From 5554279677d4457c837dcbafdd194f09d9605971 Mon Sep 17 00:00:00 2001 From: Joel Sherrill Date: Thu, 2 Dec 1999 13:54:30 +0000 Subject: Merged of mcp750 and mvme2307 BSP by Eric Valette . As part of this effort, the mpc750 libcpu code is now shared with the ppc6xx. --- c/src/exec/score/cpu/powerpc/other_cpu/Makefile.in | 90 -- c/src/exec/score/cpu/powerpc/other_cpu/README | 78 -- c/src/exec/score/cpu/powerpc/other_cpu/TODO | 8 - c/src/exec/score/cpu/powerpc/other_cpu/c_isr.inl | 4 - c/src/exec/score/cpu/powerpc/other_cpu/cpu.c | 853 -------------- c/src/exec/score/cpu/powerpc/other_cpu/cpu.h | 1200 -------------------- c/src/exec/score/cpu/powerpc/other_cpu/cpu_asm.S | 809 ------------- c/src/exec/score/cpu/powerpc/other_cpu/irq_stub.S | 268 ----- c/src/exec/score/cpu/powerpc/other_cpu/ppccache.c | 61 - c/src/exec/score/cpu/powerpc/other_cpu/rtems.S | 132 --- 10 files changed, 3503 deletions(-) delete mode 100644 c/src/exec/score/cpu/powerpc/other_cpu/Makefile.in delete mode 100644 c/src/exec/score/cpu/powerpc/other_cpu/README delete mode 100644 c/src/exec/score/cpu/powerpc/other_cpu/TODO delete mode 100644 c/src/exec/score/cpu/powerpc/other_cpu/c_isr.inl delete mode 100644 c/src/exec/score/cpu/powerpc/other_cpu/cpu.c delete mode 100644 c/src/exec/score/cpu/powerpc/other_cpu/cpu.h delete mode 100644 c/src/exec/score/cpu/powerpc/other_cpu/cpu_asm.S delete mode 100644 c/src/exec/score/cpu/powerpc/other_cpu/irq_stub.S delete mode 100644 c/src/exec/score/cpu/powerpc/other_cpu/ppccache.c delete mode 100644 c/src/exec/score/cpu/powerpc/other_cpu/rtems.S (limited to 'c') diff --git a/c/src/exec/score/cpu/powerpc/other_cpu/Makefile.in b/c/src/exec/score/cpu/powerpc/other_cpu/Makefile.in deleted file mode 100644 index 9e6f49591a..0000000000 --- a/c/src/exec/score/cpu/powerpc/other_cpu/Makefile.in +++ /dev/null @@ -1,90 +0,0 @@ -# -# $Id$ -# - -@SET_MAKE@ -srcdir = @srcdir@ -top_srcdir = @top_srcdir@ -top_builddir = ../.. -subdir = powerpc/other_cpu - -RTEMS_ROOT = @RTEMS_ROOT@ -PROJECT_ROOT = @PROJECT_ROOT@ - -VPATH = @srcdir@ - -RELS = ../$(ARCH)/rtems-cpu.rel - -# C source names, if any, go here -- minus the .c -C_PIECES = cpu ppccache -C_FILES = $(C_PIECES:%=%.c) -C_O_FILES = $(C_PIECES:%=${ARCH}/%.o) - -ROOT_H_PIECES = -ROOT_H_FILES = $(ROOT_H_PIECES:%=$(srcdir)/%) -RTEMS_SCORE_H_PIECES = cpu.h -RTEMS_SCORE_H_FILES = $(RTEMS_SCORE_H_PIECES:%=$(srcdir)/%) -H_PIECES = $(ROOT_H_PIECES) $(RTEMS_SCORE_H_PIECES) -H_FILES = $(H_PIECES%=$(srcdir)/%) -I_PIECES = c_isr -I_FILES = $(I_PIECES:%=$(srcdir)/%.inl) - -# Assembly source names, if any, go here -- minus the .S -S_PIECES = cpu_asm rtems # irq_stub -S_FILES = $(S_PIECES:%=%.S) -S_O_FILES = $(S_FILES:%.S=${ARCH}/%.o) - -SRCS = $(C_FILES) $(CC_FILES) $(H_FILES) $(S_FILES) $(EXTERNAL_H_FILES) \ - $(I_FILES) -OBJS = $(C_O_FILES) $(CC_O_FILES) $(S_O_FILES) - -include $(RTEMS_ROOT)/make/custom/@RTEMS_BSP@.cfg -include $(RTEMS_ROOT)/make/leaf.cfg - -INSTALL_CHANGE = @INSTALL_CHANGE@ -mkinstalldirs = $(SHELL) $(top_srcdir)/@RTEMS_TOPdir@/mkinstalldirs - -INSTALLDIRS = $(PROJECT_INCLUDE)/rtems/score $(PROJECT_INCLUDE) - -$(INSTALLDIRS): - @$(mkinstalldirs) $(INSTALLDIRS) - -# -# (OPTIONAL) Add local stuff here using += -# - -DEFINES += -CPPFLAGS += -CFLAGS += $(CFLAGS_OS_V) - -LD_PATHS += -LD_LIBS += -LDFLAGS += - -# -# Add your list of files to delete here. The config files -# already know how to delete some stuff, so you may want -# to just run 'make clean' first to see what gets missed. -# 'make clobber' already includes 'make clean' -# - -CLEAN_ADDITIONS += -CLOBBER_ADDITIONS += - -../$(ARCH)/rtems-cpu.rel: $(OBJS) - test -d ../$(ARCH) || mkdir ../$(ARCH) - $(make-rel) - -all: ${ARCH} $(SRCS) preinstall $(OBJS) $(RELS) - -# Install the program(s), appending _g or _p as appropriate. -# for include files, just use $(INSTALL_CHANGE) -install: all - -preinstall: ${ARCH} - @$(INSTALL_CHANGE) -m 644 $(RTEMS_SCORE_H_FILES) $(I_FILES) $(PROJECT_INCLUDE)/rtems/score - @$(INSTALL_CHANGE) -m 644 $(ROOT_H_FILES) $(PROJECT_INCLUDE) - -Makefile: $(srcdir)/Makefile.in $(top_builddir)/config.status - cd $(top_builddir) \ - && CONFIG_FILES=$(subdir)/$@ CONFIG_HEADERS= $(SHELL) ./config.status diff --git a/c/src/exec/score/cpu/powerpc/other_cpu/README b/c/src/exec/score/cpu/powerpc/other_cpu/README deleted file mode 100644 index 0b87ac1ea7..0000000000 --- a/c/src/exec/score/cpu/powerpc/other_cpu/README +++ /dev/null @@ -1,78 +0,0 @@ -# -# $Id$ -# - -There are various issues regarding this port: - - - -1) Legal - -This port is written by Andrew Bray , and -is copyright 1995 i-cubed ltd. - -This port was later updated by Joel Sherrill -to test the support for the PPC603, PPC603e, and PPC604. This -was tested on the PowerPC simulator PSIM and a VMEbus single board -computer. - -2) CPU support. - -This release fully supports the PPC403GA, PPC403GB, PPC603, PPC603e, -and PPC604 processors. A good faith attempt has been made to include -support other models based upon available documentation. - -This port was originally written and tested on the PPC403GA (using -software floating point). Current ports are tested on 60x CPUs -using the PowerPC simulator PSIM. - -Andrew Bray received assistance during the initial porting effort -from IBM and Blue Micro and we would like to gratefully acknowledge -that help. - -The support for the PPC602 processor is incomplete as only sketchy -data is currently available. Perhaps this model has been dropped. - - - -3) Application Binary INterface - -In the context of RTEMS, the ABI is of interest for the following -aspects: - -a) Register usage. Which registers are used to provide static variable - linkage, stack pointer etc. - -b) Function calling convention. How parameters are passed, how function - variables should be invoked, how values are returned, etc. - -c) Stack frame layout. - -I am aware of a number of ABIs for the PowerPC: - -a) The PowerOpen ABI. This is the original Power ABI used on the RS/6000. - This is the only ABI supported by versions of GCC before 2.7.0. - -b) The SVR4 ABI. This is the ABI defined by SunSoft for the Solaris port - to the PowerPC. - -c) The Embedded ABI. This is an embedded ABI for PowerPC use, which has no - operating system interface defined. It is promoted by SunSoft, Motorola, - and Cygnus Support. Cygnus are porting the GNU toolchain to this ABI. - -d) GCC 2.7.0. This compiler is partway along the road to supporting the EABI, - but is currently halfway in between. - -This port was built and tested using the PowerOpen ABI, with the following -caveat: we used an ELF assembler and linker. So some attention may be -required on the assembler files to get them through a traditional (XCOFF) -PowerOpen assembler. - -This port contains support for the other ABIs, but this may prove to be -incomplete as it is untested. - -The RTEMS PowerPC port supports EABI as the primary ABI. The powerpc-rtems -GNU toolset configuration is EABI and . - -Andrew Bray, 4 December 1995 -Joel Sherrill, 16 July 1997 diff --git a/c/src/exec/score/cpu/powerpc/other_cpu/TODO b/c/src/exec/score/cpu/powerpc/other_cpu/TODO deleted file mode 100644 index 64c96cb14c..0000000000 --- a/c/src/exec/score/cpu/powerpc/other_cpu/TODO +++ /dev/null @@ -1,8 +0,0 @@ -# -# $Id$ -# - -Todo list: - -Maybe decode external interrupts like the HPPA does. - See c/src/lib/libcpu/powerpc/ppc403/ictrl/* for implementation on ppc403 diff --git a/c/src/exec/score/cpu/powerpc/other_cpu/c_isr.inl b/c/src/exec/score/cpu/powerpc/other_cpu/c_isr.inl deleted file mode 100644 index 706d4f7e4f..0000000000 --- a/c/src/exec/score/cpu/powerpc/other_cpu/c_isr.inl +++ /dev/null @@ -1,4 +0,0 @@ -RTEMS_INLINE_ROUTINE boolean _ISR_Is_in_progress( void ) -{ - return (_ISR_Nest_level != 0); -} diff --git a/c/src/exec/score/cpu/powerpc/other_cpu/cpu.c b/c/src/exec/score/cpu/powerpc/other_cpu/cpu.c deleted file mode 100644 index 1e1a7379f0..0000000000 --- a/c/src/exec/score/cpu/powerpc/other_cpu/cpu.c +++ /dev/null @@ -1,853 +0,0 @@ -/* - * PowerPC CPU Dependent Source - * - * Author: Andrew Bray - * - * COPYRIGHT (c) 1995 by i-cubed ltd. - * - * To anyone who acknowledges that this file is provided "AS IS" - * without any express or implied warranty: - * permission to use, copy, modify, and distribute this file - * for any purpose is hereby granted without fee, provided that - * the above copyright notice and this notice appears in all - * copies, and that the name of i-cubed limited not be used in - * advertising or publicity pertaining to distribution of the - * software without specific, written prior permission. - * i-cubed limited makes no representations about the suitability - * of this software for any purpose. - * - * Derived from c/src/exec/cpu/no_cpu/cpu.c: - * - * COPYRIGHT (c) 1989-1997. - * On-Line Applications Research Corporation (OAR). - * Copyright assigned to U.S. Government, 1994. - * - * The license and distribution terms for this file may be found in - * the file LICENSE in this distribution or at - * http://www.OARcorp.com/rtems/license.html. - * - * $Id$ - */ - -#include -#include -#include -#include -#include - -/* - * These are for testing purposes. - */ - -/* _CPU_Initialize - * - * This routine performs processor dependent initialization. - * - * INPUT PARAMETERS: - * cpu_table - CPU table to initialize - * thread_dispatch - address of disptaching routine - */ - -static void ppc_spurious(int, CPU_Interrupt_frame *); - -void _CPU_Initialize( - rtems_cpu_table *cpu_table, - void (*thread_dispatch) /* ignored on this CPU */ -) -{ - proc_ptr handler = (proc_ptr)ppc_spurious; - int i; -#if (PPC_ABI != PPC_ABI_POWEROPEN) - register unsigned32 r2 = 0; -#if (PPC_ABI != PPC_ABI_GCC27) - register unsigned32 r13 = 0; - - asm ("mr %0,13" : "=r" ((r13)) : "0" ((r13))); - _CPU_IRQ_info.Default_r13 = r13; -#endif - - asm ("mr %0,2" : "=r" ((r2)) : "0" ((r2))); - _CPU_IRQ_info.Default_r2 = r2; -#endif - - _CPU_IRQ_info.Nest_level = &_ISR_Nest_level; - _CPU_IRQ_info.Disable_level = &_Thread_Dispatch_disable_level; - _CPU_IRQ_info.Vector_table = _ISR_Vector_table; -#if (PPC_ABI == PPC_ABI_POWEROPEN) - _CPU_IRQ_info.Dispatch_r2 = ((unsigned32 *)_Thread_Dispatch)[1]; -#endif - _CPU_IRQ_info.Switch_necessary = &_Context_Switch_necessary; - _CPU_IRQ_info.Signal = &_ISR_Signals_to_thread_executing; - -#if (PPC_USE_SPRG) - i = (int)&_CPU_IRQ_info; - asm volatile("mtspr 0x113, %0" : "=r" (i) : "0" (i)); /* SPRG 3 */ -#endif - - /* - * Store Msr Value in the IRQ info structure. - */ - _CPU_MSR_Value(_CPU_IRQ_info.msr_initial); - -#if (PPC_USE_SPRG) - i = _CPU_IRQ_info.msr_initial; - asm volatile("mtspr 0x112, %0" : "=r" (i) : "0" (i)); /* SPRG 2 */ -#endif - - if ( cpu_table->spurious_handler ) - handler = (proc_ptr)cpu_table->spurious_handler; - - for (i = 0; i < PPC_INTERRUPT_MAX; i++) - _ISR_Vector_table[i] = handler; - - _CPU_Table = *cpu_table; -} - -/*PAGE - * - * _CPU_ISR_Calculate_level - * - * The PowerPC puts its interrupt enable status in the MSR register - * which also contains things like endianness control. To be more - * awkward, the layout varies from processor to processor. This - * is why it was necessary to adopt a scheme which allowed the user - * to specify specifically which interrupt sources were enabled. - */ - -unsigned32 _CPU_ISR_Calculate_level( - unsigned32 new_level -) -{ - register unsigned32 new_msr = 0; - - /* - * Set the critical interrupt enable bit - */ - -#if (PPC_HAS_RFCI) - if ( !(new_level & PPC_INTERRUPT_LEVEL_CE) ) - new_msr |= PPC_MSR_CE; -#endif - - if ( !(new_level & PPC_INTERRUPT_LEVEL_ME) ) - new_msr |= PPC_MSR_ME; - - if ( !