From 48a7fa31f918a6fc88719b3c9393a9ba2829f42a Mon Sep 17 00:00:00 2001 From: Joel Sherrill Date: Tue, 15 Nov 2016 10:37:59 -0600 Subject: Remove texinfo format documentation. Replaced by Sphinx formatted documentation. closes #2812. --- doc/networking/networkapp.t | 924 -------------------------------------------- 1 file changed, 924 deletions(-) delete mode 100644 doc/networking/networkapp.t (limited to 'doc/networking/networkapp.t') diff --git a/doc/networking/networkapp.t b/doc/networking/networkapp.t deleted file mode 100644 index dd356a80a6..0000000000 --- a/doc/networking/networkapp.t +++ /dev/null @@ -1,924 +0,0 @@ -@c -@c Written by Eric Norum -@c -@c COPYRIGHT (c) 1988-2002. -@c On-Line Applications Research Corporation (OAR). -@c All rights reserved. - -@chapter Using Networking in an RTEMS Application - -@section Makefile changes -@subsection Including the required managers -The FreeBSD networking code requires several RTEMS managers -in the application: - -@example -MANAGERS = io event semaphore -@end example - -@subsection Increasing the size of the heap -The networking tasks allocate a lot of memory. For most applications -the heap should be at least 256 kbytes. -The amount of memory set aside for the heap can be adjusted by setting -the @code{CFLAGS_LD} definition as shown below: - -@example -CFLAGS_LD += -Wl,--defsym -Wl,HeapSize=0x80000 -@end example - -This sets aside 512 kbytes of memory for the heap. - -@section System Configuration - -The networking tasks allocate some RTEMS objects. These -must be accounted for in the application configuration table. The following -lists the requirements. - -@table @b -@item TASKS -One network task plus a receive and transmit task for each device. - -@item SEMAPHORES -One network semaphore plus one syslog mutex semaphore if the application uses -openlog/syslog. - -@item EVENTS -The network stack uses @code{RTEMS_EVENT_24} and @code{RTEMS_EVENT_25}. -This has no effect on the application configuration, but -application tasks which call the network functions should not -use these events for other purposes. - -@end table - -@section Initialization -@subsection Additional include files -The source file which declares the network configuration -structures and calls the network initialization function must include - -@example -#include -@end example - -@subsection Network Configuration -The network configuration is specified by declaring -and initializing the @code{rtems_bsdnet_config} -structure. - -@example -@group -struct rtems_bsdnet_config @{ - /* - * This entry points to the head of the ifconfig chain. - */ - struct rtems_bsdnet_ifconfig *ifconfig; - - /* - * This entry should be rtems_bsdnet_do_bootp if BOOTP - * is being used to configure the network, and NULL - * if BOOTP is not being used. - */ - void (*bootp)(void); - - /* - * The remaining items can be initialized to 0, in - * which case the default value will be used. - */ - rtems_task_priority network_task_priority; /* 100 */ - unsigned long mbuf_bytecount; /* 64 kbytes */ - unsigned long mbuf_cluster_bytecount; /* 128 kbytes */ - char *hostname; /* BOOTP */ - char *domainname; /* BOOTP */ - char *gateway; /* BOOTP */ - char *log_host; /* BOOTP */ - char *name_server[3]; /* BOOTP */ - char *ntp_server[3]; /* BOOTP */ - unsigned long sb_efficiency; /* 2 */ - /* UDP TX: 9216 bytes */ - unsigned long udp_tx_buf_size; - /* UDP RX: 40 * (1024 + sizeof(struct sockaddr_in)) */ - unsigned long udp_rx_buf_size; - /* TCP TX: 16 * 1024 bytes */ - unsigned long tcp_tx_buf_size; - /* TCP TX: 16 * 1024 bytes */ - unsigned long tcp_rx_buf_size; - /* Default Network Tasks CPU Affinity */ -#ifdef RTEMS_SMP - const cpu_set_t *network_task_cpuset; - size_t network_task_cpuset_size; -#endif -@}; -@end group -@end example - -The structure entries are described in the following table. -If your application uses BOOTP/DHCP to obtain network configuration -information and if you are happy with the default values described -below, you need to provide only the first two entries in this structure. - -@table @code - -@item struct rtems_bsdnet_ifconfig *ifconfig -A pointer to the first configuration structure of the first network -device. This structure is described in the following section. -You must provide a