/* * Copyright 2017-2019 NXP * All rights reserved. * * * SPDX-License-Identifier: BSD-3-Clause */ #ifndef _FSL_CSI_H_ #define _FSL_CSI_H_ #include "fsl_common.h" /*! * @addtogroup csi_driver * @{ */ /******************************************************************************* * Definitions ******************************************************************************/ /*! @name Driver version */ /*@{*/ #define FSL_CSI_DRIVER_VERSION (MAKE_VERSION(2, 1, 1)) /*@}*/ /*! @brief Size of the frame buffer queue used in CSI transactional function. */ #ifndef CSI_DRIVER_QUEUE_SIZE #define CSI_DRIVER_QUEUE_SIZE 4U #endif /*! @brief Enable fragment capture function or not. */ #ifndef CSI_DRIVER_FRAG_MODE #define CSI_DRIVER_FRAG_MODE 0U #endif /* * There is one empty room in queue, used to distinguish whether the queue * is full or empty. When header equals tail, the queue is empty; when header * equals tail + 1, the queue is full. */ #define CSI_DRIVER_ACTUAL_QUEUE_SIZE (CSI_DRIVER_QUEUE_SIZE + 1U) /* * The queue max size is 254, so that the queue element index could use `uint8_t`. */ #if (CSI_DRIVER_ACTUAL_QUEUE_SIZE > 254) #error Required queue size is too large #endif /* * The interrupt enable bits are in registers CSICR1[16:31], CSICR3[0:7], * and CSICR18[2:9]. So merge them into an uint32_t value, place CSICR18 control * bits to [8:15]. */ #define CSI_CSICR1_INT_EN_MASK 0xFFFF0000U #define CSI_CSICR3_INT_EN_MASK 0x000000FFU #define CSI_CSICR18_INT_EN_MASK 0x0000FF00U #if ((~CSI_CSICR1_INT_EN_MASK) & \ (CSI_CSICR1_EOF_INT_EN_MASK | CSI_CSICR1_COF_INT_EN_MASK | CSI_CSICR1_SF_OR_INTEN_MASK | \ CSI_CSICR1_RF_OR_INTEN_MASK | CSI_CSICR1_SFF_DMA_DONE_INTEN_MASK | CSI_CSICR1_STATFF_INTEN_MASK | \ CSI_CSICR1_FB2_DMA_DONE_INTEN_MASK | CSI_CSICR1_FB1_DMA_DONE_INTEN_MASK | CSI_CSICR1_RXFF_INTEN_MASK | \ CSI_CSICR1_SOF_INTEN_MASK)) #error CSI_CSICR1_INT_EN_MASK could not cover all interrupt bits in CSICR1. #endif #if ((~CSI_CSICR3_INT_EN_MASK) & (CSI_CSICR3_ECC_INT_EN_MASK | CSI_CSICR3_HRESP_ERR_EN_MASK)) #error CSI_CSICR3_INT_EN_MASK could not cover all interrupt bits in CSICR3. #endif #if ((~CSI_CSICR18_INT_EN_MASK) & ((CSI_CSICR18_FIELD0_DONE_IE_MASK | CSI_CSICR18_DMA_FIELD1_DONE_IE_MASK | \ CSI_CSICR18_BASEADDR_CHANGE_ERROR_IE_MASK) \ << 6U)) #error CSI_CSICR18_INT_EN_MASK could not cover all interrupt bits in CSICR18. #endif /*! @brief Error codes for the CSI driver. */ enum { kStatus_CSI_NoEmptyBuffer = MAKE_STATUS(kStatusGroup_CSI, 0), /*!< No empty frame buffer in queue to load to CSI. */ kStatus_CSI_NoFullBuffer = MAKE_STATUS(kStatusGroup_CSI, 1), /*!< No full frame buffer in queue to read out. */ kStatus_CSI_QueueFull = MAKE_STATUS(kStatusGroup_CSI, 2), /*!< Queue is full, no room to save new empty buffer. */ kStatus_CSI_FrameDone = MAKE_STATUS(kStatusGroup_CSI, 3), /*!< New frame received and saved to queue. */ }; /*! * @brief CSI work mode. * * The CCIR656 interlace mode is not supported currently. */ typedef enum _csi_work_mode { kCSI_GatedClockMode = CSI_CSICR1_GCLK_MODE(1U), /*!< HSYNC, VSYNC, and PIXCLK signals are used. */ kCSI_NonGatedClockMode = 0U, /*!< VSYNC, and PIXCLK signals are used. */ kCSI_CCIR656ProgressiveMode = CSI_CSICR1_CCIR_EN(1U), /*!< CCIR656 progressive mode. */ } csi_work_mode_t; /*! * @brief CSI data bus witdh. */ typedef enum _csi_data_bus { kCSI_DataBus8Bit, /*!< 8-bit data bus. */ kCSI_DataBus16Bit, /*!< 16-bit data bus. */ kCSI_DataBus24Bit, /*!< 24-bit data bus. */ } csi_data_bus_t; /*! @brief CSI signal polarity. */ enum _csi_polarity_flags { kCSI_HsyncActiveLow = 0U, /*!