(new_level & PPC_INTERRUPT_LEVEL_EE) ) - new_msr |= PPC_MSR_EE; - - return new_msr; -} - -/*PAGE - * - * _CPU_ISR_Set_level - * - * This routine sets the requested level in the MSR. - */ - -void _CPU_ISR_Set_level( - unsigned32 new_level -) -{ - register unsigned32 tmp = 0; - register unsigned32 new_msr; - - new_msr = _CPU_ISR_Calculate_level( new_level ); - - asm volatile ( - "mfmsr %0; andc %0,%0,%1; and %2, %2, %1; or %0, %0, %2; mtmsr %0" : - "=&r" ((tmp)) : - "r" ((PPC_MSR_DISABLE_MASK)), "r" ((new_msr)), "0" ((tmp)) - ); -} - -/*PAGE - * - * _CPU_ISR_Get_level - * - * This routine gets the current interrupt level from the MSR and - * converts it to an RTEMS interrupt level. - */ - -unsigned32 _CPU_ISR_Get_level( void ) -{ - unsigned32 level = 0; - unsigned32 msr; - - asm volatile("mfmsr %0" : "=r" ((msr))); - - msr &= PPC_MSR_DISABLE_MASK; - - /* - * Set the critical interrupt enable bit - */ - -#if (PPC_HAS_RFCI) - if ( !(msr & PPC_MSR_CE) ) - level |= PPC_INTERRUPT_LEVEL_CE; -#endif - - if ( !(msr & PPC_MSR_ME) ) - level |= PPC_INTERRUPT_LEVEL_ME; - - if ( !(msr & PPC_MSR_EE) ) - level |= PPC_INTERRUPT_LEVEL_EE; - - return level; -} - -/*PAGE - * - * _CPU_Context_Initialize - */ - -#if (PPC_ABI == PPC_ABI_POWEROPEN) -#define CPU_MINIMUM_STACK_FRAME_SIZE 56 -#else /* PPC_ABI_SVR4 or PPC_ABI_EABI */ -#define CPU_MINIMUM_STACK_FRAME_SIZE 8 -#endif - -void _CPU_Context_Initialize( - Context_Control *the_context, - unsigned32 *stack_base, - unsigned32 size, - unsigned32 new_level, - void *entry_point, - boolean is_fp -) -{ - unsigned32 msr_value; - unsigned32 sp; - - sp = (unsigned32)stack_base + size - CPU_MINIMUM_STACK_FRAME_SIZE; - *((unsigned32 *)sp) = 0; - the_context->gpr1 = sp; - - the_context->msr = _CPU_ISR_Calculate_level( new_level ); - - /* - * The FP bit of the MSR should only be enabled if this is a floating - * point task. Unfortunately, the vfprintf_r routine in newlib - * ends up pushing a floating point register regardless of whether or - * not a floating point number is being printed. Serious restructuring - * of vfprintf.c will be required to avoid this behavior. At this - * time (7 July 1997), this restructuring is not being done. - */ - - /*if ( is_fp ) */ - the_context->msr |= PPC_MSR_FP; - - /* - * Calculate the task's MSR value: - * - * + Set the exception prefix bit to point to the exception table - * + Force the RI bit - * + Use the DR and IR bits - */ - _CPU_MSR_Value( msr_value ); - the_context->msr |= (msr_value & PPC_MSR_EP); - the_context->msr |= PPC_MSR_RI; - the_context->msr |= msr_value & (PPC_MSR_DR|PPC_MSR_IR); - -#if (PPC_ABI == PPC_ABI_POWEROPEN) - { unsigned32 *desc = (unsigned32 *)entry_point; - - the_context->pc = desc[0]; - the_context->gpr2 = desc[1]; - } -#endif - -#if (PPC_ABI == PPC_ABI_SVR4) - { unsigned r13 = 0; - asm volatile ("mr %0, 13" : "=r" ((r13))); - - the_context->pc = (unsigned32)entry_point; - the_context->gpr13 = r13; - } -#endif - -#if (PPC_ABI == PPC_ABI_EABI) - { unsigned32 r2 = 0; - unsigned r13 = 0; - asm volatile ("mr %0,2; mr %1,13" : "=r" ((r2)), "=r" ((r13))); - - the_context->pc = (unsigned32)entry_point; - the_context->gpr2 = r2; - the_context->gpr13 = r13; - } -#endif -} - - -/* _CPU_ISR_install_vector - * - * This kernel routine installs the RTEMS handler for the - * specified vector. - * - * Input parameters: - * vector - interrupt vector number - * old_handler - former ISR for this vector number - * new_handler - replacement ISR for this vector number - * - * Output parameters: NONE - * - */ - -void _CPU_ISR_install_vector( - unsigned32 vector, - proc_ptr new_handler, - proc_ptr *old_handler -) -{ - proc_ptr ignored; - *old_handler = _ISR_Vector_table[ vector ]; - - /* - * If the interrupt vector table is a table of pointer to isr entry - * points, then we need to install the appropriate RTEMS interrupt - * handler for this vector number. - */ - - /* - * Install the wrapper so this ISR can be invoked properly. - */ - if (_CPU_Table.exceptions_in_RAM) - _CPU_ISR_install_raw_handler( vector, _ISR_Handler, &ignored ); - - /* - * We put the actual user ISR address in '_ISR_vector_table'. This will - * be used by the _ISR_Handler so the user gets control. - */ - - _ISR_Vector_table[ vector ] = new_handler ? (ISR_Handler_entry)new_handler : - _CPU_Table.spurious_handler ? - (ISR_Handler_entry)_CPU_Table.spurious_handler : - (ISR_Handler_entry)ppc_spurious; -} - -/*PAGE - * - * _CPU_Install_interrupt_stack - */ - -void _CPU_Install_interrupt_stack( void ) -{ -#if (PPC_ABI == PPC_ABI_POWEROPEN || PPC_ABI == PPC_ABI_GCC27) - _CPU_IRQ_info.Stack = _CPU_Interrupt_stack_high - 56; -#else - _CPU_IRQ_info.Stack = _CPU_Interrupt_stack_high - 8; -#endif -} - -/* Handle a spurious interrupt */ -static void ppc_spurious(int v, CPU_Interrupt_frame *i) -{ -#if 0 - printf("Spurious interrupt on vector %d from %08.8x\n", - v, i->pc); -#endif -#ifdef ppc403 - if (v == PPC_IRQ_EXTERNAL) - { - register int r = 0; - - asm volatile("mtdcr 0x42, %0" : - "=&r" ((r)) : "0" ((r))); /* EXIER */ - } - else if (v == PPC_IRQ_PIT) - { - register int r = 0x08000000; - - asm volatile("mtspr 0x3d8, %0" : - "=&r" ((r)) : "0" ((r))); /* TSR */ - } - else if (v == PPC_IRQ_FIT) - { - register int r = 0x04000000; - - asm volatile("mtspr 0x3d8, %0" : - "=&r" ((r)) : "0" ((r))); /* TSR */ - } -#endif -} - -void _CPU_Fatal_error(unsigned32 _error) -{ - asm volatile ("mr 3, %0" : : "r" ((_error))); - asm volatile ("tweq 5,5"); - asm volatile ("li 0,0; mtmsr 0"); - while (1) ; -} - -#define PPC_SYNCHRONOUS_TRAP_BIT_MASK 0x100 -#define PPC_ASYNCHRONOUS_TRAP( _trap ) (_trap) -#define PPC_SYNCHRONOUS_TRAP ( _trap ) ((_trap)+PPC_SYNCHRONOUS_TRAP_BIT_MASK) -#define PPC_REAL_TRAP_NUMBER ( _trap ) ((_trap)%PPC_SYNCHRONOUS_TRAP_BIT_MASK) - - -const CPU_Trap_table_entry _CPU_Trap_slot_template = { - -#if (PPC_ABI == PPC_ABI_POWEROPEN || PPC_ABI == PPC_ABI_GCC27) -#error " Vector install not tested." -#if (PPC_HAS_FPU) -#error " Vector install not tested." - 0x9421feb0, /* stwu r1, -(20*4 + 18*8 + IP_END)(r1) */ -#else -#error " Vector install not tested." - 0x9421ff40, /* stwu r1, -(20*4 + IP_END)(r1) */ -#endif -#else - 0x9421ff90, /* stwu r1, -(IP_END)(r1) */ -#endif - - 0x90010008, /* stw %r0, IP_0(%r1) */ - 0x38000000, /* li %r0, PPC_IRQ */ - 0x48000002 /* ba PROC (_ISR_Handler) */ -}; - -#if defined(mpc860) || defined(mpc821) -const CPU_Trap_table_entry _CPU_Trap_slot_template_m860 = { - 0x7c0803ac, /* mtlr %r0 */ - 0x81210028, /* lwz %r9, IP_9(%r1) */ - 0x38000000, /* li %r0, PPC_IRQ */ - 0x48000002 /* b PROC (_ISR_Handler) */ -}; -#endif /* mpc860 */ - -unsigned32 ppc_exception_vector_addr( - unsigned32 vector -); - - -/*PAGE - * - * _CPU_ISR_install_raw_handler - * - * This routine installs the specified handler as a "raw" non-executive - * supported trap handler (a.k.a. interrupt service routine). - * - * Input Parameters: - * vector - trap table entry number plus synchronous - * vs. asynchronous information - * new_handler - address of the handler to be installed - * old_handler - pointer to an address of the handler previously installed - * - * Output Parameters: NONE - * *new_handler - address of the handler previously installed - * - * NOTE: - * - * This routine is based on the SPARC routine _CPU_ISR_install_raw_handler. - * Install a software trap handler as an executive interrupt handler - * (which is desirable since RTEMS takes care of window and register issues), - * then the executive needs to know that the return address is to the trap - * rather than the instruction following the trap. - * - */ - -void _CPU_ISR_install_raw_handler( - unsigned32 vector, - proc_ptr new_handler, - proc_ptr *old_handler -) -{ - unsigned32 real_vector; - CPU_Trap_table_entry *slot; - unsigned32 u32_handler=0; - - /* - * Get the "real" trap number for this vector ignoring the synchronous - * versus asynchronous indicator included with our vector numbers. - */ - - real_vector = vector; - - /* - * Get the current base address of the trap table and calculate a pointer - * to the slot we are interested in. - */ - slot = (CPU_Trap_table_entry *)ppc_exception_vector_addr( real_vector ); - - /* - * Get the address of the old_handler from the trap table. - * - * NOTE: The old_handler returned will be bogus if it does not follow - * the RTEMS model. - */ - -#define HIGH_BITS_MASK 0xFFFFFC00 -#define HIGH_BITS_SHIFT 10 -#define LOW_BITS_MASK 0x000003FF - - if (slot->stwu_r1 == _CPU_Trap_slot_template.stwu_r1) { - /* - * Set u32_handler = to target address - */ - u32_handler = slot->b_Handler & 0x03fffffc; - - /* IMD FIX: sign extend address fragment... */ - if (u32_handler & 0x02000000) { - u32_handler |= 0xfc000000; - } - - *old_handler = (proc_ptr) u32_handler; - } else -/* There are two kinds of handlers for the MPC860. One is the 'standard' - * one like above. The other is for the cascaded interrupts from the SIU - * and CPM. Therefore we must check for the alternate one if the standard - * one is not present - */ -#if defined(mpc860) || defined(mpc821) - if (slot->stwu_r1 == _CPU_Trap_slot_template_m860.stwu_r1) { - /* - * Set u32_handler = to target address - */ - u32_handler = slot->b_Handler & 0x03fffffc; - *old_handler = (proc_ptr) u32_handler; - } else -#endif /* mpc860 */ - - *old_handler = 0; - - /* - * Copy the template to the slot and then fix it. - */ -#if defined(mpc860) || defined(mpc821) - if (vector >= PPC_IRQ_IRQ0) - *slot = _CPU_Trap_slot_template_m860; - else -#endif /* mpc860 */ - *slot = _CPU_Trap_slot_template; - - u32_handler = (unsigned32) new_handler; - - /* - * IMD FIX: insert address fragment only (bits 6..29) - * therefore check for proper address range - * and remove unwanted bits - */ - if ((u32_handler & 0xfc000000) == 0xfc000000) { - u32_handler &= ~0xfc000000; - } - else if ((u32_handler & 0xfc000000) != 0x00000000) { - _Internal_error_Occurred(INTERNAL_ERROR_CORE, - TRUE, - u32_handler); - } - - slot->b_Handler |= u32_handler; - - slot->li_r0_IRQ |= vector; - - _CPU_Data_Cache_Block_Flush( slot ); -} - -unsigned32 ppc_exception_vector_addr( - unsigned32 vector -) -{ -#if (!PPC_HAS_EVPR) - unsigned32 Msr; -#endif - unsigned32 Top = 0; - unsigned32 Offset = 0x000; - -#if (PPC_HAS_EXCEPTION_PREFIX) - _CPU_MSR_Value ( Msr ); - if ( ( Msr & PPC_MSR_EP) != 0 ) /* Vectors at FFFx_xxxx */ - Top = 0xfff00000; -#elif (PPC_HAS_EVPR) - asm volatile( "mfspr %0,0x3d6" : "=r" (Top)); /* EVPR */ - Top = Top & 0xffff0000; -#endif - - switch ( vector ) { - case PPC_IRQ_SYSTEM_RESET: /* on 40x aka PPC_IRQ_CRIT */ - Offset = 0x00100; - break; - case PPC_IRQ_MCHECK: - Offset = 0x00200; - break; - case PPC_IRQ_PROTECT: - Offset = 0x00300; - break; - case PPC_IRQ_ISI: - Offset = 0x00400; - break; - case PPC_IRQ_EXTERNAL: - Offset = 0x00500; - break; - case PPC_IRQ_ALIGNMENT: - Offset = 0x00600; - break; - case PPC_IRQ_PROGRAM: - Offset = 0x00700; - break; - case PPC_IRQ_NOFP: - Offset = 0x00800; - break; - case PPC_IRQ_DECREMENTER: - Offset = 0x00900; - break; - case PPC_IRQ_RESERVED_A: - Offset = 0x00a00; - break; - case PPC_IRQ_RESERVED_B: - Offset = 0x00b00; - break; - case PPC_IRQ_SCALL: - Offset = 0x00c00; - break; - case PPC_IRQ_TRACE: - Offset = 0x00d00; - break; - case PPC_IRQ_FP_ASST: - Offset = 0x00e00; - break; - -#if defined(ppc403) - -/* PPC_IRQ_CRIT is the same vector as PPC_IRQ_RESET - case PPC_IRQ_CRIT: - Offset = 0x00100; - break; -*/ - case PPC_IRQ_PIT: - Offset = 0x01000; - break; - case PPC_IRQ_FIT: - Offset = 0x01010; - break; - case PPC_IRQ_WATCHDOG: - Offset = 0x01020; - break; - case PPC_IRQ_DEBUG: - Offset = 0x02000; - break; - -#elif defined(ppc601) - case PPC_IRQ_TRACE: - Offset = 0x02000; - break; - -#elif defined(ppc603) - case PPC_IRQ_TRANS_MISS: - Offset = 0x1000; - break; - case PPC_IRQ_DATA_LOAD: - Offset = 0x1100; - break; - case PPC_IRQ_DATA_STORE: - Offset = 0x1200; - break; - case PPC_IRQ_ADDR_BRK: - Offset = 0x1300; - break; - case PPC_IRQ_SYS_MGT: - Offset = 0x1400; - break; - -#elif defined(ppc603e) - case PPC_TLB_INST_MISS: - Offset = 0x1000; - break; - case PPC_TLB_LOAD_MISS: - Offset = 0x1100; - break; - case PPC_TLB_STORE_MISS: - Offset = 0x1200; - break; - case PPC_IRQ_ADDRBRK: - Offset = 0x1300; - break; - case PPC_IRQ_SYS_MGT: - Offset = 0x1400; - break; - -#elif defined(ppc604) - case PPC_IRQ_ADDR_BRK: - Offset = 0x1300; - break; - case PPC_IRQ_SYS_MGT: - Offset = 0x1400; - break; - -#elif defined(mpc860) || defined(mpc821) - case PPC_IRQ_EMULATE: - Offset = 0x1000; - break; - case PPC_IRQ_INST_MISS: - Offset = 0x1100; - break; - case PPC_IRQ_DATA_MISS: - Offset = 0x1200; - break; - case PPC_IRQ_INST_ERR: - Offset = 0x1300; - break; - case PPC_IRQ_DATA_ERR: - Offset = 0x1400; - break; - case PPC_IRQ_DATA_BPNT: - Offset = 0x1c00; - break; - case PPC_IRQ_INST_BPNT: - Offset = 0x1d00; - break; - case PPC_IRQ_IO_BPNT: - Offset = 0x1e00; - break; - case PPC_IRQ_DEV_PORT: - Offset = 0x1f00; - break; - case PPC_IRQ_IRQ0: - Offset = 0x2000; - break; - case PPC_IRQ_LVL0: - Offset = 0x2040; - break; - case PPC_IRQ_IRQ1: - Offset = 0x2080; - break; - case PPC_IRQ_LVL1: - Offset = 0x20c0; - break; - case PPC_IRQ_IRQ2: - Offset = 0x2100; - break; - case PPC_IRQ_LVL2: - Offset = 0x2140; - break; - case PPC_IRQ_IRQ3: - Offset = 0x2180; - break; - case PPC_IRQ_LVL3: - Offset = 0x21c0; - break; - case PPC_IRQ_IRQ4: - Offset = 0x2200; - break; - case PPC_IRQ_LVL4: - Offset = 0x2240; - break; - case PPC_IRQ_IRQ5: - Offset = 0x2280; - break; - case PPC_IRQ_LVL5: - Offset = 0x22c0; - break; - case PPC_IRQ_IRQ6: - Offset = 0x2300; - break; - case PPC_IRQ_LVL6: - Offset = 0x2340; - break; - case PPC_IRQ_IRQ7: - Offset = 0x2380; - break; - case PPC_IRQ_LVL7: - Offset = 0x23c0; - break; - case PPC_IRQ_CPM_RESERVED_0: - Offset = 0x2400; - break; - case PPC_IRQ_CPM_PC4: - Offset = 0x2410; - break; - case PPC_IRQ_CPM_PC5: - Offset = 0x2420; - break; - case PPC_IRQ_CPM_SMC2: - Offset = 0x2430; - break; - case PPC_IRQ_CPM_SMC1: - Offset = 0x2440; - break; - case PPC_IRQ_CPM_SPI: - Offset = 0x2450; - break; - case PPC_IRQ_CPM_PC6: - Offset = 0x2460; - break; - case PPC_IRQ_CPM_TIMER4: - Offset = 0x2470; - break; - case PPC_IRQ_CPM_RESERVED_8: - Offset = 0x2480; - break; - case PPC_IRQ_CPM_PC7: - Offset = 0x2490; - break; - case PPC_IRQ_CPM_PC8: - Offset = 0x24a0; - break; - case PPC_IRQ_CPM_PC9: - Offset = 0x24b0; - break; - case PPC_IRQ_CPM_TIMER3: - Offset = 0x24c0; - break; - case PPC_IRQ_CPM_RESERVED_D: - Offset = 0x24d0; - break; - case PPC_IRQ_CPM_PC10: - Offset = 0x24e0; - break; - case PPC_IRQ_CPM_PC11: - Offset = 0x24f0; - break; - case PPC_IRQ_CPM_I2C: - Offset = 0x2500; - break; - case PPC_IRQ_CPM_RISC_TIMER: - Offset = 0x2510; - break; - case PPC_IRQ_CPM_TIMER2: - Offset = 0x2520; - break; - case PPC_IRQ_CPM_RESERVED_13: - Offset = 0x2530; - break; - case PPC_IRQ_CPM_IDMA2: - Offset = 0x2540; - break; - case PPC_IRQ_CPM_IDMA1: - Offset = 0x2550; - break; - case PPC_IRQ_CPM_SDMA_ERROR: - Offset = 0x2560; - break; - case PPC_IRQ_CPM_PC12: - Offset = 0x2570; - break; - case PPC_IRQ_CPM_PC13: - Offset = 0x2580; - break; - case PPC_IRQ_CPM_TIMER1: - Offset = 0x2590; - break; - case PPC_IRQ_CPM_PC14: - Offset = 0x25a0; - break; - case PPC_IRQ_CPM_SCC4: - Offset = 0x25b0; - break; - case PPC_IRQ_CPM_SCC3: - Offset = 0x25c0; - break; - case PPC_IRQ_CPM_SCC2: - Offset = 0x25d0; - break; - case PPC_IRQ_CPM_SCC1: - Offset = 0x25e0; - break; - case PPC_IRQ_CPM_PC15: - Offset = 0x25f0; - break; -#endif - - } - Top += Offset; - return Top; -} - diff --git a/c/src/exec/score/cpu/powerpc/other_cpu/cpu.h b/c/src/exec/score/cpu/powerpc/other_cpu/cpu.h deleted file mode 100644 index 2a502d0745..0000000000 --- a/c/src/exec/score/cpu/powerpc/other_cpu/cpu.h +++ /dev/null @@ -1,1200 +0,0 @@ -/* cpu.h - * - * This include file contains information pertaining to the PowerPC - * processor. - * - * Author: Andrew Bray - * - * COPYRIGHT (c) 1995 by i-cubed ltd. - * - * To anyone who acknowledges that this file is provided "AS IS" - * without any express or implied warranty: - * permission to use, copy, modify, and distribute this file - * for any purpose is hereby granted without fee, provided that - * the above copyright notice and this notice appears in all - * copies, and that the name of i-cubed limited not be used in - * advertising or publicity pertaining to distribution of the - * software without specific, written prior permission. - * i-cubed limited makes no representations about the suitability - * of this software for any purpose. - * - * Derived from c/src/exec/cpu/no_cpu/cpu.h: - * - * COPYRIGHT (c) 1989-1997. - * On-Line Applications Research Corporation (OAR). - * Copyright assigned to U.S. Government, 1994. - * - * The license and distribution terms for this file may in - * the file LICENSE in this distribution or at - * http://www.OARcorp.com/rtems/license.html. - * - * $Id$ - */ - -#ifndef __CPU_h -#define __CPU_h - -#ifdef __cplusplus -extern "C" { -#endif - -#include /* pick up machine definitions */ -#ifndef ASM -struct CPU_Interrupt_frame; -typedef void ( *ppc_isr_entry )( int, struct CPU_Interrupt_frame * ); - -#include -#endif - -/* conditional compilation parameters */ - -/* - * Should the calls to _Thread_Enable_dispatch be inlined? - * - * If TRUE, then they are inlined. - * If FALSE, then a subroutine call is made. - * - * Basically this is an example of the classic trade-off of size - * versus speed. Inlining the call (TRUE) typically increases the - * size of RTEMS while speeding up the enabling of dispatching. - * [NOTE: In general, the _Thread_Dispatch_disable_level will - * only be 0 or 1 unless you are in an interrupt handler and that - * interrupt handler invokes the executive.] When not inlined - * something calls _Thread_Enable_dispatch which in turns calls - * _Thread_Dispatch. If the enable dispatch is inlined, then - * one subroutine call is avoided entirely.] - */ - -#define CPU_INLINE_ENABLE_DISPATCH FALSE - -/* - * Should the body of the search loops in _Thread_queue_Enqueue_priority - * be unrolled one time? In unrolled each iteration of the loop examines - * two "nodes" on the chain being searched. Otherwise, only one node - * is examined per iteration. - * - * If TRUE, then the loops are unrolled. - * If FALSE, then the loops are not unrolled. - * - * The primary factor in making this decision is the cost of disabling - * and enabling interrupts (_ISR_Flash) versus the cost of rest of the - * body of the loop. On some CPUs, the flash is more expensive than - * one iteration of the loop body. In this case, it might be desirable - * to unroll the loop. It is important to note that on some CPUs, this - * code is the longest interrupt disable period in RTEMS. So it is - * necessary to strike a balance when setting this parameter. - */ - -#define CPU_UNROLL_ENQUEUE_PRIORITY FALSE - -/* - * Does RTEMS manage a dedicated interrupt stack in software? - * - * If TRUE, then a stack is allocated in _Interrupt_Manager_initialization. - * If FALSE, nothing is done. - * - * If the CPU supports a dedicated interrupt stack in hardware, - * then it is generally the responsibility of the BSP to allocate it - * and set it up. - * - * If the CPU does not support a dedicated interrupt stack, then - * the porter has two options: (1) execute interrupts on the - * stack of the interrupted task, and (2) have RTEMS manage a dedicated - * interrupt stack. - * - * If this is TRUE, CPU_ALLOCATE_INTERRUPT_STACK should also be TRUE. - * - * Only one of CPU_HAS_SOFTWARE_INTERRUPT_STACK and - * CPU_HAS_HARDWARE_INTERRUPT_STACK should be set to TRUE. It is - * possible that both are FALSE for a particular CPU. Although it - * is unclear what that would imply about the interrupt processing - * procedure on that CPU. - */ - -#define CPU_HAS_SOFTWARE_INTERRUPT_STACK FALSE - -/* - * Does this CPU have hardware support for a dedicated interrupt stack? - * - * If TRUE, then it must be installed during initialization. - * If FALSE, then no installation is performed. - * - * If this is TRUE, CPU_ALLOCATE_INTERRUPT_STACK should also be TRUE. - * - * Only one of CPU_HAS_SOFTWARE_INTERRUPT_STACK and - * CPU_HAS_HARDWARE_INTERRUPT_STACK should be set to TRUE. It is - * possible that both are FALSE for a particular CPU. Although it - * is unclear what that would imply about the interrupt processing - * procedure on that CPU. - */ - -/* - * ACB: This is a lie, but it gets us a handle on a call to set up - * a variable derived from the top of the interrupt stack. - */ - -#define CPU_HAS_HARDWARE_INTERRUPT_STACK TRUE - -/* - * Does RTEMS allocate a dedicated interrupt stack in the Interrupt Manager? - * - * If TRUE, then the memory is allocated during initialization. - * If FALSE, then the memory is allocated during initialization. - * - * This should be TRUE is CPU_HAS_SOFTWARE_INTERRUPT_STACK is TRUE - * or CPU_INSTALL_HARDWARE_INTERRUPT_STACK is TRUE. - */ - -#define CPU_ALLOCATE_INTERRUPT_STACK TRUE - -/* - * Does the RTEMS invoke the user's ISR with the vector number and - * a pointer to the saved interrupt frame (1) or just the vector - * number (0)? - */ - -#define CPU_ISR_PASSES_FRAME_POINTER 1 - -/* - * Does the CPU have hardware floating point? - * - * If TRUE, then the RTEMS_FLOATING_POINT task attribute is supported. - * If FALSE, then the RTEMS_FLOATING_POINT task attribute is ignored. - * - * If there is a FP coprocessor such as the i387 or mc68881, then - * the answer is TRUE. - * - * The macro name "PPC_HAS_FPU" should be made CPU specific. - * It indicates whether or not this CPU model has FP support. For - * example, it would be possible to have an i386_nofp CPU model - * which set this to false to indicate that you have an i386 without - * an i387 and wish to leave floating point support out of RTEMS. - */ - -#if ( PPC_HAS_FPU == 1 ) -#define CPU_HARDWARE_FP TRUE -#else -#define CPU_HARDWARE_FP FALSE -#endif - -/* - * Are all tasks RTEMS_FLOATING_POINT tasks implicitly? - * - * If TRUE, then the RTEMS_FLOATING_POINT task attribute is assumed. - * If FALSE, then the RTEMS_FLOATING_POINT task attribute is followed. - * - * So far, the only CPU in which this option has been used is the - * HP PA-RISC. The HP C compiler and gcc both implicitly use the - * floating point registers to perform integer multiplies. If - * a function which you would not think utilize the FP unit DOES, - * then one can not easily predict which tasks will use the FP hardware. - * In this case, this option should be TRUE. - * - * If CPU_HARDWARE_FP is FALSE, then this should be FALSE as well. - */ - -#define CPU_ALL_TASKS_ARE_FP FALSE - -/* - * Should the IDLE task have a floating point context? - * - * If TRUE, then the IDLE task is created as a RTEMS_FLOATING_POINT task - * and it has a floating point context which is switched in and out. - * If FALSE, then the IDLE task does not have a floating point context. - * - * Setting this to TRUE negatively impacts the time required to preempt - * the IDLE task from an interrupt because the floating point context - * must be saved as part of the preemption. - */ - -#define CPU_IDLE_TASK_IS_FP FALSE - -/* - * Should the saving of the floating point registers be deferred - * until a context switch is made to another different floating point - * task? - * - * If TRUE, then the floating point context will not be stored until - * necessary. It will remain in the floating point registers and not - * disturned until another floating point task is switched to. - * - * If FALSE, then the floating point context is saved when a floating - * point task is switched out and restored when the next floating point - * task is restored. The state of the floating point registers between - * those two operations is not specified. - * - * If the floating point context does NOT have to be saved as part of - * interrupt dispatching, then