From 3cf2bf633fe443460563cd00c6489d16c1073fee Mon Sep 17 00:00:00 2001 From: Sebastian Huber Date: Mon, 26 Mar 2018 12:17:06 +0200 Subject: bsps/m68k: Move fpsp support to bsps This patch is a part of the BSP source reorganization. Update #3285. --- c/src/lib/libcpu/m68k/Makefile.am | 25 - c/src/lib/libcpu/m68k/m68040/fpsp/README | 40 - c/src/lib/libcpu/m68k/m68040/fpsp/bindec.S | 922 --------- c/src/lib/libcpu/m68k/m68040/fpsp/binstr.S | 141 -- c/src/lib/libcpu/m68k/m68040/fpsp/bugfix.S | 497 ----- c/src/lib/libcpu/m68k/m68040/fpsp/decbin.S | 508 ----- c/src/lib/libcpu/m68k/m68040/fpsp/do_func.S | 561 ------ c/src/lib/libcpu/m68k/m68040/fpsp/fpsp-namespace.h | 168 -- c/src/lib/libcpu/m68k/m68040/fpsp/fpsp.defs | 347 ---- c/src/lib/libcpu/m68k/m68040/fpsp/gen_except.S | 470 ----- c/src/lib/libcpu/m68k/m68040/fpsp/get_op.S | 678 ------- c/src/lib/libcpu/m68k/m68040/fpsp/kernel_ex.S | 496 ----- c/src/lib/libcpu/m68k/m68040/fpsp/res_func.S | 2042 -------------------- c/src/lib/libcpu/m68k/m68040/fpsp/round.S | 651 ------- c/src/lib/libcpu/m68k/m68040/fpsp/rtems_fpsp.c | 81 - c/src/lib/libcpu/m68k/m68040/fpsp/rtems_skel.S | 398 ---- c/src/lib/libcpu/m68k/m68040/fpsp/sacos.S | 117 -- c/src/lib/libcpu/m68k/m68040/fpsp/sasin.S | 106 - c/src/lib/libcpu/m68k/m68040/fpsp/satan.S | 480 ----- c/src/lib/libcpu/m68k/m68040/fpsp/satanh.S | 106 - c/src/lib/libcpu/m68k/m68040/fpsp/scale.S | 373 ---- c/src/lib/libcpu/m68k/m68040/fpsp/scosh.S | 134 -- c/src/lib/libcpu/m68k/m68040/fpsp/setox.S | 867 --------- c/src/lib/libcpu/m68k/m68040/fpsp/sgetem.S | 143 -- c/src/lib/libcpu/m68k/m68040/fpsp/sint.S | 249 --- c/src/lib/libcpu/m68k/m68040/fpsp/slog2.S | 190 -- c/src/lib/libcpu/m68k/m68040/fpsp/slogn.S | 594 ------ c/src/lib/libcpu/m68k/m68040/fpsp/smovecr.S | 164 -- c/src/lib/libcpu/m68k/m68040/fpsp/srem_mod.S | 424 ---- c/src/lib/libcpu/m68k/m68040/fpsp/ssin.S | 748 ------- c/src/lib/libcpu/m68k/m68040/fpsp/ssinh.S | 137 -- c/src/lib/libcpu/m68k/m68040/fpsp/stan.S | 457 ----- c/src/lib/libcpu/m68k/m68040/fpsp/stanh.S | 187 -- c/src/lib/libcpu/m68k/m68040/fpsp/sto_res.S | 100 - c/src/lib/libcpu/m68k/m68040/fpsp/stwotox.S | 429 ---- c/src/lib/libcpu/m68k/m68040/fpsp/tbldo.S | 556 ------ c/src/lib/libcpu/m68k/m68040/fpsp/util.S | 750 ------- c/src/lib/libcpu/m68k/m68040/fpsp/x_bsun.S | 49 - c/src/lib/libcpu/m68k/m68040/fpsp/x_fline.S | 106 - c/src/lib/libcpu/m68k/m68040/fpsp/x_operr.S | 358 ---- c/src/lib/libcpu/m68k/m68040/fpsp/x_ovfl.S | 188 -- c/src/lib/libcpu/m68k/m68040/fpsp/x_snan.S | 279 --- c/src/lib/libcpu/m68k/m68040/fpsp/x_store.S | 258 --- c/src/lib/libcpu/m68k/m68040/fpsp/x_unfl.S | 271 --- c/src/lib/libcpu/m68k/m68040/fpsp/x_unimp.S | 79 - c/src/lib/libcpu/m68k/m68040/fpsp/x_unsupp.S | 85 - 46 files changed, 17009 deletions(-) delete mode 100644 c/src/lib/libcpu/m68k/m68040/fpsp/README delete mode 100644 c/src/lib/libcpu/m68k/m68040/fpsp/bindec.S delete mode 100644 c/src/lib/libcpu/m68k/m68040/fpsp/binstr.S delete mode 100644 c/src/lib/libcpu/m68k/m68040/fpsp/bugfix.S delete mode 100644 c/src/lib/libcpu/m68k/m68040/fpsp/decbin.S delete mode 100644 c/src/lib/libcpu/m68k/m68040/fpsp/do_func.S delete mode 100644 c/src/lib/libcpu/m68k/m68040/fpsp/fpsp-namespace.h delete mode 100644 c/src/lib/libcpu/m68k/m68040/fpsp/fpsp.defs delete mode 100644 c/src/lib/libcpu/m68k/m68040/fpsp/gen_except.S delete mode 100644 c/src/lib/libcpu/m68k/m68040/fpsp/get_op.S delete mode 100644 c/src/lib/libcpu/m68k/m68040/fpsp/kernel_ex.S delete mode 100644 c/src/lib/libcpu/m68k/m68040/fpsp/res_func.S delete mode 100644 c/src/lib/libcpu/m68k/m68040/fpsp/round.S delete mode 100644 c/src/lib/libcpu/m68k/m68040/fpsp/rtems_fpsp.c delete mode 100644 c/src/lib/libcpu/m68k/m68040/fpsp/rtems_skel.S delete mode 100644 c/src/lib/libcpu/m68k/m68040/fpsp/sacos.S delete mode 100644 c/src/lib/libcpu/m68k/m68040/fpsp/sasin.S delete mode 100644 c/src/lib/libcpu/m68k/m68040/fpsp/satan.S delete mode 100644 c/src/lib/libcpu/m68k/m68040/fpsp/satanh.S delete mode 100644 c/src/lib/libcpu/m68k/m68040/fpsp/scale.S delete mode 100644 c/src/lib/libcpu/m68k/m68040/fpsp/scosh.S delete mode 100644 c/src/lib/libcpu/m68k/m68040/fpsp/setox.S delete mode 100644 c/src/lib/libcpu/m68k/m68040/fpsp/sgetem.S delete mode 100644 c/src/lib/libcpu/m68k/m68040/fpsp/sint.S delete mode 100644 c/src/lib/libcpu/m68k/m68040/fpsp/slog2.S delete mode 100644 c/src/lib/libcpu/m68k/m68040/fpsp/slogn.S delete mode 100644 c/src/lib/libcpu/m68k/m68040/fpsp/smovecr.S delete mode 100644 c/src/lib/libcpu/m68k/m68040/fpsp/srem_mod.S delete mode 100644 c/src/lib/libcpu/m68k/m68040/fpsp/ssin.S delete mode 100644 c/src/lib/libcpu/m68k/m68040/fpsp/ssinh.S delete mode 100644 c/src/lib/libcpu/m68k/m68040/fpsp/stan.S delete mode 100644 c/src/lib/libcpu/m68k/m68040/fpsp/stanh.S delete mode 100644 c/src/lib/libcpu/m68k/m68040/fpsp/sto_res.S delete mode 100644 c/src/lib/libcpu/m68k/m68040/fpsp/stwotox.S delete mode 100644 c/src/lib/libcpu/m68k/m68040/fpsp/tbldo.S delete mode 100644 c/src/lib/libcpu/m68k/m68040/fpsp/util.S delete mode 100644 c/src/lib/libcpu/m68k/m68040/fpsp/x_bsun.S delete mode 100644 c/src/lib/libcpu/m68k/m68040/fpsp/x_fline.S delete mode 100644 c/src/lib/libcpu/m68k/m68040/fpsp/x_operr.S delete mode 100644 c/src/lib/libcpu/m68k/m68040/fpsp/x_ovfl.S delete mode 100644 c/src/lib/libcpu/m68k/m68040/fpsp/x_snan.S delete mode 100644 c/src/lib/libcpu/m68k/m68040/fpsp/x_store.S delete mode 100644 c/src/lib/libcpu/m68k/m68040/fpsp/x_unfl.S delete mode 100644 c/src/lib/libcpu/m68k/m68040/fpsp/x_unimp.S delete mode 100644 c/src/lib/libcpu/m68k/m68040/fpsp/x_unsupp.S (limited to 'c/src/lib/libcpu') diff --git a/c/src/lib/libcpu/m68k/Makefile.am b/c/src/lib/libcpu/m68k/Makefile.am index b0bbc36107..1b28e60d73 100644 --- a/c/src/lib/libcpu/m68k/Makefile.am +++ b/c/src/lib/libcpu/m68k/Makefile.am @@ -4,31 +4,6 @@ include $(top_srcdir)/../../../automake/compile.am noinst_PROGRAMS = -if m68040 -## m68040/fpsp -noinst_PROGRAMS += m68040/fpsp.rel -m68040_fpsp_rel_SOURCES = m68040/fpsp/rtems_fpsp.c m68040/fpsp/bindec.S \ - m68040/fpsp/binstr.S m68040/fpsp/bugfix.S m68040/fpsp/decbin.S \ - m68040/fpsp/do_func.S m68040/fpsp/gen_except.S m68040/fpsp/get_op.S \ - m68040/fpsp/kernel_ex.S m68040/fpsp/res_func.S m68040/fpsp/round.S \ - m68040/fpsp/rtems_skel.S m68040/fpsp/sacos.S m68040/fpsp/sasin.S \ - m68040/fpsp/satan.S m68040/fpsp/satanh.S m68040/fpsp/scale.S \ - m68040/fpsp/scosh.S m68040/fpsp/setox.S m68040/fpsp/sgetem.S \ - m68040/fpsp/sint.S m68040/fpsp/slog2.S m68040/fpsp/slogn.S \ - m68040/fpsp/smovecr.S m68040/fpsp/srem_mod.S m68040/fpsp/ssin.S \ - m68040/fpsp/ssinh.S m68040/fpsp/stan.S m68040/fpsp/stanh.S \ - m68040/fpsp/sto_res.S m68040/fpsp/stwotox.S m68040/fpsp/tbldo.S \ - m68040/fpsp/util.S m68040/fpsp/x_bsun.S m68040/fpsp/x_fline.S \ - m68040/fpsp/x_operr.S m68040/fpsp/x_ovfl.S m68040/fpsp/x_snan.S \ - m68040/fpsp/x_store.S m68040/fpsp/x_unfl.S m68040/fpsp/x_unimp.S \ - m68040/fpsp/x_unsupp.S -m68040_fpsp_rel_CPPFLAGS = $(AM_CPPFLAGS) -m68040_fpsp_rel_LDFLAGS = $(RTEMS_RELLDFLAGS) - -noinst_HEADERS = m68040/fpsp/fpsp.defs -endif -EXTRA_DIST = m68040/fpsp/README - if mcf5206 # mcf5206/include ## mcf5206/clock diff --git a/c/src/lib/libcpu/m68k/m68040/fpsp/README b/c/src/lib/libcpu/m68k/m68040/fpsp/README deleted file mode 100644 index 9917fd4fd8..0000000000 --- a/c/src/lib/libcpu/m68k/m68040/fpsp/README +++ /dev/null @@ -1,40 +0,0 @@ -M68040FPSP -- Motorola 68040 floating point support package ------------------------------------------------------------ - -Modified for RTEMS by Eric Norum (eric@skatter.usask.ca) - -To include these routines in your application call - - M68KFPSPInstallExceptionHandlers (); - -before performing any floating point operations. - -Acknowledgement ---------------- - -This code can be obtain from the Motorola Engineer's Toolbox WWW page -at http://www.mot.com/SPS/HPESD/tools/freeware/040fpsp.html. Here is -the description from that page: - - The MC68040 contains a subset of the floating-point hardware that is - implemented in the MC68881/882 devices and as such provides reduced yet - high performance on-chip floating-point support. Those applications that - require full compatibility with earlier members of the M68000 family - will need to provide emulation support fo r the un-implemented MC68040 - floating-point instructions. The M68040FPSP provides complete emulation - of the floating-point functionality available in the MC68881/882. - - The M68040FPSP is offered in source code form to allow integration into - existing systems to support either a kernel or library version of - floating-point support. The M68040FPSP operates in conjunction with the - on-chip MC68040 features to provide fast and full emulation. The kernel - version allows full emulation via a trap mechanism to allow full binary - compatibility and is fully reentrant. The library version is used to - eliminate the trap overhead in situation where re-compilation is - possible or desired. - -From this page one may download the original source code. Inline with -the first sentence of the second paragraph, we have integrated it with -RTEMS. - - diff --git a/c/src/lib/libcpu/m68k/m68040/fpsp/bindec.S b/c/src/lib/libcpu/m68k/m68040/fpsp/bindec.S deleted file mode 100644 index 4c3407394c..0000000000 --- a/c/src/lib/libcpu/m68k/m68040/fpsp/bindec.S +++ /dev/null @@ -1,922 +0,0 @@ -#include "fpsp-namespace.h" -// -// -// bindec.sa 3.4 1/3/91 -// -// bindec -// -// Description: -// Converts an input in extended precision format -// to bcd format. -// -// Input: -// a0 points to the input extended precision value -// value in memory; d0 contains the k-factor sign-extended -// to 32-bits. The input may be either normalized, -// unnormalized, or denormalized. -// -// Output: result in the FP_SCR1 space on the stack. -// -// Saves and Modifies: D2-D7,A2,FP2 -// -// Algorithm: -// -// A1. Set RM and size ext; Set SIGMA = sign of input. -// The k-factor is saved for use in d7. Clear the -// BINDEC_FLG for separating normalized/denormalized -// input. If input is unnormalized or denormalized, -// normalize it. -// -// A2. Set X = abs(input). -// -// A3. Compute ILOG. -// ILOG is the log base 10 of the input value. It is -// approximated by adding e + 0.f when the original -// value is viewed as 2^^e * 1.f in extended precision. -// This value is stored in d6. -// -// A4. Clr INEX bit. -// The operation in A3 above may have set INEX2. -// -// A5. Set ICTR = 0; -// ICTR is a flag used in A13. It must be set before the -// loop entry A6. -// -// A6. Calculate LEN. -// LEN is the number of digits to be displayed. The -// k-factor can dictate either the total number of digits, -// if it is a positive number, or the number of digits -// after the decimal point which are to be included as -// significant. See the 68882 manual for examples. -// If LEN is computed to be greater than 17, set OPERR in -// USER_FPSR. LEN is stored in d4. -// -// A7. Calculate SCALE. -// SCALE is equal to 10^ISCALE, where ISCALE is the number -// of decimal places needed to insure LEN integer digits -// in the output before conversion to bcd. LAMBDA is the -// sign of ISCALE, used in A9. Fp1 contains -// 10^^(abs(ISCALE)) using a rounding mode which is a -// function of the original rounding mode and the signs -// of ISCALE and X. A table is given in the code. -// -// A8. Clr INEX; Force RZ. -// The operation in A3 above may have set INEX2. -// RZ mode is forced for the scaling operation to insure -// only one rounding error. The grs bits are collected in -// the INEX flag for use in A10. -// -// A9. Scale X -> Y. -// The mantissa is scaled to the desired number of -// significant digits. The excess digits are collected -// in INEX2. -// -// A10. Or in INEX. -// If INEX is set, round error occurred. This is -// compensated for by 'or-ing' in the INEX2 flag to -// the lsb of Y. -// -// A11. Restore original FPCR; set size ext. -// Perform FINT operation in the user's rounding mode. -// Keep the size to extended. -// -// A12. Calculate YINT = FINT(Y) according to user's rounding -// mode. The FPSP routine sintd0 is used. The output -// is in fp0. -// -// A13. Check for LEN digits. -// If the int operation results in more than LEN digits, -// or less than LEN -1 digits, adjust ILOG and repeat from -// A6. This test occurs only on the first pass. If the -// result is exactly 10^LEN, decrement ILOG and divide -// the mantissa by 10. -// -// A14. Convert the mantissa to bcd. -// The binstr routine is used to convert the LEN digit -// mantissa to bcd in memory. The input to binstr is -// to be a fraction; i.e. (mantissa)/10^LEN and adjusted -// such that the decimal point is to the left of bit 63. -// The bcd digits are stored in the correct position in -// the final string area in memory. -// -// A15. Convert the exponent to bcd. -// As in A14 above, the exp is converted to bcd and the -// digits are stored in the final string. -// Test the length of the final exponent string. If the -// length is 4, set operr. -// -// A16. Write sign bits to final string. -// -// Implementation Notes: -// -// The registers are used as follows: -// -// d0: scratch; LEN input to binstr -// d1: scratch -// d2: upper 32-bits of mantissa for binstr -// d3: scratch;lower 32-bits of mantissa for binstr -// d4: LEN -// d5: LAMBDA/ICTR -// d6: ILOG -// d7: k-factor -// a0: ptr for original operand/final result -// a1: scratch pointer -// a2: pointer to FP_X; abs(original value) in ext -// fp0: scratch -// fp1: scratch -// fp2: scratch -// F_SCR1: -// F_SCR2: -// L_SCR1: -// L_SCR2: - -// Copyright (C) Motorola, Inc. 1990 -// All Rights Reserved -// -// THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA -// The copyright notice above does not evidence any -// actual or intended publication of such source code. - -//BINDEC idnt 2,1 | Motorola 040 Floating Point Software Package - -#include "fpsp.defs" - - |section 8 - -// Constants in extended precision -LOG2: .long 0x3FFD0000,0x9A209A84,0xFBCFF798,0x00000000 -LOG2UP1: .long 0x3FFD0000,0x9A209A84,0xFBCFF799,0x00000000 - -// Constants in single precision -FONE: .long 0x3F800000,0x00000000,0x00000000,0x00000000 -FTWO: .long 0x40000000,0x00000000,0x00000000,0x00000000 -FTEN: .long 0x41200000,0x00000000,0x00000000,0x00000000 -F4933: .long 0x459A2800,0x00000000,0x00000000,0x00000000 - -RBDTBL: .byte 0,0,0,0 - .byte 3,3,2,2 - .byte 3,2,2,3 - .byte 2,3,3,2 - - |xref binstr - |xref sintdo - |xref ptenrn,ptenrm,ptenrp - - .global bindec - .global sc_mul -bindec: - moveml %d2-%d7/%a2,-(%a7) - fmovemx %fp0-%fp2,-(%a7) - -// A1. Set RM and size ext. Set SIGMA = sign input; -// The k-factor is saved for use in d7. Clear BINDEC_FLG for -// separating normalized/denormalized input. If the input -// is a denormalized number, set the BINDEC_FLG memory word -// to signal denorm. If the input is unnormalized, normalize -// the input and test for denormalized result. -// - fmovel #rm_mode,%FPCR //set RM and ext - movel (%a0),L_SCR2(%a6) //save exponent for sign check - movel %d0,%d7 //move k-factor to d7 - clrb BINDEC_FLG(%a6) //clr norm/denorm flag - movew STAG(%a6),%d0 //get stag - andiw #0xe000,%d0 //isolate stag bits - beq A2_str //if zero, input is norm -// -// Normalize the denorm -// -un_de_norm: - movew (%a0),%d0 - andiw #0x7fff,%d0 //strip sign of normalized exp - movel 4(%a0),%d1 - movel 8(%a0),%d2 -norm_loop: - subw #1,%d0 - lsll #1,%d2 - roxll #1,%d1 - tstl %d1 - bges norm_loop -// -// Test if the normalized input is denormalized -// - tstw %d0 - bgts pos_exp //if greater than zero, it is a norm - st BINDEC_FLG(%a6) //set flag for denorm -pos_exp: - andiw #0x7fff,%d0 //strip sign of normalized exp - movew %d0,(%a0) - movel %d1,4(%a0) - movel %d2,8(%a0) - -// A2. Set X = abs(input). -// -A2_str: - movel (%a0),FP_SCR2(%a6) // move input to work space - movel 4(%a0),FP_SCR2+4(%a6) // move input to work space - movel 8(%a0),FP_SCR2+8(%a6) // move input to work space - andil #0x7fffffff,FP_SCR2(%a6) //create abs(X) - -// A3. Compute ILOG. -// ILOG is the log base 10 of the input value. It is approx- -// imated by adding e + 0.f when the original value is viewed -// as 2^^e * 1.f in extended precision. This value is stored -// in d6. -// -// Register usage: -// Input/Output -// d0: k-factor/exponent -// d2: x/x -// d3: x/x -// d4: x/x -// d5: x/x -// d6: x/ILOG -// d7: k-factor/Unchanged -// a0: ptr for original operand/final result -// a1: x/x -// a2: x/x -// fp0: x/float(ILOG) -// fp1: x/x -// fp2: x/x -// F_SCR1:x/x -// F_SCR2:Abs(X)/Abs(X) with $3fff exponent -// L_SCR1:x/x -// L_SCR2:first word of X packed/Unchanged - - tstb BINDEC_FLG(%a6) //check for denorm - beqs A3_cont //if clr, continue with norm - movel #-4933,%d6 //force ILOG = -4933 - bras A4_str -A3_cont: - movew FP_SCR2(%a6),%d0 //move exp to d0 - movew #0x3fff,FP_SCR2(%a6) //replace exponent with 0x3fff - fmovex FP_SCR2(%a6),%fp0 //now fp0 has 1.f - subw #0x3fff,%d0 //strip off bias - faddw %d0,%fp0 //add in exp - fsubs FONE,%fp0 //subtract off 1.0 - fbge pos_res //if pos, branch - fmulx LOG2UP1,%fp0 //if neg, mul by LOG2UP1 - fmovel %fp0,%d6 //put ILOG in d6 as a lword - bras A4_str //go move out ILOG -pos_res: - fmulx LOG2,%fp0 //if pos, mul by LOG2 - fmovel %fp0,%d6 //put ILOG in d6 as a lword - - -// A4. Clr INEX bit. -// The operation in A3 above may have set INEX2. - -A4_str: - fmovel #0,%FPSR //zero all of fpsr - nothing needed - - -// A5. Set ICTR = 0; -// ICTR is a flag used in A13. It must be set before the -// loop entry A6. The lower word of d5 is used for ICTR. - - clrw %d5 //clear ICTR - - -// A6. Calculate LEN. -// LEN is the number of digits to be displayed. The k-factor -// can dictate either the total number of digits, if it is -// a positive number, or the number of digits after the -// original decimal point which are to be included as -// significant. See the 68882 manual for examples. -// If LEN is computed to be greater than 17, set OPERR in -// USER_FPSR. LEN is stored in d4. -// -// Register usage: -// Input/Output -// d0: exponent/Unchanged -// d2: x/x/scratch -// d3: x/x -// d4: exc picture/LEN -// d5: ICTR/Unchanged -// d6: ILOG/Unchanged -// d7: k-factor/Unchanged -// a0: ptr for original operand/final result -// a1: x/x -// a2: x/x -// fp0: float(ILOG)/Unchanged -// fp1: x/x -// fp2: x/x -// F_SCR1:x/x -// F_SCR2:Abs(X) with $3fff exponent/Unchanged -// L_SCR1:x/x -// L_SCR2:first word of X packed/Unchanged - -A6_str: - tstl %d7 //branch on sign of k - bles k_neg //if k <= 0, LEN = ILOG + 1 - k - movel %d7,%d4 //if k > 0, LEN = k - bras len_ck //skip to LEN check -k_neg: - movel %d6,%d4 //first load ILOG to d4 - subl %d7,%d4 //subtract off k - addql #1,%d4 //add in the 1 -len_ck: - tstl %d4 //LEN check: branch on sign of LEN - bles LEN_ng //if neg, set LEN = 1 - cmpl #17,%d4 //test if LEN > 17 - bles A7_str //if not, forget it - movel #17,%d4 //set max LEN = 17 - tstl %d7 //if negative, never set OPERR - bles A7_str //if positive, continue - orl #opaop_mask,USER_FPSR(%a6) //set OPERR & AIOP in USER_FPSR - bras A7_str //finished here -LEN_ng: - moveql #1,%d4 //min LEN is 1 - - -// A7. Calculate SCALE. -// SCALE is equal to 10^ISCALE, where ISCALE is the number -// of decimal places needed to insure LEN integer digits -// in the output before conversion to bcd. LAMBDA is the sign -// of ISCALE, used in A9. Fp1 contains 10^^(abs(ISCALE)) using -// the rounding mode as given in the following table (see -// Coonen, p. 7.23 as ref.; however, the SCALE variable is -// of opposite sign in bindec.sa from Coonen). -// -// Initial USE -// FPCR[6:5] LAMBDA SIGN(X) FPCR[6:5] -// ---------------------------------------------- -// RN 00 0 0 00/0 RN -// RN 00 0 1 00/0 RN -// RN 00 1 0 00/0 RN -// RN 00 1 1 00/0 RN -// RZ 01 0 0 11/3 RP -// RZ 01 0 1 11/3 RP -// RZ 01 1 0 10/2 RM -// RZ 01 1 1 10/2 RM -// RM 10 0 0 11/3 RP -// RM 10 0 1 10/2 RM -// RM 10 1 0 10/2 RM -// RM 10 1 1 11/3 RP -// RP 11 0 0 10/2 RM -// RP 11 0 1 11/3 RP -// RP 11 1 0 11/3 RP -// RP 11 1 1 10/2 RM -// -// Register usage: -// Input/Output -// d0: exponent/scratch - final is 0 -// d2: x/0 or 24 for A9 -// d3: x/scratch - offset ptr into PTENRM array -// d4: LEN/Unchanged -// d5: 0/ICTR:LAMBDA -// d6: ILOG/ILOG or k if ((k<=0)&(ILOG 0, skip this - cmpl %d6,%d7 //test k - ILOG - blts k_pos //if ILOG >= k, skip this - movel %d7,%d6 //if ((k<0) & (ILOG < k)) ILOG = k -k_pos: - movel %d6,%d0 //calc ILOG + 1 - LEN in d0 - addql #1,%d0 //add the 1 - subl %d4,%d0 //sub off LEN - swap %d5 //use upper word of d5 for LAMBDA - clrw %d5 //set it zero initially - clrw %d2 //set up d2 for very small case - tstl %d0 //test sign of ISCALE - bges iscale //if pos, skip next inst - addqw #1,%d5 //if neg, set LAMBDA true - cmpl #0xffffecd4,%d0 //test iscale <= -4908 - bgts no_inf //if false, skip rest - addil #24,%d0 //add in 24 to iscale - movel #24,%d2 //put 24 in d2 for A9 -no_inf: - negl %d0 //and take abs of ISCALE -iscale: - fmoves FONE,%fp1 //init fp1 to 1 - bfextu USER_FPCR(%a6){#26:#2},%d1 //get initial rmode bits - lslw #1,%d1 //put them in bits 2:1 - addw %d5,%d1 //add in LAMBDA - lslw #1,%d1 //put them in bits 3:1 - tstl L_SCR2(%a6) //test sign of original x - bges x_pos //if pos, don't set bit 0 - addql #1,%d1 //if neg, set bit 0 -x_pos: - leal RBDTBL,%a2 //load rbdtbl base - moveb (%a2,%d1),%d3 //load d3 with new rmode - lsll #4,%d3 //put bits in proper position - fmovel %d3,%fpcr //load bits into fpu - lsrl #4,%d3 //put bits in proper position - tstb %d3 //decode new rmode for pten table - bnes not_rn //if zero, it is RN - leal PTENRN,%a1 //load a1 with RN table base - bras rmode //exit decode -not_rn: - lsrb #1,%d3 //get lsb in carry - bccs not_rp //if carry clear, it is RM - leal PTENRP,%a1 //load a1 with RP table base - bras rmode //exit decode -not_rp: - leal PTENRM,%a1 //load a1 with RM table base -rmode: - clrl %d3 //clr table index -e_loop: - lsrl #1,%d0 //shift next bit into carry - bccs e_next //if zero, skip the mul - fmulx (%a1,%d3),%fp1 //mul by 10**(d3_bit_no) -e_next: - addl #12,%d3 //inc d3 to next pwrten table entry - tstl %d0 //test if ISCALE is zero - bnes e_loop //if not, loop - - -// A8. Clr INEX; Force RZ. -// The operation in A3 above may have set INEX2. -// RZ mode is forced for the scaling operation to insure -// only one rounding error. The grs bits are collected in -// the INEX flag for use in A10. -// -// Register usage: -// Input/Output - - fmovel #0,%FPSR //clr INEX - fmovel #rz_mode,%FPCR //set RZ rounding mode - - -// A9. Scale X -> Y. -// The mantissa is scaled to the desired number of significant -// digits. The excess digits are collected in INEX2. If mul, -// Check d2 for excess 10 exponential value. If not zero, -// the iscale value would have caused the pwrten calculation -// to overflow. Only a negative iscale can cause this, so -// multiply by 10^(d2), which is now only allowed to be 24, -// with a multiply by 10^8 and 10^16, which is exact since -// 10^24 is exact. If the input was denormalized, we must -// create a busy stack frame with the mul command and the -// two operands, and allow the fpu to complete the multiply. -// -// Register usage: -// Input/Output -// d0: FPCR with RZ mode/Unchanged -// d2: 0 or 24/unchanged -// d3: x/x -// d4: LEN/Unchanged -// d5: ICTR:LAMBDA -// d6: ILOG/Unchanged -// d7: k-factor/Unchanged -// a0: ptr for original operand/final result -// a1: ptr to PTENRM array/Unchanged -// a2: x/x -// fp0: float(ILOG)/X adjusted for SCALE (Y) -// fp1: 10^ISCALE/Unchanged -// fp2: x/x -// F_SCR1:x/x -// F_SCR2:Abs(X) with $3fff exponent/Unchanged -// L_SCR1:x/x -// L_SCR2:first word of X packed/Unchanged - -A9_str: - fmovex (%a0),%fp0 //load X from memory - fabsx %fp0 //use abs(X) - tstw %d5 //LAMBDA is in lower word of d5 - bne sc_mul //if neg (LAMBDA = 1), scale by mul - fdivx %fp1,%fp0 //calculate X / SCALE -> Y to fp0 - bras A10_st //branch to A10 - -sc_mul: - tstb BINDEC_FLG(%a6) //check for denorm - beqs A9_norm //if norm, continue with mul - fmovemx %fp1-%fp1,-(%a7) //load ETEMP with 10^ISCALE - movel 8(%a0),-(%a7) //load FPTEMP with input arg - movel 4(%a0),-(%a7) - movel (%a0),-(%a7) - movel #18,%d3 //load count for busy stack -A9_loop: - clrl -(%a7) //clear lword on stack - dbf %d3,A9_loop - moveb VER_TMP(%a6),(%a7) //write current version number - moveb #BUSY_SIZE-4,1(%a7) //write current busy size - moveb #0x10,0x44(%a7) //set fcefpte[15] bit - movew #0x0023,0x40(%a7) //load cmdreg1b with mul command - moveb #0xfe,0x8(%a7) //load all 1s to cu savepc - frestore (%a7)+ //restore frame to fpu for completion - fmulx 36(%a1),%fp0 //multiply fp0 by 10^8 - fmulx 48(%a1),%fp0 //multiply fp0 by 10^16 - bras A10_st -A9_norm: - tstw %d2 //test for small exp case - beqs A9_con //if zero, continue as normal - fmulx 36(%a1),%fp0 //multiply fp0 by 10^8 - fmulx 48(%a1),%fp0 //multiply fp0 by 10^16 -A9_con: - fmulx %fp1,%fp0 //calculate X * SCALE -> Y to fp0 - - -// A10. Or in INEX. -// If INEX is set, round error occurred. This is compensated -// for by 'or-ing' in the INEX2 flag to the lsb of Y. -// -// Register usage: -// Input/Output -// d0: FPCR with RZ mode/FPSR with INEX2 isolated -// d2: x/x -// d3: x/x -// d4: LEN/Unchanged -// d5: ICTR:LAMBDA -// d6: ILOG/Unchanged -// d7: k-factor/Unchanged -// a0: ptr for original operand/final result -// a1: ptr to PTENxx array/Unchanged -// a2: x/ptr to FP_SCR2(a6) -// fp0: Y/Y with lsb adjusted -// fp1: 10^ISCALE/Unchanged -// fp2: x/x - -A10_st: - fmovel %FPSR,%d0 //get FPSR - fmovex %fp0,FP_SCR2(%a6) //move Y to memory - leal FP_SCR2(%a6),%a2 //load a2 with ptr to FP_SCR2 - btstl #9,%d0 //check if INEX2 set - beqs A11_st //if clear, skip rest - oril #1,8(%a2) //or in 1 to lsb of mantissa - fmovex FP_SCR2(%a6),%fp0 //write adjusted Y back to fpu - - -// A11. Restore original FPCR; set size ext. -// Perform FINT operation in the user's rounding mode. Keep -// the size to extended. The sintdo entry point in the sint -// routine expects the FPCR value to be in USER_FPCR for -// mode and precision. The original FPCR is saved in L_SCR1. - -A11_st: - movel USER_FPCR(%a6),L_SCR1(%a6) //save it for later - andil #0x00000030,USER_FPCR(%a6) //set size to ext, -// ;block exceptions - - -// A12. Calculate YINT = FINT(Y) according to user's rounding mode. -// The FPSP routine sintd0 is used. The output is in fp0. -// -// Register usage: -// Input/Output -// d0: FPSR with AINEX cleared/FPCR with size set to ext -// d2: x/x/scratch -// d3: x/x -// d4: LEN/Unchanged -// d5: ICTR:LAMBDA/Unchanged -// d6: ILOG/Unchanged -// d7: k-factor/Unchanged -// a0: ptr for original operand/src ptr for sintdo -// a1: ptr to PTENxx array/Unchanged -// a2: ptr to FP_SCR2(a6)/Unchanged -// a6: temp pointer to FP_SCR2(a6) - orig value saved and restored -// fp0: Y/YINT -// fp1: 10^ISCALE/Unchanged -// fp2: x/x -// F_SCR1:x/x -// F_SCR2:Y adjusted for inex/Y with original exponent -// L_SCR1:x/original USER_FPCR -// L_SCR2:first word of X packed/Unchanged - -A12_st: - moveml %d0-%d1/%a0-%a1,-(%a7) //save regs used by sintd0 - movel L_SCR1(%a6),-(%a7) - movel L_SCR2(%a6),-(%a7) - leal FP_SCR2(%a6),%a0 //a0 is ptr to F_SCR2(a6) - fmovex %fp0,(%a0) //move Y to memory at FP_SCR2(a6) - tstl L_SCR2(%a6) //test sign of original operand - bges do_fint //if pos, use Y - orl #0x80000000,(%a0) //if neg, use -Y -do_fint: - movel USER_FPSR(%a6),-(%a7) - bsr sintdo //sint routine returns int in fp0 - moveb (%a7),USER_FPSR(%a6) - addl #4,%a7 - movel (%a7)+,L_SCR2(%a6) - movel (%a7)+,L_SCR1(%a6) - moveml (%a7)+,%d0-%d1/%a0-%a1 //restore regs used by sint - movel L_SCR2(%a6),FP_SCR2(%a6) //restore original exponent - movel L_SCR1(%a6),USER_FPCR(%a6) //restore user's FPCR - - -// A13. Check for LEN digits. -// If the int operation results in more than LEN digits, -// or less than LEN -1 digits, adjust ILOG and repeat from -// A6. This test occurs only on the first pass. If the -// result is exactly 10^LEN, decrement ILOG and divide -// the mantissa by 10. The calculation of 10^LEN cannot -// be inexact, since all powers of ten upto 10^27 are exact -// in extended precision, so the use of a previous power-of-ten -// table will introduce no error. -// -// -// Register usage: -// Input/Output -// d0: FPCR with size set to ext/scratch final = 0 -// d2: x/x -// d3: x/scratch final = x -// d4: LEN/LEN adjusted -// d5: ICTR:LAMBDA/LAMBDA:ICTR -// d6: ILOG/ILOG adjusted -// d7: k-factor/Unchanged -// a0: pointer into memory for packed bcd string formation -// a1: ptr to PTENxx array/Unchanged -// a2: ptr to FP_SCR2(a6)/Unchanged -// fp0: int portion of Y/abs(YINT) adjusted -// fp1: 10^ISCALE/Unchanged -// fp2: x/10^LEN -// F_SCR1:x/x -// F_SCR2:Y with original exponent/Unchanged -// L_SCR1:original USER_FPCR/Unchanged -// L_SCR2:first word of X packed/Unchanged - -A13_st: - swap %d5 //put ICTR in lower word of d5 - tstw %d5 //check if ICTR = 0 - bne not_zr //if non-zero, go to second test -// -// Compute 10^(LEN-1) -// - fmoves FONE,%fp2 //init fp2 to 1.0 - movel %d4,%d0 //put LEN in d0 - subql #1,%d0 //d0 = LEN -1 - clrl %d3 //clr table index -l_loop: - lsrl #1,%d0 //shift next bit into carry - bccs l_next //if zero, skip the mul - fmulx (%a1,%d3),%fp2 //mul by 10**(d3_bit_no) -l_next: - addl #12,%d3 //inc d3 to next pwrten table entry - tstl %d0 //test if LEN is zero - bnes l_loop //if not, loop -// -// 10^LEN-1 is computed for this test and A14. If the input was -// denormalized, check only the case in which YINT > 10^LEN. -// - tstb BINDEC_FLG(%a6) //check if input was norm - beqs A13_con //if norm, continue with checking - fabsx %fp0 //take abs of YINT - bra test_2 -// -// Compare abs(YINT) to 10^(LEN-1) and 10^LEN -// -A13_con: - fabsx %fp0 //take abs of YINT - fcmpx %fp2,%fp0 //compare abs(YINT) with 10^(LEN-1) - fbge test_2 //if greater, do next test - subql #1,%d6 //subtract 1 from ILOG - movew #1,%d5 //set ICTR - fmovel #rm_mode,%FPCR //set rmode to RM - fmuls FTEN,%fp2 //compute 10^LEN - bra A6_str //return to A6 and recompute YINT -test_2: - fmuls FTEN,%fp2 //compute 10^LEN - fcmpx %fp2,%fp0 //compare abs(YINT) with 10^LEN - fblt A14_st //if less, all is ok, go to A14 - fbgt fix_ex //if greater, fix and redo - fdivs FTEN,%fp0 //if equal, divide by 10 - addql #1,%d6 // and inc ILOG - bras A14_st // and continue elsewhere -fix_ex: - addql #1,%d6 //increment ILOG by 1 - movew #1,%d5 //set ICTR - fmovel #rm_mode,%FPCR //set rmode to RM - bra A6_str //return to A6 and recompute YINT -// -// Since ICTR <> 0, we have already been through one adjustment, -// and shouldn't have another; this is to check if abs(YINT) = 10^LEN -// 10^LEN is again computed using whatever table is in a1 since the -// value calculated cannot be inexact. -// -not_zr: - fmoves FONE,%fp2 //init fp2 to 1.0 - movel %d4,%d0 //put LEN in d0 - clrl %d3 //clr table index -z_loop: - lsrl #1,%d0 //shift next bit into carry - bccs z_next //if zero, skip the mul - fmulx (%a1,%d3),%fp2 //mul by 10**(d3_bit_no) -z_next: - addl #12,%d3 //inc d3 to next pwrten table entry - tstl %d0 //test if LEN is zero - bnes z_loop //if not, loop - fabsx %fp0 //get abs(YINT) - fcmpx %fp2,%fp0 //check if abs(YINT) = 10^LEN - fbne A14_st //if not, skip this - fdivs FTEN,%fp0 //divide abs(YINT) by 10 - addql #1,%d6 //and inc ILOG by 1 - addql #1,%d4 // and inc LEN - fmuls FTEN,%fp2 // if LEN++, the get 10^^LEN - - -// A14. Convert the mantissa to bcd. -// The binstr routine is used to convert the LEN digit -// mantissa to bcd in memory. The input to binstr is -// to be a fraction; i.e. (mantissa)/10^LEN and adjusted -// such that the decimal point is to the left of bit 63. -// The bcd digits are stored in the correct position in -// the final string area in memory. -// -// -// Register usage: -// Input/Output -// d0: x/LEN call to binstr - final is 0 -// d1: x/0 -// d2: x/ms 32-bits of mant of abs(YINT) -// d3: x/ls 32-bits of mant of abs(YINT) -// d4: LEN/Unchanged -// d5: ICTR:LAMBDA/LAMBDA:ICTR -// d6: ILOG -// d7: k-factor/Unchanged -// a0: pointer into memory for packed bcd string formation -// /ptr to first mantissa byte in result string -// a1: ptr to PTENxx array/Unchanged -// a2: ptr to FP_SCR2(a6)/Unchanged -// fp0: int portion of Y/abs(YINT) adjusted -// fp1: 10^ISCALE/Unchanged -// fp2: 10^LEN/Unchanged -// F_SCR1:x/Work area for final result -// F_SCR2:Y with original exponent/Unchanged -// L_SCR1:original USER_FPCR/Unchanged -// L_SCR2:first word of X packed/Unchanged - -A14_st: - fmovel #rz_mode,%FPCR //force rz for conversion - fdivx %fp2,%fp0 //divide abs(YINT) by 10^LEN - leal FP_SCR1(%a6),%a0 - fmovex %fp0,(%a0) //move abs(YINT)/10^LEN to memory - movel 4(%a0),%d2 //move 2nd word of FP_RES to d2 - movel 8(%a0),%d3 //move 3rd word of FP_RES to d3 - clrl 4(%a0) //zero word 2 of FP_RES - clrl 8(%a0) //zero word 3 of FP_RES - movel (%a0),%d0 //move exponent to d0 - swap %d0 //put exponent in lower word - beqs no_sft //if zero, don't shift - subil #0x3ffd,%d0 //sub bias less 2 to make fract - tstl %d0 //check if > 1 - bgts no_sft //if so, don't shift - negl %d0 //make exp positive -m_loop: - lsrl #1,%d2 //shift d2:d3 right, add 0s - roxrl #1,%d3 //the number of places - dbf %d0,m_loop //given in d0 -no_sft: - tstl %d2 //check for mantissa of zero - bnes no_zr //if not, go on - tstl %d3 //continue zero check - beqs zer_m //if zero, go directly to binstr -no_zr: - clrl %d1 //put zero in d1 for addx - addil #0x00000080,%d3 //inc at bit 7 - addxl %d1,%d2 //continue inc - andil #0xffffff80,%d3 //strip off lsb not used by 882 -zer_m: - movel %d4,%d0 //put LEN in d0 for binstr call - addql #3,%a0 //a0 points to M16 byte in result - bsr binstr //call binstr to convert mant - - -// A15. Convert the exponent to bcd. -// As in A14 above, the exp is converted to bcd and the -// digits are stored in the final string. -// -// Digits are stored in L_SCR1(a6) on return from BINDEC as: -// -// 32 16 15 0 -// ----------------------------------------- -// | 0 | e3 | e2 | e1 | e4 | X | X | X | -// ----------------------------------------- -// -// And are moved into their proper places in FP_SCR1. If digit e4 -// is non-zero, OPERR is signaled. In all cases, all 4 digits are -// written as specified in the 881/882 manual for packed decimal. -// -// Register usage: -// Input/Output -// d0: x/LEN call to binstr - final is 0 -// d1: x/scratch (0);shift count for final exponent packing -// d2: x/ms 32-bits of exp fraction/scratch -// d3: x/ls 32-bits of exp fraction -// d4: LEN/Unchanged -// d5: ICTR:LAMBDA/LAMBDA:ICTR -// d6: ILOG -// d7: k-factor/Unchanged -// a0: ptr to result string/ptr to L_SCR1(a6) -// a1: ptr to PTENxx array/Unchanged -// a2: ptr to FP_SCR2(a6)/Unchanged -// fp0: abs(YINT) adjusted/float(ILOG) -// fp1: 10^ISCALE/Unchanged -// fp2: 10^LEN/Unchanged -// F_SCR1:Work area for final result/BCD result -// F_SCR2:Y with original exponent/ILOG/10^4 -// L_SCR1:original USER_FPCR/Exponent digits on return from binstr -// L_SCR2:first word of X packed/Unchanged - -A15_st: - tstb BINDEC_FLG(%a6) //check for denorm - beqs not_denorm - ftstx %fp0 //test for zero - fbeq den_zero //if zero, use k-factor or 4933 - fmovel %d6,%fp0 //float ILOG - fabsx %fp0 //get abs of ILOG - bras convrt -den_zero: - tstl %d7 //check sign of the k-factor - blts use_ilog //if negative, use ILOG - fmoves F4933,%fp0 //force exponent to 4933 - bras convrt //do it -use_ilog: - fmovel %d6,%fp0 //float ILOG - fabsx %fp0 //get abs of ILOG - bras convrt -not_denorm: - ftstx %fp0 //test for zero - fbne not_zero //if zero, force exponent - fmoves FONE,%fp0 //force exponent to 1 - bras convrt //do it -not_zero: - fmovel %d6,%fp0 //float ILOG - fabsx %fp0 //get abs of ILOG -convrt: - fdivx 24(%a1),%fp0 //compute ILOG/10^4 - fmovex %fp0,FP_SCR2(%a6) //store fp0 in memory - movel 4(%a2),%d2 //move word 2 to d2 - movel 8(%a2),%d3 //move word 3 to d3 - movew (%a2),%d0 //move exp to d0 - beqs x_loop_fin //if zero, skip the shift - subiw #0x3ffd,%d0 //subtract off bias - negw %d0 //make exp positive -x_loop: - lsrl #1,%d2 //shift d2:d3 right - roxrl #1,%d3 //the number of places - dbf %d0,x_loop //given in d0 -x_loop_fin: - clrl %d1 //put zero in d1 for addx - addil #0x00000080,%d3 //inc at bit 6 - addxl %d1,%d2 //continue inc - andil #0xffffff80,%d3 //strip off lsb not used by 882 - movel #4,%d0 //put 4 in d0 for binstr call - leal L_SCR1(%a6),%a0 //a0 is ptr to L_SCR1 for exp digits - bsr binstr //call binstr to convert exp - movel L_SCR1(%a6),%d0 //load L_SCR1 lword to d0 - movel #12,%d1 //use d1 for shift count - lsrl %d1,%d0 //shift d0 right by 12 - bfins %d0,FP_SCR1(%a6){#4:#12} //put e3:e2:e1 in FP_SCR1 - lsrl %d1,%d0 //shift d0 right by 12 - bfins %d0,FP_SCR1(%a6){#16:#4} //put e4 in FP_SCR1 - tstb %d0 //check if e4 is zero - beqs A16_st //if zero, skip rest - orl #opaop_mask,USER_FPSR(%a6) //set OPERR & AIOP in USER_FPSR - - -// A16. Write sign bits to final string. -// Sigma is bit 31 of initial value; RHO is bit 31 of d6 (ILOG). -// -// Register usage: -// Input/Output -// d0: x/scratch - final is x -// d2: x/x -// d3: x/x -// d4: LEN/Unchanged -// d5: ICTR:LAMBDA/LAMBDA:ICTR -// d6: ILOG/ILOG adjusted -// d7: k-factor/Unchanged -// a0: ptr to L_SCR1(a6)/Unchanged -// a1: ptr to PTENxx array/Unchanged -// a2: ptr to FP_SCR2(a6)/Unchanged -// fp0: float(ILOG)/Unchanged -// fp1: 10^ISCALE/Unchanged -// fp2: 10^LEN/Unchanged -// F_SCR1:BCD result with correct signs -// F_SCR2:ILOG/10^4 -// L_SCR1:Exponent digits on return from binstr -// L_SCR2:first word of X packed/Unchanged - -A16_st: - clrl %d0 //clr d0 for collection of signs - andib #0x0f,FP_SCR1(%a6) //clear first nibble of FP_SCR1 - tstl L_SCR2(%a6) //check sign of original mantissa - bges mant_p //if pos, don't set SM - moveql #2,%d0 //move 2 in to d0 for SM -mant_p: - tstl %d6 //check sign of ILOG - bges wr_sgn //if pos, don't set SE - addql #1,%d0 //set bit 0 in d0 for SE -wr_sgn: - bfins %d0,FP_SCR1(%a6){#0:#2} //insert SM and SE into FP_SCR1 - -// Clean up and restore all registers used. - - fmovel #0,%FPSR //clear possible inex2/ainex bits - fmovemx (%a7)+,%fp0-%fp2 - moveml (%a7)+,%d2-%d7/%a2 - rts - - |end diff --git a/c/src/lib/libcpu/m68k/m68040/fpsp/binstr.S b/c/src/lib/libcpu/m68k/m68040/fpsp/binstr.S deleted file mode 100644 index 0515770e73..0000000000 --- a/c/src/lib/libcpu/m68k/m68040/fpsp/binstr.S +++ /dev/null @@ -1,141 +0,0 @@ -#include "fpsp-namespace.h" -// -// -// binstr.sa 3.3 12/19/90 -// -// Description: Converts a 64-bit binary integer to bcd. -// -// Input: 64-bit binary integer in d2:d3, desired length (LEN) in -// d0, and a pointer to start in memory for bcd characters -// in d0. (This pointer must point to byte 4 of the first -// lword of the packed decimal memory string.) -// -// Output: LEN bcd digits representing the 64-bit integer. -// -// Algorithm: -// The 64-bit binary is assumed to have a decimal point before -// bit 63. The fraction is multiplied by 10 using a mul by 2 -// shift and a mul by 8 shift. The bits shifted out of the -// msb form a decimal digit. This process is iterated until -// LEN digits are formed. -// -// A1. Init d7 to 1. D7 is the byte digit counter, and if 1, the -// digit formed will be assumed the least significant. This is -// to force the first byte formed to have a 0 in the upper 4 bits. -// -// A2. Beginning of the loop: -// Copy the fraction in d2:d3 to d4:d5. -// -// A3. Multiply the fraction in d2:d3 by 8 using bit-field -// extracts and shifts. The three msbs from d2 will go into -// d1. -// -// A4. Multiply the fraction in d4:d5 by 2 using shifts. The msb -// will be collected by the carry. -// -// A5. Add using the carry the 64-bit quantities in d2:d3 and d4:d5 -// into d2:d3. D1 will contain the bcd digit formed. -// -// A6. Test d7. If zero, the digit formed is the ms digit. If non- -// zero, it is the ls digit. Put the digit in its place in the -// upper word of d0. If it is the ls digit, write the word -// from d0 to memory. -// -// A7. Decrement d6 (LEN counter) and repeat the loop until zero. -// -// Implementation Notes: -// -// The registers are used as follows: -// -// d0: LEN counter -// d1: temp used to form the digit -// d2: upper 32-bits of fraction for mul by 8 -// d3: lower 32-bits of fraction for mul by 8 -// d4: upper 32-bits of fraction for mul by 2 -// d5: lower 32-bits of fraction for mul by 2 -// d6: temp for bit-field extracts -// d7: byte digit formation word;digit count {0,1} -// a0: pointer into memory for packed bcd string formation -// - -// Copyright (C) Motorola, Inc. 1990 -// All Rights Reserved -// -// THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA -// The copyright notice above does not evidence any -// actual or intended publication of such source code. - -//BINSTR idnt 2,1 | Motorola 040 Floating Point Software Package - - |section 8 - -#include "fpsp.defs" - - .global binstr -binstr: - moveml %d0-%d7,-(%a7) -// -// A1: Init d7 -// - moveql #1,%d7 //init d7 for second digit - subql #1,%d0 //for dbf d0 would have LEN+1 passes -// -// A2. Copy d2:d3 to d4:d5. Start loop. -// -loop: - movel %d2,%d4 //copy the fraction before muls - movel %d3,%d5 //to d4:d5 -// -// A3. Multiply d2:d3 by 8; extract msbs into d1. -// - bfextu %d2{#0:#3},%d1 //copy 3 msbs of d2 into d1 - asll #3,%d2 //shift d2 left by 3 places - bfextu %d3{#0:#3},%d6 //copy 3 msbs of d3 into d6 - asll #3,%d3 //shift d3 left by 3 places - orl %d6,%d2 //or in msbs from d3 into d2 -// -// A4. Multiply d4:d5 by 2; add carry out to d1. -// - asll #1,%d5 //mul d5 by 2 - roxll #1,%d4 //mul d4 by 2 - swap %d6 //put 0 in d6 lower word - addxw %d6,%d1 //add in extend from mul by 2 -// -// A5. Add mul by 8 to mul by 2. D1 contains the digit formed. -// - addl %d5,%d3 //add lower 32 bits - nop //ERRATA ; FIX #13 (Rev. 1.2 6/6/90) - addxl %d4,%d2 //add with extend upper 32 bits - nop //ERRATA ; FIX #13 (Rev. 1.2 6/6/90) - addxw %d6,%d1 //add in extend from add to d1 - swap %d6 //with d6 = 0; put 0 in upper word -// -// A6. Test d7 and branch. -// - tstw %d7 //if zero, store digit & to loop - beqs first_d //if non-zero, form byte & write -sec_d: - swap %d7 //bring first digit to word d7b - aslw #4,%d7 //first digit in upper 4 bits d7b - addw %d1,%d7 //add in ls digit to d7b - moveb %d7,(%a0)+ //store d7b byte in memory - swap %d7 //put LEN counter in word d7a - clrw %d7 //set d7a to signal no digits done - dbf %d0,loop //do loop some more! - bras end_bstr //finished, so exit -first_d: - swap %d7 //put digit word in d7b - movew %d1,%d7 //put new digit in d7b - swap %d7 //put LEN counter in word d7a - addqw #1,%d7 //set d7a to signal first digit done - dbf %d0,loop //do loop some more! - swap %d7 //put last digit in string - lslw #4,%d7 //move it to upper 4 bits - moveb %d7,(%a0)+ //store it in memory string -// -// Clean up and return with result in fp0. -// -end_bstr: - moveml (%a7)+,%d0-%d7 - rts - |end diff --git a/c/src/lib/libcpu/m68k/m68040/fpsp/bugfix.S b/c/src/lib/libcpu/m68k/m68040/fpsp/bugfix.S deleted file mode 100644 index 9525f89369..0000000000 --- a/c/src/lib/libcpu/m68k/m68040/fpsp/bugfix.S +++ /dev/null @@ -1,497 +0,0 @@ -#include "fpsp-namespace.h" -// -// -// bugfix.sa 3.2 1/31/91 -// -// This file contains workarounds for bugs in the 040 -// relating to the Floating-Point Software Package (FPSP) -// -// Fixes for bugs: 1238 -// -// Bug: 1238 -// -// -// /* The following dirty_bit clear should be left in -// * the handler permanently to improve throughput. -// * The dirty_bits are located at bits [23:16] in -// * longword $08 in the busy frame $4x60. Bit 16 -// * corresponds to FP0, bit 17 corresponds to FP1, -// * and so on. -// */ -// if (E3_exception_just_serviced) { -// dirty_bit[cmdreg3b[9:7]] = 0; -// } -// -// if (fsave_format_version != $40) {goto NOFIX} -// -// if !