR_NAME, VALUE) #define READ_SR(SR_NAME) \ ({ \ uint64_t value; \ __asm__ volatile("mrs " SR_NAME : "=&r" (value) ); \ value; \ }) #endif /* ARM_MULTILIB_ARCH_V4 */ static inline volatile gic_redist *gicv3_get_redist(uint32_t cpu_index) { return (volatile gic_redist *) ((uintptr_t)BSP_ARM_GIC_REDIST_BASE + cpu_index * 0x20000); } static inline volatile gic_sgi_ppi *gicv3_get_sgi_ppi(uint32_t cpu_index) { return (volatile gic_sgi_ppi *) ((uintptr_t)BSP_ARM_GIC_REDIST_BASE + cpu_index * 0x20000 + 0x10000); } static inline void gicv3_sgi_ppi_enable( rtems_vector_number vector, uint32_t cpu_index ) { volatile gic_sgi_ppi *sgi_ppi = gicv3_get_sgi_ppi(cpu_index); /* Set G1NS */ sgi_ppi->icspigrpr[0] |= 1U << vector; sgi_ppi->icspigrpmodr[0] &= ~(1U << vector); /* Set enable */ sgi_ppi->icspiser[0] = 1U << vector; } static inline void gicv3_sgi_ppi_disable( rtems_vector_number vector, uint32_t cpu_index ) { volatile gic_sgi_ppi *sgi_ppi = gicv3_get_sgi_ppi(cpu_index); sgi_ppi->icspicer[0] = 1U << vector; } static inline bool gicv3_sgi_ppi_is_enabled( rtems_vector_number vector, uint32_t cpu_index ) { volatile gic_sgi_ppi *sgi_ppi = gicv3_get_sgi_ppi(cpu_index); return (sgi_ppi->icspiser[0] & (1U << vector)) != 0; } static inline void gicv3_sgi_ppi_set_priority( rtems_vector_number vector, uint8_t priority, uint32_t cpu_index ) { volatile gic_sgi_ppi *sgi_ppi = gicv3_get_sgi_ppi(cpu_index); sgi_ppi->icspiprior[vector] = priority; } static inline uint8_t gicv3_sgi_ppi_get_priority( rtems_vector_number vector, uint32_t cpu_index ) { volatile gic_sgi_ppi *sgi_ppi = gicv3_get_sgi_ppi(cpu_index); return sgi_ppi->icspiprior[vector]; } static inline bool gicv3_sgi_ppi_is_pending( rtems_vector_number vector, uint32_t cpu_index ) { volatile gic_sgi_ppi *sgi_ppi = gicv3_get_sgi_ppi(cpu_index); return (sgi_ppi->icspispendr[0] & (1U << vector)) != 0; } static inline void gicv3_ppi_set_pending( rtems_vector_number vector, uint32_t cpu_index ) { volatile gic_sgi_ppi *sgi_ppi = gicv3_get_sgi_ppi(cpu_index); sgi_ppi->icspispendr[0] = 1U << vector; } static inline void gicv3_ppi_clear_pending( rtems_vector_number vector, uint32_t cpu_index ) { volatile gic_sgi_ppi *sgi_ppi = gicv3_get_sgi_ppi(cpu_index); sgi_ppi->icspicpendr[0] = 1U << vector; } static inline void gicv3_trigger_sgi( rtems_vector_number vector, uint32_t targets ) { #ifndef ARM_MULTILIB_ARCH_V4 uint64_t mpidr; #else uint32_t mpidr; #endif mpidr = READ_SR(MPIDR); uint64_t value = ICC_SGIR_AFFINITY2(MPIDR_AFFINITY2_GET(mpidr)) | ICC_SGIR_INTID(vector) | ICC_SGIR_AFFINITY1(MPIDR_AFFINITY1_GET(mpidr)) | ICC_SGIR_CPU_TARGET_LIST(targets); #ifndef ARM_MULTILIB_ARCH_V4 value |= ICC_SGIR_AFFINITY3(MPIDR_AFFINITY3_GET(mpidr)); #endif WRITE64_SR(ICC_SGI1, value); } static inline uint32_t