it should be safe to set this to TRUE. - * - * Setting this flag to TRUE results in using a different algorithm - * for deciding when to save and restore the floating point context. - * The deferred FP switch algorithm minimizes the number of times - * the FP context is saved and restored. The FP context is not saved - * until a context switch is made to another, different FP task. - * Thus in a system with only one FP task, the FP context will never - * be saved or restored. - */ -/* - * ACB Note: This could make debugging tricky.. - */ - -#define CPU_USE_DEFERRED_FP_SWITCH TRUE - -/* - * Does this port provide a CPU dependent IDLE task implementation? - * - * If TRUE, then the routine _CPU_Thread_Idle_body - * must be provided and is the default IDLE thread body instead of - * _CPU_Thread_Idle_body. - * - * If FALSE, then use the generic IDLE thread body if the BSP does - * not provide one. - * - * This is intended to allow for supporting processors which have - * a low power or idle mode. When the IDLE thread is executed, then - * the CPU can be powered down. - * - * The order of precedence for selecting the IDLE thread body is: - * - * 1. BSP provided - * 2. CPU dependent (if provided) - * 3. generic (if no BSP and no CPU dependent) - */ - -#define CPU_PROVIDES_IDLE_THREAD_BODY FALSE - -/* - * Does the stack grow up (toward higher addresses) or down - * (toward lower addresses)? - * - * If TRUE, then the grows upward. - * If FALSE, then the grows toward smaller addresses. - */ - -#define CPU_STACK_GROWS_UP FALSE - -/* - * The following is the variable attribute used to force alignment - * of critical RTEMS structures. On some processors it may make - * sense to have these aligned on tighter boundaries than - * the minimum requirements of the compiler in order to have as - * much of the critical data area as possible in a cache line. - * - * The placement of this macro in the declaration of the variables - * is based on the syntactically requirements of the GNU C - * "__attribute__" extension. For example with GNU C, use - * the following to force a structures to a 32 byte boundary. - * - * __attribute__ ((aligned (32))) - * - * NOTE: Currently only the Priority Bit Map table uses this feature. - * To benefit from using this, the data must be heavily - * used so it will stay in the cache and used frequently enough - * in the executive to justify turning this on. - */ - -#define CPU_STRUCTURE_ALIGNMENT \ - __attribute__ ((aligned (PPC_CACHE_ALIGNMENT))) - -/* - * Define what is required to specify how the network to host conversion - * routines are handled. - */ - -#define CPU_HAS_OWN_HOST_TO_NETWORK_ROUTINES FALSE -#define CPU_BIG_ENDIAN TRUE -#define CPU_LITTLE_ENDIAN FALSE - -/* - * The following defines the number of bits actually used in the - * interrupt field of the task mode. How those bits map to the - * CPU interrupt levels is defined by the routine _CPU_ISR_Set_level(). - * - * The interrupt level is bit mapped for the PowerPC family. The - * bits are set to 0 to indicate that a particular exception source - * enabled and 1 if it is disabled. This keeps with RTEMS convention - * that interrupt level 0 means all sources are enabled. - * - * The bits are assigned to correspond to enable bits in the MSR. - */ - -#define PPC_INTERRUPT_LEVEL_ME 0x01 -#define PPC_INTERRUPT_LEVEL_EE 0x02 -#define PPC_INTERRUPT_LEVEL_CE 0x04 - -/* XXX should these be maskable? */ -#if 0 -#define PPC_INTERRUPT_LEVEL_DE 0x08 -#define PPC_INTERRUPT_LEVEL_BE 0x10 -#define PPC_INTERRUPT_LEVEL_SE 0x20 -#endif - -#define CPU_MODES_INTERRUPT_MASK 0x00000007 - -/* - * Processor defined structures - * - * Examples structures include the descriptor tables from the i386 - * and the processor control structure on the i960ca. - */ - -/* may need to put some structures here. */ - -/* - * Contexts - * - * Generally there are 2 types of context to save. - * 1. Interrupt registers to save - * 2. Task level registers to save - * - * This means we have the following 3 context items: - * 1. task level context stuff:: Context_Control - * 2. floating point task stuff:: Context_Control_fp - * 3. special interrupt level context :: Context_Control_interrupt - * - * On some processors, it is cost-effective to save only the callee - * preserved registers during a task context switch. This means - * that the ISR code needs to save those registers which do not - * persist across function calls. It is not mandatory to make this - * distinctions between the caller/callee saves registers for the - * purpose of minimizing context saved during task switch and on interrupts. - * If the cost of saving extra registers is minimal, simplicity is the - * choice. Save the same context on interrupt entry as for tasks in - * this case. - * - * Additionally, if gdb is to be made aware of RTEMS tasks for this CPU, then - * care should be used in designing the context area. - * - * On some CPUs with hardware floating point support, the Context_Control_fp - * structure will not be used or it simply consist of an array of a - * fixed number of bytes. This is done when the floating point context - * is dumped by a "FP save context" type instruction and the format - * is not really defined by the CPU. In this case, there is no need - * to figure out the exact format -- only the size. Of course, although - * this is enough information for RTEMS, it is probably not enough for - * a debugger such as gdb. But that is another problem. - */ - -typedef struct { - unsigned32 gpr1; /* Stack pointer for all */ - unsigned32 gpr2; /* TOC in PowerOpen, reserved SVR4, section ptr EABI + */ - unsigned32 gpr13; /* First non volatile PowerOpen, section ptr SVR4/EABI */ - unsigned32 gpr14; /* Non volatile for all */ - unsigned32 gpr15; /* Non volatile for all */ - unsigned32 gpr16; /* Non volatile for all */ - unsigned32 gpr17; /* Non volatile for all */ - unsigned32 gpr18; /* Non volatile for all */ - unsigned32 gpr19; /* Non volatile for all */ - unsigned32 gpr20; /* Non volatile for all */ - unsigned32 gpr21; /* Non volatile for all */ - unsigned32 gpr22; /* Non volatile for all */ - unsigned32 gpr23; /* Non volatile for all */ - unsigned32 gpr24; /* Non volatile for all */ - unsigned32 gpr25; /* Non volatile for all */ - unsigned32 gpr26; /* Non volatile for all */ - unsigned32 gpr27; /* Non volatile for all */ - unsigned32 gpr28; /* Non volatile for all */ - unsigned32 gpr29; /* Non volatile for all */ - unsigned32 gpr30; /* Non volatile for all */ - unsigned32 gpr31; /* Non volatile for all */ - unsigned32 cr; /* PART of the CR is non volatile for all */ - unsigned32 pc; /* Program counter/Link register */ - unsigned32 msr; /* Initial interrupt level */ -} Context_Control; - -typedef struct { - /* The ABIs (PowerOpen/SVR4/EABI) only require saving f14-f31 over - * procedure calls. However, this would mean that the interrupt - * frame had to hold f0-f13, and the fpscr. And as the majority - * of tasks will not have an FP context, we will save the whole - * context here. - */ -#if (PPC_HAS_DOUBLE == 1) - double f[32]; - double fpscr; -#else - float f[32]; - float fpscr; -#endif -} Context_Control_fp; - -typedef struct CPU_Interrupt_frame { - unsigned32 stacklink; /* Ensure this is a real frame (also reg1 save) */ -#if (PPC_ABI == PPC_ABI_POWEROPEN || PPC_ABI == PPC_ABI_GCC27) - unsigned32 dummy[13]; /* Used by callees: PowerOpen ABI */ -#else - unsigned32 dummy[1]; /* Used by callees: SVR4/EABI */ -#endif - /* This is what is left out of the primary contexts */ - unsigned32 gpr0; - unsigned32 gpr2; /* play safe */ - unsigned32 gpr3; - unsigned32 gpr4; - unsigned32 gpr5; - unsigned32 gpr6; - unsigned32 gpr7; - unsigned32 gpr8; - unsigned32 gpr9; - unsigned32 gpr10; - unsigned32 gpr11; - unsigned32 gpr12; - unsigned32 gpr13; /* Play safe */ - unsigned32 gpr28; /* For internal use by the IRQ handler */ - unsigned32 gpr29; /* For internal use by the IRQ handler */ - unsigned32 gpr30; /* For internal use by the IRQ handler */ - unsigned32 gpr31; /* For internal use by the IRQ handler */ - unsigned32 cr; /* Bits of this are volatile, so no-one may save */ - unsigned32 ctr; - unsigned32 xer; - unsigned32 lr; - unsigned32 pc; - unsigned32 msr; - unsigned32 pad[3]; -} CPU_Interrupt_frame; - - -/* - * The following table contains the information required to configure - * the PowerPC processor specific parameters. - */ - -typedef struct { - void (*pretasking_hook)( void ); - void (*predriver_hook)( void ); - void (*postdriver_hook)( void ); - void (*idle_task)( void ); - boolean do_zero_of_workspace; - unsigned32 idle_task_stack_size; - unsigned32 interrupt_stack_size; - unsigned32 extra_mpci_receive_server_stack; - void * (*stack_allocate_hook)( unsigned32 ); - void (*stack_free_hook)( void* ); - /* end of fields required on all CPUs */ - - unsigned32 clicks_per_usec; /* Timer clicks per microsecond */ - void (*spurious_handler)(unsigned32 vector, CPU_Interrupt_frame *); - boolean exceptions_in_RAM; /* TRUE if in RAM */ - -#if (defined(ppc403) || defined(mpc860) || defined(mpc821)) - unsigned32 serial_per_sec; /* Serial clocks per second */ - boolean serial_external_clock; - boolean serial_xon_xoff; - boolean serial_cts_rts; - unsigned32 serial_rate; - unsigned32 timer_average_overhead; /* Average overhead of timer in ticks */ - unsigned32 timer_least_valid; /* Least valid number from timer */ - boolean timer_internal_clock; /* TRUE, when timer runs with CPU clk */ -#endif - -#if (defined(mpc860) || defined(mpc821)) - unsigned32 clock_speed; /* Speed of CPU in Hz */ -#endif -} rtems_cpu_table; - -/* - * Macros to access required entires in the CPU Table are in - * the file rtems/system.h. - */ - -/* - * Macros to access PowerPC specific additions to the CPU Table - */ - -#define rtems_cpu_configuration_get_clicks_per_usec() \ - (_CPU_Table.clicks_per_usec) - -#define rtems_cpu_configuration_get_spurious_handler() \ - (_CPU_Table.spurious_handler) - -#define rtems_cpu_configuration_get_exceptions_in_ram() \ - (_CPU_Table.exceptions_in_RAM) - -#if (defined(ppc403) || defined(mpc860) || defined(mpc821)) - -#define rtems_cpu_configuration_get_serial_per_sec() \ - (_CPU_Table.serial_per_sec) - -#define rtems_cpu_configuration_get_serial_external_clock() \ - (_CPU_Table.serial_external_clock) - -#define rtems_cpu_configuration_get_serial_xon_xoff() \ - (_CPU_Table.serial_xon_xoff) - -#define rtems_cpu_configuration_get_serial_cts_rts() \ - (_CPU_Table.serial_cts_rts) - -#define rtems_cpu_configuration_get_serial_rate() \ - (_CPU_Table.serial_rate) - -#define rtems_cpu_configuration_get_timer_average_overhead() \ - (_CPU_Table.timer_average_overhead) - -#define rtems_cpu_configuration_get_timer_least_valid() \ - (_CPU_Table.timer_least_valid) - -#define rtems_cpu_configuration_get_timer_internal_clock() \ - (_CPU_Table.timer_internal_clock) - -#endif - -#if (defined(mpc860) || defined(mpc821)) -#define rtems_cpu_configuration_get_clock_speed() \ - (_CPU_Table.clock_speed) -#endif - - -/* - * The following type defines an entry in the PPC's trap table. - * - * NOTE: The instructions chosen are RTEMS dependent although one is - * obligated to use two of the four instructions to perform a - * long jump. The other instructions load one register with the - * trap type (a.k.a. vector) and another with the psr. - */ - -typedef struct { - unsigned32 stwu_r1; /* stwu %r1, -(??