(E3_exception_just_serviced) {goto NOFIX} -// if (cupc == 0000000) {goto NOFIX} -// if ((cmdreg1b[15:13] != 000) && -// (cmdreg1b[15:10] != 010001)) {goto NOFIX} -// if (((cmdreg1b[15:13] != 000) || ((cmdreg1b[12:10] != cmdreg2b[9:7]) && -// (cmdreg1b[12:10] != cmdreg3b[9:7])) ) && -// ((cmdreg1b[ 9: 7] != cmdreg2b[9:7]) && -// (cmdreg1b[ 9: 7] != cmdreg3b[9:7])) ) {goto NOFIX} -// -// /* Note: for 6d43b or 8d43b, you may want to add the following code -// * to get better coverage. (If you do not insert this code, the part -// * won't lock up; it will simply get the wrong answer.) -// * Do NOT insert this code for 10d43b or later parts. -// * -// * if (fpiarcu == integer stack return address) { -// * cupc = 0000000; -// * goto NOFIX; -// * } -// */ -// -// if (cmdreg1b[15:13] != 000) {goto FIX_OPCLASS2} -// FIX_OPCLASS0: -// if (((cmdreg1b[12:10] == cmdreg2b[9:7]) || -// (cmdreg1b[ 9: 7] == cmdreg2b[9:7])) && -// (cmdreg1b[12:10] != cmdreg3b[9:7]) && -// (cmdreg1b[ 9: 7] != cmdreg3b[9:7])) { /* xu conflict only */ -// /* We execute the following code if there is an -// xu conflict and NOT an nu conflict */ -// -// /* first save some values on the fsave frame */ -// stag_temp = STAG[fsave_frame]; -// cmdreg1b_temp = CMDREG1B[fsave_frame]; -// dtag_temp = DTAG[fsave_frame]; -// ete15_temp = ETE15[fsave_frame]; -// -// CUPC[fsave_frame] = 0000000; -// FRESTORE -// FSAVE -// -// /* If the xu instruction is exceptional, we punt. -// * Otherwise, we would have to include OVFL/UNFL handler -// * code here to get the correct answer. -// */ -// if (fsave_frame_format == $4060) {goto KILL_PROCESS} -// -// fsave_frame = /* build a long frame of all zeros */ -// fsave_frame_format = $4060; /* label it as long frame */ -// -// /* load it with the temps we saved */ -// STAG[fsave_frame] = stag_temp; -// CMDREG1B[fsave_frame] = cmdreg1b_temp; -// DTAG[fsave_frame] = dtag_temp; -// ETE15[fsave_frame] = ete15_temp; -// -// /* Make sure that the cmdreg3b dest reg is not going to -// * be destroyed by a FMOVEM at the end of all this code. -// * If it is, you should move the current value of the reg -// * onto the stack so that the reg will loaded with that value. -// */ -// -// /* All done. Proceed with the code below */ -// } -// -// etemp = FP_reg_[cmdreg1b[12:10]]; -// ete15 = ~ete14; -// cmdreg1b[15:10] = 010010; -// clear(bug_flag_procIDxxxx); -// FRESTORE and return; -// -// -// FIX_OPCLASS2: -// if ((cmdreg1b[9:7] == cmdreg2b[9:7]) && -// (cmdreg1b[9:7] != cmdreg3b[9:7])) { /* xu conflict only */ -// /* We execute the following code if there is an -// xu conflict and NOT an nu conflict */ -// -// /* first save some values on the fsave frame */ -// stag_temp = STAG[fsave_frame]; -// cmdreg1b_temp = CMDREG1B[fsave_frame]; -// dtag_temp = DTAG[fsave_frame]; -// ete15_temp = ETE15[fsave_frame]; -// etemp_temp = ETEMP[fsave_frame]; -// -// CUPC[fsave_frame] = 0000000; -// FRESTORE -// FSAVE -// -// -// /* If the xu instruction is exceptional, we punt. -// * Otherwise, we would have to include OVFL/UNFL handler -// * code here to get the correct answer. -// */ -// if (fsave_frame_format == $4060) {goto KILL_PROCESS} -// -// fsave_frame = /* build a long frame of all zeros */ -// fsave_frame_format = $4060; /* label it as long frame */ -// -// /* load it with the temps we saved */ -// STAG[fsave_frame] = stag_temp; -// CMDREG1B[fsave_frame] = cmdreg1b_temp; -// DTAG[fsave_frame] = dtag_temp; -// ETE15[fsave_frame] = ete15_temp; -// ETEMP[fsave_frame] = etemp_temp; -// -// /* Make sure that the cmdreg3b dest reg is not going to -// * be destroyed by a FMOVEM at the end of all this code. -// * If it is, you should move the current value of the reg -// * onto the stack so that the reg will loaded with that value. -// */ -// -// /* All done. Proceed with the code below */ -// } -// -// if (etemp_exponent == min_sgl) etemp_exponent = min_dbl; -// if (etemp_exponent == max_sgl) etemp_exponent = max_dbl; -// cmdreg1b[15:10] = 010101; -// clear(bug_flag_procIDxxxx); -// FRESTORE and return; -// -// -// NOFIX: -// clear(bug_flag_procIDxxxx); -// FRESTORE and return; -// - - -// Copyright (C) Motorola, Inc. 1990 -// All Rights Reserved -// -// THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA -// The copyright notice above does not evidence any -// actual or intended publication of such source code. - -//BUGFIX idnt 2,1 | Motorola 040 Floating Point Software Package - - |section 8 - -#include "fpsp.defs" - - |xref fpsp_fmt_error - - .global b1238_fix -b1238_fix: -// -// This code is entered only on completion of the handling of an -// nu-generated ovfl, unfl, or inex exception. If the version -// number of the fsave is not $40, this handler is not necessary. -// Simply branch to fix_done and exit normally. -// - cmpib #VER_40,4(%a7) - bne fix_done -// -// Test for cu_savepc equal to zero. If not, this is not a bug -// #1238 case. -// - moveb CU_SAVEPC(%a6),%d0 - andib #0xFE,%d0 - beq fix_done //if zero, this is not bug #1238 - -// -// Test the register conflict aspect. If opclass0, check for -// cu src equal to xu dest or equal to nu dest. If so, go to -// op0. Else, or if opclass2, check for cu dest equal to -// xu dest or equal to nu dest. If so, go to tst_opcl. Else, -// exit, it is not the bug case. -// -// Check for opclass 0. If not, go and check for opclass 2 and sgl. -// - movew CMDREG1B(%a6),%d0 - andiw #0xE000,%d0 //strip all but opclass - bne op2sgl //not opclass 0, check op2 -// -// Check for cu and nu register conflict. If one exists, this takes -// priority over a cu and xu conflict. -// - bfextu CMDREG1B(%a6){#3:#3},%d0 //get 1st src - bfextu CMDREG3B(%a6){#6:#3},%d1 //get 3rd dest - cmpb %d0,%d1 - beqs op0 //if equal, continue bugfix -// -// Check for cu dest equal to nu dest. If so, go and fix the -// bug condition. Otherwise, exit. -// - bfextu CMDREG1B(%a6){#6:#3},%d0 //get 1st dest - cmpb %d0,%d1 //cmp 1st dest with 3rd dest - beqs op0 //if equal, continue bugfix -// -// Check for cu and xu register conflict. -// - bfextu CMDREG2B(%a6){#6:#3},%d1 //get 2nd dest - cmpb %d0,%d1 //cmp 1st dest with 2nd dest - beqs op0_xu //if equal, continue bugfix - bfextu CMDREG1B(%a6){#3:#3},%d0 //get 1st src - cmpb %d0,%d1 //cmp 1st src with 2nd dest - beq op0_xu - bne fix_done //if the reg checks fail, exit -// -// We have the opclass 0 situation. -// -op0: - bfextu CMDREG1B(%a6){#3:#3},%d0 //get source register no - movel #7,%d1 - subl %d0,%d1 - clrl %d0 - bsetl %d1,%d0 - fmovemx %d0,ETEMP(%a6) //load source to ETEMP - - moveb #0x12,%d0 - bfins %d0,CMDREG1B(%a6){#0:#6} //opclass 2, extended -// -// Set ETEMP exponent bit 15 as the opposite of ete14 -// - btst #6,ETEMP_EX(%a6) //check etemp exponent bit 14 - beq setete15 - bclr #etemp15_bit,STAG(%a6) - bra finish -setete15: - bset #etemp15_bit,STAG(%a6) - bra finish - -// -// We have the case in which a conflict exists between the cu src or -// dest and the dest of the xu. We must clear the instruction in -// the cu and restore the state, allowing the instruction in the -// xu to complete. Remember, the instruction in the nu -// was exceptional, and was completed by the appropriate handler. -// If the result of the xu instruction is not exceptional, we can -// restore the instruction from the cu to the frame and continue -// processing the original exception. If the result is also -// exceptional, we choose to kill the process. -// -// Items saved from the stack: -// -// $3c stag - L_SCR1 -// $40 cmdreg1b - L_SCR2 -// $44 dtag - L_SCR3 -// -// The cu savepc is set to zero, and the frame is restored to the -// fpu. -// -op0_xu: - movel STAG(%a6),L_SCR1(%a6) - movel CMDREG1B(%a6),L_SCR2(%a6) - movel DTAG(%a6),L_SCR3(%a6) - andil #0xe0000000,L_SCR3(%a6) - moveb #0,CU_SAVEPC(%a6) - movel (%a7)+,%d1 //save return address from bsr - frestore (%a7)+ - fsave -(%a7) -// -// Check if the instruction which just completed was exceptional. -// - cmpw #0x4060,(%a7) - beq op0_xb -// -// It is necessary to isolate the result of the instruction in the -// xu if it is to fp0 - fp3 and write that value to the USER_FPn -// locations on the stack. The correct destination register is in -// cmdreg2b. -// - bfextu CMDREG2B(%a6){#6:#3},%d0 //get dest register no - cmpil #3,%d0 - bgts op0_xi - beqs op0_fp3 - cmpil #1,%d0 - blts op0_fp0 - beqs op0_fp1 -op0_fp2: - fmovemx %fp2-%fp2,USER_FP2(%a6) - bras op0_xi -op0_fp1: - fmovemx %fp1-%fp1,USER_FP1(%a6) - bras op0_xi -op0_fp0: - fmovemx %fp0-%fp0,USER_FP0(%a6) - bras op0_xi -op0_fp3: - fmovemx %fp3-%fp3,USER_FP3(%a6) -// -// The frame returned is idle. We must build a busy frame to hold -// the cu state information and setup etemp. -// -op0_xi: - movel #22,%d0 //clear 23 lwords - clrl (%a7) -op0_loop: - clrl -(%a7) - dbf %d0,op0_loop - movel #0x40600000,-(%a7) - movel L_SCR1(%a6),STAG(%a6) - movel L_SCR2(%a6),CMDREG1B(%a6) - movel L_SCR3(%a6),DTAG(%a6) - moveb #0x6,CU_SAVEPC(%a6) - movel %d1,-(%a7) //return bsr return address - bfextu CMDREG1B(%a6){#3:#3},%d0 //get source register no - movel #7,%d1 - subl %d0,%d1 - clrl %d0 - bsetl %d1,%d0 - fmovemx %d0,ETEMP(%a6) //load source to ETEMP - - moveb #0x12,%d0 - bfins %d0,CMDREG1B(%a6){#0:#6} //opclass 2, extended -// -// Set ETEMP exponent bit 15 as the opposite of ete14 -// - btst #6,ETEMP_EX(%a6) //check etemp exponent bit 14 - beq op0_sete15 - bclr #etemp15_bit,STAG(%a6) - bra finish -op0_sete15: - bset #etemp15_bit,STAG(%a6) - bra finish - -// -// The frame returned is busy. It is not possible to reconstruct -// the code sequence to allow completion. We will jump to -// fpsp_fmt_error and allow the kernel to kill the process. -// -op0_xb: - jmp fpsp_fmt_error - -// -// Check for opclass 2 and single size. If not both, exit. -// -op2sgl: - movew CMDREG1B(%a6),%d0 - andiw #0xFC00,%d0 //strip all but opclass and size - cmpiw #0x4400,%d0 //test for opclass 2 and size=sgl - bne fix_done //if not, it is not bug 1238 -// -// Check for cu dest equal to nu dest or equal to xu dest, with -// a cu and nu conflict taking priority an nu conflict. If either, -// go and fix the bug condition. Otherwise, exit. -// - bfextu CMDREG1B(%a6){#6:#3},%d0 //get 1st dest - bfextu CMDREG3B(%a6){#6:#3},%d1 //get 3rd dest - cmpb %d0,%d1 //cmp 1st dest with 3rd dest - beq op2_com //if equal, continue bugfix - bfextu CMDREG2B(%a6){#6:#3},%d1 //get 2nd dest - cmpb %d0,%d1 //cmp 1st dest with 2nd dest - bne fix_done //if the reg checks fail, exit -// -// We have the case in which a conflict exists between the cu src or -// dest and the dest of the xu. We must clear the instruction in -// the cu and restore the state, allowing the instruction in the -// xu to complete. Remember, the instruction in the nu -// was exceptional, and was completed by the appropriate handler. -// If the result of the xu instruction is not exceptional, we can -// restore the instruction from the cu to the frame and continue -// processing the original exception. If the result is also -// exceptional, we choose to kill the process. -// -// Items saved from the stack: -// -// $3c stag - L_SCR1 -// $40 cmdreg1b - L_SCR2 -// $44 dtag - L_SCR3 -// etemp - FP_SCR2 -// -// The cu savepc is set to zero, and the frame is restored to the -// fpu. -// -op2_xu: - movel STAG(%a6),L_SCR1(%a6) - movel CMDREG1B(%a6),L_SCR2(%a6) - movel DTAG(%a6),L_SCR3(%a6) - andil #0xe0000000,L_SCR3(%a6) - moveb #0,CU_SAVEPC(%a6) - movel ETEMP(%a6),FP_SCR2(%a6) - movel ETEMP_HI(%a6),FP_SCR2+4(%a6) - movel ETEMP_LO(%a6),FP_SCR2+8(%a6) - movel (%a7)+,%d1 //save return address from bsr - frestore (%a7)+ - fsave -(%a7) -// -// Check if the instruction which just completed was exceptional. -// - cmpw #0x4060,(%a7) - beq op2_xb -// -// It is necessary to isolate the result of the instruction in the -// xu if it is to fp0 - fp3 and write that value to the USER_FPn -// locations on the stack. The correct destination register is in -// cmdreg2b. -// - bfextu CMDREG2B(%a6){#6:#3},%d0 //get dest register no - cmpil #3,%d0 - bgts op2_xi - beqs op2_fp3 - cmpil #1,%d0 - blts op2_fp0 - beqs op2_fp1 -op2_fp2: - fmovemx %fp2-%fp2,USER_FP2(%a6) - bras op2_xi -op2_fp1: - fmovemx %fp1-%fp1,USER_FP1(%a6) - bras op2_xi -op2_fp0: - fmovemx %fp0-%fp0,USER_FP0(%a6) - bras op2_xi -op2_fp3: - fmovemx %fp3-%fp3,USER_FP3(%a6) -// -// The frame returned is idle. We must build a busy frame to hold -// the cu state information and fix up etemp. -// -op2_xi: - movel #22,%d0 //clear 23 lwords - clrl (%a7) -op2_loop: - clrl -(%a7) - dbf %d0,op2_loop - movel #0x40600000,-(%a7) - movel L_SCR1(%a6),STAG(%a6) - movel L_SCR2(%a6),CMDREG1B(%a6) - movel L_SCR3(%a6),DTAG(%a6) - moveb #0x6,CU_SAVEPC(%a6) - movel FP_SCR2(%a6),ETEMP(%a6) - movel FP_SCR2+4(%a6),ETEMP_HI(%a6) - movel FP_SCR2+8(%a6),ETEMP_LO(%a6) - movel %d1,-(%a7) - bra op2_com - -// -// We have the opclass 2 single source situation. -// -op2_com: - moveb #0x15,%d0 - bfins %d0,CMDREG1B(%a6){#0:#6} //opclass 2, double - - cmpw #0x407F,ETEMP_EX(%a6) //single +max - bnes case2 - movew #0x43FF,ETEMP_EX(%a6) //to double +max - bra finish -case2: - cmpw #0xC07F,ETEMP_EX(%a6) //single -max - bnes case3 - movew #0xC3FF,ETEMP_EX(%a6) //to double -max - bra finish -case3: - cmpw #0x3F80,ETEMP_EX(%a6) //single +min - bnes case4 - movew #0x3C00,ETEMP_EX(%a6) //to double +min - bra finish -case4: - cmpw #0xBF80,ETEMP_EX(%a6) //single -min - bne fix_done - movew #0xBC00,ETEMP_EX(%a6) //to double -min - bra finish -// -// The frame returned is busy. It is not possible to reconstruct -// the code sequence to allow completion. fpsp_fmt_error causes -// an fline illegal instruction to be executed. -// -// You should replace the jump to fpsp_fmt_error with a jump -// to the entry point used to kill a process. -// -op2_xb: - jmp fpsp_fmt_error - -// -// Enter here if the case is not of the situations affected by -// bug #1238, or if the fix is completed, and exit. -// -finish: -fix_done: - rts - - |end diff --git a/c/src/lib/libcpu/m68k/m68040/fpsp/decbin.S b/c/src/lib/libcpu/m68k/m68040/fpsp/decbin.S deleted file mode 100644 index afa5cf6903..0000000000 --- a/c/src/lib/libcpu/m68k/m68040/fpsp/decbin.S +++ /dev/null @@ -1,508 +0,0 @@ -#include "fpsp-namespace.h" -// -// -// decbin.sa 3.3 12/19/90 -// -// Description: Converts normalized packed bcd value pointed to by -// register A6 to extended-precision value in FP0. -// -// Input: Normalized packed bcd value in ETEMP(a6). -// -// Output: Exact floating-point representation of the packed bcd value. -// -// Saves and Modifies: D2-D5 -// -// Speed: The program decbin takes ??? cycles to execute. -// -// Object Size: -// -// External Reference(s): None. -// -// Algorithm: -// Expected is a normal bcd (i.e. non-exceptional; all inf, zero, -// and NaN operands are dispatched without entering this routine) -// value in 68881/882 format at location ETEMP(A6). -// -// A1. Convert the bcd exponent to binary by successive adds and muls. -// Set the sign according to SE. Subtract 16 to compensate -// for the mantissa which is to be interpreted as 17 integer -// digits, rather than 1 integer and 16 fraction digits. -// Note: this operation can never overflow. -// -// A2. Convert the bcd mantissa to binary by successive -// adds and muls in FP0. Set the sign according to SM. -// The mantissa digits will be converted with the decimal point -// assumed following the least-significant digit. -// Note: this operation can never overflow. -// -// A3. Count the number of leading/trailing zeros in the -// bcd string. If SE is positive, count the leading zeros; -// if negative, count the trailing zeros. Set the adjusted -// exponent equal to the exponent from A1 and the zero count -// added if SM = 1 and subtracted if SM = 0. Scale the -// mantissa the equivalent of forcing in the bcd value: -// -// SM = 0 a non-zero digit in the integer position -// SM = 1 a non-zero digit in Mant0, lsd of the fraction -// -// this will insure that any value, regardless of its -// representation (ex. 0.1E2, 1E1, 10E0, 100E-1), is converted -// consistently. -// -// A4. Calculate the factor 10^exp in FP1 using a table of -// 10^(2^n) values. To reduce the error in forming factors -// greater than 10^27, a directed rounding scheme is used with -// tables rounded to RN, RM, and RP, according to the table -// in the comments of the pwrten section. -// -// A5. Form the final binary number by scaling the mantissa by -// the exponent factor. This is done by multiplying the -// mantissa in FP0 by the factor in FP1 if the adjusted -// exponent sign is positive, and dividing FP0 by FP1 if -// it is negative. -// -// Clean up and return. Check if the final mul or div resulted -// in an inex2 exception. If so, set inex1 in the fpsr and -// check if the inex1 exception is enabled. If so, set d7 upper -// word to $0100. This will signal unimp.sa that an enabled inex1 -// exception occurred. Unimp will fix the stack. -// - -// Copyright (C) Motorola, Inc. 1990 -// All Rights Reserved -// -// THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA -// The copyright notice above does not evidence any -// actual or intended publication of such source code. - -//DECBIN idnt 2,1 | Motorola 040 Floating Point Software Package - - |section 8 - -#include "fpsp.defs" - -// -// PTENRN, PTENRM, and PTENRP are arrays of powers of 10 rounded -// to nearest, minus, and plus, respectively. The tables include -// 10**{1,2,4,8,16,32,64,128,256,512,1024,2048,4096}. No rounding -// is required until the power is greater than 27, however, all -// tables include the first 5 for ease of indexing. -// - |xref PTENRN - |xref PTENRM - |xref PTENRP - -RTABLE: .byte 0,0,0,0 - .byte 2,3,2,3 - .byte 2,3,3,2 - .byte 3,2,2,3 - - .global decbin - .global calc_e - .global pwrten - .global calc_m - .global norm - .global ap_st_z - .global ap_st_n -// - .set FNIBS,7 - .set FSTRT,0 -// - .set ESTRT,4 - .set EDIGITS,2 // -// -// Constants in single precision -FZERO: .long 0x00000000 -FONE: .long 0x3F800000 -FTEN: .long 0x41200000 - - .set TEN,10 - -// -decbin: - | fmovel #0,FPCR ;clr real fpcr - moveml %d2-%d5,-(%a7) -// -// Calculate exponent: -// 1. Copy bcd value in memory for use as a working copy. -// 2. Calculate absolute value of exponent in d1 by mul and add. -// 3. Correct for exponent sign. -// 4. Subtract 16 to compensate for interpreting the mant as all integer digits. -// (i.e., all digits assumed left of the decimal point.) -// -// Register usage: -// -// calc_e: -// (*) d0: temp digit storage -// (*) d1: accumulator for binary exponent -// (*) d2: digit count -// (*) d3: offset pointer -// ( ) d4: first word of bcd -// ( ) a0: pointer to working bcd value -// ( ) a6: pointer to original bcd value -// (*) FP_SCR1: working copy of original bcd value -// (*) L_SCR1: copy of original exponent word -// -calc_e: - movel #EDIGITS,%d2 //# of nibbles (digits) in fraction part - moveql #ESTRT,%d3 //counter to pick up digits - leal FP_SCR1(%a6),%a0 //load tmp bcd storage address - movel ETEMP(%a6),(%a0) //save input bcd value - movel ETEMP_HI(%a6),4(%a0) //save words 2 and 3 - movel ETEMP_LO(%a6),8(%a0) //and work with these - movel (%a0),%d4 //get first word of bcd - clrl %d1 //zero d1 for accumulator -e_gd: - mulul #TEN,%d1 //mul partial product by one digit place - bfextu %d4{%d3:#4},%d0 //get the digit and zero extend into d0 - addl %d0,%d1 //d1 = d1 + d0 - addqb #4,%d3 //advance d3 to the next digit - dbf %d2,e_gd //if we have used all 3 digits, exit loop - btst #30,%d4 //get SE - beqs e_pos //don't negate if pos - negl %d1 //negate before subtracting -e_pos: - subl #16,%d1 //sub to compensate for shift of mant - bges e_save //if still pos, do not neg - negl %d1 //now negative, make pos and set SE - orl #0x40000000,%d4 //set SE in d4, - orl #0x40000000,(%a0) //and in working bcd -e_save: - movel %d1,L_SCR1(%a6) //save exp in memory -// -// -// Calculate mantissa: -// 1. Calculate absolute value of mantissa in fp0 by mul and add. -// 2. Correct for mantissa sign. -// (i.e., all digits assumed left of the decimal point.) -// -// Register usage: -// -// calc_m: -// (*) d0: temp digit storage -// (*) d1: lword counter -// (*) d2: digit count -// (*) d3: offset pointer -// ( ) d4: words 2 and 3 of bcd -// ( ) a0: pointer to working bcd value -// ( ) a6: pointer to original bcd value -// (*) fp0: mantissa accumulator -// ( ) FP_SCR1: working copy of original bcd value -// ( ) L_SCR1: copy of original exponent word -// -calc_m: - moveql #1,%d1 //word counter, init to 1 - fmoves FZERO,%fp0 //accumulator -// -// -// Since the packed number has a long word between the first & second parts, -// get the integer digit then skip down & get the rest of the -// mantissa. We will unroll the loop once. -// - bfextu (%a0){#28:#4},%d0 //integer part is ls digit in long word - faddb %d0,%fp0 //add digit to sum in fp0 -// -// -// Get the rest of the mantissa. -// -loadlw: - movel (%a0,%d1.L*4),%d4 //load mantissa longword into d4 - moveql #FSTRT,%d3 //counter to pick up digits - moveql #FNIBS,%d2 //reset number of digits per a0 ptr -md2b: - fmuls FTEN,%fp0 //fp0 = fp0 * 10 - bfextu %d4{%d3:#4},%d0 //get the digit and zero extend - faddb %d0,%fp0 //fp0 = fp0 + digit -// -// -// If all the digits (8) in that long word have been converted (d2=0), -// then inc d1 (=2) to point to the next long word and reset d3 to 0 -// to initialize the digit offset, and set d2 to 7 for the digit count; -// else continue with this long word. -// - addqb #4,%d3 //advance d3 to the next digit - dbf %d2,md2b //check for last digit in this lw -nextlw: - addql #1,%d1 //inc lw pointer in mantissa - cmpl #2,%d1 //test for last lw - ble loadlw //if not, get last one - -// -// Check the sign of the mant and make the value in fp0 the same sign. -// -m_sign: - btst #31,(%a0) //test sign of the mantissa - beq ap_st_z //if clear, go to append/strip zeros - fnegx %fp0 //if set, negate fp0 - -// -// Append/strip zeros: -// -// For adjusted exponents which have an absolute value greater than 27*, -// this routine calculates the amount needed to normalize the mantissa -// for the adjusted exponent. That number is subtracted from the exp -// if the exp was positive, and added if it was negative. The purpose -// of this is to reduce the value of the exponent and the possibility -// of error in calculation of pwrten. -// -// 1. Branch on the sign of the adjusted exponent. -// 2p.