value for this entry since there is no default value for it. - -@item void (*bootp)(void) -This entry should be set to @code{rtems_bsdnet_do_bootp} if your -application by default uses the BOOTP/DHCP client protocol to obtain -network configuration information. It should be set to @code{NULL} if -your application does not use BOOTP/DHCP. - -You can also use @code{rtems_bsdnet_do_bootp_rootfs} to have a set of -standard files created with the information return by the BOOTP/DHCP -protocol. The IP address is added to @file{/etc/hosts} with the host -name and domain returned. If no host name or domain is returned -@code{me.mydomain} is used. The BOOTP/DHCP server's address is also -added to @file{/etc/hosts}. The domain name server listed in the -BOOTP/DHCP information are added to @file{/etc/resolv.conf}. A -@code{search} record is also added if a domain is returned. The files -are created if they do not exist. - -The default @code{rtems_bsdnet_do_bootp} and -@code{rtems_bsdnet_do_bootp_rootfs} handlers will loop for-ever -waiting for a BOOTP/DHCP server to respond. If an error is detected -such as not valid interface or valid hardware address the target will -reboot allowing any hardware reset to correct itself. - -You can provide your own custom handler which allows you to perform -an initialization that meets your specific system requirements. For -example you could try BOOTP/DHCP then enter a configuration tool if no -server is found allowing the user to switch to a static configuration. - -@item int network_task_priority -The priority at which the network task and network device -receive and transmit tasks will run. -If a value of 0 is specified the tasks will run at priority 100. - -@item unsigned long mbuf_bytecount -The number of bytes to allocate from the heap for use as mbufs. -If a value of 0 is specified, 64 kbytes will be allocated. - -@item unsigned long mbuf_cluster_bytecount -The number of bytes to allocate from the heap for use as mbuf clusters. -If a value of 0 is specified, 128 kbytes will be allocated. - -@item char *hostname -The host name of the system. -If this, or any of the following, entries are @code{NULL} the value -may be obtained from a BOOTP/DHCP server. - -@item char *domainname -The name of the Internet domain to which the system belongs. - -@item char *gateway -The Internet host number of the network gateway machine, -specified in 'dotted decimal' (@code{129.128.4.1}) form. - -@item char *log_host -The Internet host number of the machine to which @code{syslog} messages -will be sent. - -@item char *name_server[3] -The Internet host numbers of up to three machines to be used as -Internet Domain Name Servers. - -@item char *ntp_server[3] -The Internet host numbers of up to three machines to be used as -Network Time Protocol (NTP) Servers. - -@item unsigned long sb_efficiency -This is the first of five configuration parameters related to -the amount of memory each socket may consume for buffers. The -TCP/IP stack reserves buffers (e.g. mbufs) for each open socket. The -TCP/IP stack has different limits for the transmit and receive -buffers associated with each TCP and UDP socket. By tuning these -parameters, the application developer can make trade-offs between -memory consumption and performance. The default parameters favor -performance over memory consumption. See -@uref{http://www.rtems.org/ml/rtems-users/2004/february/msg00200.html} -for more details but note that after the RTEMS 4.8 release series, -the sb_efficiency default was changed from @code{8} to @code{2}. - -The user should also be aware of the @code{SO_SNDBUF} and @code{SO_RCVBUF} -IO control operations. These can be used to specify the -send and receive buffer sizes for a specific socket. There -is no standard IO control to change the @code{sb_efficiency} factor. - -The @code{sb_efficiency} parameter is a buffering factor used -in the implementation of the TCP/IP stack. The default is @code{2} -which indicates double buffering. When allocating memory for each -socket, this number is multiplied by the buffer sizes for that socket. - -@item unsigned long udp_tx_buf_size -This configuration parameter specifies the maximum amount of -buffer memory which may be used for UDP sockets to transmit -with. The default