+IP_END)(%1)*/ - unsigned32 stw_r0; /* stw %r0, IP_0(%r1) */ - unsigned32 li_r0_IRQ; /* li %r0, _IRQ */ - unsigned32 b_Handler; /* b PROC (_ISR_Handler) */ -} CPU_Trap_table_entry; - -/* - * This variable is optional. It is used on CPUs on which it is difficult - * to generate an "uninitialized" FP context. It is filled in by - * _CPU_Initialize and copied into the task's FP context area during - * _CPU_Context_Initialize. - */ - -/* EXTERN Context_Control_fp _CPU_Null_fp_context; */ - -/* - * On some CPUs, RTEMS supports a software managed interrupt stack. - * This stack is allocated by the Interrupt Manager and the switch - * is performed in _ISR_Handler. These variables contain pointers - * to the lowest and highest addresses in the chunk of memory allocated - * for the interrupt stack. Since it is unknown whether the stack - * grows up or down (in general), this give the CPU dependent - * code the option of picking the version it wants to use. - * - * NOTE: These two variables are required if the macro - * CPU_HAS_SOFTWARE_INTERRUPT_STACK is defined as TRUE. - */ - -SCORE_EXTERN void *_CPU_Interrupt_stack_low; -SCORE_EXTERN void *_CPU_Interrupt_stack_high; - -/* - * With some compilation systems, it is difficult if not impossible to - * call a high-level language routine from assembly language. This - * is especially true of commercial Ada compilers and name mangling - * C++ ones. This variable can be optionally defined by the CPU porter - * and contains the address of the routine _Thread_Dispatch. This - * can make it easier to invoke that routine at the end of the interrupt - * sequence (if a dispatch is necessary). - */ - -/* EXTERN void (*_CPU_Thread_dispatch_pointer)(); */ - -/* - * Nothing prevents the porter from declaring more CPU specific variables. - */ - - -SCORE_EXTERN struct { - unsigned32 *Nest_level; - unsigned32 *Disable_level; - void *Vector_table; - void *Stack; -#if (PPC_ABI == PPC_ABI_POWEROPEN) - unsigned32 Dispatch_r2; -#else - unsigned32 Default_r2; -#if (PPC_ABI != PPC_ABI_GCC27) - unsigned32 Default_r13; -#endif -#endif - volatile boolean *Switch_necessary; - boolean *Signal; - - unsigned32 msr_initial; -} _CPU_IRQ_info CPU_STRUCTURE_ALIGNMENT; - -/* - * The size of the floating point context area. On some CPUs this - * will not be a "sizeof" because the format of the floating point - * area is not defined -- only the size is. This is usually on - * CPUs with a "floating point save context" instruction. - */ - -#define CPU_CONTEXT_FP_SIZE sizeof( Context_Control_fp ) - -/* - * (Optional) # of bytes for libmisc/stackchk to check - * If not specifed, then it defaults to something reasonable - * for most architectures. - */ - -#define CPU_STACK_CHECK_SIZE (128) - -/* - * Amount of extra stack (above minimum stack size) required by - * MPCI receive server thread. Remember that in a multiprocessor - * system this thread must exist and be able to process all directives. - */ - -#define CPU_MPCI_RECEIVE_SERVER_EXTRA_STACK 0 - -/* - * This defines the number of entries in the ISR_Vector_table managed - * by RTEMS. - */ - -#define CPU_INTERRUPT_NUMBER_OF_VECTORS (PPC_INTERRUPT_MAX) -#define CPU_INTERRUPT_MAXIMUM_VECTOR_NUMBER (PPC_INTERRUPT_MAX - 1) - -/* - * Should be large enough to run all RTEMS tests. This insures - * that a "reasonable" small application should not have any problems. - */ - -#define CPU_STACK_MINIMUM_SIZE (1024*8) - -/* - * CPU's worst alignment requirement for data types on a byte boundary. This - * alignment does not take into account the requirements for the stack. - */ - -#define CPU_ALIGNMENT (PPC_ALIGNMENT) - -/* - * This number corresponds to the byte alignment requirement for the - * heap handler. This alignment requirement may be stricter than that - * for the data types alignment specified by CPU_ALIGNMENT. It is - * common for the heap to follow the same alignment requirement as - * CPU_ALIGNMENT. If the CPU_ALIGNMENT is strict enough for the heap, - * then this should be set to CPU_ALIGNMENT. - * - * NOTE: This does not have to be a power of 2. It does have to - * be greater or equal to than CPU_ALIGNMENT. - */ - -#define CPU_HEAP_ALIGNMENT (PPC_ALIGNMENT) - -/* - * This number corresponds to the byte alignment requirement for memory - * buffers allocated by the partition manager. This alignment requirement - * may be stricter than that for the data types alignment specified by - * CPU_ALIGNMENT. It is common for the partition to follow the same - * alignment requirement as CPU_ALIGNMENT. If the CPU_ALIGNMENT is strict - * enough for the partition, then this should be set to CPU_ALIGNMENT. - * - * NOTE: This does not have to be a power of 2. It does have to - * be greater or equal to than CPU_ALIGNMENT. - */ - -#define CPU_PARTITION_ALIGNMENT (PPC_ALIGNMENT) - -/* - * This number corresponds to the byte alignment requirement for the - * stack. This alignment requirement may be stricter than that for the - * data types alignment specified by CPU_ALIGNMENT. If the CPU_ALIGNMENT - * is strict enough for the stack, then this should be set to 0. - * - * NOTE: This must be a power of 2 either 0 or greater than CPU_ALIGNMENT. - */ - -#define CPU_STACK_ALIGNMENT (PPC_STACK_ALIGNMENT) - -/* ISR handler macros */ - -/* - * Disable all interrupts for an RTEMS critical section. The previous - * level is returned in _isr_cookie. - */ - -#define loc_string(a,b) a " (" #b ")\n" - -#define _CPU_MSR_Value( _msr_value ) \ - do { \ - _msr_value = 0; \ - asm volatile ("mfmsr %0" : "=&r" ((_msr_value)) : "0" ((_msr_value))); \ - } while (0) - -#define _CPU_MSR_SET( _msr_value ) \ -{ asm volatile ("mtmsr %0" : "=&r" ((_msr_value)) : "0" ((_msr_value))); } - -#if 0 -#define _CPU_ISR_Disable( _isr_cookie ) \ - { register unsigned int _disable_mask = PPC_MSR_DISABLE_MASK; \ - _isr_cookie = 0; \ - asm volatile ( - "mfmsr %0" : \ - "=r" ((_isr_cookie)) : \ - "0" ((_isr_cookie)) \ - ); \ - asm volatile ( - "andc %1,%0,%1" : \ - "=r" ((_isr_cookie)), "=&r" ((_disable_mask)) : \ - "0" ((_isr_cookie)), "1" ((_disable_mask)) \ - ); \ - asm volatile ( - "mtmsr %1" : \ - "=r" ((_disable_mask)) : \ - "0" ((_disable_mask)) \ - ); \ - } -#endif - -#define _CPU_ISR_Disable( _isr_cookie ) \ - { register unsigned int _disable_mask = PPC_MSR_DISABLE_MASK; \ - _isr_cookie = 0; \ - asm volatile ( \ - "mfmsr %0; andc %1,%0,%1; mtmsr %1" : \ - "=&r" ((_isr_cookie)), "=&r" ((_disable_mask)) : \ - "0" ((_isr_cookie)), "1" ((_disable_mask)) \ - ); \ - } - - -#define _CPU_Data_Cache_Block_Flush( _address ) \ - do { register void *__address = (_address); \ - register unsigned32 _zero = 0; \ - asm volatile ( "dcbf %0,%1" : \ - "=r" (_zero), "=r" (__address) : \ - "0" (_zero), "1" (__address) \ - ); \ - } while (0) - - -/* - * Enable interrupts to the previous level (returned by _CPU_ISR_Disable). - * This indicates the end of an RTEMS critical section. The parameter - * _isr_cookie is not modified. - */ - -#define _CPU_ISR_Enable( _isr_cookie ) \ - { \ - asm volatile ( "mtmsr %0" : \ - "=r" ((_isr_cookie)) : \ - "0" ((_isr_cookie))); \ - } - -/* - * This temporarily restores the interrupt to _isr_cookie before immediately - * disabling them again. This is used to divide long RTEMS critical - * sections into two or more parts. The parameter _isr_cookie is not - * modified. - * - * NOTE: The version being used is not very optimized but it does - * not trip a problem in gcc where the disable mask does not - * get loaded. Check this for future (post 10/97 gcc versions. - */ - -#define _CPU_ISR_Flash( _isr_cookie ) \ - { register unsigned int _disable_mask = PPC_MSR_DISABLE_MASK; \ - asm volatile ( \ - "mtmsr %0; andc %1,%0,%1; mtmsr %1" : \ - "=r" ((_isr_cookie)), "=r" ((_disable_mask)) : \ - "0" ((_isr_cookie)), "1" ((_disable_mask)) \ - ); \ - } - -/* - * Map interrupt level in task mode onto the hardware that the CPU - * actually provides. Currently, interrupt levels which do not - * map onto the CPU in a generic fashion are undefined. Someday, - * it would be nice if these were "mapped" by the application - * via a callout. For example, m68k has 8 levels 0 - 7, levels - * 8 - 255 would be available for bsp/application specific meaning. - * This could be used to manage a programmable interrupt controller - * via the rtems_task_mode directive. - */ - -unsigned32 _CPU_ISR_Calculate_level( - unsigned32 new_level -); - -void _CPU_ISR_Set_level( - unsigned32 new_level -); - -unsigned32 _CPU_ISR_Get_level( void ); - -void _CPU_ISR_install_raw_handler( - unsigned32 vector, - proc_ptr new_handler, - proc_ptr *old_handler -); - -/* end of ISR handler macros */ - -/* - * Simple spin delay in microsecond units for device drivers. - * This is very dependent on the clock speed of the target. - */ - -#define CPU_Get_timebase_low( _value ) \ - asm volatile( "mftb %0" : "=r" (_value) ) - -#define delay( _microseconds ) \ - do { \ - unsigned32 start, ticks, now; \ - CPU_Get_timebase_low( start ) ; \ - ticks = (_microseconds) * _CPU_Table.clicks_per_usec; \ - do \ - CPU_Get_timebase_low( now ) ; \ - while (now - start < ticks); \ - } while (0) - -#define delay_in_bus_cycles( _cycles ) \ - do { \ - unsigned32 start, now; \ - CPU_Get_timebase_low( start ); \ - do \ - CPU_Get_timebase_low( now ); \ - while (now - start < (_cycles)); \ - } while (0) - - - -/* Context handler macros */ - -/* - * Initialize the context to a state suitable for starting a - * task after a context restore operation. Generally, this - * involves: - * - * - setting a starting address - * - preparing the stack - * - preparing the stack and frame pointers - * - setting the proper interrupt level in the context - * - initializing the floating point context - * - * This routine generally does not set any unnecessary register - * in the context. The state of the "general data" registers is - * undefined at task start time. - * - * NOTE: Implemented as a subroutine for the SPARC port. - */ - -void _CPU_Context_Initialize( - Context_Control *the_context, - unsigned32 *stack_base, - unsigned32 size, - unsigned32 new_level, - void *entry_point, - boolean is_fp -); - -/* - * This routine is responsible for somehow restarting the currently - * executing task. If you are lucky, then all that is necessary - * is restoring the context. Otherwise, there will need to be - * a special assembly routine which does something special in this - * case. Context_Restore should work most of the time. It will - * not work if restarting self conflicts with the stack frame - * assumptions of restoring a context. - */ - -#define _CPU_Context_Restart_self( _the_context ) \ - _CPU_Context_restore( (_the_context) ); - -/* - * The purpose of this macro is to allow the initial pointer into - * a floating point context area (used to save the floating point - * context) to be at an arbitrary place in the floating point - * context area. - * - * This is necessary because some FP units are designed to have - * their context saved as a stack which grows into lower addresses. - * Other FP units can be saved by simply moving registers into offsets - * from the base of the context area. Finally some FP units provide - * a "dump context" instruction which could fill in from high to low - * or low to high based on the whim of the CPU designers. - */ - -#define _CPU_Context_Fp_start( _base, _offset ) \ - ( (void *) _Addresses_Add_offset( (_base), (_offset) ) ) - -/* - * This routine initializes the FP context area passed to it to. - * There are a few standard ways in which to initialize the - * floating point context. The code included for this macro assumes - * that this is a CPU in which a "initial" FP context was saved into - * _CPU_Null_fp_context and it simply copies it to the destination - * context passed to it. - * - * Other models include (1) not doing anything, and (2) putting - * a "null FP status word" in the correct place in the FP context. - */ - -#define _CPU_Context_Initialize_fp( _destination ) \ - { \ - ((Context_Control_fp *) *((void **) _destination))->fpscr = PPC_INIT_FPSCR; \ - } - -/* end of Context handler macros */ - -/* Fatal Error manager macros */ - -/* - * This routine copies _error into a known place -- typically a stack - * location or a