(positive exp) -// 2. Check M16 and the digits in lwords 2 and 3 in descending order. -// 3. Add one for each zero encountered until a non-zero digit. -// 4. Subtract the count from the exp. -// 5. Check if the exp has crossed zero in #3 above; make the exp abs -// and set SE. -// 6. Multiply the mantissa by 10**count. -// 2n.(negative exp) -// 2. Check the digits in lwords 3 and 2 in descending order. -// 3. Add one for each zero encountered until a non-zero digit. -// 4. Add the count to the exp. -// 5. Check if the exp has crossed zero in #3 above; clear SE. -// 6. Divide the mantissa by 10**count. -// -// *Why 27? If the adjusted exponent is within -28 < expA < 28, than -// any adjustment due to append/strip zeros will drive the resultant -// exponent towards zero. Since all pwrten constants with a power -// of 27 or less are exact, there is no need to use this routine to -// attempt to lessen the resultant exponent. -// -// Register usage: -// -// ap_st_z: -// (*) d0: temp digit storage -// (*) d1: zero count -// (*) d2: digit count -// (*) d3: offset pointer -// ( ) d4: first word of bcd -// (*) d5: lword counter -// ( ) a0: pointer to working bcd value -// ( ) FP_SCR1: working copy of original bcd value -// ( ) L_SCR1: copy of original exponent word -// -// -// First check the absolute value of the exponent to see if this -// routine is necessary. If so, then check the sign of the exponent -// and do append (+) or strip (-) zeros accordingly. -// This section handles a positive adjusted exponent. -// -ap_st_z: - movel L_SCR1(%a6),%d1 //load expA for range test - cmpl #27,%d1 //test is with 27 - ble pwrten //if abs(expA) <28, skip ap/st zeros - btst #30,(%a0) //check sign of exp - bne ap_st_n //if neg, go to neg side - clrl %d1 //zero count reg - movel (%a0),%d4 //load lword 1 to d4 - bfextu %d4{#28:#4},%d0 //get M16 in d0 - bnes ap_p_fx //if M16 is non-zero, go fix exp - addql #1,%d1 //inc zero count - moveql #1,%d5 //init lword counter - movel (%a0,%d5.L*4),%d4 //get lword 2 to d4 - bnes ap_p_cl //if lw 2 is zero, skip it - addql #8,%d1 //and inc count by 8 - addql #1,%d5 //inc lword counter - movel (%a0,%d5.L*4),%d4 //get lword 3 to d4 -ap_p_cl: - clrl %d3 //init offset reg - moveql #7,%d2 //init digit counter -ap_p_gd: - bfextu %d4{%d3:#4},%d0 //get digit - bnes ap_p_fx //if non-zero, go to fix exp - addql #4,%d3 //point to next digit - addql #1,%d1 //inc digit counter - dbf %d2,ap_p_gd //get next digit -ap_p_fx: - movel %d1,%d0 //copy counter to d2 - movel L_SCR1(%a6),%d1 //get adjusted exp from memory - subl %d0,%d1 //subtract count from exp - bges ap_p_fm //if still pos, go to pwrten - negl %d1 //now its neg; get abs - movel (%a0),%d4 //load lword 1 to d4 - orl #0x40000000,%d4 // and set SE in d4 - orl #0x40000000,(%a0) // and in memory -// -// Calculate the mantissa multiplier to compensate for the striping of -// zeros from the mantissa. -// -ap_p_fm: - movel #PTENRN,%a1 //get address of power-of-ten table - clrl %d3 //init table index - fmoves FONE,%fp1 //init fp1 to 1 - moveql #3,%d2 //init d2 to count bits in counter -ap_p_el: - asrl #1,%d0 //shift lsb into carry - bccs ap_p_en //if 1, mul fp1 by pwrten factor - fmulx (%a1,%d3),%fp1 //mul by 10**(d3_bit_no) -ap_p_en: - addl #12,%d3 //inc d3 to next rtable entry - tstl %d0 //check if d0 is zero - bnes ap_p_el //if not, get next bit - fmulx %fp1,%fp0 //mul mantissa by 10**(no_bits_shifted) - bra pwrten //go calc pwrten -// -// This section handles a negative adjusted exponent. -// -ap_st_n: - clrl %d1 //clr counter - moveql #2,%d5 //set up d5 to point to lword 3 - movel (%a0,%d5.L*4),%d4 //get lword 3 - bnes ap_n_cl //if not zero, check digits - subl #1,%d5 //dec d5 to point to lword 2 - addql #8,%d1 //inc counter by 8 - movel (%a0,%d5.L*4),%d4 //get lword 2 -ap_n_cl: - movel #28,%d3 //point to last digit - moveql #7,%d2 //init digit counter -ap_n_gd: - bfextu %d4{%d3:#4},%d0 //get digit - bnes ap_n_fx //if non-zero, go to exp fix - subql #4,%d3 //point to previous digit - addql #1,%d1 //inc digit counter - dbf %d2,ap_n_gd //get next digit -ap_n_fx: - movel %d1,%d0 //copy counter to d0 - movel L_SCR1(%a6),%d1 //get adjusted exp from memory - subl %d0,%d1 //subtract count from exp - bgts ap_n_fm //if still pos, go fix mantissa - negl %d1 //take abs of exp and clr SE - movel (%a0),%d4 //load lword 1 to d4 - andl #0xbfffffff,%d4 // and clr SE in d4 - andl #0xbfffffff,(%a0) // and in memory -// -// Calculate the mantissa multiplier to compensate for the appending of -// zeros to the mantissa. -// -ap_n_fm: - movel #PTENRN,%a1 //get address of power-of-ten table - clrl %d3 //init table index - fmoves FONE,%fp1 //init fp1 to 1 - moveql #3,%d2 //init d2 to count bits in counter -ap_n_el: - asrl #1,%d0 //shift lsb into carry - bccs ap_n_en //if 1, mul fp1 by pwrten factor - fmulx (%a1,%d3),%fp1 //mul by 10**(d3_bit_no) -ap_n_en: - addl #12,%d3 //inc d3 to next rtable entry - tstl %d0 //check if d0 is zero - bnes ap_n_el //if not, get next bit - fdivx %fp1,%fp0 //div mantissa by 10**(no_bits_shifted) -// -// -// Calculate power-of-ten factor from adjusted and shifted exponent. -// -// Register usage: -// -// pwrten: -// (*) d0: temp -// ( ) d1: exponent -// (*) d2: {FPCR[6:5],SM,SE} as index in RTABLE; temp -// (*) d3: FPCR work copy -// ( ) d4: first word of bcd -// (*) a1: RTABLE pointer -// calc_p: -// (*) d0: temp -// ( ) d1: exponent -// (*) d3: PWRTxx table index -// ( ) a0: pointer to working copy of bcd -// (*) a1: PWRTxx pointer -// (*) fp1: power-of-ten accumulator -// -// Pwrten calculates the exponent factor in the selected rounding mode -// according to the following table: -// -// Sign of Mant Sign of Exp Rounding Mode PWRTEN Rounding Mode -// -// ANY ANY RN RN -// -// + + RP RP -// - + RP RM -// + - RP RM -// - - RP RP -// -// + + RM RM -// - + RM RP -// + - RM RP -// - - RM RM -// -// + + RZ RM -// - + RZ RM -// + - RZ RP -// - - RZ RP -// -// -pwrten: - movel USER_FPCR(%a6),%d3 //get user's FPCR - bfextu %d3{#26:#2},%d2 //isolate rounding mode bits - movel (%a0),%d4 //reload 1st bcd word to d4 - asll #2,%d2 //format d2 to be - bfextu %d4{#0:#2},%d0 // {FPCR[6],FPCR[5],SM,SE} - addl %d0,%d2 //in d2 as index into RTABLE - leal RTABLE,%a1 //load rtable base - moveb (%a1,%d2),%d0 //load new rounding bits from table - clrl %d3 //clear d3 to force no exc and extended - bfins %d0,%d3{#26:#2} //stuff new rounding bits in FPCR - fmovel %d3,%FPCR //write new FPCR - asrl #1,%d0 //write correct PTENxx table - bccs not_rp //to a1 - leal PTENRP,%a1 //it is RP - bras calc_p //go to init section -not_rp: - asrl #1,%d0 //keep checking - bccs not_rm - leal PTENRM,%a1 //it is RM - bras calc_p //go to init section -not_rm: - leal PTENRN,%a1 //it is RN -calc_p: - movel %d1,%d0 //copy exp to d0;use d0 - bpls no_neg //if exp is negative, - negl %d0 //invert it - orl #0x40000000,(%a0) //and set SE bit -no_neg: - clrl %d3 //table index - fmoves FONE,%fp1 //init fp1 to 1 -e_loop: - asrl #1,%d0 //shift next bit into carry - bccs e_next //if zero, skip the mul - fmulx (%a1,%d3),%fp1 //mul by 10**(d3_bit_no) -e_next: - addl #12,%d3 //inc d3 to next rtable entry - tstl %d0 //check if d0 is zero - bnes e_loop //not zero, continue shifting -// -// -// Check the sign of the adjusted exp and make the value in fp0 the -// same sign. If the exp was pos then multiply fp1*fp0; -// else divide fp0/fp1. -// -// Register Usage: -// norm: -// ( ) a0: pointer to working bcd value -// (*) fp0: mantissa accumulator -// ( ) fp1: scaling factor - 10**(abs(exp)) -// -norm: - btst #30,(%a0) //test the sign of the exponent - beqs mul //if clear, go to multiply -div: - fdivx %fp1,%fp0 //exp is negative, so divide mant by exp - bras end_dec -mul: - fmulx %fp1,%fp0 //exp is positive, so multiply by exp -// -// -// Clean up and return with result in fp0. -// -// If the final mul/div in decbin incurred an inex exception, -// it will be inex2, but will be reported as inex1 by get_op. -// -end_dec: - fmovel %FPSR,%d0 //get status register - bclrl #inex2_bit+8,%d0 //test for inex2 and clear it - fmovel %d0,%FPSR //return status reg w/o inex2 - beqs no_exc //skip this if no exc - orl #inx1a_mask,USER_FPSR(%a6) //set inex1/ainex -no_exc: - moveml (%a7)+,%d2-%d5 - rts - |end diff --git a/c/src/lib/libcpu/m68k/m68040/fpsp/do_func.S b/c/src/lib/libcpu/m68k/m68040/fpsp/do_func.S deleted file mode 100644 index afb57766a6..0000000000 --- a/c/src/lib/libcpu/m68k/m68040/fpsp/do_func.S +++ /dev/null @@ -1,561 +0,0 @@ -#include "fpsp-namespace.h" -// -// -// do_func.sa 3.4 2/18/91 -// -// Do_func performs the unimplemented operation. The operation -// to be performed is determined from the lower 7 bits of the -// extension word (except in the case of fmovecr and fsincos). -// The opcode and tag bits form an index into a jump table in -// tbldo.sa. Cases of zero, infinity and NaN are handled in -// do_func by forcing the default result. Normalized and -// denormalized (there are no unnormalized numbers at this -// point) are passed onto the emulation code. -// -// CMDREG1B and STAG are extracted from the fsave frame -// and combined to form the table index. The function called -// will start with a0 pointing to the ETEMP operand. Dyadic -// functions can find FPTEMP at -12(a0). -// -// Called functions return their result in fp0. Sincos returns -// sin(x) in fp0 and cos(x) in fp1. -// - -// Copyright (C) Motorola, Inc. 1990 -// All Rights Reserved -// -// THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA -// The copyright notice above does not evidence any -// actual or intended publication of such source code. - -DO_FUNC: //idnt 2,1 | Motorola 040 Floating Point Software Package - - |section 8 - -#include "fpsp.defs" - - |xref t_dz2 - |xref t_operr - |xref t_inx2 - |xref t_resdnrm - |xref dst_nan - |xref src_nan - |xref nrm_set - |xref sto_cos - - |xref tblpre - |xref slognp1,slogn,slog10,slog2 - |xref slognd,slog10d,slog2d - |xref smod,srem - |xref sscale - |xref smovcr - -PONE: .long 0x3fff0000,0x80000000,0x00000000 //+1 -MONE: .long 0xbfff0000,0x80000000,0x00000000 //-1 -PZERO: .long 0x00000000,0x00000000,0x00000000 //+0 -MZERO: .long 0x80000000,0x00000000,0x00000000 //-0 -PINF: .long 0x7fff0000,0x00000000,0x00000000 //+inf -MINF: .long 0xffff0000,0x00000000,0x00000000 //-inf -QNAN: .long 0x7fff0000,0xffffffff,0xffffffff //non-signaling nan -PPIBY2: .long 0x3FFF0000,0xC90FDAA2,0x2168C235 //+PI/2 -MPIBY2: .long 0xbFFF0000,0xC90FDAA2,0x2168C235 //-PI/2 - - .global do_func -do_func: - clrb CU_ONLY(%a6) -// -// Check for fmovecr. It does not follow the format of fp gen -// unimplemented instructions. The test is on the upper 6 bits; -// if they are $17, the inst is fmovecr. Call entry smovcr -// directly. -// - bfextu CMDREG1B(%a6){#0:#6},%d0 //get opclass and src fields - cmpil #0x17,%d0 //if op class and size fields are $17, -// ;it is FMOVECR; if not, continue - bnes not_fmovecr - jmp smovcr //fmovecr; jmp directly to emulation - -not_fmovecr: - movew CMDREG1B(%a6),%d0 - andl #0x7F,%d0 - cmpil #0x38,%d0 //if the extension is >= $38, - bge serror //it is illegal - bfextu STAG(%a6){#0:#3},%d1 - lsll #3,%d0 //make room for STAG - addl %d1,%d0 //combine for final index into table - leal tblpre,%a1 //start of monster jump table - movel (%a1,%d0.w*4),%a1 //real target address - leal ETEMP(%a6),%a0 //a0 is pointer to src op - movel USER_FPCR(%a6),%d1 - andl #0xFF,%d1 // discard all but rounding mode/prec - fmovel #0,%fpcr - jmp (%a1) -// -// ERROR -// - .global serror -serror: - st STORE_FLG(%a6) - rts -// -// These routines load forced values into fp0. They are called -// by index into tbldo. -// -// Load a signed zero to fp0 and set inex2/ainex -// - .global snzrinx -snzrinx: - btstb #sign_bit,LOCAL_EX(%a0) //get sign of source operand - bnes ld_mzinx //if negative, branch - bsr ld_pzero //bsr so we can return and set inx - bra t_inx2 //now, set the inx for the next inst -ld_mzinx: - bsr ld_mzero //if neg, load neg zero, return here - bra t_inx2 //now, set the inx for the next inst -// -// Load a signed zero to fp0; do not set inex2/ainex -// - .global szero -szero: - btstb #sign_bit,LOCAL_EX(%a0) //get sign of source operand - bne ld_mzero //if neg, load neg zero - bra ld_pzero //load positive zero -// -// Load a signed infinity to fp0; do not set inex2/ainex -// - .global sinf -sinf: - btstb #sign_bit,LOCAL_EX(%a0) //get sign of source operand - bne ld_minf //if negative branch - bra ld_pinf -// -// Load a signed one to fp0; do not set inex2/ainex -// - .global sone -sone: - btstb #sign_bit,LOCAL_EX(%a0) //check sign of source - bne ld_mone - bra ld_pone -// -// Load a signed pi/2 to fp0; do not set inex2/ainex -// - .global spi_2 -spi_2: - btstb #sign_bit,LOCAL_EX(%a0) //check sign of source - bne ld_mpi2 - bra ld_ppi2 -// -// Load either a +0 or +inf for plus/minus operand -// - .global szr_inf -szr_inf: - btstb #sign_bit,LOCAL_EX(%a0) //check sign of source - bne ld_pzero - bra ld_pinf -// -// Result is either an operr or +inf for plus/minus operand -// [Used by slogn, slognp1, slog10, and slog2] -// - .global sopr_inf -sopr_inf: - btstb #sign_bit,LOCAL_EX(%a0) //check sign of source - bne t_operr - bra ld_pinf -// -// FLOGNP1 -// - .global sslognp1 -sslognp1: - fmovemx (%a0),%fp0-%fp0 - fcmpb #-1,%fp0 - fbgt slognp1 - fbeq t_dz2 //if = -1, divide by zero exception - fmovel #0,%FPSR //clr N flag - bra t_operr //take care of operands < -1 -// -// FETOXM1 -// - .global setoxm1i -setoxm1i: - btstb #sign_bit,LOCAL_EX(%a0) //check sign of source - bne ld_mone - bra ld_pinf -// -// FLOGN -// -// Test for 1.0 as an input argument, returning +zero. Also check -// the sign and return operr if negative. -// - .global sslogn -sslogn: - btstb #sign_bit,LOCAL_EX(%a0) - bne t_operr //take care of operands < 0 - cmpiw #0x3fff,LOCAL_EX(%a0) //test for 1.0 input - bne slogn - cmpil #0x80000000,LOCAL_HI(%a0) - bne slogn - tstl LOCAL_LO(%a0) - bne slogn - fmovex PZERO,%fp0 - rts - - .global sslognd -sslognd: - btstb #sign_bit,LOCAL_EX(%a0) - beq slognd - bra t_operr //take care of operands < 0 - -// -// FLOG10 -// - .global sslog10 -sslog10: - btstb #sign_bit,LOCAL_EX(%a0) - bne t_operr //take care of operands < 0 - cmpiw #0x3fff,LOCAL_EX(%a0) //test for 1.0 input - bne slog10 - cmpil #0x80000000,LOCAL_HI(%a0) - bne slog10 - tstl LOCAL_LO(%a0) - bne slog10 - fmovex PZERO,%fp0 - rts - - .global sslog10d -sslog10d: - btstb #sign_bit,LOCAL_EX(%a0) - beq slog10d - bra t_operr //take care of operands < 0 - -// -// FLOG2 -// - .global sslog2 -sslog2: - btstb #sign_bit,LOCAL_EX(%a0) - bne t_operr //take care of operands < 0 - cmpiw #0x3fff,LOCAL_EX(%a0) //test for 1.0 input - bne slog2 - cmpil #0x80000000,LOCAL_HI(%a0) - bne slog2 - tstl LOCAL_LO(%a0) - bne slog2 - fmovex PZERO,%fp0 - rts - - .global sslog2d -sslog2d: - btstb #sign_bit,LOCAL_EX(%a0) - beq slog2d - bra t_operr //take care of operands < 0 - -// -// FMOD -// -pmodt: -// ;$21 fmod -// ;dtag,stag - .long smod // 00,00 norm,norm = normal - .long smod_oper // 00,01 norm,zero = nan with operr - .long smod_fpn // 00,10 norm,inf = fpn - .long smod_snan // 00,11 norm,nan = nan - .long smod_zro // 01,00 zero,norm = +-zero - .long smod_oper // 01,01 zero,zero = nan with operr - .long smod_zro // 01,10 zero,inf = +-zero - .long smod_snan // 01,11 zero,nan = nan - .long smod_oper // 10,00 inf,norm = nan with operr - .long smod_oper // 10,01 inf,zero = nan with operr - .long smod_oper // 10,10 inf,inf = nan with operr - .long smod_snan // 10,11 inf,nan = nan - .long smod_dnan // 11,00 nan,norm = nan - .long smod_dnan // 11,01 nan,zero = nan - .long smod_dnan // 11,10 nan,inf = nan - .long smod_dnan // 11,11 nan,nan = nan - - .global pmod -pmod: - clrb FPSR_QBYTE(%a6) // clear quotient field - bfextu STAG(%a6){#0:#3},%d0 //stag = d0 - bfextu DTAG(%a6){#0:#3},%d1 //dtag = d1 - -// -// Alias extended denorms to norms for the jump table. -// - bclrl #2,%d0 - bclrl #2,%d1 - - lslb #2,%d1 - orb %d0,%d1 //d1{3:2} = dtag, d1{1:0} = stag -// ;Tag values: -// ;00 = norm or denorm -// ;01 = zero -// ;10 = inf -// ;11 = nan - lea pmodt,%a1 - movel (%a1,%d1.w*4),%a1 - jmp (%a1) - -smod_snan: - bra src_nan -smod_dnan: - bra dst_nan -smod_oper: - bra t_operr -smod_zro: - moveb ETEMP(%a6),%d1 //get sign of src op - moveb FPTEMP(%a6),%d0 //get sign of dst op - eorb %d0,%d1 //get exor of sign bits - btstl #7,%d1 //test for sign - beqs smod_zsn //if clr, do not set sign big - bsetb #q_sn_bit,FPSR_QBYTE(%a6) //set q-byte sign bit -smod_zsn: - btstl #7,%d0 //test if + or - - beq ld_pzero //if pos then load +0 - bra ld_mzero //else neg load -0 - -smod_fpn: - moveb ETEMP(%a6),%d1 //get sign of src op - moveb FPTEMP(%a6),%d0 //get sign of dst op - eorb %d0,%d1 //get exor of sign bits - btstl #7,%d1 //test for sign - beqs smod_fsn //if clr, do not set sign big - bsetb #q_sn_bit,FPSR_QBYTE(%a6) //set q-byte sign bit -smod_fsn: - tstb DTAG(%a6) //filter out denormal destination case - bpls smod_nrm // - leal FPTEMP(%a6),%a0 //a0<- addr(FPTEMP) - bra t_resdnrm //force UNFL(but exact) result -smod_nrm: - fmovel USER_FPCR(%a6),%fpcr //use user's rmode and precision - fmovex FPTEMP(%a6),%fp0 //return dest to fp0 - rts - -// -// FREM -// -premt: -// ;$25 frem -// ;dtag,stag - .long srem // 00,00 norm,norm = normal - .long srem_oper // 00,01 norm,zero = nan with operr - .long srem_fpn // 00,10 norm,inf = fpn - .long srem_snan // 00,11 norm,nan = nan - .long srem_zro // 01,00 zero,norm = +-zero - .long srem_oper // 01,01 zero,zero = nan with operr - .long srem_zro // 01,10 zero,inf = +-zero - .long srem_snan // 01,11 zero,nan = nan - .long srem_oper // 10,00 inf,norm = nan with operr - .long srem_oper // 10,01 inf,zero = nan with operr - .long srem_oper // 10,10 inf,inf = nan with operr - .long srem_snan // 10,11 inf,nan = nan - .long srem_dnan // 11,00 nan,norm = nan - .long srem_dnan // 11,01 nan,zero = nan - .long srem_dnan // 11,10 nan,inf = nan - .long srem_dnan // 11,11 nan,nan = nan - - .global prem -prem: - clrb FPSR_QBYTE(%a6) //clear quotient field - bfextu STAG(%a6){#0:#3},%d0 //stag = d0 - bfextu DTAG(%a6){#0:#3},%d1 //dtag = d1 -// -// Alias extended denorms to norms for the jump table. -// - bclr #2,%d0 - bclr #2,%d1 - - lslb #2,%d1 - orb %d0,%d1 //d1{3:2} = dtag, d1{1:0} = stag -// ;Tag values: -// ;00 = norm or denorm -// ;01 = zero -// ;10 = inf -// ;11 = nan - lea premt,%a1 - movel (%a1,%d1.w*4),%a1 - jmp (%a1) - -srem_snan: - bra src_nan -srem_dnan: - bra dst_nan -srem_oper: - bra t_operr -srem_zro: - moveb ETEMP(%a6),%d1 //get sign of src op - moveb FPTEMP(%a6),%d0 //get sign of dst op - eorb %d0,%d1 //get exor of sign bits - btstl #7,%d1 //test for sign - beqs srem_zsn //if clr, do not