< HSYNC is active low. */ kCSI_HsyncActiveHigh = CSI_CSICR1_HSYNC_POL_MASK, /*!< HSYNC is active high. */ kCSI_DataLatchOnRisingEdge = CSI_CSICR1_REDGE_MASK, /*!< Pixel data latched at rising edge of pixel clock. */ kCSI_DataLatchOnFallingEdge = 0U, /*!< Pixel data latched at falling edge of pixel clock. */ kCSI_VsyncActiveHigh = 0U, /*!< VSYNC is active high. */ kCSI_VsyncActiveLow = CSI_CSICR1_SOF_POL_MASK, /*!< VSYNC is active low. */ }; /*! @brief Configuration to initialize the CSI module. */ typedef struct _csi_config { uint16_t width; /*!< Pixels of the input frame. */ uint16_t height; /*!< Lines of the input frame. */ uint32_t polarityFlags; /*!< Timing signal polarity flags, OR'ed value of @ref _csi_polarity_flags. */ uint8_t bytesPerPixel; /*!< Bytes per pixel, valid values are: - 2: Used for RGB565, YUV422, and so on. - 4: Used for XRGB8888, XYUV444, and so on. */ uint16_t linePitch_Bytes; /*!< Frame buffer line pitch, must be 8-byte aligned. */ csi_work_mode_t workMode; /*!< CSI work mode. */ csi_data_bus_t dataBus; /*!< Data bus width. */ bool useExtVsync; /*!< In CCIR656 progressive mode, set true to use external VSYNC signal, set false to use internal VSYNC signal decoded from SOF. */ } csi_config_t; /*! @brief The CSI FIFO, used for FIFO operation. */ typedef enum _csi_fifo { kCSI_RxFifo = (1U << 0U), /*!< RXFIFO. */ kCSI_StatFifo = (1U << 1U), /*!< STAT FIFO. */ kCSI_AllFifo = 0x01 | 0x02, /*!< Both RXFIFO and STAT FIFO. */ } csi_fifo_t; /*! @brief CSI feature interrupt source. */ enum _csi_interrupt_enable { kCSI_EndOfFrameInterruptEnable = CSI_CSICR1_EOF_INT_EN_MASK, /*!< End of frame interrupt enable. */ kCSI_ChangeOfFieldInterruptEnable = CSI_CSICR1_COF_INT_EN_MASK, /*!< Change of field interrupt enable. */ kCSI_StatFifoOverrunInterruptEnable = CSI_CSICR1_SF_OR_INTEN_MASK, /*!< STAT FIFO overrun interrupt enable. */ kCSI_RxFifoOverrunInterruptEnable = CSI_CSICR1_RF_OR_INTEN_MASK, /*!< RXFIFO overrun interrupt enable. */ kCSI_StatFifoDmaDoneInterruptEnable = CSI_CSICR1_SFF_DMA_DONE_INTEN_MASK, /*!< STAT FIFO DMA done interrupt enable. */ kCSI_StatFifoFullInterruptEnable = CSI_CSICR1_STATFF_INTEN_MASK, /*!< STAT FIFO full interrupt enable. */ kCSI_RxBuffer1DmaDoneInterruptEnable = CSI_CSICR1_FB2_DMA_DONE_INTEN_MASK, /*!< RX frame buffer 1 DMA transfer done. */ kCSI_RxBuffer0DmaDoneInterruptEnable = CSI_CSICR1_FB1_DMA_DONE_INTEN_MASK, /*!< RX frame buffer 0 DMA transfer done. */ kCSI_RxFifoFullInterruptEnable = CSI_CSICR1_RXFF_INTEN_MASK, /*!< RXFIFO full interrupt enable. */ kCSI_StartOfFrameInterruptEnable = CSI_CSICR1_SOF_INTEN_MASK, /*!< Start of frame (SOF) interrupt enable. */ kCSI_EccErrorInterruptEnable = CSI_CSICR3_ECC_INT_EN_MASK, /*!< ECC error detection interrupt enable. */ kCSI_AhbResErrorInterruptEnable = CSI_CSICR3_HRESP_ERR_EN_MASK, /*!< AHB response Error interrupt enable. */ kCSI_BaseAddrChangeErrorInterruptEnable = CSI_CSICR18_BASEADDR_CHANGE_ERROR_IE_MASK << 6U, /*!< The DMA output buffer base address changes before DMA completed. */ kCSI_Field0DoneInterruptEnable = CSI_CSICR18_FIELD0_DONE_IE_MASK << 6U, /*!< Field 0 done interrupt enable. */ kCSI_Field1DoneInterruptEnable = CSI_CSICR18_DMA_FIELD1_DONE_IE_MASK << 6U, /*!