register, optionally disables interrupts, and - * halts/stops the CPU. - */ - -#define _CPU_Fatal_halt( _error ) \ - _CPU_Fatal_error(_error) - -/* end of Fatal Error manager macros */ - -/* Bitfield handler macros */ - -/* - * This routine sets _output to the bit number of the first bit - * set in _value. _value is of CPU dependent type Priority_Bit_map_control. - * This type may be either 16 or 32 bits wide although only the 16 - * least significant bits will be used. - * - * There are a number of variables in using a "find first bit" type - * instruction. - * - * (1) What happens when run on a value of zero? - * (2) Bits may be numbered from MSB to LSB or vice-versa. - * (3) The numbering may be zero or one based. - * (4) The "find first bit" instruction may search from MSB or LSB. - * - * RTEMS guarantees that (1) will never happen so it is not a concern. - * (2),(3), (4) are handled by the macros _CPU_Priority_mask() and - * _CPU_Priority_Bits_index(). These three form a set of routines - * which must logically operate together. Bits in the _value are - * set and cleared based on masks built by _CPU_Priority_mask(). - * The basic major and minor values calculated by _Priority_Major() - * and _Priority_Minor() are "massaged" by _CPU_Priority_Bits_index() - * to properly range between the values returned by the "find first bit" - * instruction. This makes it possible for _Priority_Get_highest() to - * calculate the major and directly index into the minor table. - * This mapping is necessary to ensure that 0 (a high priority major/minor) - * is the first bit found. - * - * This entire "find first bit" and mapping process depends heavily - * on the manner in which a priority is broken into a major and minor - * components with the major being the 4 MSB of a priority and minor - * the 4 LSB. Thus (0 << 4) + 0 corresponds to priority 0 -- the highest - * priority. And (15 << 4) + 14 corresponds to priority 254 -- the next - * to the lowest priority. - * - * If your CPU does not have a "find first bit" instruction, then - * there are ways to make do without it. Here are a handful of ways - * to implement this in software: - * - * - a series of 16 bit test instructions - * - a "binary search using if's" - * - _number = 0 - * if _value > 0x00ff - * _value >>=8 - * _number = 8; - * - * if _value > 0x0000f - * _value >=8 - * _number += 4 - * - * _number += bit_set_table[ _value ] - * - * where bit_set_table[ 16 ] has values which indicate the first - * bit set - */ - -#define _CPU_Bitfield_Find_first_bit( _value, _output ) \ - { \ - asm volatile ("cntlzw %0, %1" : "=r" ((_output)), "=r" ((_value)) : \ - "1" ((_value))); \ - } - -/* end of Bitfield handler macros */ - -/* - * This routine builds the mask which corresponds to the bit fields - * as searched by _CPU_Bitfield_Find_first_bit(). See the discussion - * for that routine. - */ - -#define _CPU_Priority_Mask( _bit_number ) \ - ( 0x80000000 >> (_bit_number) ) - -/* - * This routine translates the bit numbers returned by - * _CPU_Bitfield_Find_first_bit() into something suitable for use as - * a major or minor component of a priority. See the discussion - * for that routine. - */ - -#define _CPU_Priority_bits_index( _priority ) \ - (_priority) - -/* end of Priority handler macros */ - -/* variables */ - -extern const unsigned32 _CPU_msrs[4]; - -/* functions */ - -/* - * _CPU_Initialize - * - * This routine performs CPU dependent initialization. - */ - -void _CPU_Initialize( - rtems_cpu_table *cpu_table, - void (*thread_dispatch) -); - -/* - * _CPU_ISR_install_vector - * - * This routine installs an interrupt vector. - */ - -void _CPU_ISR_install_vector( - unsigned32 vector, - proc_ptr new_handler, - proc_ptr *old_handler -); - -/* - * _CPU_Install_interrupt_stack - * - * This routine installs the hardware interrupt stack pointer. - * - * NOTE: It need only be provided if CPU_HAS_HARDWARE_INTERRUPT_STACK - * is TRUE. - */ - -void _CPU_Install_interrupt_stack( void ); - -/* - * _CPU_Context_switch - * - * This routine switches from the run context to the heir context. - */ - -void _CPU_Context_switch( - Context_Control *run, - Context_Control *heir -); - -/* - * _CPU_Context_restore - * - * This routine is generallu used only to restart self in an - * efficient manner. It may simply be a label in _CPU_Context_switch. - * - * NOTE: May be unnecessary to reload some registers. - */ - -void _CPU_Context_restore( - Context_Control *new_context -); - -/* - * _CPU_Context_save_fp - * - * This routine saves the floating point context passed to it. - */ - -void _CPU_Context_save_fp( - void **fp_context_ptr -); - -/* - * _CPU_Context_restore_fp - * - * This routine restores the floating point context passed to it. - */ - -void _CPU_Context_restore_fp( - void **fp_context_ptr -); - -void _CPU_Fatal_error( - unsigned32 _error -); - -/* The following routine swaps the endian format of an unsigned int. - * It must be static because it is referenced indirectly. - * - * This version will work on any processor, but if there is a better - * way for your CPU PLEASE use it. The most common way to do this is to: - * - * swap least significant two bytes with 16-bit rotate - * swap upper and lower 16-bits - * swap most significant two bytes with 16-bit rotate - * - * Some CPUs have special instructions which swap a 32-bit quantity in - * a single instruction (e.g. i486). It is probably best to avoid - * an "endian swapping control bit" in the CPU. One good reason is - * that interrupts would probably have to be disabled to insure that - * an interrupt does not try to access the same "chunk" with the wrong - * endian. Another good reason is that on some CPUs, the endian bit - * endianness for ALL fetches -- both code and data -- so the code - * will be fetched incorrectly. - */ - -static inline unsigned int CPU_swap_u32( - unsigned int value -) -{ - unsigned32 swapped; - - asm volatile("rlwimi %0,%1,8,24,31;" - "rlwimi %0,%1,24,16,23;" - "rlwimi %0,%1,8,8,15;" - "rlwimi %0,%1,24,0,7;" : - "=&r" ((swapped)) : "r" ((value))); - - return( swapped ); -} - -#define CPU_swap_u16( value ) \ - (((value&0xff) << 8) | ((value >> 8)&0xff)) - -/* - * Routines to access the decrementer register - */ - -#define PPC_Set_decrementer( _clicks ) \ - do { \ - asm volatile( "mtdec %0" : "=r" ((_clicks)) : "r" ((_clicks)) ); \ - } while (0) - -/* - * Routines to access the time base register - */ - -static inline unsigned64 PPC_Get_timebase_register( void ) -{ - unsigned32 tbr_low; - unsigned32 tbr_high; - unsigned32 tbr_high_old; - unsigned64 tbr; - - do { - asm volatile( "mftbu %0" : "=r" (tbr_high_old)); - asm volatile( "mftb %0" : "=r" (tbr_low)); - asm volatile( "mftbu %0" : "=r" (tbr_high)); - } while ( tbr_high_old != tbr_high ); - - tbr = tbr_high; - tbr <<= 32; - tbr |= tbr_low; - return tbr; -} - -#ifdef __cplusplus -} -#endif - -#endif diff --git a/c/src/exec/score/cpu/powerpc/other_cpu/cpu_asm.S b/c/src/exec/score/cpu/powerpc/other_cpu/cpu_asm.S deleted file mode 100644 index a377fa5d2a..0000000000 --- a/c/src/exec/score/cpu/powerpc/other_cpu/cpu_asm.S +++ /dev/null @@ -1,809 +0,0 @@ - -/* cpu_asm.s 1.1 - 95/12/04 - * - * This file contains the assembly code for the PowerPC implementation - * of RTEMS. - * - * Author: Andrew Bray - * - * COPYRIGHT (c) 1995 by i-cubed ltd. - * - * To anyone who acknowledges that this file is provided "AS IS" - * without any express or implied warranty: - * permission to use, copy, modify, and distribute this file - * for any purpose is hereby granted without fee, provided that - * the above copyright notice and this notice appears in all - * copies, and that the name of i-cubed limited not be used in - * advertising or publicity pertaining to distribution of the - * software without specific, written prior permission. - * i-cubed limited makes no representations about the suitability - * of this software for any purpose. - * - * Derived from c/src/exec/cpu/no_cpu/cpu_asm.c: - * - * COPYRIGHT (c) 1989-1997. - * On-Line Applications Research Corporation (OAR). - * Copyright assigned to U.S. Government, 1994. - * - * The license and distribution terms for this file may in - * the file LICENSE in this distribution or at - * http://www.OARcorp.com/rtems/license.html. - * - * $Id$ - */ - -#include - -/* - * Offsets for various Contexts - */ - .set GP_1, 0 - .set GP_2, (GP_1 + 4) - .set GP_13, (GP_2 + 4) - .set GP_14, (GP_13 + 4) - - .set GP_15, (GP_14 + 4) - .set GP_16, (GP_15 + 4) - .set GP_17, (GP_16 + 4) - .set GP_18, (GP_17 + 4) - - .set GP_19, (GP_18 + 4) - .set GP_20, (GP_19 + 4) - .set GP_21, (GP_20 + 4) - .set GP_22, (GP_21 + 4) - - .set GP_23, (GP_22 + 4) - .set GP_24, (GP_23 + 4) - .set GP_25, (GP_24 + 4) - .set GP_26, (GP_25 + 4) - - .set GP_27, (GP_26 + 4) - .set GP_28, (GP_27 + 4) - .set GP_29, (GP_28 + 4) - .set GP_30, (GP_29 + 4) - - .set GP_31, (GP_30 + 4) - .set GP_CR, (GP_31 + 4) - .set GP_PC, (GP_CR + 4) - .set GP_MSR, (GP_PC + 4) - -#if (PPC_HAS_DOUBLE == 1) - .set FP_0, 0 - .set FP_1, (FP_0 + 8) - .set FP_2, (FP_1 + 8) - .set FP_3, (FP_2 + 8) - .set FP_4, (FP_3 + 8) - .set FP_5, (FP_4 + 8) - .set FP_6, (FP_5 + 8) - .set FP_7, (FP_6 + 8) - .set FP_8, (FP_7 + 8) - .set FP_9, (FP_8 + 8) - .set FP_10, (FP_9 + 8) - .set FP_11, (FP_10 + 8) - .set FP_12, (FP_11 + 8) - .set FP_13, (FP_12 + 8) - .set FP_14, (FP_13 + 8) - .set FP_15, (FP_14 + 8) - .set FP_16, (FP_15 + 8) - .set FP_17, (FP_16 + 8) - .set FP_18, (FP_17 + 8) - .set FP_19, (FP_18 + 8) - .set FP_20, (FP_19 + 8) - .set FP_21, (FP_20 + 8) - .set FP_22, (FP_21 + 8) - .set FP_23, (FP_22 + 8) - .set FP_24, (FP_23 + 8) - .set FP_25, (FP_24 + 8) - .set FP_26, (FP_25 + 8) - .set FP_27, (FP_26 + 8) - .set FP_28, (FP_27 + 8) - .set FP_29, (FP_28 + 8) - .set FP_30, (FP_29 + 8) - .set FP_31, (FP_30 + 8) - .set FP_FPSCR, (FP_31 + 8) -#else - .set FP_0, 0 - .set FP_1, (FP_0 + 4) - .set FP_2, (FP_1 + 4) - .set FP_3, (FP_2 + 4) - .set FP_4, (FP_3 + 4) - .set FP_5, (FP_4 + 4) - .set FP_6, (FP_5 + 4) - .set FP_7, (FP_6 + 4) - .set FP_8, (FP_7 + 4) - .set FP_9, (FP_8 + 4) - .set FP_10, (FP_9 + 4) - .set FP_11, (FP_10 + 4) - .set FP_12, (FP_11 + 4) - .set FP_13, (FP_12 + 4) - .set FP_14, (FP_13 + 4) - .set FP_15, (FP_14 + 4) - .set FP_16, (FP_15 + 4) - .set FP_17, (FP_16 + 4) - .set FP_18, (FP_17 + 4) - .set FP_19, (FP_18 + 4) - .set FP_20, (FP_19 + 4) - .set FP_21, (FP_20 + 4) - .set FP_22, (FP_21 + 4) - .set FP_23, (FP_22 + 4) - .set FP_24, (FP_23 + 4) - .set FP_25, (FP_24 + 4) - .set FP_26, (FP_25 + 4) - .set FP_27, (FP_26 + 4) - .set FP_28, (FP_27 + 4) - .set FP_29, (FP_28 + 4) - .set FP_30, (FP_29 + 4) - .set FP_31, (FP_30 + 4) - .set FP_FPSCR, (FP_31 + 4) -#endif - - .set IP_LINK, 0 -#if (PPC_ABI == PPC_ABI_POWEROPEN || PPC_ABI == PPC_ABI_GCC27) - .set IP_0, (IP_LINK + 56) -#else - .set IP_0, (IP_LINK + 8) -#endif - .set IP_2, (IP_0 + 4) - - .set IP_3, (IP_2 + 4) - .set IP_4, (IP_3 + 4) - .set IP_5, (IP_4 + 4) - .set IP_6, (IP_5 + 4) - - .set IP_7, (IP_6 + 4) - .set IP_8, (IP_7 + 4) - .set IP_9, (IP_8 + 4) - .set IP_10, (IP_9 + 4) - - .set IP_11, (IP_10 + 4) - .set IP_12, (IP_11 + 4) - .set IP_13, (IP_12 + 4) - .set IP_28, (IP_13 + 4) - - .set IP_29, (IP_28 + 4) - .set IP_30, (IP_29 + 4) - .set IP_31, (IP_30 + 4) - .set IP_CR, (IP_31 + 4) - - .set IP_CTR, (IP_CR + 4) - .set IP_XER, (IP_CTR + 4) - .set IP_LR, (IP_XER + 4) - .set IP_PC, (IP_LR + 4) - - .set IP_MSR, (IP_PC + 4) - .set IP_END, (IP_MSR + 16) - - /* _CPU_IRQ_info offsets */ - - /* These must be in this order */ - .set Nest_level, 0 - .set Disable_level, 4 - .set Vector_table, 8 - .set Stack, 12 -#if (PPC_ABI == PPC_ABI_POWEROPEN) - .set Dispatch_r2, 16 - .set Switch_necessary, 20 -#else - .set Default_r2, 16 -#if (PPC_ABI != PPC_ABI_GCC27) - .set Default_r13, 20 - .set Switch_necessary, 24 -#else - .set Switch_necessary, 