set sign big - bsetb #q_sn_bit,FPSR_QBYTE(%a6) //set q-byte sign bit -srem_zsn: - btstl #7,%d0 //test if + or - - beq ld_pzero //if pos then load +0 - bra ld_mzero //else neg load -0 - -srem_fpn: - moveb ETEMP(%a6),%d1 //get sign of src op - moveb FPTEMP(%a6),%d0 //get sign of dst op - eorb %d0,%d1 //get exor of sign bits - btstl #7,%d1 //test for sign - beqs srem_fsn //if clr, do not set sign big - bsetb #q_sn_bit,FPSR_QBYTE(%a6) //set q-byte sign bit -srem_fsn: - tstb DTAG(%a6) //filter out denormal destination case - bpls srem_nrm // - leal FPTEMP(%a6),%a0 //a0<- addr(FPTEMP) - bra t_resdnrm //force UNFL(but exact) result -srem_nrm: - fmovel USER_FPCR(%a6),%fpcr //use user's rmode and precision - fmovex FPTEMP(%a6),%fp0 //return dest to fp0 - rts -// -// FSCALE -// -pscalet: -// ;$26 fscale -// ;dtag,stag - .long sscale // 00,00 norm,norm = result - .long sscale // 00,01 norm,zero = fpn - .long scl_opr // 00,10 norm,inf = nan with operr - .long scl_snan // 00,11 norm,nan = nan - .long scl_zro // 01,00 zero,norm = +-zero - .long scl_zro // 01,01 zero,zero = +-zero - .long scl_opr // 01,10 zero,inf = nan with operr - .long scl_snan // 01,11 zero,nan = nan - .long scl_inf // 10,00 inf,norm = +-inf - .long scl_inf // 10,01 inf,zero = +-inf - .long scl_opr // 10,10 inf,inf = nan with operr - .long scl_snan // 10,11 inf,nan = nan - .long scl_dnan // 11,00 nan,norm = nan - .long scl_dnan // 11,01 nan,zero = nan - .long scl_dnan // 11,10 nan,inf = nan - .long scl_dnan // 11,11 nan,nan = nan - - .global pscale -pscale: - bfextu STAG(%a6){#0:#3},%d0 //stag in d0 - bfextu DTAG(%a6){#0:#3},%d1 //dtag in d1 - bclrl #2,%d0 //alias denorm into norm - bclrl #2,%d1 //alias denorm into norm - lslb #2,%d1 - orb %d0,%d1 //d1{4:2} = dtag, d1{1:0} = stag -// ;dtag values stag values: -// ;000 = norm 00 = norm -// ;001 = zero 01 = zero -// ;010 = inf 10 = inf -// ;011 = nan 11 = nan -// ;100 = dnrm -// -// - leal pscalet,%a1 //load start of jump table - movel (%a1,%d1.w*4),%a1 //load a1 with label depending on tag - jmp (%a1) //go to the routine - -scl_opr: - bra t_operr - -scl_dnan: - bra dst_nan - -scl_zro: - btstb #sign_bit,FPTEMP_EX(%a6) //test if + or - - beq ld_pzero //if pos then load +0 - bra ld_mzero //if neg then load -0 -scl_inf: - btstb #sign_bit,FPTEMP_EX(%a6) //test if + or - - beq ld_pinf //if pos then load +inf - bra ld_minf //else neg load -inf -scl_snan: - bra src_nan -// -// FSINCOS -// - .global ssincosz -ssincosz: - btstb #sign_bit,ETEMP(%a6) //get sign - beqs sincosp - fmovex MZERO,%fp0 - bras sincoscom -sincosp: - fmovex PZERO,%fp0 -sincoscom: - fmovemx PONE,%fp1-%fp1 //do not allow FPSR to be affected - bra sto_cos //store cosine result - - .global ssincosi -ssincosi: - fmovex QNAN,%fp1 //load NAN - bsr sto_cos //store cosine result - fmovex QNAN,%fp0 //load NAN - bra t_operr - - .global ssincosnan -ssincosnan: - movel ETEMP_EX(%a6),FP_SCR1(%a6) - movel ETEMP_HI(%a6),FP_SCR1+4(%a6) - movel ETEMP_LO(%a6),FP_SCR1+8(%a6) - bsetb #signan_bit,FP_SCR1+4(%a6) - fmovemx FP_SCR1(%a6),%fp1-%fp1 - bsr sto_cos - bra src_nan -// -// This code forces default values for the zero, inf, and nan cases -// in the transcendentals code. The CC bits must be set in the -// stacked FPSR to be correctly reported. -// -//**Returns +PI/2 - .global ld_ppi2 -ld_ppi2: - fmovex PPIBY2,%fp0 //load +pi/2 - bra t_inx2 //set inex2 exc - -//**Returns -PI/2 - .global ld_mpi2 -ld_mpi2: - fmovex MPIBY2,%fp0 //load -pi/2 - orl #neg_mask,USER_FPSR(%a6) //set N bit - bra t_inx2 //set inex2 exc - -//**Returns +inf - .global ld_pinf -ld_pinf: - fmovex PINF,%fp0 //load +inf - orl #inf_mask,USER_FPSR(%a6) //set I bit - rts - -//**Returns -inf - .global ld_minf -ld_minf: - fmovex MINF,%fp0 //load -inf - orl #neg_mask+inf_mask,USER_FPSR(%a6) //set N and I bits - rts - -//**Returns +1 - .global ld_pone -ld_pone: - fmovex PONE,%fp0 //load +1 - rts - -//**Returns -1 - .global ld_mone -ld_mone: - fmovex MONE,%fp0 //load -1 - orl #neg_mask,USER_FPSR(%a6) //set N bit - rts - -//**Returns +0 - .global ld_pzero -ld_pzero: - fmovex PZERO,%fp0 //load +0 - orl #z_mask,USER_FPSR(%a6) //set Z bit - rts - -//**Returns -0 - .global ld_mzero -ld_mzero: - fmovex MZERO,%fp0 //load -0 - orl #neg_mask+z_mask,USER_FPSR(%a6) //set N and Z bits - rts - - |end diff --git a/c/src/lib/libcpu/m68k/m68040/fpsp/fpsp-namespace.h b/c/src/lib/libcpu/m68k/m68040/fpsp/fpsp-namespace.h deleted file mode 100644 index dcb580d054..0000000000 --- a/c/src/lib/libcpu/m68k/m68040/fpsp/fpsp-namespace.h +++ /dev/null @@ -1,168 +0,0 @@ -#define ap_st_n __fpsp_ap_st_n -#define ap_st_z __fpsp_ap_st_z -#define b1238_fix __fpsp_b1238_fix -#define BIGRN __fpsp_BIGRN -#define BIGRP __fpsp_BIGRP -#define BIGRZRM __fpsp_BIGRZRM -#define bindec __fpsp_bindec -#define binstr __fpsp_binstr -#define calc_e __fpsp_calc_e -#define calc_m __fpsp_calc_m -#define decbin __fpsp_decbin -#define denorm __fpsp_denorm -#define dest_dbl __fpsp_dest_dbl -#define dest_ext __fpsp_dest_ext -#define dest_sgl __fpsp_dest_sgl -#define dnrm_lp __fpsp_dnrm_lp -#define do_func __fpsp_do_func -#define dst_nan __fpsp_dst_nan -#define fpsp_bsun __fpsp_fpsp_bsun -#define fpsp_done __fpsp_fpsp_done -#define fpsp_fline __fpsp_fpsp_fline -#define fpsp_fmt_error __fpsp_fpsp_fmt_error -#define fpsp_operr __fpsp_fpsp_operr -#define fpsp_ovfl __fpsp_fpsp_ovfl -#define fpsp_snan __fpsp_fpsp_snan -#define fpsp_unfl __fpsp_fpsp_unfl -#define fpsp_unimp __fpsp_fpsp_unimp -#define fpsp_unsupp __fpsp_fpsp_unsupp -#define g_dfmtou __fpsp_g_dfmtou -#define gen_except __fpsp_gen_except -#define get_fline __fpsp_get_fline -#define get_op __fpsp_get_op -#define g_opcls __fpsp_g_opcls -#define g_rndpr __fpsp_g_rndpr -#define ld_minf __fpsp_ld_minf -#define ld_mone __fpsp_ld_mone -#define ld_mpi2 __fpsp_ld_mpi2 -#define ld_mzero __fpsp_ld_mzero -#define ld_pinf __fpsp_ld_pinf -#define ld_pone __fpsp_ld_pone -#define ld_ppi2 __fpsp_ld_ppi2 -#define ld_pzero __fpsp_ld_pzero -#define mem_read __fpsp_mem_read -#define mem_write __fpsp_mem_write -#define norm __fpsp_norm -#define nrm_set __fpsp_nrm_set -#define nrm_zero __fpsp_nrm_zero -#define ovf_res __fpsp_ovf_res -#define ovf_r_k __fpsp_ovf_r_k -#define ovf_r_x2 __fpsp_ovf_r_x2 -#define ovf_r_x3 __fpsp_ovf_r_x3 -#define PIRN __fpsp_PIRN -#define PIRP __fpsp_PIRP -#define PIRZRM __fpsp_PIRZRM -#define PITBL __fpsp_PITBL -#define pmod __fpsp_pmod -#define p_move __fpsp_p_move -#define prem __fpsp_prem -#define pscale __fpsp_pscale -#define PTENRM __fpsp_PTENRM -#define PTENRN __fpsp_PTENRN -#define PTENRP __fpsp_PTENRP -#define pwrten __fpsp_pwrten -#define real_bsun __fpsp_real_bsun -#define real_fline __fpsp_real_fline -#define real_inex __fpsp_real_inex -#define real_operr __fpsp_real_operr -#define real_ovfl __fpsp_real_ovfl -#define real_snan __fpsp_real_snan -#define real_trace __fpsp_real_trace -#define real_unfl __fpsp_real_unfl -#define real_unsupp __fpsp_real_unsupp -#define reg_dest __fpsp_reg_dest -#define res_func __fpsp_res_func -#define round __fpsp_round -#define sacos __fpsp_sacos -#define sacosd __fpsp_sacosd -#define sasin __fpsp_sasin -#define sasind __fpsp_sasind -#define satan __fpsp_satan -#define satand __fpsp_satand -#define satanh __fpsp_satanh -#define satanhd __fpsp_satanhd -#define sc_mul __fpsp_sc_mul -#define scos __fpsp_scos -#define scosd __fpsp_scosd -#define scosh __fpsp_scosh -#define scoshd __fpsp_scoshd -#define serror __fpsp_serror -#define setox __fpsp_setox -#define setoxd __fpsp_setoxd -#define setoxm1 __fpsp_setoxm1 -#define setoxm1d __fpsp_setoxm1d -#define setoxm1i __fpsp_setoxm1i -#define sgetexp __fpsp_sgetexp -#define sgetexpd __fpsp_sgetexpd -#define sgetman __fpsp_sgetman -#define sgetmand __fpsp_sgetmand -#define sinf __fpsp_sinf -#define sint __fpsp_sint -#define sintd __fpsp_sintd -#define sintdo __fpsp_sintdo -#define sintrz __fpsp_sintrz -#define slog10 __fpsp_slog10 -#define slog10d __fpsp_slog10d -#define slog2 __fpsp_slog2 -#define slog2d __fpsp_slog2d -#define slogn __fpsp_slogn -#define slognd __fpsp_slognd -#define slognp1 __fpsp_slognp1 -#define slognp1d __fpsp_slognp1d -#define SMALRN __fpsp_SMALRN -#define SMALRP __fpsp_SMALRP -#define SMALRZRM __fpsp_SMALRZRM -#define smod __fpsp_smod -#define smovcr __fpsp_smovcr -#define snzrinx __fpsp_snzrinx -#define sone __fpsp_sone -#define sopr_inf __fpsp_sopr_inf -#define spi_2 __fpsp_spi_2 -#define src_nan __fpsp_src_nan -#define srem __fpsp_srem -#define sscale __fpsp_sscale -#define ssin __fpsp_ssin -#define ssincos __fpsp_ssincos -#define ssincosd __fpsp_ssincosd -#define ssincosi __fpsp_ssincosi -#define ssincosnan __fpsp_ssincosnan -#define ssincosz __fpsp_ssincosz -#define ssind __fpsp_ssind -#define ssinh __fpsp_ssinh -#define ssinhd __fpsp_ssinhd -#define sslog10 __fpsp_sslog10 -#define sslog10d __fpsp_sslog10d -#define sslog2 __fpsp_sslog2 -#define sslog2d __fpsp_sslog2d -#define sslogn __fpsp_sslogn -#define sslognd __fpsp_sslognd -#define sslognp1 __fpsp_sslognp1 -#define stan __fpsp_stan -#define stand __fpsp_stand -#define stanh __fpsp_stanh -#define stanhd __fpsp_stanhd -#define stentox __fpsp_stentox -#define stentoxd __fpsp_stentoxd -#define sto_cos __fpsp_sto_cos -#define store __fpsp_store -#define sto_res __fpsp_sto_res -#define stwotox __fpsp_stwotox -#define stwotoxd __fpsp_stwotoxd -#define szero __fpsp_szero -#define szr_inf __fpsp_szr_inf -#define t_avoid_unsupp __fpsp_t_avoid_unsupp -#define tblpre __fpsp_tblpre -#define t_dz __fpsp_t_dz -#define t_dz2 __fpsp_t_dz2 -#define t_extdnrm __fpsp_t_extdnrm -#define t_frcinx __fpsp_t_frcinx -#define t_inx2 __fpsp_t_inx2 -#define t_operr __fpsp_t_operr -#define t_ovfl __fpsp_t_ovfl -#define t_ovfl2 __fpsp_t_ovfl2 -#define t_resdnrm __fpsp_t_resdnrm -#define t_unfl __fpsp_t_unfl -#define unf_sub __fpsp_unf_sub -#define uni_2 __fpsp_uni_2 -#define uni_getop __fpsp_uni_getop -#define uns_getop __fpsp_uns_getop diff --git a/c/src/lib/libcpu/m68k/m68040/fpsp/fpsp.defs b/c/src/lib/libcpu/m68k/m68040/fpsp/fpsp.defs deleted file mode 100644 index 53f9a5d934..0000000000 --- a/c/src/lib/libcpu/m68k/m68040/fpsp/fpsp.defs +++ /dev/null @@ -1,347 +0,0 @@ -| -| fpsp.h 3.3 3.3 -| -| Copyright (C) Motorola, Inc. 1990 -| All Rights Reserved -| -| THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA -| The copyright notice above does not evidence any -| actual or intended publication of such source code. - -| fpsp.h --- stack frame offsets during FPSP exception handling -| -| These equates are used to access the exception frame, the fsave -| frame and any local variables needed by the FPSP package. -| -| All FPSP handlers begin by executing: -| -| link a6,#-LOCAL_SIZE -| fsave -(a7) -| movem.l d0-d1/a0-a1,USER_DA(a6) -| fmovem.x fp0-fp3,USER_FP0(a6) -| fmove.l fpsr/fpcr/fpiar,USER_FPSR(a6) -| -| After initialization, the stack looks like this: -| -| A7 ---> +-------------------------------+ -| | | -| | FPU fsave area | -| | | -| +-------------------------------+ -| | | -| | FPSP Local Variables | -| | including | -| | saved registers | -| | | -| +-------------------------------+ -| A6 ---> | Saved A6 | -| +-------------------------------+ -| | | -| | Exception Frame | -| | | -| | | -| -| Positive offsets from A6 refer to the exception frame. Negative -| offsets refer to the Local Variable area and the fsave area. -| The fsave frame is also accessible 'from the top' via A7. -| -| On exit, the handlers execute: -| -| movem.l USER_DA(a6),d0-d1/a0-a1 -| fmovem.x USER_FP0(a6),fp0-fp3 -| fmove.l USER_FPSR(a6),fpsr/fpcr/fpiar -| frestore (a7)+ -| unlk a6 -| -| and then either 'bra fpsp_done' if the exception was completely -| handled by the package, or 'bra real_xxxx' which is an external -| label to a routine that will process a real exception of the -| type that was generated. Some handlers may omit the 'frestore' -| if the FPU state after the exception is idle. -| -| Sometimes the exception handler will transform the fsave area -| because it needs to report an exception back to the user. This -| can happen if the package is entered for an unimplemented float -| instruction that generates (say) an underflow. Alternatively, -| a second fsave frame can be pushed onto the stack and the -| handler exit code will reload the new frame and discard the old. -| -| The registers d0, d1, a0, a1 and fp0-fp3 are always saved and -| restored from the 'local variable' area and can be used as -| temporaries. If a routine needs to change any -| of these registers, it should modify the saved copy and let -| the handler exit code restore the value. -| -|---------------------------------------------------------------------- -| -| Local Variables on the stack -| - .set LOCAL_SIZE,192 | bytes needed for local variables - .set LV,-LOCAL_SIZE | convenient base value -| - .set USER_DA,LV+0 | save space for D0-D1,A0-A1 - .set USER_D0,LV+0 | saved user D0 - .set USER_D1,LV+4 | saved user D1 - .set USER_A0,LV+8 | saved user A0 - .set USER_A1,LV+12 | saved user A1 - .set USER_FP0,LV+16 | saved user FP0 - .set USER_FP1,LV+28 | saved user FP1 - .set USER_FP2,LV+40 | saved user FP2 - .set USER_FP3,LV+52 | saved user FP3 - .set USER_FPCR,LV+64 | saved user FPCR - .set FPCR_ENABLE,USER_FPCR+2 | FPCR exception enable - .set FPCR_MODE,USER_FPCR+3 | FPCR rounding mode control - .set USER_FPSR,LV+68 | saved user FPSR - .set FPSR_CC,USER_FPSR+0 | FPSR condition code - .set FPSR_QBYTE,USER_FPSR+1 | FPSR quotient - .set FPSR_EXCEPT,USER_FPSR+2 | FPSR exception - .set FPSR_AEXCEPT,USER_FPSR+3 | FPSR accrued exception - .set USER_FPIAR,LV+72 | saved user FPIAR - .set FP_SCR1,LV+76 | room for a temporary float value - .set FP_SCR2,LV+92 | room for a temporary float value - .set L_SCR1,LV+108 | room for a temporary long value - .set L_SCR2,LV+112 | room for a temporary long value - .set STORE_FLG,LV+116 - .set BINDEC_FLG,LV+117 | used in bindec - .set DNRM_FLG,LV+118 | used in res_func - .set RES_FLG,LV+119 | used in res_func - .set DY_MO_FLG,LV+120 | dyadic/monadic flag - .set UFLG_TMP,LV+121 | temporary for uflag errata - .set CU_ONLY,LV+122 | cu-only flag - .set VER_TMP,LV+123 | temp holding for version number - .set L_SCR3,LV+124 | room for a temporary long value - .set FP_SCR3,LV+128 | room for a temporary float value - .set FP_SCR4,LV+144 | room for a temporary float value - .set FP_SCR5,LV+160 | room for a temporary float value - .set FP_SCR6,LV+176 -| -|NEXT equ LV+192 ;need to increase LOCAL_SIZE -| -|-------------------------------------------------------------------------- -| -| fsave offsets and bit definitions -| -| Offsets are defined from the end of an fsave because the last 10 -| words of a busy frame are the same as the unimplemented frame. -| - .set CU_SAVEPC,LV-92 | micro-pc for CU (1 byte) - .set FPR_DIRTY_BITS,LV-91 | fpr dirty bits -| - .set WBTEMP,LV-76 | write back temp (12 bytes) - .set WBTEMP_EX,WBTEMP | wbtemp sign and exponent (2 bytes) - .set WBTEMP_HI,WBTEMP+4 | wbtemp mantissa [63:32] (4 bytes) - .set WBTEMP_LO,WBTEMP+8 | wbtemp mantissa [31:00] (4 bytes) -| - .set WBTEMP_SGN,WBTEMP+2 | used to store sign -| - .set FPSR_SHADOW,LV-64 | fpsr shadow reg -| - .set FPIARCU,LV-60 | Instr. addr. reg. for CU (4 bytes) -| - .set CMDREG2B,LV-52 | cmd reg for machine 2 - .set CMDREG3B,LV-48 | cmd reg for E3 exceptions (2 bytes) -| - .set NMNEXC,LV-44 | NMNEXC (unsup,snan bits only) - .set nmn_unsup_bit,1 - .set nmn_snan_bit,0 -| - .set NMCEXC,LV-43 | NMNEXC & NMCEXC - .set nmn_operr_bit,7 - .set nmn_ovfl_bit,6 - .set nmn_unfl_bit,5 - .set nmc_unsup_bit,4 - .set nmc_snan_bit,3 - .set nmc_operr_bit,2 - .set nmc_ovfl_bit,1 - .set nmc_unfl_bit,0 -| - .set STAG,LV-40 | source tag (1 byte) - .set WBTEMP_GRS,LV-40 | alias wbtemp guard, round, sticky - .set guard_bit,1 | guard bit is bit number 1 - .set round_bit,0 | round bit is bit number 0 - .set stag_mask,0xE0 | upper 3 bits are source tag type - .set denorm_bit,7 | bit determins if denorm or unnorm - .set etemp15_bit,4 | etemp exponent bit #15 - .set wbtemp66_bit,2 | wbtemp mantissa bit #66 - .set wbtemp1_bit,1 | wbtemp mantissa bit #1 - .set wbtemp0_bit,0 | wbtemp mantissa bit #0 -| - .set STICKY,LV-39 | holds sticky bit - .set sticky_bit,7 -| - .set CMDREG1B,LV-36 | cmd reg for E1 exceptions (2 bytes) - .set kfact_bit,12 | distinguishes static/dynamic k-factor -| ;on packed move outs. NOTE: this -| ;equate only works when CMDREG1B is in -| ;a register. -| - .set CMDWORD,LV-35 | command word in cmd1b - .set direction_bit,5 | bit 0 in opclass - .set size_bit2,12 | bit 2 in size field -| - .set DTAG,LV-32 | dest tag (1 byte) - .set dtag_mask,0xE0 | upper 3 bits are dest type tag - .set fptemp15_bit,4 | fptemp exponent bit #15 -| - .set WB_BYTE,LV-31 | holds WBTE15 bit (1 byte) - .set wbtemp15_bit,4 | wbtemp exponent bit #15 -| - .set E_BYTE,LV-28 | holds E1 and E3 bits (1 byte) - .set E1,2 | which bit is E1 flag - .set E3,1 | which bit is E3 flag - .set SFLAG,0 | which bit is S flag -| - .set T_BYTE,LV-27 | holds T and U bits (1 byte) - .set XFLAG,7 | which bit is X flag - .set UFLAG,5 | which bit is U flag - .set TFLAG,4 | which bit is T flag -| - .set FPTEMP,LV-24 | fptemp (12 bytes) - .set FPTEMP_EX,FPTEMP | fptemp sign and exponent (2 bytes) - .set FPTEMP_HI,FPTEMP+4 | fptemp mantissa [63:32] (4 bytes) - .set FPTEMP_LO,FPTEMP+8 | fptemp mantissa [31:00] (4 bytes) -| - .set FPTEMP_SGN,FPTEMP+2 | used to store sign -| - .set ETEMP,LV-12 | etemp (12 bytes) - .set ETEMP_EX,ETEMP | etemp sign and exponent (2 bytes) - .set ETEMP_HI,ETEMP+4 | etemp mantissa [63:32] (4 bytes) - .set ETEMP_LO,ETEMP+8 | etemp mantissa [31:00] (4 bytes) -| - .set ETEMP_SGN,ETEMP+2 | used to store sign -| - .set EXC_SR,4 | exception frame status register - .set EXC_PC,6 | exception frame program counter - .set EXC_VEC,10 | exception frame vector (format+vector#) - .set EXC_EA,12 | exception frame effective address -| -|-------------------------------------------------------------------------- -| -| FPSR/FPCR bits -| - .set neg_bit,3 | negative result - .set z_bit,2 | zero result - .set inf_bit,1 | infinity result - .set nan_bit,0 | not-a-number result -| - .set q_sn_bit,7 | sign bit of quotient byte -| - .set bsun_bit,7 | branch on unordered - .set snan_bit,6 | signalling nan - .set operr_bit,5 | operand error - .set ovfl_bit,4 | overflow - .set unfl_bit,3 | underflow - .set dz_bit,2 | divide by zero - .set inex2_bit,1 | inexact result 2 - .set inex1_bit,0 | inexact result 1 -| - .set aiop_bit,7 | accrued illegal operation - .set aovfl_bit,6 | accrued overflow - .set aunfl_bit,5 | accrued underflow - .set adz_bit,4 | accrued divide by zero - .set ainex_bit,3 | accrued inexact -| -| FPSR individual bit masks -| - .set neg_mask,0x08000000 - .set z_mask,0x04000000 - .set inf_mask,0x02000000 - .set nan_mask,0x01000000 -| - .set bsun_mask,0x00008000 - .set snan_mask,0x00004000 - .set operr_mask,0x00002000 - .set ovfl_mask,0x00001000 - .set unfl_mask,0x00000800 - .set dz_mask,0x00000400 - .set inex2_mask,0x00000200 - .set inex1_mask,0x00000100 -| - .set aiop_mask,0x00000080 | accrued illegal operation - .set aovfl_mask,0x00000040 | accrued overflow - .set aunfl_mask,0x00000020 | accrued underflow - .set adz_mask,0x00000010 | accrued divide by zero - .set ainex_mask,0x00000008 | accrued inexact -| -| FPSR combinations used in the FPSP -| - .set dzinf_mask,inf_mask+dz_mask+adz_mask - .set opnan_mask,nan_mask+operr_mask+aiop_mask - .set nzi_mask,0x01ffffff | clears N, Z, and I - .set unfinx_mask,unfl_mask+inex2_mask+aunfl_mask+ainex_mask - .set unf2inx_mask,unfl_mask+inex2_mask+ainex_mask - .set ovfinx_mask,ovfl_mask+inex2_mask+aovfl_mask+ainex_mask - .set inx1a_mask,inex1_mask+ainex_mask - .set inx2a_mask,inex2_mask+ainex_mask - .set snaniop_mask,nan_mask+snan_mask+aiop_mask - .set naniop_mask,nan_mask+aiop_mask - .set neginf_mask,neg_mask+inf_mask - .set infaiop_mask,inf_mask+aiop_mask - .set negz_mask,neg_mask+z_mask - .set opaop_mask,operr_mask+aiop_mask - .set unfl_inx_mask,unfl_mask+aunfl_mask+ainex_mask - .set ovfl_inx_mask,ovfl_mask+aovfl_mask+ainex_mask -| -|-------------------------------------------------------------------------- -| -| FPCR rounding modes -| - .set x_mode,0x00 | round to extended - .set s_mode,0x40 | round to single - .set d_mode,0x80 | round to double -| - .set rn_mode,0x00 | round nearest - .set rz_mode,0x10 | round to zero - .set rm_mode,0x20 | round to minus infinity - .set rp_mode,0x30 | round to plus infinity -| -|-------------------------------------------------------------------------- -| -| Miscellaneous equates -| - .set signan_bit,6 | signalling nan bit in mantissa - .set sign_bit,7 -| - .set rnd_stky_bit,29 | round/sticky bit of mantissa -| this can only be used if in a data register - .set sx_mask,0x01800000 | set s and x bits in word $48 -| - .set LOCAL_EX,0 - .set LOCAL_SGN,2 - .set LOCAL_HI,4 - .set LOCAL_LO,8 - .set LOCAL_GRS,12 | valid ONLY for FP_SCR1, FP_SCR2 -| -| - .set norm_tag,0x00 | tag bits in {7:5} position - .set zero_tag,0x20 - .set inf_tag,0x40 - .set nan_tag,0x60 - .set dnrm_tag,0x80 -| -| fsave sizes and formats -| - .set VER_4,0x40 | fpsp compatible version numbers -| are in the $40s {$40-$4f} - .set VER_40,0x40 | original version number - .set VER_41,0x41 | revision