< Field 1 done interrupt enable. */ }; /*! * @brief CSI status flags. * * The following status register flags can be cleared: * - kCSI_EccErrorFlag * - kCSI_AhbResErrorFlag * - kCSI_ChangeOfFieldFlag * - kCSI_StartOfFrameFlag * - kCSI_EndOfFrameFlag * - kCSI_RxBuffer1DmaDoneFlag * - kCSI_RxBuffer0DmaDoneFlag * - kCSI_StatFifoDmaDoneFlag * - kCSI_StatFifoOverrunFlag * - kCSI_RxFifoOverrunFlag * - kCSI_Field0DoneFlag * - kCSI_Field1DoneFlag * - kCSI_BaseAddrChangeErrorFlag */ enum _csi_flags { kCSI_RxFifoDataReadyFlag = CSI_CSISR_DRDY_MASK, /*!< RXFIFO data ready. */ kCSI_EccErrorFlag = CSI_CSISR_ECC_INT_MASK, /*!< ECC error detected. */ kCSI_AhbResErrorFlag = CSI_CSISR_HRESP_ERR_INT_MASK, /*!< Hresponse (AHB bus response) Error. */ kCSI_ChangeOfFieldFlag = CSI_CSISR_COF_INT_MASK, /*!< Change of field. */ kCSI_Field0PresentFlag = CSI_CSISR_F1_INT_MASK, /*!< Field 0 present in CCIR mode. */ kCSI_Field1PresentFlag = CSI_CSISR_F2_INT_MASK, /*!< Field 1 present in CCIR mode. */ kCSI_StartOfFrameFlag = CSI_CSISR_SOF_INT_MASK, /*!< Start of frame (SOF) detected. */ kCSI_EndOfFrameFlag = CSI_CSISR_EOF_INT_MASK, /*!< End of frame (EOF) detected. */ kCSI_RxFifoFullFlag = CSI_CSISR_RxFF_INT_MASK, /*!< RXFIFO full (Number of data reaches trigger level). */ kCSI_RxBuffer1DmaDoneFlag = CSI_CSISR_DMA_TSF_DONE_FB2_MASK, /*!< RX frame buffer 1 DMA transfer done. */ kCSI_RxBuffer0DmaDoneFlag = CSI_CSISR_DMA_TSF_DONE_FB1_MASK, /*!< RX frame buffer 0 DMA transfer done. */ kCSI_StatFifoFullFlag = CSI_CSISR_STATFF_INT_MASK, /*!< STAT FIFO full (Reach trigger level). */ kCSI_StatFifoDmaDoneFlag = CSI_CSISR_DMA_TSF_DONE_SFF_MASK, /*!< STAT FIFO DMA transfer done. */ kCSI_StatFifoOverrunFlag = CSI_CSISR_SF_OR_INT_MASK, /*!< STAT FIFO overrun. */ kCSI_RxFifoOverrunFlag = CSI_CSISR_RF_OR_INT_MASK, /*!< RXFIFO overrun. */ kCSI_Field0DoneFlag = CSI_CSISR_DMA_FIELD0_DONE_MASK, /*!< Field 0 transfer done. */ kCSI_Field1DoneFlag = CSI_CSISR_DMA_FIELD1_DONE_MASK, /*!< Field 1 transfer done. */ kCSI_BaseAddrChangeErrorFlag = CSI_CSISR_BASEADDR_CHHANGE_ERROR_MASK, /*!< The DMA output buffer base address changes before DMA completed. */ }; /* Forward declaration of the handle typedef. */ typedef struct _csi_handle csi_handle_t; /*! * @brief CSI transfer callback function. * * When a new frame is received and saved to the frame buffer queue, the callback * is called and the pass the status @ref kStatus_CSI_FrameDone to upper layer. */ typedef void (*csi_transfer_callback_t)(CSI_Type *base, csi_handle_t *handle, status_t status, void *userData); /*! * @brief CSI handle structure. * * Please see the user guide for the details of the CSI driver queue mechanism. */ struct _csi_handle { uint32_t frameBufferQueue[CSI_DRIVER_ACTUAL_QUEUE_SIZE]; /*!< Frame buffer queue. */ volatile uint8_t queueWriteIdx; /*!< Pointer to save incoming item. */ volatile uint8_t queueReadIdx; /*!< Pointer to read out the item. */ void *volatile emptyBuffer; /*!< Pointer to maintain the empty frame buffers. */ volatile uint8_t emptyBufferCnt; /*!< Empty frame buffers count. */ volatile uint8_t activeBufferNum; /*!< How many frame buffers are in progres currently. */ volatile bool transferStarted; /*!< User has called @ref CSI_TransferStart to start frame receiving. */ csi_transfer_callback_t callback; /*!< Callback function. */ void *userData; /*!< CSI callback function parameter.*/ }; #if CSI_DRIVER_FRAG_MODE /*! @brief Input pixel format when CSI works in fragment mode. */ typedef enum _csi_frag_input_pixel_format { kCSI_FragInputRGB565 = 0, /*!< Input pixel format is RGB565. */ kCSI_FragInputYUYV, /*!< Input pixel format is YUV422 (Y-U-Y-V). */ kCSI_FragInputUYVY, /*!