20 -#endif -#endif - .set Signal, Switch_necessary + 4 - .set msr_initial, Signal + 4 - - BEGIN_CODE -/* - * _CPU_Context_save_fp_context - * - * This routine is responsible for saving the FP context - * at *fp_context_ptr. If the point to load the FP context - * from is changed then the pointer is modified by this routine. - * - * Sometimes a macro implementation of this is in cpu.h which dereferences - * the ** and a similarly named routine in this file is passed something - * like a (Context_Control_fp *). The general rule on making this decision - * is to avoid writing assembly language. - */ - - ALIGN (PPC_CACHE_ALIGNMENT, PPC_CACHE_ALIGN_POWER) - PUBLIC_PROC (_CPU_Context_save_fp) -PROC (_CPU_Context_save_fp): -#if (PPC_HAS_FPU == 1) - lwz r3, 0(r3) -#if (PPC_HAS_DOUBLE == 1) - stfd f0, FP_0(r3) - stfd f1, FP_1(r3) - stfd f2, FP_2(r3) - stfd f3, FP_3(r3) - stfd f4, FP_4(r3) - stfd f5, FP_5(r3) - stfd f6, FP_6(r3) - stfd f7, FP_7(r3) - stfd f8, FP_8(r3) - stfd f9, FP_9(r3) - stfd f10, FP_10(r3) - stfd f11, FP_11(r3) - stfd f12, FP_12(r3) - stfd f13, FP_13(r3) - stfd f14, FP_14(r3) - stfd f15, FP_15(r3) - stfd f16, FP_16(r3) - stfd f17, FP_17(r3) - stfd f18, FP_18(r3) - stfd f19, FP_19(r3) - stfd f20, FP_20(r3) - stfd f21, FP_21(r3) - stfd f22, FP_22(r3) - stfd f23, FP_23(r3) - stfd f24, FP_24(r3) - stfd f25, FP_25(r3) - stfd f26, FP_26(r3) - stfd f27, FP_27(r3) - stfd f28, FP_28(r3) - stfd f29, FP_29(r3) - stfd f30, FP_30(r3) - stfd f31, FP_31(r3) - mffs f2 - stfd f2, FP_FPSCR(r3) -#else - stfs f0, FP_0(r3) - stfs f1, FP_1(r3) - stfs f2, FP_2(r3) - stfs f3, FP_3(r3) - stfs f4, FP_4(r3) - stfs f5, FP_5(r3) - stfs f6, FP_6(r3) - stfs f7, FP_7(r3) - stfs f8, FP_8(r3) - stfs f9, FP_9(r3) - stfs f10, FP_10(r3) - stfs f11, FP_11(r3) - stfs f12, FP_12(r3) - stfs f13, FP_13(r3) - stfs f14, FP_14(r3) - stfs f15, FP_15(r3) - stfs f16, FP_16(r3) - stfs f17, FP_17(r3) - stfs f18, FP_18(r3) - stfs f19, FP_19(r3) - stfs f20, FP_20(r3) - stfs f21, FP_21(r3) - stfs f22, FP_22(r3) - stfs f23, FP_23(r3) - stfs f24, FP_24(r3) - stfs f25, FP_25(r3) - stfs f26, FP_26(r3) - stfs f27, FP_27(r3) - stfs f28, FP_28(r3) - stfs f29, FP_29(r3) - stfs f30, FP_30(r3) - stfs f31, FP_31(r3) - mffs f2 - stfs f2, FP_FPSCR(r3) -#endif -#endif - blr - -/* - * _CPU_Context_restore_fp_context - * - * This routine is responsible for restoring the FP context - * at *fp_context_ptr. If the point to load the FP context - * from is changed then the pointer is modified by this routine. - * - * Sometimes a macro implementation of this is in cpu.h which dereferences - * the ** and a similarly named routine in this file is passed something - * like a (Context_Control_fp *). The general rule on making this decision - * is to avoid writing assembly language. - */ - - ALIGN (PPC_CACHE_ALIGNMENT, PPC_CACHE_ALIGN_POWER) - PUBLIC_PROC (_CPU_Context_restore_fp) -PROC (_CPU_Context_restore_fp): -#if (PPC_HAS_FPU == 1) - lwz r3, 0(r3) -#if (PPC_HAS_DOUBLE == 1) - lfd f2, FP_FPSCR(r3) - mtfsf 255, f2 - lfd f0, FP_0(r3) - lfd f1, FP_1(r3) - lfd f2, FP_2(r3) - lfd f3, FP_3(r3) - lfd f4, FP_4(r3) - lfd f5, FP_5(r3) - lfd f6, FP_6(r3) - lfd f7, FP_7(r3) - lfd f8, FP_8(r3) - lfd f9, FP_9(r3) - lfd f10, FP_10(r3) - lfd f11, FP_11(r3) - lfd f12, FP_12(r3) - lfd f13, FP_13(r3) - lfd f14, FP_14(r3) - lfd f15, FP_15(r3) - lfd f16, FP_16(r3) - lfd f17, FP_17(r3) - lfd f18, FP_18(r3) - lfd f19, FP_19(r3) - lfd f20, FP_20(r3) - lfd f21, FP_21(r3) - lfd f22, FP_22(r3) - lfd f23, FP_23(r3) - lfd f24, FP_24(r3) - lfd f25, FP_25(r3) - lfd f26, FP_26(r3) - lfd f27, FP_27(r3) - lfd f28, FP_28(r3) - lfd f29, FP_29(r3) - lfd f30, FP_30(r3) - lfd f31, FP_31(r3) -#else - lfs f2, FP_FPSCR(r3) - mtfsf 255, f2 - lfs f0, FP_0(r3) - lfs f1, FP_1(r3) - lfs f2, FP_2(r3) - lfs f3, FP_3(r3) - lfs f4, FP_4(r3) - lfs f5, FP_5(r3) - lfs f6, FP_6(r3) - lfs f7, FP_7(r3) - lfs f8, FP_8(r3) - lfs f9, FP_9(r3) - lfs f10, FP_10(r3) - lfs f11, FP_11(r3) - lfs f12, FP_12(r3) - lfs f13, FP_13(r3) - lfs f14, FP_14(r3) - lfs f15, FP_15(r3) - lfs f16, FP_16(r3) - lfs f17, FP_17(r3) - lfs f18, FP_18(r3) - lfs f19, FP_19(r3) - lfs f20, FP_20(r3) - lfs f21, FP_21(r3) - lfs f22, FP_22(r3) - lfs f23, FP_23(r3) - lfs f24, FP_24(r3) - lfs f25, FP_25(r3) - lfs f26, FP_26(r3) - lfs f27, FP_27(r3) - lfs f28, FP_28(r3) - lfs f29, FP_29(r3) - lfs f30, FP_30(r3) - lfs f31, FP_31(r3) -#endif -#endif - blr - - -/* _CPU_Context_switch - * - * This routine performs a normal non-FP context switch. - */ - ALIGN (PPC_CACHE_ALIGNMENT, PPC_CACHE_ALIGN_POWER) - PUBLIC_PROC (_CPU_Context_switch) -PROC (_CPU_Context_switch): - sync - isync -#if (PPC_CACHE_ALIGNMENT == 4) /* No cache */ - stw r1, GP_1(r3) - lwz r1, GP_1(r4) - stw r2, GP_2(r3) - lwz r2, GP_2(r4) -#if (PPC_USE_MULTIPLE == 1) - stmw r13, GP_13(r3) - lmw r13, GP_13(r4) -#else - stw r13, GP_13(r3) - lwz r13, GP_13(r4) - stw r14, GP_14(r3) - lwz r14, GP_14(r4) - stw r15, GP_15(r3) - lwz r15, GP_15(r4) - stw r16, GP_16(r3) - lwz r16, GP_16(r4) - stw r17, GP_17(r3) - lwz r17, GP_17(r4) - stw r18, GP_18(r3) - lwz r18, GP_18(r4) - stw r19, GP_19(r3) - lwz r19, GP_19(r4) - stw r20, GP_20(r3) - lwz r20, GP_20(r4) - stw r21, GP_21(r3) - lwz r21, GP_21(r4) - stw r22, GP_22(r3) - lwz r22, GP_22(r4) - stw r23, GP_23(r3) - lwz r23, GP_23(r4) - stw r24, GP_24(r3) - lwz r24, GP_24(r4) - stw r25, GP_25(r3) - lwz r25, GP_25(r4) - stw r26, GP_26(r3) - lwz r26, GP_26(r4) - stw r27, GP_27(r3) - lwz r27, GP_27(r4) - stw r28, GP_28(r3) - lwz r28, GP_28(r4) - stw r29, GP_29(r3) - lwz r29, GP_29(r4) - stw r30, GP_30(r3) - lwz r30, GP_30(r4) - stw r31, GP_31(r3) - lwz r31, GP_31(r4) -#endif - mfcr r5 - stw r5, GP_CR(r3) - lwz r5, GP_CR(r4) - mflr r6 - mtcrf 255, r5 - stw r6, GP_PC(r3) - lwz r6, GP_PC(r4) - mfmsr r7 - mtlr r6 - stw r7, GP_MSR(r3) - lwz r7, GP_MSR(r4) - mtmsr r7 -#endif -#if (PPC_CACHE_ALIGNMENT == 16) - /* This assumes that all the registers are in the given order */ - li r5, 16 - addi r3,r3,-4 -#if ( PPC_USE_DATA_CACHE ) - dcbz r5, r3 -#endif - stw r1, GP_1+4(r3) - stw r2, GP_2+4(r3) -#if (PPC_USE_MULTIPLE == 1) - addi r3, r3, GP_14+4 -#if ( PPC_USE_DATA_CACHE ) - dcbz r5, r3 -#endif - - addi r3, r3, GP_18-GP_14 -#if ( PPC_USE_DATA_CACHE ) - dcbz r5, r3 -#endif - addi r3, r3, GP_22-GP_18 -#if ( PPC_USE_DATA_CACHE ) - dcbz r5, r3 -#endif - addi r3, r3, GP_26-GP_22 -#if ( PPC_USE_DATA_CACHE ) - dcbz r5, r3 -#endif - stmw r13, GP_13-GP_26(r3) -#else - stw r13, GP_13+4(r3) - stwu r14, GP_14+4(r3) -#if ( PPC_USE_DATA_CACHE ) - dcbz r5, r3 -#endif - stw r15, GP_15-GP_14(r3) - stw r16, GP_16-GP_14(r3) - stw r17, GP_17-GP_14(r3) - stwu r18, GP_18-GP_14(r3) -#if ( PPC_USE_DATA_CACHE ) - dcbz r5, r3 -#endif - stw r19, GP_19-GP_18(r3) - stw r20, GP_20-GP_18(r3) - stw r21, GP_21-GP_18(r3) - stwu r22, GP_22-GP_18(r3) -#if ( PPC_USE_DATA_CACHE ) - dcbz r5, r3 -#endif - stw r23, GP_23-GP_22(r3) - stw r24, GP_24-GP_22(r3) - stw r25, GP_25-GP_22(r3) - stwu r26, GP_26-GP_22(r3) -#if ( PPC_USE_DATA_CACHE ) - dcbz r5, r3 -#endif - stw r27, GP_27-GP_26(r3) - stw r28, GP_28-GP_26(r3) - stw r29, GP_29-GP_26(r3) - stw r30, GP_30-GP_26(r3) - stw r31, GP_31-GP_26(r3) -#endif -#if ( PPC_USE_DATA_CACHE ) - dcbt r0, r4 -#endif - mfcr r6 - stw r6, GP_CR-GP_26(r3) - mflr r7 - stw r7, GP_PC-GP_26(r3) - mfmsr r8 - stw r8, GP_MSR-GP_26(r3) - -#if ( PPC_USE_DATA_CACHE ) - dcbt r5, r4 -#endif - lwz r1, GP_1(r4) - lwz r2, GP_2(r4) -#if (PPC_USE_MULTIPLE == 1) - addi r4, r4, GP_15 -#if ( PPC_USE_DATA_CACHE ) - dcbt r5, r4 -#endif - addi r4, r4, GP_19-GP_15 -#if ( PPC_USE_DATA_CACHE ) - dcbt r5, r4 -#endif - addi r4, r4, GP_23-GP_19 -#if ( PPC_USE_DATA_CACHE ) - dcbt r5, r4 -#endif - addi r4, r4, GP_27-GP_23 -#if ( PPC_USE_DATA_CACHE ) - dcbt r5, r4 -#endif - lmw r13, GP_13-GP_27(r4) -#else - lwz r13, GP_13(r4) - lwz r14, GP_14(r4) - lwzu r15, GP_15(r4) -#if ( PPC_USE_DATA_CACHE ) - dcbt r5, r4 -#endif - lwz r16, GP_16-GP_15(r4) - lwz r17, GP_17-GP_15(r4) - lwz r18, GP_18-GP_15(r4) - lwzu r19, GP_19-GP_15(r4) -#if ( PPC_USE_DATA_CACHE ) - dcbt r5, r4 -#endif - lwz r20, GP_20-GP_19(r4) - lwz r21, GP_21-GP_19(r4) - lwz r22, GP_22-GP_19(r4) - lwzu r23, GP_23-GP_19(r4) -#if ( PPC_USE_DATA_CACHE ) - dcbt r5, r4 -#endif - lwz r24, GP_24-GP_23(r4) - lwz r25, GP_25-GP_23(r4) - lwz r26, GP_26-GP_23(r4) - lwzu r27, GP_27-GP_23(r4) -#if ( PPC_USE_DATA_CACHE ) - dcbt r5, r4 -#endif - lwz r28, GP_28-GP_27(r4) - lwz r29, GP_29-GP_27(r4) - lwz r30, GP_30-GP_27(r4) - lwz r31, GP_31-GP_27(r4) -#endif - lwz r6, GP_CR-GP_27(r4) - lwz r7, GP_PC-GP_27(r4) - lwz r8, GP_MSR-GP_27(r4) - mtcrf 255, r6 - mtlr r7 - mtmsr r8 -#endif -#if (PPC_CACHE_ALIGNMENT == 32) - /* This assumes that all the registers are in the given order */ - li r5, 32 - addi r3,r3,-4 -#if ( PPC_USE_DATA_CACHE ) - dcbz r5, r3 -#endif - stw r1, GP_1+4(r3) - stw r2, GP_2+4(r3) -#if (PPC_USE_MULTIPLE == 1) - addi r3, r3, GP_18+4 -#if ( PPC_USE_DATA_CACHE ) - dcbz r5, r3 -#endif - stmw r13, GP_13-GP_18(r3) -#else - stw r13, GP_13+4(r3) - stw r14, GP_14+4(r3) - stw r15, GP_15+4(r3) - stw r16, GP_16+4(r3) - stw r17, GP_17+4(r3) - stwu r18, GP_18+4(r3) -#if ( PPC_USE_DATA_CACHE ) - dcbz r5, r3 -#endif - stw r19, GP_19-GP_18(r3) - stw r20, GP_20-GP_18(r3) - stw r21, GP_21-GP_18(r3) - stw r22, GP_22-GP_18(r3) - stw r23, GP_23-GP_18(r3) - stw r24, GP_24-GP_18(r3) - stw r25, GP_25-GP_18(r3) - stw r26, GP_26-GP_18(r3) - stw r27, GP_27-GP_18(r3) - stw r28, GP_28-GP_18(r3) - stw r29, GP_29-GP_18(r3) - stw r30, GP_30-GP_18(r3) - stw r31, GP_31-GP_18(r3) -#endif -#if ( PPC_USE_DATA_CACHE ) - dcbt r0, r4 -#endif - mfcr r6 - stw r6, GP_CR-GP_18(r3) - mflr r7 - stw r7, GP_PC-GP_18(r3) - mfmsr r8 - stw r8, GP_MSR-GP_18(r3) - -#if ( PPC_USE_DATA_CACHE ) - dcbt r5, r4 -#endif - lwz r1, GP_1(r4) - lwz r2, GP_2(r4) -#if (PPC_USE_MULTIPLE == 1) - addi r4, r4, GP_19 -#if ( PPC_USE_DATA_CACHE ) - dcbt r5, r4 -#endif - lmw r13, GP_13-GP_19(r4) -#else - lwz r13, GP_13(r4) - lwz r14, GP_14(r4) - lwz r15, GP_15(r4) - lwz r16, GP_16(r4) - lwz r17, GP_17(r4) - lwz r18, GP_18(r4) - lwzu r19, GP_19(r4) -#if ( PPC_USE_DATA_CACHE ) - dcbt r5, r4 -#endif - lwz r20, GP_20-GP_19(r4) - lwz r21, GP_21-GP_19(r4) - lwz r22, GP_22-GP_19(r4) - lwz r23, GP_23-GP_19(r4) - lwz r24, GP_24-GP_19(r4) - lwz r25, GP_25-GP_19(r4) - lwz r26, GP_26-GP_19(r4) - lwz r27, GP_27-GP_19(r4) - lwz r28, GP_28-GP_19(r4) - lwz r29, GP_29-GP_19(r4) - lwz r30, GP_30-GP_19(r4) - lwz r31, GP_31-GP_19(r4) -#endif - lwz r6, GP_CR-GP_19(r4) - lwz r7, GP_PC-GP_19(r4) - lwz r8, GP_MSR-GP_19(r4) - mtcrf 255, r6 - mtlr r7 - mtmsr r8 -#endif - blr - -/* - * _CPU_Context_restore - * - * This routine is generallu used only to restart self in an - * efficient manner. It may simply be a label in _CPU_Context_switch. - * - * NOTE: May be unnecessary to reload some registers. - */ -/* - * ACB: Don't worry about cache optimisation here - this is not THAT critical. - */ - ALIGN (PPC_CACHE_ALIGNMENT, PPC_CACHE_ALIGN_POWER) - PUBLIC_PROC (_CPU_Context_restore) -PROC (_CPU_Context_restore): - lwz r5, GP_CR(r3) - lwz r6, GP_PC(r3) - lwz r7, GP_MSR(r3) - mtcrf 255, r5 - mtlr r6 - mtmsr r7 - lwz r1, GP_1(r3) - lwz r2, GP_2(r3) -#if (PPC_USE_MULTIPLE == 1) - lmw r13, GP_13(r3) -#else - lwz r13, GP_13(r3) - lwz r14, GP_14(r3) - lwz r15, GP_15(r3) - lwz r16, GP_16(r3) - lwz r17, GP_17(r3) - lwz r18, GP_18(r3) - lwz r19, GP_19(r3) - lwz r20, GP_20(r3) - lwz r21, GP_21(r3) - lwz r22, GP_22(r3) - lwz r23, GP_23(r3) - lwz r24, GP_24(r3) - lwz r25, GP_25(r3) - lwz r26, GP_26(r3) - lwz r27, GP_27(r3) - lwz r28, GP_28(r3) - lwz r29, GP_29(r3) - lwz r30, GP_30(r3) - lwz r31, GP_31(r3) -#endif - - blr - -/* Individual interrupt prologues look like this: - * #if (PPC_ABI == PPC_ABI_POWEROPEN || PPC_ABI == PPC_ABI_GCC27) - * #if (PPC_HAS_FPU) - * stwu r1, -(20*4 + 18*8 + IP_END)(r1) - * #else - * stwu r1, -(20*4 + IP_END)(r1) - * #endif - * #else - * stwu r1, -(IP_END)(r1) - * #endif - * stw r0, IP_0(r1) - * - * li r0, vectornum - * b PROC (_ISR_Handler{,C}) - */ - -/* void __ISR_Handler() - * - * This routine provides the RTEMS interrupt management. - * The vector number is in r0. R0 has already been stacked. - * - */ - ALIGN (PPC_CACHE_ALIGNMENT, PPC_CACHE_ALIGN_POWER) - PUBLIC_PROC (_ISR_Handler) -PROC (_ISR_Handler): -#define LABEL(x) x -/* XXX ?? -#define MTSAVE(x) mtspr sprg0, x -#define MFSAVE(x) mfspr x, sprg0 -*/ -#define MTPC(x) mtspr srr0, x -#define MFPC(x) mfspr x, srr0 -#define MTMSR(x) mtspr srr1, x -#define MFMSR(x) mfspr x, srr1 - - #include "irq_stub.S" - rfi - -#if (PPC_HAS_RFCI == 1) -/* void __ISR_HandlerC() - * - * This routine provides the RTEMS interrupt management. - * For critical interrupts - * - */ - ALIGN (PPC_CACHE_ALIGNMENT, PPC_CACHE_ALIGN_POWER) - PUBLIC_PROC (_ISR_HandlerC) -PROC (_ISR_HandlerC): -#undef LABEL -#undef MTSAVE -#undef MFSAVE -#undef MTPC -#undef MFPC -#undef MTMSR -#undef MFMSR -#define LABEL(x) x##_C -/* XXX?? -#define MTSAVE(x) mtspr sprg1, x -#define MFSAVE(x) mfspr x, sprg1 -*/ -#define MTPC(x) mtspr srr2, x -#define MFPC(x) mfspr x, srr2 -#define MTMSR(x) mtspr srr3, x -#define MFMSR(x) mfspr x, srr3 - #include "irq_stub.S" - rfci -#endif - -/* PowerOpen descriptors for indirect function calls. - */ - -#if (PPC_ABI == PPC_ABI_POWEROPEN) - DESCRIPTOR (_CPU_Context_save_fp) - DESCRIPTOR (_CPU_Context_restore_fp) - DESCRIPTOR (_CPU_Context_switch) - DESCRIPTOR (_CPU_Context_restore) - DESCRIPTOR (_ISR_Handler) -#if (PPC_HAS_RFCI == 1) - DESCRIPTOR (_ISR_HandlerC) -#endif -#endif diff --git a/c/src/exec/score/cpu/powerpc/other_cpu/irq_stub.S b/c/src/exec/score/cpu/powerpc/other_cpu/irq_stub.S deleted file mode 100644 index 76c8927305..0000000000 --- a/c/src/exec/score/cpu/powerpc/other_cpu/irq_stub.S +++ /dev/null @@ -1,268 +0,0 @@ -/* - * This file contains the interrupt handler assembly code for the PowerPC - * implementation of RTEMS. It is #included from cpu_asm.s. - * - * Author: Andrew Bray - * - * COPYRIGHT (c) 1995 by i-cubed ltd. - * - * To anyone who acknowledges that this file is provided "AS IS" - * without any express or implied warranty: - * permission to use, copy, modify, and distribute this file - * for any purpose is hereby granted without fee, provided that - * the above copyright notice and this notice appears in all - * copies, and that the name of i-cubed limited not be used in - * advertising or publicity pertaining to distribution of the - * software without specific, written prior permission. - * i-cubed limited makes no representations about the suitability - * of this software for any purpose. - * - * $Id$ - */ - -/* void __ISR_Handler() - * - * This routine provides the RTEMS interrupt management. - * The vector number is in r0. R0 has already been stacked. - * - */ - PUBLIC_VAR (_CPU_IRQ_info ) - - /* Finish off the interrupt frame */ - stw r2, IP_2(r1) - stw r3, IP_3(r1) - stw r4, IP_4(r1) - stw r5, IP_5(r1) - stw r6, IP_6(r1) - stw r7, IP_7(r1) - stw r8, IP_8(r1) - stw r9, IP_9(r1) - stw r10, IP_10(r1) - stw r11, IP_11(r1) - stw r12, IP_12(r1) - stw r13, IP_13(r1) - stmw r28, IP_28(r1) - mfcr r5 - mfctr r6 - mfxer r7 - mflr r8 - MFPC (r9) - MFMSR (r10) - /* Establish addressing */ -#if (PPC_USE_SPRG) - mfspr r11, sprg3 -#else - lis r11,_CPU_IRQ_info@ha - addi r11,r11,_CPU_IRQ_info@l -#endif - dcbt r0, r11 - stw r5, IP_CR(r1) - stw r6, IP_CTR(r1) - stw r7, IP_XER(r1) - stw r8, IP_LR(r1) - stw r9, IP_PC(r1) - stw r10, IP_MSR(r1) - - lwz r30, Vector_table(r11) - slwi r4,r0,2 - lwz r28, Nest_level(r11) - add r4, r4, r30 - - lwz r30, 0(r28) - mr r3, r0 - lwz r31, Stack(r11) - /* - * #if ( CPU_HAS_SOFTWARE_INTERRUPT_STACK == TRUE ) - * if ( _ISR_Nest_level == 0 ) - * switch to software interrupt stack - * #endif - */ - /* Switch stacks, here we must prevent ALL interrupts */ -#if (PPC_USE_SPRG) - mfmsr r5 - mfspr r6, sprg2 -#else - lwz r6,msr_initial(r11) - lis r5,~PPC_MSR_DISABLE_MASK@ha - ori r5,r5,~PPC_MSR_DISABLE_MASK@l - and r6,r6,r5 - mfmsr r5 -#endif - mtmsr r6 - cmpwi r30, 0 - lwz r29, Disable_level(r11) - subf r31,r1,r31 - bne LABEL (nested) - stwux r1,r1,r31 -LABEL (nested): - /* - * _ISR_Nest_level++; - */ - lwz r31, 0(r29) - addi r30,r30,1 - stw r30,0(r28) - /* From here on out, interrupts can be re-enabled. RTEMS - * convention says not. - */ - lwz r4,0(r4) - /* - * _Thread_Dispatch_disable_level++; - */ - addi r31,r31,1 - stw r31, 0(r29) -/* SCE 980217 - * - * We need address translation ON when we call our ISR routine - - mtmsr r5 - - */ - - /* - * (*_ISR_Vector_table[ vector ])( vector ); - */ -#if (PPC_ABI == PPC_ABI_POWEROPEN) - lwz r6,0(r4) - lwz r2,4(r4) - mtlr r6 - lwz r11,8(r4) -#endif -#if (PPC_ABI == PPC_ABI_GCC27) - lwz r2, Default_r2(r11) - mtlr r4 - #lwz r2, 0(r2) -#endif -#if (PPC_ABI == PPC_ABI_SVR4 || PPC_ABI == PPC_ABI_EABI) - mtlr r4 - lwz r2, Default_r2(r11) - lwz r13, Default_r13(r11) - #lwz r2, 0(r2) - #lwz r13, 0(r13) -#endif - mr r4,r1 - blrl - /* NOP marker for debuggers */ - or r6,r6,r6 - - /* We must re-disable the interrupts */ -#if (PPC_USE_SPRG) - mfspr r11, sprg3 - mfspr r0, sprg2 -#else - lis r11,_CPU_IRQ_info@ha - addi r11,r11,_CPU_IRQ_info@l - lwz r0,msr_initial(r11) - lis r30,~PPC_MSR_DISABLE_MASK@ha - ori r30,r30,~PPC_MSR_DISABLE_MASK@l - and r0,r0,r30 -#endif - mtmsr r0 - lwz r30, 0(r28) - lwz r31, 0(r29) - - /* - * if (--Thread_Dispatch_disable,--_ISR_Nest_level) - * goto easy_exit; - */ - addi r30, r30, -1 - cmpwi r30, 0 - addi r31, r31, -1 - stw r30, 0(r28) - stw r31, 0(r29) - bne LABEL (easy_exit) - cmpwi r31, 0 - - lwz r30, Switch_necessary(r11) - - /* - * #if ( CPU_HAS_SOFTWARE_INTERRUPT_STACK == TRUE ) - * restore stack - * #endif - */ - lwz r1,0(r1) - bne LABEL (easy_exit) - lwz r30, 0(r30) - lwz r31, Signal(r11) - - /* - * if ( _Context_Switch_necessary ) - * goto switch - */ - cmpwi r30, 0 - lwz r28, 0(r31) - li r6,0 - bne LABEL (switch) - /* - * if ( !_ISR_Signals_to_thread_executing ) - * goto easy_exit - * _ISR_Signals_to_thread_executing = 0; - */ - cmpwi r28, 0 - beq LABEL (easy_exit) - - /* - * switch: - * call _Thread_Dispatch() or prepare to return to _ISR_Dispatch - */ -LABEL (switch): - stw r6, 0(r31) - /* Re-enable interrupts */ - lwz r0, IP_MSR(r1) -#if (PPC_ABI == PPC_ABI_POWEROPEN) - lwz r2, Dispatch_r2(r11) -#else - /* R2 and R13 still hold their values from the last call */ -#endif - mtmsr r0 - bl SYM (_Thread_Dispatch) - /* NOP marker for debuggers */ - or r6,r6,r6 - /* - * prepare to get out of interrupt - */ - /* Re-disable IRQs */ -#if (PPC_USE_SPRG) - mfspr r0, sprg2 -#else - lis r11,_CPU_IRQ_info@ha - addi r11,r11,_CPU_IRQ_info@l - lwz r0,msr_initial(r11) - lis r5,~PPC_MSR_DISABLE_MASK@ha - ori r5,r5,~PPC_MSR_DISABLE_MASK@l - and r0,r0,r5 -#endif - mtmsr r0 - - /* - * easy_exit: - * prepare to get out of interrupt - * return from interrupt - */ -LABEL (easy_exit): - lwz r5, IP_CR(r1) - lwz r6, IP_CTR(r1) - lwz r7, IP_XER(r1) - lwz r8, IP_LR(r1) - lwz r9, IP_PC(r1) - lwz r10, IP_MSR(r1) - mtcrf 255,r5 - mtctr r6 - mtxer r7 - mtlr r8 - MTPC (r9) - MTMSR (r10) - lwz r0, IP_0(r1) - lwz r2, IP_2(r1) - lwz r3, IP_3(r1) - lwz r4, IP_4(r1) - lwz r5, IP_5(r1) - lwz r6, IP_6(r1) - lwz r7, IP_7(r1) - lwz r8, IP_8(r1) - lwz r9, IP_9(r1) - lwz r10, IP_10(r1) - lwz r11, IP_11(r1) - lwz r12, IP_12(r1) - lwz r13, IP_13(r1) - lmw r28, IP_28(r1) - lwz r1, 0(r1) diff --git a/c/src/exec/score/cpu/powerpc/other_cpu/ppccache.c b/c/src/exec/score/cpu/powerpc/other_cpu/ppccache.c deleted file mode 100644 index ecfb4b96ca..0000000000 --- a/c/src/exec/score/cpu/powerpc/other_cpu/ppccache.c +++ /dev/null @@ -1,61 +0,0 @@ -/* - * PowerPC Cache enable routines - * - * $Id$ - */ - -#include - -#define PPC_Get_HID0( _value ) \ - do { \ - _value = 0; /* to avoid warnings */ \ - asm volatile( \ - "mfspr %0, 0x3f0;" /* get HID0 */ \ - "isync" \ - : "=r" (_value) \ - : "0" (_value) \ - ); \ - } while (0) - -#define PPC_Set_HID0( _value ) \ - do { \ - asm volatile( \ - "isync;" \ - "mtspr 0x3f0, %0;" /* load HID0 */ \ - "isync" \ - : "=r" (_value) \ - : "0" (_value) \ - ); \ - } while (0) - - -void powerpc_instruction_cache_enable () -{ - unsigned32 value; - - /* - * Enable the instruction cache - */ - - PPC_Get_HID0( value ); - - value |= 0x00008000; /* Set ICE bit */ - - PPC_Set_HID0( value ); -} - -void powerpc_data_cache_enable () -{ - unsigned32 value; - - /* - * enable data cache - */ - - PPC_Get_HID0( value ); - - value |= 0x00004000; /* set DCE bit */ - - PPC_Set_HID0( value ); -} - diff --git a/c/src/exec/score/cpu/powerpc/other_cpu/rtems.S b/c/src/exec/score/cpu/powerpc/other_cpu/rtems.S deleted file mode 100644 index b653152411..0000000000 --- a/c/src/exec/score/cpu/powerpc/other_cpu/rtems.S +++ /dev/null @@ -1,132 +0,0 @@ -/* rtems.s - * - * This file contains the single entry point code for - * the PowerPC implementation of RTEMS. - * - * Author: Andrew Bray - * - * COPYRIGHT (c) 1995 by i-cubed ltd. - * - * To anyone who acknowledges that this file is provided "AS IS" - * without any express or implied warranty: - * permission to use, copy, modify, and distribute this file - * for any purpose is hereby granted without fee, provided that - * the above copyright notice and this notice appears in all - * copies, and that the name of i-cubed limited not be used in - * advertising or publicity pertaining to distribution of the - * software without specific, written prior permission. - * i-cubed limited makes no representations about the suitability - * of this software for any purpose. - * - * Derived from c/src/exec/cpu/no_cpu/rtems.c: - * - * COPYRIGHT (c) 1989-1997. - * On-Line Applications Research Corporation (OAR). - * Copyright assigned to U.S. Government, 1994. - * - * The license and distribution terms for this file may in - * the file LICENSE in this distribution or at - * http://www.OARcorp.com/rtems/license.html. - * - * $Id$ - */ - -#include - - BEGIN_CODE -/* - * RTEMS - * - * This routine jumps to the directive indicated in r11. - * This routine is used when RTEMS is linked by itself and placed - * in ROM. This routine is the first address in the ROM space for - * RTEMS. The user "calls" this address with the directive arguments - * in the normal place. - * This routine then jumps indirectly to the correct directive - * preserving the arguments. The directive should not realize - * it has been "wrapped" in this way. The table "_Entry_points" - * is used to look up the directive. - */ - - ALIGN (4, 2) - PUBLIC_PROC (RTEMS) -PROC (RTEMS): -#if (PPC_ABI == PPC_ABI_POWEROPEN) - mflr r0 - stw r0, 8(r1) - stwu r1, -64(r1) - - /* Establish addressing */ - bl base -base: - mflr r12 - addi r12, r12, tabaddr - base - - lwz r12, Entry_points-abase(r12) - slwi r11, r11, 2 - lwzx r12, r12, r11 - - stw r2, 56(r1) - lwz r0, 0(r12) - mtlr r0 - lwz r2, 4(r12) - lwz r11, 8(r12) - blrl - lwz r2, 56(r1) - addi r1, r1, 64 - lwz r0, 8(r1) - mtlr r0 -#else - mflr r0 - stw r0, 4(r1) - stwu r1, -16(r1) - - /* Establish addressing */ - bl base -base: - mflr r12 - addi r12, r12, tabaddr - base - - lwz r12, Entry_points-abase(r12) - slwi r11, r11, 2 - lwzx r11, r12, r11 - - stw r2, 8(r1) -#if (PPC_ABI != PPC_ABI_GCC27) - stw r13, 12(r1) -#endif - mtlr r11 - lwz r11, irqinfo-abase(r12) - lwz r2, 0(r11) -#if (PPC_ABI != PPC_ABI_GCC27) - lwz r13, 4(r11) -#endif - blrl - lwz r2, 8(r1) -#if (PPC_ABI != PPC_ABI_GCC27) - lwz r13, 12(r1) -#endif - addi r1, r1, 16 - lwz r0, 4(r1) - mtlr r0 -#endif - blr - - - /* Addressability stuff */ -tabaddr: -abase: - EXTERN_VAR (_Entry_points) -Entry_points: - EXT_SYM_REF (_Entry_points) -#if (PPC_ABI != PPC_ABI_POWEROPEN) - EXTERN_VAR (_CPU_IRQ_info) -irqinfo: - EXT_SYM_REF (_CPU_IRQ_info) -#endif - -#if (PPC_ABI == PPC_ABI_POWEROPEN) - DESCRIPTOR (RTEMS) -#endif - - -- cgit v1.2.3