version number -| - .set BUSY_SIZE,100 | size of busy frame - .set BUSY_FRAME,LV-BUSY_SIZE | start of busy frame -| - .set UNIMP_40_SIZE,44 | size of orig unimp frame - .set UNIMP_41_SIZE,52 | size of rev unimp frame -| - .set IDLE_SIZE,4 | size of idle frame - .set IDLE_FRAME,LV-IDLE_SIZE | start of idle frame -| -| exception vectors -| - .set TRACE_VEC,0x2024 | trace trap - .set FLINE_VEC,0x002C | 'real' F-line - .set UNIMP_VEC,0x202C | unimplemented - .set INEX_VEC,0x00C4 -| - .set dbl_thresh,0x3C01 - .set sgl_thresh,0x3F81 -| diff --git a/c/src/lib/libcpu/m68k/m68040/fpsp/gen_except.S b/c/src/lib/libcpu/m68k/m68040/fpsp/gen_except.S deleted file mode 100644 index 5139517703..0000000000 --- a/c/src/lib/libcpu/m68k/m68040/fpsp/gen_except.S +++ /dev/null @@ -1,470 +0,0 @@ -#include "fpsp-namespace.h" -// -// -// gen_except.sa 3.7 1/16/92 -// -// gen_except --- FPSP routine to detect reportable exceptions -// -// This routine compares the exception enable byte of the -// user_fpcr on the stack with the exception status byte -// of the user_fpsr. -// -// Any routine which may report an exceptions must load -// the stack frame in memory with the exceptional operand(s). -// -// Priority for exceptions is: -// -// Highest: bsun -// snan -// operr -// ovfl -// unfl -// dz -// inex2 -// Lowest: inex1 -// -// Note: The IEEE standard specifies that inex2 is to be -// reported if ovfl occurs and the ovfl enable bit is not -// set but the inex2 enable bit is. -// -// -// Copyright (C) Motorola, Inc. 1990 -// All Rights Reserved -// -// THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA -// The copyright notice above does not evidence any -// actual or intended publication of such source code. - -GEN_EXCEPT: //idnt 2,1 | Motorola 040 Floating Point Software Package - - |section 8 - -#include "fpsp.defs" - - |xref real_trace - |xref fpsp_done - |xref fpsp_fmt_error - -exc_tbl: - .long bsun_exc - .long commonE1 - .long commonE1 - .long ovfl_unfl - .long ovfl_unfl - .long commonE1 - .long commonE3 - .long commonE3 - .long no_match - - .global gen_except -gen_except: - cmpib #IDLE_SIZE-4,1(%a7) //test for idle frame - beq do_check //go handle idle frame - cmpib #UNIMP_40_SIZE-4,1(%a7) //test for orig unimp frame - beqs unimp_x //go handle unimp frame - cmpib #UNIMP_41_SIZE-4,1(%a7) //test for rev unimp frame - beqs unimp_x //go handle unimp frame - cmpib #BUSY_SIZE-4,1(%a7) //if size <> $60, fmt error - bnel fpsp_fmt_error - leal BUSY_SIZE+LOCAL_SIZE(%a7),%a1 //init a1 so fpsp.h -// ;equates will work -// Fix up the new busy frame with entries from the unimp frame -// - movel ETEMP_EX(%a6),ETEMP_EX(%a1) //copy etemp from unimp - movel ETEMP_HI(%a6),ETEMP_HI(%a1) //frame to busy frame - movel ETEMP_LO(%a6),ETEMP_LO(%a1) - movel CMDREG1B(%a6),CMDREG1B(%a1) //set inst in frame to unimp - movel CMDREG1B(%a6),%d0 //fix cmd1b to make it - andl #0x03c30000,%d0 //work for cmd3b - bfextu CMDREG1B(%a6){#13:#1},%d1 //extract bit 2 - lsll #5,%d1 - swap %d1 - orl %d1,%d0 //put it in the right place - bfextu CMDREG1B(%a6){#10:#3},%d1 //extract bit 3,4,5 - lsll #2,%d1 - swap %d1 - orl %d1,%d0 //put them in the right place - movel %d0,CMDREG3B(%a1) //in the busy frame -// -// Or in the FPSR from the emulation with the USER_FPSR on the stack. -// - fmovel %FPSR,%d0 - orl %d0,USER_FPSR(%a6) - movel USER_FPSR(%a6),FPSR_SHADOW(%a1) //set exc bits - orl #sx_mask,E_BYTE(%a1) - bra do_clean - -// -// Frame is an unimp frame possible resulting from an fmove ,fp0 -// that caused an exception -// -// a1 is modified to point into the new frame allowing fpsp equates -// to be valid. -// -unimp_x: - cmpib #UNIMP_40_SIZE-4,1(%a7) //test for orig unimp frame - bnes test_rev - leal UNIMP_40_SIZE+LOCAL_SIZE(%a7),%a1 - bras unimp_con -test_rev: - cmpib #UNIMP_41_SIZE-4,1(%a7) //test for rev unimp frame - bnel fpsp_fmt_error //if not $28 or $30 - leal UNIMP_41_SIZE+LOCAL_SIZE(%a7),%a1 - -unimp_con: -// -// Fix up the new unimp frame with entries from the old unimp frame -// - movel CMDREG1B(%a6),CMDREG1B(%a1) //set inst in frame to unimp -// -// Or in the FPSR from the emulation with the USER_FPSR on the stack. -// - fmovel %FPSR,%d0 - orl %d0,USER_FPSR(%a6) - bra do_clean - -// -// Frame is idle, so check for exceptions reported through -// USER_FPSR and set the unimp frame accordingly. -// A7 must be incremented to the point before the -// idle fsave vector to the unimp vector. -// - -do_check: - addl #4,%a7 //point A7 back to unimp frame -// -// Or in the FPSR from the emulation with the USER_FPSR on the stack. -// - fmovel %FPSR,%d0 - orl %d0,USER_FPSR(%a6) -// -// On a busy frame, we must clear the nmnexc bits. -// - cmpib #BUSY_SIZE-4,1(%a7) //check frame type - bnes check_fr //if busy, clr nmnexc - clrw NMNEXC(%a6) //clr nmnexc & nmcexc - btstb #5,CMDREG1B(%a6) //test for fmove out - bnes frame_com - movel USER_FPSR(%a6),FPSR_SHADOW(%a6) //set exc bits - orl #sx_mask,E_BYTE(%a6) - bras frame_com -check_fr: - cmpb #UNIMP_40_SIZE-4,1(%a7) - beqs frame_com - clrw NMNEXC(%a6) -frame_com: - moveb FPCR_ENABLE(%a6),%d0 //get fpcr enable byte - andb FPSR_EXCEPT(%a6),%d0 //and in the fpsr exc byte - bfffo %d0{#24:#8},%d1 //test for first set bit - leal exc_tbl,%a0 //load jmp table address - subib #24,%d1 //normalize bit offset to 0-8 - movel (%a0,%d1.w*4),%a0 //load routine address based -// ;based on first enabled exc - jmp (%a0) //jump to routine -// -// Bsun is not possible in unimp or unsupp -// -bsun_exc: - bra do_clean -// -// The typical work to be done to the unimp frame to report an -// exception is to set the E1/E3 byte and clr the U flag. -// commonE1 does this for E1 exceptions, which are snan, -// operr, and dz. commonE3 does this for E3 exceptions, which -// are inex2 and inex1, and also clears the E1 exception bit -// left over from the unimp exception. -// -commonE1: - bsetb #E1,E_BYTE(%a6) //set E1 flag - bra commonE //go clean and exit - -commonE3: - tstb UFLG_TMP(%a6) //test flag for unsup/unimp state - bnes unsE3 -uniE3: - bsetb #E3,E_BYTE(%a6) //set E3 flag - bclrb #E1,E_BYTE(%a6) //clr E1 from unimp - bra commonE - -unsE3: - tstb RES_FLG(%a6) - bnes unsE3_0 -unsE3_1: - bsetb #E3,E_BYTE(%a6) //set E3 flag -unsE3_0: - bclrb #E1,E_BYTE(%a6) //clr E1 flag - movel CMDREG1B(%a6),%d0 - andl #0x03c30000,%d0 //work for cmd3b - bfextu CMDREG1B(%a6){#13:#1},%d1 //extract bit 2 - lsll #5,%d1 - swap %d1 - orl %d1,%d0 //put it in the right place - bfextu CMDREG1B(%a6){#10:#3},%d1 //extract bit 3,4,5 - lsll #2,%d1 - swap %d1 - orl %d1,%d0 //put them in the right place - movel %d0,CMDREG3B(%a6) //in the busy frame - -commonE: - bclrb #UFLAG,T_BYTE(%a6) //clr U flag from unimp - bra do_clean //go clean and exit -// -// No bits in the enable byte match existing exceptions. Check for -// the case of the ovfl exc without the ovfl enabled, but with -// inex2 enabled. -// -no_match: - btstb #inex2_bit,FPCR_ENABLE(%a6) //check for ovfl/inex2 case - beqs no_exc //if clear, exit - btstb #ovfl_bit,FPSR_EXCEPT(%a6) //now check ovfl - beqs no_exc //if clear, exit - bras ovfl_unfl //go to unfl_ovfl to determine if -// ;it is an unsupp or unimp exc - -// No exceptions are to be reported. If the instruction was -// unimplemented, no FPU restore is necessary. If it was -// unsupported, we must perform the restore. -no_exc: - tstb UFLG_TMP(%a6) //test flag for unsupp/unimp state - beqs uni_no_exc -uns_no_exc: - tstb RES_FLG(%a6) //check if frestore is needed - bne do_clean //if clear, no frestore needed -uni_no_exc: - moveml USER_DA(%a6),%d0-%d1/%a0-%a1 - fmovemx USER_FP0(%a6),%fp0-%fp3 - fmoveml USER_FPCR(%a6),%fpcr/%fpsr/%fpiar - unlk %a6 - bra finish_up -// -// Unsupported Data Type Handler: -// Ovfl: -// An fmoveout that results in an overflow is reported this way. -// Unfl: -// An fmoveout that results in an underflow is reported this way. -// -// Unimplemented Instruction Handler: -// Ovfl: -// Only scosh, setox, ssinh, stwotox, and scale can set overflow in -// this manner. -// Unfl: -// Stwotox, setox, and scale can set underflow in this manner. -// Any of the other Library Routines such that f(x)=x in which -// x is an extended denorm can report an underflow exception. -// It is the responsibility of the exception-causing exception -// to make sure that WBTEMP is correct. -// -// The exceptional operand is in FP_SCR1. -// -ovfl_unfl: - tstb UFLG_TMP(%a6) //test flag for unsupp/unimp state - beqs ofuf_con -// -// The caller was from an unsupported data type trap. Test if the -// caller set CU_ONLY. If so, the exceptional operand is expected in -// FPTEMP, rather than WBTEMP. -// - tstb CU_ONLY(%a6) //test if inst is cu-only - beq unsE3 -// move.w #$fe,CU_SAVEPC(%a6) - clrb CU_SAVEPC(%a6) - bsetb #E1,E_BYTE(%a6) //set E1 exception flag - movew ETEMP_EX(%a6),FPTEMP_EX(%a6) - movel ETEMP_HI(%a6),FPTEMP_HI(%a6) - movel ETEMP_LO(%a6),FPTEMP_LO(%a6) - bsetb #fptemp15_bit,DTAG(%a6) //set fpte15 - bclrb #UFLAG,T_BYTE(%a6) //clr U flag from unimp - bra do_clean //go clean and exit - -ofuf_con: - moveb (%a7),VER_TMP(%a6) //save version number - cmpib #BUSY_SIZE-4,1(%a7) //check for busy frame - beqs busy_fr //if unimp, grow to busy - cmpib #VER_40,(%a7) //test for orig unimp frame - bnes try_41 //if not, test for rev frame - moveql #13,%d0 //need to zero 14 lwords - bras ofuf_fin -try_41: - cmpib #VER_41,(%a7) //test for rev unimp frame - bnel fpsp_fmt_error //if neither, exit with error - moveql #11,%d0 //need to zero 12 lwords - -ofuf_fin: - clrl (%a7) -loop1: - clrl -(%a7) //clear and dec a7 - dbra %d0,loop1 - moveb VER_TMP(%a6),(%a7) - moveb #BUSY_SIZE-4,1(%a7) //write busy fmt word. -busy_fr: - movel FP_SCR1(%a6),WBTEMP_EX(%a6) //write - movel FP_SCR1+4(%a6),WBTEMP_HI(%a6) //exceptional op to - movel FP_SCR1+8(%a6),WBTEMP_LO(%a6) //wbtemp - bsetb #E3,E_BYTE(%a6) //set E3 flag - bclrb #E1,E_BYTE(%a6) //make sure E1 is clear - bclrb #UFLAG,T_BYTE(%a6) //clr U flag - movel USER_FPSR(%a6),FPSR_SHADOW(%a6) - orl #sx_mask,E_BYTE(%a6) - movel CMDREG1B(%a6),%d0 //fix cmd1b to make it - andl #0x03c30000,%d0 //work for cmd3b - bfextu CMDREG1B(%a6){#13:#1},%d1 //extract bit 2 - lsll #5,%d1 - swap %d1 - orl %d1,%d0 //put it in the right place - bfextu CMDREG1B(%a6){#10:#3},%d1 //extract bit 3,4,5 - lsll #2,%d1 - swap %d1 - orl %d1,%d0 //put them in the right place - movel %d0,CMDREG3B(%a6) //in the busy frame - -// -// Check if the frame to be restored is busy or unimp. -//** NOTE *** Bug fix for errata (0d43b #3) -// If the frame is unimp, we must create a busy frame to -// fix the bug with the nmnexc bits in cases in which they -// are set by a previous instruction and not cleared by -// the save. The frame will be unimp only if the final -// instruction in an emulation routine caused the exception -// by doing an fmove ,fp0. The exception operand, in -// internal format, is in fptemp. -// -do_clean: - cmpib #UNIMP_40_SIZE-4,1(%a7) - bnes do_con - moveql #13,%d0 //in orig, need to zero 14 lwords - bras do_build -do_con: - cmpib #UNIMP_41_SIZE-4,1(%a7) - bnes do_restore //frame must be busy - moveql #11,%d0 //in rev, need to zero 12 lwords - -do_build: - moveb (%a7),VER_TMP(%a6) - clrl (%a7) -loop2: - clrl -(%a7) //clear and dec a7 - dbra %d0,loop2 -// -// Use a1 as pointer into new frame. a6 is not correct if an unimp or -// busy frame was created as the result of an exception on the final -// instruction of an emulation routine. -// -// We need to set the nmcexc bits if the exception is E1. Otherwise, -// the exc taken will be inex2. -// - leal BUSY_SIZE+LOCAL_SIZE(%a7),%a1 //init a1 for new frame - moveb VER_TMP(%a6),(%a7) //write busy fmt word - moveb #BUSY_SIZE-4,1(%a7) - movel FP_SCR1(%a6),WBTEMP_EX(%a1) //write - movel FP_SCR1+4(%a6),WBTEMP_HI(%a1) //exceptional op to - movel FP_SCR1+8(%a6),WBTEMP_LO(%a1) //wbtemp -// btst.b #E1,E_BYTE(%a1) -// beq.b do_restore - bfextu USER_FPSR(%a6){#17:#4},%d0 //get snan/operr/ovfl/unfl bits - bfins %d0,NMCEXC(%a1){#4:#4} //and insert them in nmcexc - movel USER_FPSR(%a6),FPSR_SHADOW(%a1) //set exc bits - orl #sx_mask,E_BYTE(%a1) - -do_restore: - moveml USER_DA(%a6),%d0-%d1/%a0-%a1 - fmovemx USER_FP0(%a6),%fp0-%fp3 - fmoveml USER_FPCR(%a6),%fpcr/%fpsr/%fpiar - frestore (%a7)+ - tstb RES_FLG(%a6) //RES_FLG indicates a "continuation" frame - beq cont - bsr bug1384 -cont: - unlk %a6 -// -// If trace mode enabled, then go to trace handler. This handler -// cannot have any fp instructions. If there are fp inst's and an -// exception has been restored into the machine then the exception -// will occur upon execution of the fp inst. This is not desirable -// in the kernel (supervisor mode). See MC68040 manual Section 9.3.8. -// -finish_up: - btstb #7,(%a7) //test T1 in SR - bnes g_trace - btstb #6,(%a7) //test T0 in SR - bnes g_trace - bral fpsp_done -// -// Change integer stack to look like trace stack -// The address of the instruction that caused the -// exception is already in the integer stack (is -// the same as the saved friar) -// -// If the current frame is already a 6-word stack then all -// that needs to be done is to change the vector# to TRACE. -// If the frame is only a 4-word stack (meaning we got here -// on an Unsupported data type exception), then we need to grow -// the stack an extra 2 words and get the FPIAR from the FPU. -// -g_trace: - bftst EXC_VEC-4(%sp){#0:#4} - bne g_easy - - subw #4,%sp // make room - movel 4(%sp),(%sp) - movel 8(%sp),4(%sp) - subw #BUSY_SIZE,%sp - fsave (%sp) - fmovel %fpiar,BUSY_SIZE+EXC_EA-4(%sp) - frestore (%sp) - addw #BUSY_SIZE,%sp - -g_easy: - movew #TRACE_VEC,EXC_VEC-4(%a7) - bral real_trace -// -// This is a work-around for hardware bug 1384. -// -bug1384: - link %a5,#0 - fsave -(%sp) - cmpib #0x41,(%sp) // check for correct frame - beq frame_41 - bgt nofix // if more advanced mask, do nada - -frame_40: - tstb 1(%sp) // check to see if idle - bne notidle -idle40: - clrl (%sp) // get rid of old fsave frame - movel %d1,USER_D1(%a6) // save d1 - movew #8,%d1 // place unimp frame instead -loop40: clrl -(%sp) - dbra %d1,loop40 - movel USER_D1(%a6),%d1 // restore d1 - movel #0x40280000,-(%sp) - frestore (%sp)+ - unlk %a5 - rts - -frame_41: - tstb 1(%sp) // check to see if idle - bne notidle -idle41: - clrl (%sp) // get rid of old fsave frame - movel %d1,USER_D1(%a6) // save d1 - movew #10,%d1 // place unimp frame instead -loop41: clrl -(%sp) - dbra %d1,loop41 - movel USER_D1(%a6),%d1 // restore d1 - movel #0x41300000,-(%sp) - frestore (%sp)+ - unlk %a5 - rts - -notidle: - bclrb #etemp15_bit,-40(%a5) - frestore (%sp)+ - unlk %a5 - rts - -nofix: - frestore (%sp)+ - unlk %a5 - rts - - |end diff --git a/c/src/lib/libcpu/m68k/m68040/fpsp/get_op.S b/c/src/lib/libcpu/m68k/m68040/fpsp/get_op.S deleted file mode 100644 index a8a114b734..0000000000 --- a/c/src/lib/libcpu/m68k/m68040/fpsp/get_op.S +++ /dev/null @@ -1,678 +0,0 @@ -#include "fpsp-namespace.h" -// -// -// get_op.sa 3.6 5/19/92 -// -// get_op.sa 3.5 4/26/91 -// -// Description: This routine is called by the unsupported format/data -// type exception handler ('unsupp' - vector 55) and the unimplemented -// instruction exception handler ('unimp' - vector 11). 'get_op' -// determines the opclass (0, 2, or 3) and branches to the -// opclass handler routine. See 68881/2 User's Manual table 4-11 -// for a description of the opclasses. -// -// For UNSUPPORTED data/format (exception vector 55) and for -// UNIMPLEMENTED instructions (exception vector 11) the following -// applies: -// -// - For unnormalized numbers (opclass 0, 2, or 3) the -// number(s) is normalized and the operand type tag is updated. -// -// - For a packed number (opclass 2) the number is unpacked and the -// operand type tag is updated. -// -// - For denormalized numbers (opclass 0 or 2) the number(s) is not -// changed but passed to the next module. The next module for -// unimp is do_func, the next module for unsupp is res_func. -// -// For UNSUPPORTED data/format (exception vector 55) only the -// following applies: -// -// - If there is a move out with a packed number (opclass 3) the -// number is packed and written to user memory. For the other -// opclasses the number(s) are written back to the fsave stack -// and the instruction is then restored back into the '040. The -// '040 is then able to complete the instruction. -// -// For example: -// fadd.x fpm,fpn where the fpm contains an unnormalized number. -// The '040 takes an unsupported data trap and gets to this -// routine. The number is normalized, put back on the stack and -// then an frestore is done to restore the instruction back into -// the '040. The '040 then re-executes the fadd.x fpm,fpn with -// a normalized number in the source and the instruction is -// successful. -// -// Next consider if in the process of normalizing the un- -// normalized number it becomes a denormalized number. The -// routine which converts the unnorm to a norm (called mk_norm) -// detects this and tags the number as a denorm. The routine -// res_func sees the denorm tag and converts the denorm to a -// norm. The instruction is then restored back into the '040 -// which re_executes the instruction. -// -// -// Copyright (C) Motorola, Inc. 1990 -// All Rights Reserved -// -// THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA -// The copyright notice above does not evidence any -// actual or intended publication of such source code. - -GET_OP: //idnt 2,1 | Motorola 040 Floating Point Software Package - - |section 8 - -#include "fpsp.defs" - - .global PIRN,PIRZRM,PIRP - .global SMALRN,SMALRZRM,SMALRP - .global BIGRN,BIGRZRM,BIGRP - -PIRN: - .long 0x40000000,0xc90fdaa2,0x2168c235 //pi -PIRZRM: - .long 0x40000000,0xc90fdaa2,0x2168c234 //pi -PIRP: - .long 0x40000000,0xc90fdaa2,0x2168c235 //pi - -//round to nearest -SMALRN: - .long 0x3ffd0000,0x9a209a84,0xfbcff798 //log10(2) - .long 0x40000000,0xadf85458,0xa2bb4a9a //e - .long 0x3fff0000,0xb8aa3b29,0x5c17f0bc //log2(e) - .long 0x3ffd0000,0xde5bd8a9,0x37287195 //log10(e) - .long 0x00000000,0x00000000,0x00000000 //0.0 -// round to zero;round to negative infinity -SMALRZRM: - .long 0x3ffd0000,0x9a209a84,0xfbcff798 //log10(2) - .long 0x40000000,0xadf85458,0xa2bb4a9a //e - .long 0x3fff0000,0xb8aa3b29,0x5c17f0bb //log2(e) - .long 0x3ffd0000,0xde5bd8a9,0x37287195 //log10(e) - .long 0x00000000,0x00000000,0x00000000 //0.0 -// round to positive infinity -SMALRP: - .long 0x3ffd0000,0x9a209a84,0xfbcff799 //log10(2) - .long 0x40000000,0xadf85458,0xa2bb4a9b //e - .long 0x3fff0000,0xb8aa3b29,0x5c17f0bc //log2(e) - .long 0x3ffd0000,0xde5bd8a9,0x37287195 //log10(e) - .long 0x00000000,0x00000000,0x00000000 //0.0 - -//round to nearest -BIGRN: - .long 0x3ffe0000,0xb17217f7,0xd1cf79ac //ln(2) - .long 0x40000000,0x935d8ddd,0xaaa8ac17 //ln(10) - .long 0x3fff0000,0x80000000,0x00000000 //10 ^ 0 - - .global PTENRN -PTENRN: - .long 0x40020000,0xA0000000,0x00000000 //10 ^ 1 - .long 0x40050000,0xC8000000,0x00000000 //10 ^ 2 - .long 0x400C0000,0x9C400000,0x00000000 //10 ^ 4 - .long 0x40190000,0xBEBC2000,0x00000000 //10 ^ 8 - .long 0x40340000,0x8E1BC9BF,0x04000000 //10 ^ 16 - .long 0x40690000,0x9DC5ADA8,0x2B70B59E //10 ^ 32 - .long 0x40D30000,0xC2781F49,0xFFCFA6D5 //10 ^ 64 - .long 0x41A80000,0x93BA47C9,0x80E98CE0 //10 ^ 128 - .long 0x43510000,0xAA7EEBFB,0x9DF9DE8E //10 ^ 256 - .long 0x46A30000,0xE319A0AE,0xA60E91C7 //10 ^ 512 - .long 0x4D480000,0xC9767586,0x81750C17 //10 ^ 1024 - .long 0x5A920000,0x9E8B3B5D,0xC53D5DE5 //10 ^ 2048 - .long 0x75250000,0xC4605202,0x8A20979B //10 ^ 4096 -//round to minus infinity -BIGRZRM: - .long 0x3ffe0000,0xb17217f7,0xd1cf79ab //ln(2) - .long 0x40000000,0x935d8ddd,0xaaa8ac16 //ln(10) - .long 0x3fff0000,0x80000000,0x00000000 //10 ^ 0 - - .global PTENRM -PTENRM: - .long 0x40020000,0xA0000000,0x00000000 //10 ^ 1 - .long 0x40050000,0xC8000000,0x00000000 //10 ^ 2 - .long 0x400C0000,0x9C400000,0x00000000 //10 ^ 4 - .long 0x40190000,0xBEBC2000,0x00000000 //10 ^ 8 - .long 0x40340000,0x8E1BC9BF,0x04000000 //10 ^ 16 - .long 0x40690000,0x9DC5ADA8,0x2B70B59D //10 ^ 32 - .long 0x40D30000,0xC2781F49,0xFFCFA6D5 //10 ^ 64 - .long 0x41A80000,0x93BA47C9,0x80E98CDF //10 ^ 128 - .long 0x43510000,0xAA7EEBFB,0x9DF9DE8D //10 ^ 256 - .long 0x46A30000,0xE319A0AE,0xA60E91C6 //10 ^ 512 - .long 0x4D480000,0xC9767586,0x81750C17 //10 ^ 1024 - .long 0x5A920000,0x9E8B3B5D,0xC53D5DE5 //10 ^ 2048 - .long 0x75250000,0xC4605202,0x8A20979A //10 ^ 4096 -//round to positive infinity -BIGRP: - .long 0x3ffe0000,0xb17217f7,0xd1cf79ac //ln(2) - .long 0x40000000,0x935d8ddd,0xaaa8ac17 //ln(10) - .long 0x3fff0000,0x80000000,0x00000000 //10 ^ 0 - - .global PTENRP -PTENRP: - .long 0x40020000,0xA0000000,0x00000000 //10 ^ 1 - .long 0x40050000,0xC8000000,0x00000000 //10 ^ 2 - .long 0x400C0000,0x9C400000,0x00000000 //10 ^ 4 - .long 0x40190000,0xBEBC2000,0x00000000 //10 ^ 8 - .long 0x40340000,0x8E1BC9BF,0x04000000 //10 ^ 16 - .long 0x40690000,0x9DC5ADA8,0x2B70B59E //10 ^ 32 - .long 0x40D30000,0xC2781F49,0xFFCFA6D6 //10 ^ 64 - .long 0x41A80000,0x93BA47C9,0x80E98CE0 //10 ^ 128 - .long 0x43510000,0xAA7EEBFB,0x9DF9DE8E //10 ^ 256 - .long 0x46A30000,0xE319A0AE,0xA60E91C7 //10 ^ 512 - .long 0x4D480000,0xC9767586,0x81750C18 //10 ^ 1024 - .long 0x5A920000,0x9E8B3B5D,0xC53D5DE6 //10 ^ 2048 - .long 