< Input pixel format is YUV422 (U-Y-V-Y). */ } csi_frag_input_pixel_format_t; /*! @brief Configuration for CSI module to work in fragment mode. */ typedef struct _csi_frag_config { uint16_t width; /*!< Pixels of the input frame. */ uint16_t height; /*!< Lines of the input frame. */ uint32_t polarityFlags; /*!< Timing signal polarity flags, OR'ed value of @ref _csi_polarity_flags. */ csi_work_mode_t workMode; /*!< CSI work mode. */ csi_data_bus_t dataBus; /*!< Data bus width. */ bool useExtVsync; /*!< In CCIR656 progressive mode, set true to use external VSYNC signal, set false to use internal VSYNC signal decoded from SOF. */ csi_frag_input_pixel_format_t inputFormat; /*!< Input pixel format. */ uint32_t dmaBufferAddr0; /*!< Buffer 0 used for CSI DMA, must be double word aligned. */ uint32_t dmaBufferAddr1; /*!< Buffer 1 used for CSI DMA, must be double word aligned. */ uint16_t dmaBufferLine; /*!< Lines of each DMA buffer. The size of DMA buffer 0 and buffer 1 must be the same. Camera frame height must be dividable by this value. */ bool isDmaBufferCachable; /*!< Is DMA buffer cachable or not. */ } csi_frag_config_t; /* Forward declaration of the handle typedef. */ typedef struct _csi_frag_handle csi_frag_handle_t; /*! * @brief CSI fragment transfer callback function. * * When a new frame is received and saved to the frame buffer queue, the callback * is called and the pass the status @ref kStatus_CSI_FrameDone to upper layer. */ typedef void (*csi_frag_transfer_callback_t)(CSI_Type *base, csi_frag_handle_t *handle, status_t status, void *userData); /*! * @brief Function to copy data from CSI DMA buffer to user buffer. */ typedef void (*csi_frag_copy_func_t)(void *pDest, const void *pSrc, size_t cnt); /*! @brief Handle for CSI module to work in fragment mode. */ struct _csi_frag_handle { uint16_t width; /*!< Pixels of the input frame. */ uint16_t height; /*!< Lines of the input frame. */ uint16_t maxLinePerFrag; /*!< Max line saved per fragment. */ uint16_t linePerFrag; /*!< Actual line saved per fragment. */ uint16_t dmaBytePerLine; /*!< How many bytes DMA transfered each line. */ uint16_t datBytePerLine; /*!< How many bytes copied to user buffer each line. */ uint16_t dmaCurLine; /*!< Current line index in whole frame. */ uint16_t windowULX; /*!< X of windows upper left corner. */ uint16_t windowULY; /*!< Y of windows upper left corner. */ uint16_t windowLRX; /*!< X of windows lower right corner. */ uint16_t windowLRY; /*!< Y of windows lower right corner. */ uint32_t outputBuffer; /*!< Address of buffer to save the captured image. */ uint32_t datCurWriteAddr; /*!< Current write address to the user buffer. */ csi_frag_input_pixel_format_t inputFormat; /*!< Input pixel format. */ csi_frag_transfer_callback_t callback; /*!< Callback function. */ void *userData; /*!< CSI callback function parameter.*/ csi_frag_copy_func_t copyFunc; /*!< Function to copy data from CSI DMA buffer to user buffer. */ bool isDmaBufferCachable; /*!< Is DMA buffer cachable or not. */ }; /*! @brief Handle for CSI module to work in fragment mode. */ typedef struct _csi_frag_window { uint16_t windowULX; /*!< X of windows upper left corner. */ uint16_t windowULY; /*!< Y of windows upper left corner. */ uint16_t windowLRX; /*!< X of windows lower right corner. */ uint16_t windowLRY; /*!< Y of windows lower right corner. */ } csi_frag_window_t; /*! @brief Handle for CSI module to work in fragment mode. */ typedef struct _csi_frag_capture_config { bool outputGrayScale; /*!< Output gray scale image or not, could only enable when input format is YUV. */ uint32_t buffer; /*!