size is 9216 bytes which corresponds to -the maximum datagram size. - -@item unsigned long udp_rx_buf_size -This configuration parameter specifies the maximum amount of -buffer memory which may be used for UDP sockets to receive -into. The default size is the following length in bytes: - -@example -40 * (1024 + sizeof(struct sockaddr_in) -@end example - -@item unsigned long tcp_tx_buf_size -This configuration parameter specifies the maximum amount of -buffer memory which may be used for TCP sockets to transmit -with. The default size is sixteen kilobytes. - -@item unsigned long tcp_rx_buf_size -This configuration parameter specifies the maximum amount of -buffer memory which may be used for TCP sockets to receive -into. The default size is sixteen kilobytes. - -@item const cpu_set_t *network_task_cpuset -This configuration parameter specifies the CPU affinity of the -network task. If set to @code{0} the network task can be scheduled on -any CPU. Only available in SMP configurations. - -@item size_t network_task_cpuset_size -This configuration parameter specifies the size of the -@code{network_task_cpuset} used. Only available in SMP configurations. - -@end table - -In addition, the following fields in the @code{rtems_bsdnet_ifconfig} -are of interest. - -@table @b - -@item int port -The I/O port number (ex: 0x240) on which the external Ethernet -can be accessed. - -@item int irno -The interrupt number of the external Ethernet controller. - -@item int bpar -The address of the shared memory on the external Ethernet controller. - - -@end table - -@subsection Network device configuration -Network devices are specified and configured by declaring and initializing a -@code{struct rtems_bsdnet_ifconfig} structure for each network device. - -The structure entries are described in the following table. An application -which uses a single network interface, gets network configuration information -from a BOOTP/DHCP server, and uses the default values for all driver -parameters needs to initialize only the first two entries in the -structure. - -@table @code -@item char *name -The full name of the network device. This name consists of the -driver name and the unit number (e.g. @code{"scc1"}). -The @code{bsp.h} include file usually defines RTEMS_BSP_NETWORK_DRIVER_NAME as -the name of the primary (or only) network driver. - -@item int (*attach)(struct rtems_bsdnet_ifconfig *conf) -The address of the driver @code{attach} function. The network -initialization function calls this function to configure the driver and -attach it to the network stack. -The @code{bsp.h} include file usually defines RTEMS_BSP_NETWORK_DRIVER_ATTACH as -the name of the attach function of the primary (or only) network driver. - -@item struct rtems_bsdnet_ifconfig *next -A pointer to the network device configuration structure for the next network -interface, or @code{NULL} if this is the configuration structure of the -last network interface. - -@item char *ip_address -The Internet address of the device, -specified in `dotted decimal' (@code{129.128.4.2}) form, or @code{NULL} -if the device configuration information is being obtained from a -BOOTP/DHCP server. - -@item char *ip_netmask -The Internet inetwork mask of the device, -specified in `dotted decimal' (@code{255.255.255.0}) form, or @code{NULL} -if the device configuration information is being obtained from a -BOOTP/DHCP server. - - -@item void *hardware_address -The hardware address of the device, or @code{NULL} if the driver is -to obtain the hardware address in some other way (usually by reading -it from the device or from the bootstrap ROM). - -@item int ignore_broadcast -Zero if the device is to accept broadcast packets, non-zero if the device -is to ignore broadcast packets. - -@item int mtu -The maximum transmission unit of the device, or zero if the driver -is to choose a default value (typically 1500 for Ethernet devices). - -@item int rbuf_count -The number of receive buffers to use, or zero if the driver is to -choose a default value - -@item int xbuf_count -The number of transmit buffers to use, or zero if the driver is to -choose a default value -Keep in mind that some network devices may use 4 or more -transmit descriptors for a single transmit buffer. - -@end table - -A complete network configuration specification can be as simple as the one -shown in the following example. -This configuration uses a single network interface, gets -network configuration information -from a BOOTP/DHCP server, and uses the default values for all driver -parameters. - -@example -static struct rtems_bsdnet_ifconfig netdriver_config = @{ - RTEMS_BSP_NETWORK_DRIVER_NAME, - RTEMS_BSP_NETWORK_DRIVER_ATTACH -@}; -struct rtems_bsdnet_config rtems_bsdnet_config = @{ - &netdriver_config, - rtems_bsdnet_do_bootp, -@}; -@end example - - -@subsection Network initialization -The networking tasks must be started before any network I/O operations -can be performed. This is done by calling: - - -@example -rtems_bsdnet_initialize_network (); -@end example - -This function is declared in @code{rtems/rtems_bsdnet.h}. -t returns 0 on success and -1 on failure with an error code -in @code{errno}. It is not possible to undo the effects of -a partial initialization, though, so the function can be -called only once irregardless of the return code. Consequently, -if the condition for the failure can be corrected, the -system must be reset to permit another network initialization -attempt. - - - -@section Application Programming Interface - -The RTEMS network package provides almost a complete set of BSD network -services. The network functions work like their BSD counterparts -with the following exceptions: - -@itemize @bullet -@item A given socket can be read or written by only one task at a time. - -@item The @code{select} function only works for file descriptors associated -with sockets. - -@item You must call @code{openlog} before calling any of the @code{syslog} functions. - -@item @b{Some of the network functions are not thread-safe.} -For example the following functions return a pointer to a static -buffer which remains valid only until the next call: - -@table @code -@item gethostbyaddr -@item gethostbyname -@item inet_ntoa -(@code{inet_ntop} is thread-safe, though). -@end table - -@item The RTEMS network package gathers statistics. - -@item Addition of a mechanism to "tap onto" an interface -and monitor every packet received and transmitted. - -@item Addition of @code{SO_SNDWAKEUP} and @code{SO_RCVWAKEUP} socket options. - -@end itemize - -Some of the new features are discussed in more detail in the following -sections. - -@subsection Network Statistics - -There are a number of functions to print statistics gathered by -the network stack. -These function are declared in @code{rtems/rtems_bsdnet.h}. - -@table @code -@item rtems_bsdnet_show_if_stats -Display statistics gathered by network interfaces. - -@item rtems_bsdnet_show_ip_stats -Display IP packet statistics. - -@item rtems_bsdnet_show_icmp_stats -Display ICMP packet statistics. - -@item rtems_bsdnet_show_tcp_stats -Display TCP packet statistics. - -@item rtems_bsdnet_show_udp_stats -Display UDP packet statistics. - -@item rtems_bsdnet_show_mbuf_stats -Display mbuf statistics. - -@item rtems_bsdnet_show_inet_routes -Display the routing table. - -@end table - -@subsection Tapping Into an Interface - -RTEMS add two new ioctls to the BSD networking code: -SIOCSIFTAP and SIOCGIFTAP. These may be used to set and get a -@i{tap function}. The tap function will be called for every -Ethernet packet received by the interface. - -These are called like other interface ioctls, such as SIOCSIFADDR. -When setting the tap function with SIOCSIFTAP, set the ifr_tap field -of the ifreq struct to the tap function. When retrieving the tap -function with SIOCGIFTAP, the current tap function will be returned in -the ifr_tap field. To stop tapping packets, call SIOCSIFTAP with a -ifr_tap field of 0. - -The tap function is called like this: - -@example -int tap (struct ifnet *, struct ether_header *, struct mbuf *) -@end example - -The tap function should return 1 if the packet was fully handled, in -which case the caller will simply discard the mbuf. The tap function -should return 0 if the packet should be passed up to the higher -networking layers. - -The tap function is called with the network semaphore locked. It must -not make any calls on the application levels of the networking level -itself. It is safe to call other non-networking RTEMS functions. - -@subsection