0x75250000,0xC4605202,0x8A20979B //10 ^ 4096 - - |xref nrm_zero - |xref decbin - |xref round - - .global get_op - .global uns_getop - .global uni_getop -get_op: - clrb DY_MO_FLG(%a6) - tstb UFLG_TMP(%a6) //test flag for unsupp/unimp state - beq uni_getop - -uns_getop: - btstb #direction_bit,CMDREG1B(%a6) - bne opclass3 //branch if a fmove out (any kind) - btstb #6,CMDREG1B(%a6) - beqs uns_notpacked - - bfextu CMDREG1B(%a6){#3:#3},%d0 - cmpb #3,%d0 - beq pack_source //check for a packed src op, branch if so -uns_notpacked: - bsr chk_dy_mo //set the dyadic/monadic flag - tstb DY_MO_FLG(%a6) - beqs src_op_ck //if monadic, go check src op -// ;else, check dst op (fall through) - - btstb #7,DTAG(%a6) - beqs src_op_ck //if dst op is norm, check src op - bras dst_ex_dnrm //else, handle destination unnorm/dnrm - -uni_getop: - bfextu CMDREG1B(%a6){#0:#6},%d0 //get opclass and src fields - cmpil #0x17,%d0 //if op class and size fields are $17, -// ;it is FMOVECR; if not, continue -// -// If the instruction is fmovecr, exit get_op. It is handled -// in do_func and smovecr.sa. -// - bne not_fmovecr //handle fmovecr as an unimplemented inst - rts - -not_fmovecr: - btstb #E1,E_BYTE(%a6) //if set, there is a packed operand - bne pack_source //check for packed src op, branch if so - -// The following lines of are coded to optimize on normalized operands - moveb STAG(%a6),%d0 - orb DTAG(%a6),%d0 //check if either of STAG/DTAG msb set - bmis dest_op_ck //if so, some op needs to be fixed - rts - -dest_op_ck: - btstb #7,DTAG(%a6) //check for unsupported data types in - beqs src_op_ck //the destination, if not, check src op - bsr chk_dy_mo //set dyadic/monadic flag - tstb DY_MO_FLG(%a6) // - beqs src_op_ck //if monadic, check src op -// -// At this point, destination has an extended denorm or unnorm. -// -dst_ex_dnrm: - movew FPTEMP_EX(%a6),%d0 //get destination exponent - andiw #0x7fff,%d0 //mask sign, check if exp = 0000 - beqs src_op_ck //if denorm then check source op. -// ;denorms are taken care of in res_func -// ;(unsupp) or do_func (unimp) -// ;else unnorm fall through - leal FPTEMP(%a6),%a0 //point a0 to dop - used in mk_norm - bsr mk_norm //go normalize - mk_norm returns: -// ;L_SCR1{7:5} = operand tag -// ; (000 = norm, 100 = denorm) -// ;L_SCR1{4} = fpte15 or ete15 -// ; 0 = exp > $3fff -// ; 1 = exp <= $3fff -// ;and puts the normalized num back -// ;on the fsave stack -// - moveb L_SCR1(%a6),DTAG(%a6) //write the new tag & fpte15 -// ;to the fsave stack and fall -// ;through to check source operand -// -src_op_ck: - btstb #7,STAG(%a6) - beq end_getop //check for unsupported data types on the -// ;source operand - btstb #5,STAG(%a6) - bnes src_sd_dnrm //if bit 5 set, handle sgl/dbl denorms -// -// At this point only unnorms or extended denorms are possible. -// -src_ex_dnrm: - movew ETEMP_EX(%a6),%d0 //get source exponent - andiw #0x7fff,%d0 //mask sign, check if exp = 0000 - beq end_getop //if denorm then exit, denorms are -// ;handled in do_func - leal ETEMP(%a6),%a0 //point a0 to sop - used in mk_norm - bsr mk_norm //go normalize - mk_norm returns: -// ;L_SCR1{7:5} = operand tag -// ; (000 = norm, 100 = denorm) -// ;L_SCR1{4} = fpte15 or ete15 -// ; 0 = exp > $3fff -// ; 1 = exp <= $3fff -// ;and puts the normalized num back -// ;on the fsave stack -// - moveb L_SCR1(%a6),STAG(%a6) //write the new tag & ete15 - rts //end_getop - -// -// At this point, only single or double denorms are possible. -// If the inst is not fmove, normalize the source. If it is, -// do nothing to the input. -// -src_sd_dnrm: - btstb #4,CMDREG1B(%a6) //differentiate between sgl/dbl denorm - bnes is_double -is_single: - movew #0x3f81,%d1 //write bias for sgl denorm - bras common //goto the common code -is_double: - movew #0x3c01,%d1 //write the bias for a dbl denorm -common: - btstb #sign_bit,ETEMP_EX(%a6) //grab sign bit of mantissa - beqs pos - bset #15,%d1 //set sign bit because it is negative -pos: - movew %d1,ETEMP_EX(%a6) -// ;put exponent on stack - - movew CMDREG1B(%a6),%d1 - andw #0xe3ff,%d1 //clear out source specifier - orw #0x0800,%d1 //set source specifier to extended prec - movew %d1,CMDREG1B(%a6) //write back to the command word in stack -// ;this is needed to fix unsupp data stack - leal ETEMP(%a6),%a0 //point a0 to sop - - bsr mk_norm //convert sgl/dbl denorm to norm - moveb L_SCR1(%a6),STAG(%a6) //put tag into source tag reg - d0 - rts //end_getop -// -// At this point, the source is definitely packed, whether -// instruction is dyadic or monadic is still unknown -// -pack_source: - movel FPTEMP_LO(%a6),ETEMP(%a6) //write ms part of packed -// ;number to etemp slot - bsr chk_dy_mo //set dyadic/monadic flag - bsr unpack - - tstb DY_MO_FLG(%a6) - beqs end_getop //if monadic, exit -// ;else, fix FPTEMP -pack_dya: - bfextu CMDREG1B(%a6){#6:#3},%d0 //extract dest fp reg - movel #7,%d1 - subl %d0,%d1 - clrl %d0 - bsetl %d1,%d0 //set up d0 as a dynamic register mask - fmovemx %d0,FPTEMP(%a6) //write to FPTEMP - - btstb #7,DTAG(%a6) //check dest tag for unnorm or denorm - bne dst_ex_dnrm //else, handle the unnorm or ext denorm -// -// Dest is not denormalized. Check for norm, and set fpte15 -// accordingly. -// - moveb DTAG(%a6),%d0 - andib #0xf0,%d0 //strip to only dtag:fpte15 - tstb %d0 //check for normalized value - bnes end_getop //if inf/nan/zero leave get_op - movew FPTEMP_EX(%a6),%d0 - andiw #0x7fff,%d0 - cmpiw #0x3fff,%d0 //check if fpte15 needs setting - bges end_getop //if >= $3fff, leave fpte15=0 - orb #0x10,DTAG(%a6) - bras end_getop - -// -// At this point, it is either an fmoveout packed, unnorm or denorm -// -opclass3: - clrb DY_MO_FLG(%a6) //set dyadic/monadic flag to monadic - bfextu CMDREG1B(%a6){#4:#2},%d0 - cmpib #3,%d0 - bne src_ex_dnrm //if not equal, must be unnorm or denorm -// ;else it is a packed move out -// ;exit -end_getop: - rts - -// -// Sets the DY_MO_FLG correctly. This is used only on if it is an -// unsupported data type exception. Set if dyadic. -// -chk_dy_mo: - movew CMDREG1B(%a6),%d0 - btstl #5,%d0 //testing extension command word - beqs set_mon //if bit 5 = 0 then monadic - btstl #4,%d0 //know that bit 5 = 1 - beqs set_dya //if bit 4 = 0 then dyadic - andiw #0x007f,%d0 //get rid of all but extension bits {6:0} - cmpiw #0x0038,%d0 //if extension = $38 then fcmp (dyadic) - bnes set_mon -set_dya: - st DY_MO_FLG(%a6) //set the inst flag type to dyadic - rts -set_mon: - clrb DY_MO_FLG(%a6) //set the inst flag type to monadic - rts -// -// MK_NORM -// -// Normalizes unnormalized numbers, sets tag to norm or denorm, sets unfl -// exception if denorm. -// -// CASE opclass 0x0 unsupp -// mk_norm till msb set -// set tag = norm -// -// CASE opclass 0x0 unimp -// mk_norm till msb set or exp = 0 -// if integer bit = 0 -// tag = denorm -// else -// tag = norm -// -// CASE opclass 011 unsupp -// mk_norm till msb set or exp = 0 -// if integer bit = 0 -// tag = denorm -// set unfl_nmcexe = 1 -// else -// tag = norm -// -// if exp <= $3fff -// set ete15 or fpte15 = 1 -// else set ete15 or fpte15 = 0 - -// input: -// a0 = points to operand to be normalized -// output: -// L_SCR1{7:5} = operand tag (000 = norm, 100 = denorm) -// L_SCR1{4} = fpte15 or ete15 (0 = exp > $3fff, 1 = exp <=$3fff) -// the normalized operand is placed back on the fsave stack -mk_norm: - clrl L_SCR1(%a6) - bclrb #sign_bit,LOCAL_EX(%a0) - sne LOCAL_SGN(%a0) //transform into internal extended format - - cmpib #0x2c,1+EXC_VEC(%a6) //check if unimp - bnes uns_data //branch if unsupp - bsr uni_inst //call if unimp (opclass 0x0) - bras reload -uns_data: - btstb #direction_bit,CMDREG1B(%a6) //check transfer direction - bnes bit_set //branch if set (opclass 011) - bsr uns_opx //call if opclass 0x0 - bras reload -bit_set: - bsr uns_op3 //opclass 011 -reload: - cmpw #0x3fff,LOCAL_EX(%a0) //if exp > $3fff - bgts end_mk // fpte15/ete15 already set to 0 - bsetb #4,L_SCR1(%a6) //else set fpte15/ete15 to 1 -// ;calling routine actually sets the -// ;value on the stack (along with the -// ;tag), since this routine doesn't -// ;know if it should set ete15 or fpte15 -// ;ie, it doesn't know if this is the -// ;src op or dest op. -end_mk: - bfclr LOCAL_SGN(%a0){#0:#8} - beqs end_mk_pos - bsetb #sign_bit,LOCAL_EX(%a0) //convert back to IEEE format -end_mk_pos: - rts -// -// CASE opclass 011 unsupp -// -uns_op3: - bsr nrm_zero //normalize till msb = 1 or exp = zero - btstb #7,LOCAL_HI(%a0) //if msb = 1 - bnes no_unfl //then branch -set_unfl: - orw #dnrm_tag,L_SCR1(%a6) //set denorm tag - bsetb #unfl_bit,FPSR_EXCEPT(%a6) //set unfl exception bit -no_unfl: - rts -// -// CASE opclass 0x0 unsupp -// -uns_opx: - bsr nrm_zero //normalize the number - btstb #7,LOCAL_HI(%a0) //check if integer bit (j-bit) is set - beqs uns_den //if clear then now have a denorm -uns_nrm: - orb #norm_tag,L_SCR1(%a6) //set tag to norm - rts -uns_den: - orb #dnrm_tag,L_SCR1(%a6) //set tag to denorm - rts -// -// CASE opclass 0x0 unimp -// -uni_inst: - bsr nrm_zero - btstb #7,LOCAL_HI(%a0) //check if integer bit (j-bit) is set - beqs uni_den //if clear then now have a denorm -uni_nrm: - orb #norm_tag,L_SCR1(%a6) //set tag to norm - rts -uni_den: - orb #dnrm_tag,L_SCR1(%a6) //set tag to denorm - rts - -// -// Decimal to binary conversion -// -// Special cases of inf and NaNs are completed outside of decbin. -// If the input is an snan, the snan bit is not set. -// -// input: -// ETEMP(a6) - points to packed decimal string in memory -// output: -// fp0 - contains packed string converted to extended precision -// ETEMP - same as fp0 -unpack: - movew CMDREG1B(%a6),%d0 //examine command word, looking for fmove's - andw #0x3b,%d0 - beq move_unpack //special handling for fmove: must set FPSR_CC - - movew ETEMP(%a6),%d0 //get word with inf information - bfextu %d0{#20:#12},%d1 //get exponent into d1 - cmpiw #0x0fff,%d1 //test for inf or NaN - bnes try_zero //if not equal, it is not special - bfextu %d0{#17:#3},%d1 //get SE and y bits into d1 - cmpiw #7,%d1 //SE and y bits must be on for special - bnes try_zero //if not on, it is not special -//input is of the special cases of inf and NaN - tstl ETEMP_HI(%a6) //check ms mantissa - bnes fix_nan //if non-zero, it is a NaN - tstl ETEMP_LO(%a6) //check ls mantissa - bnes fix_nan //if non-zero, it is a NaN - bra finish //special already on stack -fix_nan: - btstb #signan_bit,ETEMP_HI(%a6) //test for snan - bne finish - orl #snaniop_mask,USER_FPSR(%a6) //always set snan if it is so - bra finish -try_zero: - movew ETEMP_EX+2(%a6),%d0 //get word 4 - andiw #0x000f,%d0 //clear all but last ni(y)bble - tstw %d0 //check for zero. - bne not_spec - tstl ETEMP_HI(%a6) //check words 3 and 2 - bne not_spec - tstl ETEMP_LO(%a6) //check words 1 and 0 - bne not_spec - tstl ETEMP(%a6) //test sign of the zero - bges pos_zero - movel #0x80000000,ETEMP(%a6) //write neg zero to etemp - clrl ETEMP_HI(%a6) - clrl ETEMP_LO(%a6) - bra finish -pos_zero: - clrl ETEMP(%a6) - clrl ETEMP_HI(%a6) - clrl ETEMP_LO(%a6) - bra finish - -not_spec: - fmovemx %fp0-%fp1,-(%a7) //save fp0 - decbin returns in it - bsr decbin - fmovex %fp0,ETEMP(%a6) //put the unpacked sop in the fsave stack - fmovemx (%a7)+,%fp0-%fp1 - fmovel #0,%FPSR //clr fpsr from decbin - bra finish - -// -// Special handling for packed move in: Same results as all other -// packed cases, but we must set the FPSR condition codes properly. -// -move_unpack: - movew ETEMP(%a6),%d0 //get word with inf information - bfextu %d0{#20:#12},%d1 //get exponent into d1 - cmpiw #0x0fff,%d1 //test for inf or NaN - bnes mtry_zero //if not equal, it is not special - bfextu %d0{#17:#3},%d1 //get SE and y bits into d1 - cmpiw #7,%d1 //SE and y bits must be on for special - bnes mtry_zero //if not on, it is not special -//input is of the special cases of inf and NaN - tstl ETEMP_HI(%a6) //check ms mantissa - bnes mfix_nan //if non-zero, it is a NaN - tstl ETEMP_LO(%a6) //check ls mantissa - bnes mfix_nan //if non-zero, it is a NaN -//input is inf - orl #inf_mask,USER_FPSR(%a6) //set I bit - tstl ETEMP(%a6) //check sign - bge finish - orl #neg_mask,USER_FPSR(%a6) //set N bit - bra finish //special already on stack -mfix_nan: - orl #nan_mask,USER_FPSR(%a6) //set NaN bit - moveb #nan_tag,STAG(%a6) //set stag to NaN - btstb #signan_bit,ETEMP_HI(%a6) //test for snan - bnes mn_snan - orl #snaniop_mask,USER_FPSR(%a6) //set snan bit - btstb #snan_bit,FPCR_ENABLE(%a6) //test for snan enabled - bnes mn_snan - bsetb #signan_bit,ETEMP_HI(%a6) //force snans to qnans -mn_snan: - tstl ETEMP(%a6) //check for sign - bge finish //if clr, go on - orl #neg_mask,USER_FPSR(%a6) //set N bit - bra finish - -mtry_zero: - movew ETEMP_EX+2(%a6),%d0 //get word 4 - andiw #0x000f,%d0 //clear all but last ni(y)bble - tstw %d0 //check for zero. - bnes mnot_spec - tstl ETEMP_HI(%a6) //check words 3 and 2 - bnes mnot_spec - tstl ETEMP_LO(%a6) //check words 1 and 0 - bnes mnot_spec - tstl ETEMP(%a6) //test sign of the zero - bges mpos_zero - orl #neg_mask+z_mask,USER_FPSR(%a6) //set N and Z - movel #0x80000000,ETEMP(%a6) //write neg zero to etemp - clrl ETEMP_HI(%a6) - clrl ETEMP_LO(%a6) - bras finish -mpos_zero: - orl #z_mask,USER_FPSR(%a6) //set Z - clrl ETEMP(%a6) - clrl ETEMP_HI(%a6) - clrl ETEMP_LO(%a6) - bras finish - -mnot_spec: - fmovemx %fp0-%fp1,-(%a7) //save fp0 ,fp1 - decbin returns in fp0 - bsr decbin - fmovex %fp0,ETEMP(%a6) -// ;put the unpacked sop in the fsave stack - fmovemx (%a7)+,%fp0-%fp1 - -finish: - movew CMDREG1B(%a6),%d0 //get the command word - andw #0xfbff,%d0 //change the source specifier field to -// ;extended (was packed). - movew %d0,CMDREG1B(%a6) //write command word back to fsave stack -// ;we need to do this so the 040 will -// ;re-execute the inst. without taking -// ;another packed trap. - -fix_stag: -//Converted result is now in etemp on fsave stack, now set the source -//tag (stag) -// if (ete =$7fff) then INF or NAN -// if (etemp = $x.0----0) then -// stag = INF -// else -// stag = NAN -// else -// if (ete = $0000) then -// stag = ZERO -// else -// stag = NORM -// -// Note also that the etemp_15 bit (just right of the stag) must -// be set accordingly. -// - movew ETEMP_EX(%a6),%d1 - andiw #0x7fff,%d1 //strip sign - cmpw #0x7fff,%d1 - bnes z_or_nrm - movel ETEMP_HI(%a6),%d1 - bnes is_nan - movel ETEMP_LO(%a6),%d1 - bnes is_nan -is_inf: - moveb #0x40,STAG(%a6) - movel #0x40,%d0 - rts -is_nan: - moveb #0x60,STAG(%a6) - movel #0x60,%d0 - rts -z_or_nrm: - tstw %d1 - bnes is_nrm -is_zro: -// For a zero, set etemp_15 - moveb #0x30,STAG(%a6) - movel #0x20,%d0 - rts -is_nrm: -// For a norm, check if the exp <= $3fff; if so, set etemp_15 - cmpiw #0x3fff,%d1 - bles set_bit15 - moveb #0,STAG(%a6) - bras end_is_nrm -set_bit15: - moveb #0x10,STAG(%a6) -end_is_nrm: - movel #0,%d0 -end_fix: - rts - -end_get: - rts - |end diff --git a/c/src/lib/libcpu/m68k/m68040/fpsp/kernel_ex.S b/c/src/lib/libcpu/m68k/m68040/fpsp/kernel_ex.S deleted file mode 100644 index 3bbe07a418..0000000000 --- a/c/src/lib/libcpu/m68k/m68040/fpsp/kernel_ex.S +++ /dev/null @@ -1,496 +0,0 @@ -#include "fpsp-namespace.h" -// -// -// kernel_ex.sa 3.3 12/19/90 -// -// This file contains routines to force exception status in the -// fpu for exceptional cases detected or reported within the -// transcendental functions. Typically, the t_xx routine will -// set the appropriate bits in the USER_FPSR word on the stack. -// The bits are tested in gen_except.sa to determine if an exceptional -// situation needs to be created on return from the FPSP. -// - -// Copyright (C) Motorola, Inc. 1990 -// All Rights Reserved -// -// THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA -// The copyright notice above does not evidence any -// actual or intended publication of such source code. - -KERNEL_EX: //idnt 2,1 | Motorola 040 Floating Point Software Package - - |section 8 - -#include "fpsp.defs" - -mns_inf: .long 0xffff0000,0x00000000,0x00000000 -pls_inf: .long 0x7fff0000,0x00000000,0x00000000 -nan: .long 0x7fff0000,0xffffffff,0xffffffff -huge: .long 0x7ffe0000,0xffffffff,0xffffffff - - |xref ovf_r_k - |xref unf_sub - |xref nrm_set - - .global t_dz - .global t_dz2 - .global t_operr - .global t_unfl - .global t_ovfl - .global t_ovfl2 - .global t_inx2 - .global t_frcinx - .global t_extdnrm - .global t_resdnrm - .global dst_nan - .global src_nan -// -// DZ exception -// -// -// if dz trap disabled -// store properly signed inf (use sign of etemp) into fp0 -// set FPSR exception status dz bit, condition code -// inf bit, and accrued dz bit -// return -// frestore the frame into the machine (done by unimp_hd) -// -// else dz trap enabled -// set exception status bit & accrued bits in FPSR -// set flag to disable sto_res from corrupting fp register -// return -// frestore the frame into the machine (done by unimp_hd) -// -// t_dz2 is used by monadic functions such as flogn (from do_func). -// t_dz is used by monadic functions such as satanh (from the -// transcendental function). -// -t_dz2: - bsetb #neg_bit,FPSR_CC(%a6) //set neg bit in FPSR - fmovel #0,%FPSR //clr status bits (Z set) - btstb #dz_bit,FPCR_ENABLE(%a6) //test FPCR for dz exc enabled - bnes dz_ena_end - bras m_inf //flogx always returns -inf -t_dz: - fmovel #0,%FPSR //clr status bits (Z set) - btstb #dz_bit,FPCR_ENABLE(%a6) //test FPCR for dz exc enabled - bnes dz_ena -// -// dz disabled -// - btstb #sign_bit,ETEMP_EX(%a6) //check sign for neg or pos - beqs p_inf //branch if pos sign - -m_inf: - fmovemx mns_inf,%fp0-%fp0 //load -inf - bsetb #neg_bit,FPSR_CC(%a6) //set neg bit in FPSR - bras set_fpsr -p_inf: - fmovemx pls_inf,%fp0-%fp0 //load +inf -set_fpsr: - orl #dzinf_mask,USER_FPSR(%a6) //set I,DZ,ADZ - rts -// -// dz enabled -// -dz_ena: - btstb #sign_bit,ETEMP_EX(%a6) //check sign for neg or pos - beqs dz_ena_end - bsetb #neg_bit,FPSR_CC(%a6) //set neg bit in FPSR -dz_ena_end: - orl #dzinf_mask,USER_FPSR(%a6) //set I,DZ,ADZ - st STORE_FLG(%a6) - rts -// -// OPERR exception -// -// if (operr trap disabled) -// set FPSR exception status operr bit, condition code -// nan bit; Store default NAN into fp0 -// frestore the frame into the machine (done by unimp_hd) -// -// else (operr trap enabled) -// set FPSR exception status operr bit, accrued operr bit -// set flag to disable sto_res from corrupting fp register -// frestore the frame into the machine (done by unimp_hd) -// -t_operr: - orl #opnan_mask,USER_FPSR(%a6) //set NaN, OPERR, AIOP - - btstb #operr_bit,FPCR_ENABLE(%a6) //test FPCR for operr enabled - bnes op_ena - - fmovemx nan,%fp0-%fp0 //load default nan - rts -op_ena: - st STORE_FLG(%a6) //do not corrupt destination - rts - -// -// t_unfl --- UNFL exception -// -// This entry point is used by all routines requiring unfl, inex2, -// aunfl, and ainex to be set on exit. -// -// On entry, a0 points to the exceptional operand. The final exceptional -// operand is built in FP_SCR1 and only the sign from the original operand -// is used. -// -t_unfl: - clrl FP_SCR1(%a6) //set exceptional operand to zero - clrl FP_SCR1+4(%a6) - clrl FP_SCR1+8(%a6) - tstb (%a0) //extract sign from caller's exop - bpls unfl_signok - bset #sign_bit,FP_SCR1(%a6) -unfl_signok: - leal FP_SCR1(%a6),%a0 - orl #unfinx_mask,USER_FPSR(%a6) -// ;set UNFL, INEX2, AUNFL, AINEX -unfl_con: - btstb #unfl_bit,FPCR_ENABLE(%a6) - beqs unfl_dis - -unfl_ena: - bfclr STAG(%a6){#5:#3} //clear wbtm66,wbtm1,wbtm0 - bsetb #wbtemp15_bit,WB_BYTE(%a6) //set wbtemp15 - bsetb #sticky_bit,STICKY(%a6) //set sticky bit - - bclrb #E1,E_BYTE(%a6) - -unfl_dis: - bfextu FPCR_MODE(%a6){#0:#2},%d0 //get round precision - - bclrb #sign_bit,LOCAL_EX(%a0) - sne LOCAL_SGN(%a0) //convert to internal ext format - - bsr unf_sub //returns IEEE result at a0 -// ;and sets FPSR_CC accordingly - - bfclr LOCAL_SGN(%a0){#0:#8} //convert back to IEEE ext format - beqs unfl_fin - - bsetb #sign_bit,LOCAL_EX(%a0) - bsetb #sign_bit,FP_SCR1(%a6) //set sign bit of exc operand - -unfl_fin: - fmovemx (%a0),%fp0-%fp0 //store result in fp0 - rts - - -// -// t_ovfl2 --- OVFL exception (without inex2 returned) -// -// This entry is used by scale to force catastrophic overflow. The -// ovfl, aovfl, and ainex bits are set, but not the inex2 bit. -// -t_ovfl2: - orl #ovfl_inx_mask,USER_FPSR(%a6) - movel ETEMP(%a6),FP_SCR1(%a6) - movel ETEMP_HI(%a6),FP_SCR1+4(%a6) - movel ETEMP_LO(%a6),FP_SCR1+8(%a6) -// -// Check for single or double round precision. If single, check if -// the lower 40 bits of ETEMP are zero; if not, set inex2. If double, -// check if the lower 21 bits are zero; if not, set inex2. -// - moveb FPCR_MODE(%a6),%d0 - andib #0xc0,%d0 - beq t_work //if extended, finish ovfl processing - cmpib #0x40,%d0 //test for single - bnes t_dbl -t_sgl: - tstb ETEMP_LO(%a6) - bnes t_setinx2 - movel ETEMP_HI(%a6),%d0 - andil #0xff,%d0 //look at only lower 8 bits - bnes t_setinx2 - bra t_work -t_dbl: - movel ETEMP_LO(%a6),%d0 - andil #0x7ff,%d0 //look at only lower 11 bits - beq t_work -t_setinx2: - orl #inex2_mask,USER_FPSR(%a6) - bras t_work -// -// t_ovfl --- OVFL exception -// -//** Note: the exc operand is returned in ETEMP. -// -t_ovfl: - orl #ovfinx_mask,USER_FPSR(%a6) -t_work: - btstb #ovfl_bit,FPCR_ENABLE(%a6) //test FPCR for ovfl enabled - beqs ovf_dis - -ovf_ena: - clrl