< Buffer to save the captured image. */ csi_frag_window_t *window; /*!< Capture window. Capture full frame if set this to NULL. When output format is gray, the window width must be multiple value of 8. */ } csi_frag_capture_config_t; #endif /* CSI_DRIVER_FRAG_MODE */ /******************************************************************************* * API ******************************************************************************/ #if defined(__cplusplus) extern "C" { #endif /*! * @name Initialization and deinitialization * @{ */ /*! * @brief Initialize the CSI. * * This function enables the CSI peripheral clock, and resets the CSI registers. * * @param base CSI peripheral base address. * @param config Pointer to the configuration structure. * * @retval kStatus_Success Initialize successfully. * @retval kStatus_InvalidArgument Initialize failed because of invalid argument. */ status_t CSI_Init(CSI_Type *base, const csi_config_t *config); /*! * @brief De-initialize the CSI. * * This function disables the CSI peripheral clock. * * @param base CSI peripheral base address. */ void CSI_Deinit(CSI_Type *base); /*! * @brief Reset the CSI. * * This function resets the CSI peripheral registers to default status. * * @param base CSI peripheral base address. */ void CSI_Reset(CSI_Type *base); /*! * @brief Get the default configuration for to initialize the CSI. * * The default configuration value is: * * @code config->width = 320U; config->height = 240U; config->polarityFlags = kCSI_HsyncActiveHigh | kCSI_DataLatchOnRisingEdge; config->bytesPerPixel = 2U; config->linePitch_Bytes = 320U * 2U; config->workMode = kCSI_GatedClockMode; config->dataBus = kCSI_DataBus8Bit; config->useExtVsync = true; @endcode * * @param config Pointer to the CSI configuration. */ void CSI_GetDefaultConfig(csi_config_t *config); /* @} */ /*! * @name Module operation * @{ */ /*! * @brief Clear the CSI FIFO. * * This function clears the CSI FIFO. * * @param base CSI peripheral base address. * @param fifo The FIFO to clear. */ void CSI_ClearFifo(CSI_Type *base, csi_fifo_t fifo); /*! * @brief Reflash the CSI FIFO DMA. * * This function reflashes the CSI FIFO DMA. * * For RXFIFO, there are two frame buffers. When the CSI module started, it saves * the frames to frame buffer 0 then frame buffer 1, the two buffers will be * written by turns. After reflash DMA using this function, the CSI is reset to * save frame to buffer 0. * * @param base CSI peripheral base address. * @param fifo The FIFO DMA to reflash. */ void CSI_ReflashFifoDma(CSI_Type *base, csi_fifo_t fifo); /*! * @brief Enable or disable the CSI FIFO DMA request. * * @param base CSI peripheral base address. * @param fifo The FIFO DMA reques to enable or disable. * @param enable True to enable, false to disable. */ void CSI_EnableFifoDmaRequest(CSI_Type *base, csi_fifo_t fifo, bool enable); /*! * @brief Start to receive data. * * @param base CSI peripheral base address. */ static inline void CSI_Start(CSI_Type *base) { CSI_EnableFifoDmaRequest(base, kCSI_RxFifo, true); base->CSICR18 |= CSI_CSICR18_CSI_ENABLE_MASK; } /*! * @brief Stop to receiving data. * * @param base CSI peripheral base address. */ static inline void CSI_Stop(CSI_Type *base) { base->CSICR18 &= ~CSI_CSICR18_CSI_ENABLE_MASK; CSI_EnableFifoDmaRequest(base, kCSI_RxFifo, false); } /*! * @brief Set the RX frame buffer address. * * @param base CSI peripheral base address. * @param index Buffer index. * @param addr Frame buffer address to set. */ void CSI_SetRxBufferAddr(CSI_Type *base, uint8_t index, uint32_t addr); /* @} */ /*! * @name Interrupts * @{ */ /*! * @brief Enables CSI interrupt requests. * * @param base CSI peripheral base address. * @param mask The interrupts to enable, pass in as OR'ed value of @ref _csi_interrupt_enable. */ void CSI_EnableInterrupts(CSI_Type *base, uint32_t mask); /*! * @brief Disable CSI interrupt requests. * * @param base CSI peripheral base address. * @param mask The interrupts to disable, pass in as OR'ed value of @ref _csi_interrupt_enable. */ void CSI_DisableInterrupts(CSI_Type *base, uint32_t mask); /* @} */ /*! * @name Status * @{ */ /*! * @brief Gets the CSI status flags. * * @param base CSI peripheral base address. * @return status flag, it is OR'ed value of @ref _csi_flags. */ static inline uint32_t CSI_GetStatusFlags(CSI_Type *base) { return base->CSISR; } /*! * @brief Clears the CSI status flag. * * The flags to clear are passed in as OR'ed value of @ref _csi_flags. The following * flags are cleared automatically by hardware: * * - @ref kCSI_RxFifoFullFlag, * - @ref kCSI_StatFifoFullFlag, * - @ref kCSI_Field0PresentFlag, * - @ref kCSI_Field1PresentFlag, * - @ref kCSI_RxFifoDataReadyFlag, * * @param base CSI peripheral base address. * @param statusMask The status flags mask, OR'ed value of @ref _csi_flags. */ static inline void CSI_ClearStatusFlags(CSI_Type *base, uint32_t statusMask) { base->CSISR = statusMask; } /* @} */ #if !CSI_DRIVER_FRAG_MODE /*! * @name Transactional * @{ */ /*! * @brief Initializes the CSI handle. * * This function initializes CSI handle, it should be called before any other * CSI transactional functions. * * @param base CSI peripheral base address. * @param handle Pointer to the handle structure. * @param callback Callback function for CSI transfer. * @param userData Callback function parameter. * * @retval kStatus_Success Handle created successfully. */ status_t CSI_TransferCreateHandle(CSI_Type *base, csi_handle_t *handle, csi_transfer_callback_t callback, void *userData); /*! * @brief Start the transfer using transactional functions. * * When the empty frame buffers have been submit to CSI driver using function * @ref CSI_TransferSubmitEmptyBuffer, user could call this function to start * the transfer. The incoming frame will be saved to the empty frame buffer, * and user could be optionally notified through callback function. * * @param base CSI peripheral base address. * @param handle Pointer to the handle structure. * * @retval kStatus_Success Started successfully. * @retval kStatus_CSI_NoEmptyBuffer Could not start because no empty frame buffer in queue. */ status_t CSI_TransferStart(CSI_Type *base, csi_handle_t *handle); /*! * @brief Stop the transfer using transactional functions. * * The driver does not clean the full frame buffers in queue. In other words, after * calling this function, user still could get the full frame buffers in queue * using function @ref CSI_TransferGetFullBuffer. * * @param base CSI peripheral base address. * @param handle Pointer to the handle structure. * * @retval kStatus_Success Stoped successfully. */ status_t CSI_TransferStop(CSI_Type *base, csi_handle_t *handle); /*! * @brief Submit empty frame buffer to queue. * * This function could be called before @ref CSI_TransferStart or after @ref * CSI_TransferStart. If there is no room in queue to store the empty frame * buffer, this function returns error. * * @param base CSI peripheral base address. * @param handle Pointer to the