Socket Options - -RTEMS adds two new @code{SOL_SOCKET} level options for @code{setsockopt} and -@code{getsockopt}: @code{SO_SNDWAKEUP} and @code{SO_RCVWAKEUP}. For both, the -option value should point to a sockwakeup structure. The sockwakeup -structure has the following fields: - -@example -@group - void (*sw_pfn) (struct socket *, caddr_t); - caddr_t sw_arg; -@end group -@end example - -These options are used to set a callback function to be called when, for -example, there is -data available from the socket (@code{SO_RCVWAKEUP}) and when there is space -available to accept data written to the socket (@code{SO_SNDWAKEUP}). - -If @code{setsockopt} is called with the @code{SO_RCVWAKEUP} option, and the -@code{sw_pfn} field is not zero, then when there is data -available to be read from -the socket, the function pointed to by the @code{sw_pfn} field will be -called. A pointer to the socket structure will be passed as the first -argument to the function. The @code{sw_arg} field set by the -@code{SO_RCVWAKEUP} call will be passed as the second argument to the function. - -If @code{setsockopt} is called with the @code{SO_SNDWAKEUP} -function, and the @code{sw_pfn} field is not zero, then when -there is space available to accept data written to the socket, -the function pointed to by the @code{sw_pfn} field -will be called. The arguments passed to the function will be as with -@code{SO_SNDWAKEUP}. - -When the function is called, the network semaphore will be locked and -the callback function runs in the context of the networking task. -The function must be careful not to call any networking functions. It -is OK to call an RTEMS function; for example, it is OK to send an -RTEMS event. - -The purpose of these callback functions is to permit a more efficient -alternative to the select call when dealing with a large number of -sockets. - -The callbacks are called by the same criteria that the select -function uses for indicating "ready" sockets. In Stevens @cite{Unix -Network Programming} on page 153-154 in the section "Under what Conditions -Is a Descriptor Ready?" you will find the definitive list of conditions -for readable and writable that also determine when the functions are -called. - -When the number of received bytes equals or exceeds the socket receive -buffer "low water mark" (default 1 byte) you get a readable callback. If -there are 100 bytes in the receive buffer and you only read 1, you will -not immediately get another callback. However, you will get another -callback after you read the remaining 99 bytes and at least 1 more byte -arrives. Using a non-blocking socket you should probably read until it -produces error EWOULDBLOCK and then allow the readable callback to tell -you when more data has arrived. (Condition 1.a.) - -For sending, when the socket is connected and the free space becomes at -or above the "low water mark" for the send buffer (default 4096 bytes) -you will receive a writable callback. You don't get continuous callbacks -if you don't write anything. Using a non-blocking write socket, you can -then call write until it returns a value less than the amount of data -requested to be sent or it produces error EWOULDBLOCK (indicating buffer -full and no longer writable). When this happens you can -try the write again, but it is often better to go do other things and -let the writable callback tell you when space is available to send -again. You only get a writable callback when the free space transitions -to above the "low water mark" and not every time you -write to a non-full send buffer. (Condition 2.a.) - -The remaining conditions enumerated by Stevens handle the fact that -sockets become readable and/or writable when connects, disconnects and -errors occur, not just when data is received or sent. For example, when -a server "listening" socket becomes readable it indicates that a client -has connected and accept can be called without blocking, not that -network data was received (Condition 1.c). - -@subsection Adding an IP Alias - -The following code snippet adds an IP alias: - -@example -void addAlias(const char *pName, const char *pAddr, const char *pMask) -@{ - struct ifaliasreq aliasreq; - struct sockaddr_in *in; - - /* initialize alias request */ - memset(&aliasreq, 