gicv3_get_id_count(volatile gic_dist *dist) { uint32_t id_count = GIC_DIST_ICDICTR_IT_LINES_NUMBER_GET(dist->icdictr); id_count = 32 * (id_count + 1); id_count = id_count <= 1020 ? id_count : 1020; return id_count; } static void gicv3_init_dist(volatile gic_dist *dist) { uint32_t id_count = gicv3_get_id_count(dist); uint32_t id; dist->icddcr = GIC_DIST_ICDDCR_ARE_NS | GIC_DIST_ICDDCR_ARE_S | GIC_DIST_ICDDCR_ENABLE_GRP1S | GIC_DIST_ICDDCR_ENABLE_GRP1NS | GIC_DIST_ICDDCR_ENABLE_GRP0; for (id = 0; id < id_count; id += 32) { /* Disable all interrupts */ dist->icdicer[id / 32] = 0xffffffff; /* Set G1NS */ dist->icdigr[id / 32] = 0xffffffff; dist->icdigmr[id / 32] = 0; } for (id = 0; id < id_count; ++id) { gic_id_set_priority(dist, id, PRIORITY_DEFAULT); } for (id = 32; id < id_count; ++id) { gic_id_set_targets(dist, id, 0x01); } } /* * A better way to access these registers than special opcodes */ #define isb() __asm __volatile("isb" : : : "memory") #define WRITE_SPECIALREG(reg, _val) \ __asm __volatile("msr " __STRING(reg) ", %0" : : "r"((uint64_t)_val)) #define gic_icc_write(reg, val) \ do { \ WRITE_SPECIALREG(icc_ ##reg ##_el1, val); \ isb(); \ } while (0) static void gicv3_init_cpu_interface(uint32_t cpu_index) { uint32_t sre_value = 0x7; WRITE_SR(ICC_SRE, sre_value); WRITE_SR(ICC_PMR, GIC_CPUIF_ICCPMR_PRIORITY(0xff)); volatile gic_redist *redist = gicv3_get_redist(cpu_index); uint32_t waker = redist->icrwaker; uint32_t waker_mask = GIC_REDIST_ICRWAKER_PROCESSOR_SLEEP; waker &= ~waker_mask; redist->icrwaker = waker; volatile gic_sgi_ppi *sgi_ppi = gicv3_get_sgi_ppi(cpu_index); /* Set G1NS */ sgi_ppi->icspigrpr[0] = 0xffffffff; sgi_ppi->icspigrpmodr[0] = 0; for (int id = 0; id < 32; id++) { sgi_ppi->icspiprior[id] = PRIORITY_DEFAULT; } /* Enable interrupt groups 0 and 1 */ gic_icc_write(IGRPEN1, 1); WRITE_SR(ICC_CTLR, 0x0); } static inline void gicv3_get_attributes( rtems_vector_number vector, rtems_interrupt_attributes *attributes ) { attributes->is_maskable = true; attributes->maybe_enable = true; attributes->maybe_disable = true; attributes->can_raise = true; if ( vector <= ARM_GIC_IRQ_SGI_LAST ) { /* * It is implementation-defined whether implemented SGIs are permanently * enabled, or can be enabled and disabled by writes to GICD_ISENABLER0 and * GICD_ICENABLER0. */ attributes->can_raise_on = true; attributes->cleared_by_acknowledge = true; attributes->trigger_signal = RTEMS_INTERRUPT_NO_SIGNAL; } else { attributes->can_disable = true; attributes->can_clear = true; attributes->trigger_signal = RTEMS_INTERRUPT_UNSPECIFIED_SIGNAL; if ( vector > ARM_GIC_IRQ_PPI_LAST ) { /* SPI */ attributes->can_get_affinity = true; attributes->can_set_affinity = true; } } } #ifdef __cplusplus } #endif #endif /* _RTEMS_DEV_IRQ_ARM_GICV3_H */