handle structure. * @param frameBuffer Empty frame buffer to submit. * * @retval kStatus_Success Started successfully. * @retval kStatus_CSI_QueueFull Could not submit because there is no room in queue. */ status_t CSI_TransferSubmitEmptyBuffer(CSI_Type *base, csi_handle_t *handle, uint32_t frameBuffer); /*! * @brief Get one full frame buffer from queue. * * After the transfer started using function @ref CSI_TransferStart, the incoming * frames will be saved to the empty frame buffers in queue. This function gets * the full-filled frame buffer from the queue. If there is no full frame buffer * in queue, this function returns error. * * @param base CSI peripheral base address. * @param handle Pointer to the handle structure. * @param frameBuffer Full frame buffer. * * @retval kStatus_Success Started successfully. * @retval kStatus_CSI_NoFullBuffer There is no full frame buffer in queue. */ status_t CSI_TransferGetFullBuffer(CSI_Type *base, csi_handle_t *handle, uint32_t *frameBuffer); /*! * @brief CSI IRQ handle function. * * This function handles the CSI IRQ request to work with CSI driver transactional * APIs. * * @param base CSI peripheral base address. * @param handle CSI handle pointer. */ void CSI_TransferHandleIRQ(CSI_Type *base, csi_handle_t *handle); /* @} */ #else /*! * @name Fragment mode * @{ */ /*! * @brief Initialize the CSI to work in fragment mode. * * This function enables the CSI peripheral clock, and resets the CSI registers. * * @param base CSI peripheral base address. */ void CSI_FragModeInit(CSI_Type *base); /*! * @brief De-initialize the CSI. * * This function disables the CSI peripheral clock. * * @param base CSI peripheral base address. */ void CSI_FragModeDeinit(CSI_Type *base); /*! * @brief Create handle for CSI work in fragment mode. * * @param base CSI peripheral base address. * @param handle Pointer to the transactional handle. * @param config Pointer to the configuration structure. * @param callback Callback function for CSI transfer. * @param userData Callback function parameter. * * @retval kStatus_Success Initialize successfully. * @retval kStatus_InvalidArgument Initialize failed because of invalid argument. */ status_t CSI_FragModeCreateHandle(CSI_Type *base, csi_frag_handle_t *handle, const csi_frag_config_t *config, csi_frag_transfer_callback_t callback, void *userData); /*! * @brief Start to capture a image. * * @param base CSI peripheral base address. * @param handle Pointer to the transactional handle. * @param config Pointer to the capture configuration. * * @retval kStatus_Success Initialize successfully. * @retval kStatus_InvalidArgument Initialize failed because of invalid argument. */ status_t CSI_FragModeTransferCaptureImage(CSI_Type *base, csi_frag_handle_t *handle, const csi_frag_capture_config_t *config); /*! * @brief Abort image capture. * * Abort image capture initialized by @ref CSI_FragModeTransferCaptureImage. * * @param base CSI peripheral base address. * @param handle Pointer to the transactional handle. */ void CSI_FragModeTransferAbortCaptureImage(CSI_Type *base, csi_frag_handle_t *handle); /*! * @brief CSI IRQ handle function. * * This function handles the CSI IRQ request to work with CSI driver fragment mode * APIs. * * @param base CSI peripheral base address. * @param handle CSI handle pointer. */ void CSI_FragModeTransferHandleIRQ(CSI_Type *base, csi_frag_handle_t *handle); /* @} */ #endif /* CSI_DRIVER_FRAG_MODE */ #if defined(__cplusplus) } #endif /*! @}*/ #endif /* _FSL_CSI_H_ */