0, sizeof(aliasreq)); - sprintf(aliasreq.ifra_name, pName); - - /* initialize alias address */ - in = (struct sockaddr_in *)&aliasreq.ifra_addr; - in->sin_family = AF_INET; - in->sin_len = sizeof(aliasreq.ifra_addr); - in->sin_addr.s_addr = inet_addr(pAddr); - - /* initialize alias mask */ - in = (struct sockaddr_in *)&aliasreq.ifra_mask; - in->sin_family = AF_INET; - in->sin_len = sizeof(aliasreq.ifra_mask); - in->sin_addr.s_addr = inet_addr(pMask); - - /* call to setup the alias */ - rtems_bsdnet_ifconfig(pName, SIOCAIFADDR, &aliasreq); -@} -@end example - -Thanks to @uref{mailto:mikes@@poliac.com,Mike Seirs} for this example -code. - -@subsection Adding a Default Route - -The function provided in this section is functionally equivalent to -the command @code{route add default gw yyy.yyy.yyy.yyy}: - -@example -void mon_ifconfig(int argc, char *argv[], unsigned32 command_arg, - bool verbose) -@{ - struct sockaddr_in ipaddr; - struct sockaddr_in dstaddr; - struct sockaddr_in netmask; - struct sockaddr_in broadcast; - char *iface; - int f_ip = 0; - int f_ptp = 0; - int f_netmask = 0; - int f_up = 0; - int f_down = 0; - int f_bcast = 0; - int cur_idx; - int rc; - int flags; - - bzero((void*) &ipaddr, sizeof(ipaddr)); - bzero((void*) &dstaddr, sizeof(dstaddr)); - bzero((void*) &netmask, sizeof(netmask)); - bzero((void*) &broadcast, sizeof(broadcast)); - - ipaddr.sin_len = sizeof(ipaddr); - ipaddr.sin_family = AF_INET; - - dstaddr.sin_len = sizeof(dstaddr); - dstaddr.sin_family = AF_INET; - - netmask.sin_len = sizeof(netmask); - netmask.sin_family = AF_INET; - - broadcast.sin_len = sizeof(broadcast); - broadcast.sin_family = AF_INET; - - cur_idx = 0; - if (argc <= 1) @{ - /* display all interfaces */ - iface = NULL; - cur_idx += 1; - @} else @{ - iface = argv[1]; - if (isdigit(*argv[2])) @{ - if (inet_pton(AF_INET, argv[2], &ipaddr.sin_addr) < 0) @{ - printf("bad ip address: %s\n", argv[2]); - return; - @} - f_ip = 1; - cur_idx += 3; - @} else @{ - cur_idx += 2; - @} - @} - - if ((f_down !=0) && (f_ip != 0)) @{ - f_up = 1; - @} - - while(argc > cur_idx) @{ - if (strcmp(argv[cur_idx], "up") == 0) @{ - f_up = 1; - if (f_down != 0) @{ - printf("Can't make interface up and down\n"); - @} - @} else if(strcmp(argv[cur_idx], "down") == 0) @{ - f_down = 1; - if (f_up != 0) @{ - printf("Can't make interface up and down\n"); - @} - @} else if(strcmp(argv[cur_idx], "netmask") == 0) @{ - if ((cur_idx + 1) >= argc) @{ - printf("No netmask address\n"); - return; - @} - if (inet_pton(AF_INET, argv[cur_idx+1], &netmask.sin_addr) < 0) @{ - printf("bad netmask: %s\n", argv[cur_idx]); - return; - @} - f_netmask = 1; - cur_idx += 1; - @} else if(strcmp(argv[cur_idx], "broadcast") == 0) @{ - if ((cur_idx + 1) >= argc) @{ - printf("No broadcast address\n"); - return; - @} - if (inet_pton(AF_INET, argv[cur_idx+1], &broadcast.sin_addr) < 0) @{ - printf("bad broadcast: %s\n", argv[cur_idx]); - return; - @} - f_bcast = 1; - cur_idx += 1; - @} else if(strcmp(argv[cur_idx], "pointopoint") == 0) @{ - if ((cur_idx + 1) >= argc) @{ - printf("No pointopoint address\n"); - return; - @} - if (inet_pton(AF_INET, argv[cur_idx+1], &dstaddr.sin_addr) < 0) @{ - printf("bad pointopoint: %s\n", argv[cur_idx]); - return; - @} - - f_ptp = 1; - cur_idx += 1; - @} else @{ - printf("Bad parameter: %s\n", argv[cur_idx]); - return; - @} - - cur_idx += 1; - @} - - printf("ifconfig "); - if (iface != NULL) @{ - printf("%s ", iface); - if (f_ip != 0) @{ - char str[256]; - inet_ntop(AF_INET, &ipaddr.sin_addr, str, 256); - printf("%s ", str); - @} - - if (f_netmask != 0) @{ - char str[256]; - inet_ntop(AF_INET, &netmask.sin_addr, str, 256); - printf("netmask %s ", str); - @} - - if (f_bcast != 0) @{ - char str[256]; - inet_ntop(AF_INET, &broadcast.sin_addr, str, 256); - printf("broadcast %s ", str); - @} - - if (f_ptp != 0) @{ - char str[256]; - inet_ntop(AF_INET, &dstaddr.sin_addr, str, 256); - printf("pointopoint %s ", str); - @} - - if (f_up != 0) @{ - printf("up\n"); - @} else if (f_down != 0) @{ - printf("down\n"); - @} else @{ - printf("\n"); - @} - @} - - if ((iface == NULL) || ((f_ip == 0) && (f_down == 0) && (f_up == 0))) @{ - rtems_bsdnet_show_if_stats(); - return; - @} - - flags = 0; - if (f_netmask) @{ - rc = rtems_bsdnet_ifconfig(iface, SIOCSIFNETMASK, &netmask); - if (rc < 0) @{ - printf("Could not set netmask: %s\n", strerror(errno)); - return; - @} - @} - - if (f_bcast) @{ - rc = rtems_bsdnet_ifconfig(iface, SIOCSIFBRDADDR, &broadcast); - if (rc < 0) @{ - printf("Could not set broadcast: %s\n", strerror(errno)); - return; - @} - @} - - if (f_ptp) @{ - rc = rtems_bsdnet_ifconfig(iface, SIOCSIFDSTADDR, &dstaddr); - if (rc < 0) @{ - printf("Could not set destination address: %s\n", strerror(errno)); - return; - @} - flags |= IFF_POINTOPOINT; - @} - - /* This must come _after_ setting the netmask, broadcast addresses */ - if (f_ip) @{ - rc = rtems_bsdnet_ifconfig(iface, SIOCSIFADDR, &ipaddr); - if (rc < 0) @{ - printf("Could not set IP address: %s\n", strerror(errno)); - return; - @} - @} - - if (f_up != 0) @{ - flags |= IFF_UP; - @} - - if (f_down != 0) @{ - printf("Warning: taking interfaces down is not supported\n"); - @} - - rc = rtems_bsdnet_ifconfig(iface, SIOCSIFFLAGS, &flags); - if (rc < 0) @{ - printf("Could not set interface flags: %s\n", strerror(errno)); - return; - @} -@} - - - -void mon_route(int argc, char *argv[], unsigned32 command_arg, - bool verbose) -@{ - int cmd; - struct sockaddr_in dst; - struct sockaddr_in gw; - struct sockaddr_in netmask; - int f_host; - int f_gw = 0; - int cur_idx; - int flags; - int rc; - - memset(&dst, 0, sizeof(dst)); - memset(&gw, 0, sizeof(gw)); - memset(&netmask, 0, sizeof(netmask)); - - dst.sin_len = sizeof(dst); - dst.sin_family = AF_INET; - dst.sin_addr.s_addr = inet_addr("0.0.0.0"); - - gw.sin_len = sizeof(gw); - gw.sin_family = AF_INET; - gw.sin_addr.s_addr = inet_addr("0.0.0.0"); - - netmask.sin_len = sizeof(netmask); - netmask.sin_family = AF_INET; - netmask.sin_addr.s_addr = inet_addr("255.255.255.0"); - - if (argc < 2) @{ - rtems_bsdnet_show_inet_routes(); - return; - @} - - if (strcmp(argv[1], "add") == 0) @{ - cmd = RTM_ADD; - @} else if (strcmp(argv[1], "del") == 0) @{ - cmd = RTM_DELETE; - @} else @{ - printf("invalid command: %s\n", argv[1]); - printf("\tit should be 'add' or 'del'\n"); - return; - @} - - if (argc < 3) @{ - printf("not enough arguments\n"); - return; - @} - - if (strcmp(argv[2], "-host") == 0) @{ - f_host = 1; - @} else if (strcmp(argv[2], "-net") == 0) @{ - f_host = 0; - @} else @{ - printf("Invalid type: %s\n", argv[1]); - printf("\tit should be '-host' or '-net'\n"); - return; - @} - - if (argc < 4) @{ - printf("not enough arguments\n"); - return; - @} - - inet_pton(AF_INET, argv[3], &dst.sin_addr); - - cur_idx = 4; - while(cur_idx < argc) @{ - if (strcmp(argv[cur_idx], "gw") == 0) @{ - if ((cur_idx +1) >= argc) @{ - printf("no gateway address\n"); - return; - @} - f_gw = 1; - inet_pton(AF_INET, argv[cur_idx + 1], &gw.sin_addr); - cur_idx += 1; - @} else if(strcmp(argv[cur_idx], "netmask") == 0) @{ - if ((cur_idx +1) >= argc) @{ - printf("no netmask address\n"); - return; - @} - f_gw = 1; - inet_pton(AF_INET, argv[cur_idx + 1], &netmask.sin_addr); - cur_idx += 1; - @} else @{ - printf("Unknown argument\n"); - return; - @} - cur_idx += 1; - @} - - flags = RTF_STATIC; - if (f_gw != 0) @{ - flags |= RTF_GATEWAY; - @} - if (f_host != 0) @{ - flags |= RTF_HOST; - @} - - rc = rtems_bsdnet_rtrequest(cmd, &dst, &gw, &netmask, flags, NULL); - if (rc < 0) @{ - printf("Error adding route\n"); - @} -@} -@end example - -Thanks to @uref{mailto:jtm@@smoothmsmoothie.com,Jay Monkman} for this example -code. - -@subsection Time Synchronization Using NTP - -@example -int rtems_bsdnet_synchronize_ntp (int interval, rtems_task_priority priority); -@end example - -If the interval argument is 0 the routine synchronizes the RTEMS time-of-day -clock with the first NTP server in the rtems_bsdnet_ntpserve array and -returns. The priority argument is ignored. - -If the interval argument is greater than 0, the routine also starts an -RTEMS task at the specified priority and polls the NTP server every -`interval' seconds. NOTE: This mode of operation has not yet been -implemented. - -On successful synchronization of the RTEMS time-of-day clock the routine -returns 0. If an error occurs a message is printed and the routine returns -1 -with an error code in errno. -There is no timeout -- if there is no response from an NTP server the -routine will wait forever. - - - - -- cgit v1.2.3