FP_SCR1(%a6) //set exceptional operand - clrl FP_SCR1+4(%a6) - clrl FP_SCR1+8(%a6) - - bfclr STAG(%a6){#5:#3} //clear wbtm66,wbtm1,wbtm0 - bclrb #wbtemp15_bit,WB_BYTE(%a6) //clear wbtemp15 - bsetb #sticky_bit,STICKY(%a6) //set sticky bit - - bclrb #E1,E_BYTE(%a6) -// ;fall through to disabled case - -// For disabled overflow call 'ovf_r_k'. This routine loads the -// correct result based on the rounding precision, destination -// format, rounding mode and sign. -// -ovf_dis: - bsr ovf_r_k //returns unsigned ETEMP_EX -// ;and sets FPSR_CC accordingly. - bfclr ETEMP_SGN(%a6){#0:#8} //fix sign - beqs ovf_pos - bsetb #sign_bit,ETEMP_EX(%a6) - bsetb #sign_bit,FP_SCR1(%a6) //set exceptional operand sign -ovf_pos: - fmovemx ETEMP(%a6),%fp0-%fp0 //move the result to fp0 - rts - - -// -// INEX2 exception -// -// The inex2 and ainex bits are set. -// -t_inx2: - orl #inx2a_mask,USER_FPSR(%a6) //set INEX2, AINEX - rts - -// -// Force Inex2 -// -// This routine is called by the transcendental routines to force -// the inex2 exception bits set in the FPSR. If the underflow bit -// is set, but the underflow trap was not taken, the aunfl bit in -// the FPSR must be set. -// -t_frcinx: - orl #inx2a_mask,USER_FPSR(%a6) //set INEX2, AINEX - btstb #unfl_bit,FPSR_EXCEPT(%a6) //test for unfl bit set - beqs no_uacc1 //if clear, do not set aunfl - bsetb #aunfl_bit,FPSR_AEXCEPT(%a6) -no_uacc1: - rts - -// -// DST_NAN -// -// Determine if the destination nan is signalling or non-signalling, -// and set the FPSR bits accordingly. See the MC68040 User's Manual -// section 3.2.2.5 NOT-A-NUMBERS. -// -dst_nan: - btstb #sign_bit,FPTEMP_EX(%a6) //test sign of nan - beqs dst_pos //if clr, it was positive - bsetb #neg_bit,FPSR_CC(%a6) //set N bit -dst_pos: - btstb #signan_bit,FPTEMP_HI(%a6) //check if signalling - beqs dst_snan //branch if signalling - - fmovel %d1,%fpcr //restore user's rmode/prec - fmovex FPTEMP(%a6),%fp0 //return the non-signalling nan -// -// Check the source nan. If it is signalling, snan will be reported. -// - moveb STAG(%a6),%d0 - andib #0xe0,%d0 - cmpib #0x60,%d0 - bnes no_snan - btstb #signan_bit,ETEMP_HI(%a6) //check if signalling - bnes no_snan - orl #snaniop_mask,USER_FPSR(%a6) //set NAN, SNAN, AIOP -no_snan: - rts - -dst_snan: - btstb #snan_bit,FPCR_ENABLE(%a6) //check if trap enabled - beqs dst_dis //branch if disabled - - orb #nan_tag,DTAG(%a6) //set up dtag for nan - st STORE_FLG(%a6) //do not store a result - orl #snaniop_mask,USER_FPSR(%a6) //set NAN, SNAN, AIOP - rts - -dst_dis: - bsetb #signan_bit,FPTEMP_HI(%a6) //set SNAN bit in sop - fmovel %d1,%fpcr //restore user's rmode/prec - fmovex FPTEMP(%a6),%fp0 //load non-sign. nan - orl #snaniop_mask,USER_FPSR(%a6) //set NAN, SNAN, AIOP - rts - -// -// SRC_NAN -// -// Determine if the source nan is signalling or non-signalling, -// and set the FPSR bits accordingly. See the MC68040 User's Manual -// section 3.2.2.5 NOT-A-NUMBERS. -// -src_nan: - btstb #sign_bit,ETEMP_EX(%a6) //test sign of nan - beqs src_pos //if clr, it was positive - bsetb #neg_bit,FPSR_CC(%a6) //set N bit -src_pos: - btstb #signan_bit,ETEMP_HI(%a6) //check if signalling - beqs src_snan //branch if signalling - fmovel %d1,%fpcr //restore user's rmode/prec - fmovex ETEMP(%a6),%fp0 //return the non-signalling nan - rts - -src_snan: - btstb #snan_bit,FPCR_ENABLE(%a6) //check if trap enabled - beqs src_dis //branch if disabled - bsetb #signan_bit,ETEMP_HI(%a6) //set SNAN bit in sop - orb #norm_tag,DTAG(%a6) //set up dtag for norm - orb #nan_tag,STAG(%a6) //set up stag for nan - st STORE_FLG(%a6) //do not store a result - orl #snaniop_mask,USER_FPSR(%a6) //set NAN, SNAN, AIOP - rts - -src_dis: - bsetb #signan_bit,ETEMP_HI(%a6) //set SNAN bit in sop - fmovel %d1,%fpcr //restore user's rmode/prec - fmovex ETEMP(%a6),%fp0 //load non-sign. nan - orl #snaniop_mask,USER_FPSR(%a6) //set NAN, SNAN, AIOP - rts - -// -// For all functions that have a denormalized input and that f(x)=x, -// this is the entry point -// -t_extdnrm: - orl #unfinx_mask,USER_FPSR(%a6) -// ;set UNFL, INEX2, AUNFL, AINEX - bras xdnrm_con -// -// Entry point for scale with extended denorm. The function does -// not set inex2, aunfl, or ainex. -// -t_resdnrm: - orl #unfl_mask,USER_FPSR(%a6) - -xdnrm_con: - btstb #unfl_bit,FPCR_ENABLE(%a6) - beqs xdnrm_dis - -// -// If exceptions are enabled, the additional task of setting up WBTEMP -// is needed so that when the underflow exception handler is entered, -// the user perceives no difference between what the 040 provides vs. -// what the FPSP provides. -// -xdnrm_ena: - movel %a0,-(%a7) - - movel LOCAL_EX(%a0),FP_SCR1(%a6) - movel LOCAL_HI(%a0),FP_SCR1+4(%a6) - movel LOCAL_LO(%a0),FP_SCR1+8(%a6) - - lea FP_SCR1(%a6),%a0 - - bclrb #sign_bit,LOCAL_EX(%a0) - sne LOCAL_SGN(%a0) //convert to internal ext format - tstw LOCAL_EX(%a0) //check if input is denorm - beqs xdnrm_dn //if so, skip nrm_set - bsr nrm_set //normalize the result (exponent -// ;will be negative -xdnrm_dn: - bclrb #sign_bit,LOCAL_EX(%a0) //take off false sign - bfclr LOCAL_SGN(%a0){#0:#8} //change back to IEEE ext format - beqs xdep - bsetb #sign_bit,LOCAL_EX(%a0) -xdep: - bfclr STAG(%a6){#5:#3} //clear wbtm66,wbtm1,wbtm0 - bsetb #wbtemp15_bit,WB_BYTE(%a6) //set wbtemp15 - bclrb #sticky_bit,STICKY(%a6) //clear sticky bit - bclrb #E1,E_BYTE(%a6) - movel (%a7)+,%a0 -xdnrm_dis: - bfextu FPCR_MODE(%a6){#0:#2},%d0 //get round precision - bnes not_ext //if not round extended, store -// ;IEEE defaults -is_ext: - btstb #sign_bit,LOCAL_EX(%a0) - beqs xdnrm_store - - bsetb #neg_bit,FPSR_CC(%a6) //set N bit in FPSR_CC - - bras xdnrm_store - -not_ext: - bclrb #sign_bit,LOCAL_EX(%a0) - sne LOCAL_SGN(%a0) //convert to internal ext format - bsr unf_sub //returns IEEE result pointed by -// ;a0; sets FPSR_CC accordingly - bfclr LOCAL_SGN(%a0){#0:#8} //convert back to IEEE ext format - beqs xdnrm_store - bsetb #sign_bit,LOCAL_EX(%a0) -xdnrm_store: - fmovemx (%a0),%fp0-%fp0 //store result in fp0 - rts - -// -// This subroutine is used for dyadic operations that use an extended -// denorm within the kernel. The approach used is to capture the frame, -// fix/restore. -// - .global t_avoid_unsupp -t_avoid_unsupp: - link %a2,#-LOCAL_SIZE //so that a2 fpsp.h negative -// ;offsets may be used - fsave -(%a7) - tstb 1(%a7) //check if idle, exit if so - beq idle_end - btstb #E1,E_BYTE(%a2) //check for an E1 exception if -// ;enabled, there is an unsupp - beq end_avun //else, exit - btstb #7,DTAG(%a2) //check for denorm destination - beqs src_den //else, must be a source denorm -// -// handle destination denorm -// - lea FPTEMP(%a2),%a0 - btstb #sign_bit,LOCAL_EX(%a0) - sne LOCAL_SGN(%a0) //convert to internal ext format - bclrb #7,DTAG(%a2) //set DTAG to norm - bsr nrm_set //normalize result, exponent -// ;will become negative - bclrb #sign_bit,LOCAL_EX(%a0) //get rid of fake sign - bfclr LOCAL_SGN(%a0){#0:#8} //convert back to IEEE ext format - beqs ck_src_den //check if source is also denorm - bsetb #sign_bit,LOCAL_EX(%a0) -ck_src_den: - btstb #7,STAG(%a2) - beqs end_avun -src_den: - lea ETEMP(%a2),%a0 - btstb #sign_bit,LOCAL_EX(%a0) - sne LOCAL_SGN(%a0) //convert to internal ext format - bclrb #7,STAG(%a2) //set STAG to norm - bsr nrm_set //normalize result, exponent -// ;will become negative - bclrb #sign_bit,LOCAL_EX(%a0) //get rid of fake sign - bfclr LOCAL_SGN(%a0){#0:#8} //convert back to IEEE ext format - beqs den_com - bsetb #sign_bit,LOCAL_EX(%a0) -den_com: - moveb #0xfe,CU_SAVEPC(%a2) //set continue frame - clrw NMNEXC(%a2) //clear NMNEXC - bclrb #E1,E_BYTE(%a2) -// fmove.l %FPSR,FPSR_SHADOW(%a2) -// bset.b #SFLAG,E_BYTE(%a2) -// bset.b #XFLAG,T_BYTE(%a2) -end_avun: - frestore (%a7)+ - unlk %a2 - rts -idle_end: - addl #4,%a7 - unlk %a2 - rts - |end diff --git a/c/src/lib/libcpu/m68k/m68040/fpsp/res_func.S b/c/src/lib/libcpu/m68k/m68040/fpsp/res_func.S deleted file mode 100644 index 4afdae8a23..0000000000 --- a/c/src/lib/libcpu/m68k/m68040/fpsp/res_func.S +++ /dev/null @@ -1,2042 +0,0 @@ -#include "fpsp-namespace.h" -// -// -// res_func.sa 3.9 7/29/91 -// -// Normalizes denormalized numbers if necessary and updates the -// stack frame. The function is then restored back into the -// machine and the 040 completes the operation. This routine -// is only used by the unsupported data type/format handler. -// (Exception vector 55). -// -// For packed move out (fmove.p fpm,) the operation is -// completed here; data is packed and moved to user memory. -// The stack is restored to the 040 only in the case of a -// reportable exception in the conversion. -// -// -// Copyright (C) Motorola, Inc. 1990 -// All Rights Reserved -// -// THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA -// The copyright notice above does not evidence any -// actual or intended publication of such source code. - -RES_FUNC: //idnt 2,1 | Motorola 040 Floating Point Software Package - - |section 8 - -#include "fpsp.defs" - -sp_bnds: .short 0x3f81,0x407e - .short 0x3f6a,0x0000 -dp_bnds: .short 0x3c01,0x43fe - .short 0x3bcd,0x0000 - - |xref mem_write - |xref bindec - |xref get_fline - |xref round - |xref denorm - |xref dest_ext - |xref dest_dbl - |xref dest_sgl - |xref unf_sub - |xref nrm_set - |xref dnrm_lp - |xref ovf_res - |xref reg_dest - |xref t_ovfl - |xref t_unfl - - .global res_func - .global p_move - -res_func: - clrb DNRM_FLG(%a6) - clrb RES_FLG(%a6) - clrb CU_ONLY(%a6) - tstb DY_MO_FLG(%a6) - beqs monadic -dyadic: - btstb #7,DTAG(%a6) //if dop = norm=000, zero=001, -// ;inf=010 or nan=011 - beqs monadic //then branch -// ;else denorm -// HANDLE DESTINATION DENORM HERE -// ;set dtag to norm -// ;write the tag & fpte15 to the fstack - leal FPTEMP(%a6),%a0 - - bclrb #sign_bit,LOCAL_EX(%a0) - sne LOCAL_SGN(%a0) - - bsr nrm_set //normalize number (exp will go negative) - bclrb #sign_bit,LOCAL_EX(%a0) //get rid of false sign - bfclr LOCAL_SGN(%a0){#0:#8} //change back to IEEE ext format - beqs dpos - bsetb #sign_bit,LOCAL_EX(%a0) -dpos: - bfclr DTAG(%a6){#0:#4} //set tag to normalized, FPTE15 = 0 - bsetb #4,DTAG(%a6) //set FPTE15 - orb #0x0f,DNRM_FLG(%a6) -monadic: - leal ETEMP(%a6),%a0 - btstb #direction_bit,CMDREG1B(%a6) //check direction - bne opclass3 //it is a mv out -// -// At this point, only opclass 0 and 2 possible -// - btstb #7,STAG(%a6) //if sop = norm=000, zero=001, -// ;inf=010 or nan=011 - bne mon_dnrm //else denorm - tstb DY_MO_FLG(%a6) //all cases of dyadic instructions would - bne normal //require normalization of denorm - -// At this point: -// monadic instructions: fabs = $18 fneg = $1a ftst = $3a -// fmove = $00 fsmove = $40 fdmove = $44 -// fsqrt = $05* fssqrt = $41 fdsqrt = $45 -// (*fsqrt reencoded to $05) -// - movew CMDREG1B(%a6),%d0 //get command register - andil #0x7f,%d0 //strip to only command word -// -// At this point, fabs, fneg, fsmove, fdmove, ftst, fsqrt, fssqrt, and -// fdsqrt are possible. -// For cases fabs, fneg, fsmove, and fdmove goto spos (do not normalize) -// For cases fsqrt, fssqrt, and fdsqrt goto nrm_src (do normalize) -// - btstl #0,%d0 - bne normal //weed out fsqrt instructions -// -// cu_norm handles fmove in instructions with normalized inputs. -// The routine round is used to correctly round the input for the -// destination precision and mode. -// -cu_norm: - st CU_ONLY(%a6) //set cu-only inst flag - movew CMDREG1B(%a6),%d0 - andib #0x3b,%d0 //isolate bits to select inst - tstb %d0 - beql cu_nmove //if zero, it is an fmove - cmpib #0x18,%d0 - beql cu_nabs //if $18, it is fabs - cmpib #0x1a,%d0 - beql cu_nneg //if $1a, it is fneg -// -// Inst is ftst. Check the source operand and set the cc's accordingly. -// No write is done, so simply rts. -// -cu_ntst: - movew LOCAL_EX(%a0),%d0 - bclrl #15,%d0 - sne LOCAL_SGN(%a0) - beqs cu_ntpo - orl #neg_mask,USER_FPSR(%a6) //set N -cu_ntpo: - cmpiw #0x7fff,%d0 //test for inf/nan - bnes cu_ntcz - tstl LOCAL_HI(%a0) - bnes cu_ntn - tstl LOCAL_LO(%a0) - bnes cu_ntn - orl #inf_mask,USER_FPSR(%a6) - rts -cu_ntn: - orl #nan_mask,USER_FPSR(%a6) - movel ETEMP_EX(%a6),FPTEMP_EX(%a6) //set up fptemp sign for -// ;snan handler - - rts -cu_ntcz: - tstl LOCAL_HI(%a0) - bnel cu_ntsx - tstl LOCAL_LO(%a0) - bnel cu_ntsx - orl #z_mask,USER_FPSR(%a6) -cu_ntsx: - rts -// -// Inst is fabs. Execute the absolute value function on the input. -// Branch to the fmove code. If the operand is NaN, do nothing. -// -cu_nabs: - moveb STAG(%a6),%d0 - btstl #5,%d0 //test for NaN or zero - bne wr_etemp //if either, simply write it - bclrb #7,LOCAL_EX(%a0) //do abs - bras cu_nmove //fmove code will finish -// -// Inst is fneg. Execute the negate value function on the input. -// Fall though to the fmove code. If the operand is NaN, do nothing. -// -cu_nneg: - moveb STAG(%a6),%d0 - btstl #5,%d0 //test for NaN or zero - bne wr_etemp //if either, simply write it - bchgb #7,LOCAL_EX(%a0) //do neg -// -// Inst is fmove. This code also handles all result writes. -// If bit 2 is set, round is forced to double. If it is clear, -// and bit 6 is set, round is forced to single. If both are clear, -// the round precision is found in the fpcr. If the rounding precision -// is double or single, round the result before the write. -// -cu_nmove: - moveb STAG(%a6),%d0 - andib #0xe0,%d0 //isolate stag bits - bne wr_etemp //if not norm, simply write it - btstb #2,CMDREG1B+1(%a6) //check for rd - bne cu_nmrd - btstb #6,CMDREG1B+1(%a6) //check for rs - bne cu_nmrs -// -// The move or operation is not with forced precision. Test for -// nan or inf as the input; if so, simply write it to FPn. Use the -// FPCR_MODE byte to get rounding on norms and zeros. -// -cu_nmnr: - bfextu FPCR_MODE(%a6){#0:#2},%d0 - tstb %d0 //check for extended - beq cu_wrexn //if so, just write result - cmpib #1,%d0 //check for single - beq cu_nmrs //fall through to double -// -// The move is fdmove or round precision is double. -// -cu_nmrd: - movel #2,%d0 //set up the size for denorm - movew LOCAL_EX(%a0),%d1 //compare exponent to double threshold - andw #0x7fff,%d1 - cmpw #0x3c01,%d1 - bls cu_nunfl - bfextu FPCR_MODE(%a6){#2:#2},%d1 //get rmode - orl #0x00020000,%d1 //or in rprec (double) - clrl %d0 //clear g,r,s for round - bclrb #sign_bit,LOCAL_EX(%a0) //convert to internal format - sne LOCAL_SGN(%a0) - bsrl round - bfclr LOCAL_SGN(%a0){#0:#8} - beqs cu_nmrdc - bsetb #sign_bit,LOCAL_EX(%a0) -cu_nmrdc: - movew LOCAL_EX(%a0),%d1 //check for overflow - andw #0x7fff,%d1 - cmpw #0x43ff,%d1 - bge cu_novfl //take care of overflow case - bra cu_wrexn -// -// The move is fsmove or round precision is single. -// -cu_nmrs: - movel #1,%d0 - movew LOCAL_EX(%a0),%d1 - andw #0x7fff,%d1 - cmpw #0x3f81,%d1 - bls cu_nunfl - bfextu FPCR_MODE(%a6){#2:#2},%d1 - orl #0x00010000,%d1 - clrl %d0 - bclrb #sign_bit,LOCAL_EX(%a0) - sne LOCAL_SGN(%a0) - bsrl round - bfclr LOCAL_SGN(%a0){#0:#8} - beqs cu_nmrsc - bsetb #sign_bit,LOCAL_EX(%a0) -cu_nmrsc: - movew LOCAL_EX(%a0),%d1 - andw #0x7FFF,%d1 - cmpw #0x407f,%d1 - blt cu_wrexn -// -// The operand is above precision boundaries. Use t_ovfl to -// generate the correct value. -// -cu_novfl: - bsr t_ovfl - bra cu_wrexn -// -// The operand is below precision boundaries. Use denorm to -// generate the correct value. -// -cu_nunfl: - bclrb #sign_bit,LOCAL_EX(%a0) - sne LOCAL_SGN(%a0) - bsr denorm - bfclr LOCAL_SGN(%a0){#0:#8} //change back to IEEE ext format - beqs cu_nucont - bsetb #sign_bit,LOCAL_EX(%a0) -cu_nucont: - bfextu FPCR_MODE(%a6){#2:#2},%d1 - btstb #2,CMDREG1B+1(%a6) //check for rd - bne inst_d - btstb #6,CMDREG1B+1(%a6) //check for rs - bne inst_s - swap %d1 - moveb FPCR_MODE(%a6),%d1 - lsrb #6,%d1 - swap %d1 - bra inst_sd -inst_d: - orl #0x00020000,%d1 - bra inst_sd -inst_s: - orl #0x00010000,%d1 -inst_sd: - bclrb #sign_bit,LOCAL_EX(%a0) - sne LOCAL_SGN(%a0) - bsrl round - bfclr LOCAL_SGN(%a0){#0:#8} - beqs cu_nuflp - bsetb #sign_bit,LOCAL_EX(%a0) -cu_nuflp: - btstb #inex2_bit,FPSR_EXCEPT(%a6) - beqs cu_nuninx - orl #aunfl_mask,USER_FPSR(%a6) //if the round was inex, set AUNFL -cu_nuninx: - tstl LOCAL_HI(%a0) //test for zero - bnes cu_nunzro - tstl LOCAL_LO(%a0) - bnes cu_nunzro -// -// The mantissa is zero from the denorm loop. Check sign and rmode -// to see if rounding should have occurred which would leave the lsb. -// - movel USER_FPCR(%a6),%d0 - andil #0x30,%d0 //isolate rmode - cmpil #0x20,%d0 - blts cu_nzro - bnes cu_nrp -cu_nrm: - tstw LOCAL_EX(%a0) //if positive, set lsb - bges cu_nzro - btstb #7,FPCR_MODE(%a6) //check for double - beqs cu_nincs - bras cu_nincd -cu_nrp: - tstw LOCAL_EX(%a0) //if positive, set lsb - blts cu_nzro - btstb #7,FPCR_MODE(%a6) //check for double - beqs cu_nincs -cu_nincd: - orl #0x800,LOCAL_LO(%a0) //inc for double - bra cu_nunzro -cu_nincs: - orl #0x100,LOCAL_HI(%a0) //inc for single - bra cu_nunzro -cu_nzro: - orl #z_mask,USER_FPSR(%a6) - moveb STAG(%a6),%d0 - andib #0xe0,%d0 - cmpib #0x40,%d0 //check if input was tagged zero - beqs cu_numv -cu_nunzro: - orl #unfl_mask,USER_FPSR(%a6) //set unfl -cu_numv: - movel (%a0),ETEMP(%a6) - movel 4(%a0),ETEMP_HI(%a6) - movel 8(%a0),ETEMP_LO(%a6) -// -// Write the result to memory, setting the fpsr cc bits. NaN and Inf -// bypass cu_wrexn. -// -cu_wrexn: - tstw LOCAL_EX(%a0) //test for zero - beqs cu_wrzero - cmpw #0x8000,LOCAL_EX(%a0) //test for zero - bnes cu_wreon -cu_wrzero: - orl #z_mask,USER_FPSR(%a6) //set Z bit -cu_wreon: - tstw LOCAL_EX(%a0) - bpl wr_etemp - orl #neg_mask,USER_FPSR(%a6) - bra wr_etemp - -// -// HANDLE SOURCE DENORM HERE -// -// ;clear denorm stag to norm -// ;write the new tag & ete15 to the fstack -mon_dnrm: -// -// At this point, check for the cases in which normalizing the -// denorm produces incorrect results. -// - tstb DY_MO_FLG(%a6) //all cases of dyadic instructions would - bnes nrm_src //require normalization of denorm - -// At this point: -// monadic instructions: fabs = $18 fneg = $1a ftst = $3a -// fmove = $00 fsmove = $40 fdmove = $44 -// fsqrt = $05* fssqrt = $41 fdsqrt = $45 -// (*fsqrt reencoded to $05) -// - movew CMDREG1B(%a6),%d0 //get command register - andil #0x7f,%d0 //strip to only command word -// -// At this point, fabs, fneg, fsmove, fdmove, ftst, fsqrt, fssqrt, and -// fdsqrt are possible. -// For cases fabs, fneg, fsmove, and fdmove goto spos (do not normalize) -// For cases fsqrt, fssqrt, and fdsqrt goto nrm_src (do normalize) -// - btstl #0,%d0 - bnes nrm_src //weed out fsqrt instructions - st CU_ONLY(%a6) //set cu-only inst flag - bra cu_dnrm //fmove, fabs, fneg, ftst -// ;cases go to cu_dnrm -nrm_src: - bclrb #sign_bit,LOCAL_EX(%a0) - sne LOCAL_SGN(%a0) - bsr nrm_set //normalize number (exponent will go -// ; negative) - bclrb #sign_bit,LOCAL_EX(%a0) //get rid of false sign - - bfclr LOCAL_SGN(%a0){#0:#8} //change back to IEEE ext format - beqs spos - bsetb #sign_bit,LOCAL_EX(%a0) -spos: - bfclr STAG(%a6){#0:#4} //set tag to normalized, FPTE15 = 0 - bsetb #4,STAG(%a6) //set ETE15 - orb #0xf0,DNRM_FLG(%a6) -normal: - tstb DNRM_FLG(%a6) //check if any of the ops were denorms - bne ck_wrap //if so, check if it is a potential -// ;wrap-around case -fix_stk: - moveb #0xfe,CU_SAVEPC(%a6) - bclrb #E1,E_BYTE(%a6) - - clrw NMNEXC(%a6) - - st RES_FLG(%a6) //indicate that a restore is needed - rts - -// -// cu_dnrm handles all cu-only instructions (fmove, fabs, fneg, and -// ftst) completely in software without an frestore to the 040. -// -cu_dnrm: - st CU_ONLY(%a6) - movew CMDREG1B(%a6),%d0 - andib #0x3b,%d0 //isolate bits to select inst - tstb %d0 - beql cu_dmove //if zero, it is an fmove - cmpib #0x18,%d0 - beql cu_dabs //if $18, it is fabs - cmpib #0x1a,%d0 - beql cu_dneg //if $1a, it is fneg -// -// Inst is ftst. Check the source operand and set the cc's accordingly. -// No write is done, so simply rts. -// -cu_dtst: - movew LOCAL_EX(%a0),%d0 - bclrl #15,%d0 - sne LOCAL_SGN(%a0) - beqs cu_dtpo - orl #neg_mask,USER_FPSR(%a6) //set N -cu_dtpo: - cmpiw #0x7fff,%d0 //test for inf/nan - bnes cu_dtcz - tstl LOCAL_HI(%a0) - bnes cu_dtn - tstl LOCAL_LO(%a0) - bnes cu_dtn - orl #inf_mask,USER_FPSR(%a6) - rts -cu_dtn: - orl #nan_mask,USER_FPSR(%a6) - movel ETEMP_EX(%a6),FPTEMP_EX(%a6) //set up fptemp sign for -// ;snan handler - rts -cu_dtcz: - tstl LOCAL_HI(%a0) - bnel cu_dtsx - tstl LOCAL_LO(%a0) - bnel cu_dtsx - orl #z_mask,USER_FPSR(%a6) -cu_dtsx: - rts -// -// Inst is fabs. Execute the absolute value function on the input. -// Branch to the fmove code. -// -cu_dabs: - bclrb #7,LOCAL_EX(%a0) //do abs - bras cu_dmove //fmove code will finish -// -// Inst is fneg. Execute the negate value function on the input. -// Fall though to the fmove code. -// -cu_dneg: - bchgb #7,LOCAL_EX(%a0) //do neg -// -// Inst is fmove. This code also handles all result writes. -// If bit 2 is set, round is forced to double. If it is clear, -// and bit 6 is set, round is forced to single. If both are clear, -// the round precision is found in the fpcr. If the rounding precision -// is double or single, the result is zero, and the mode is checked -// to determine if the lsb of the result should be set. -// -cu_dmove: - btstb #2,CMDREG1B+1(%a6) //check for rd - bne cu_dmrd - btstb #6,CMDREG1B+1(%a6) //check for rs - bne cu_dmrs -// -// The move or operation is not with forced precision. Use the -// FPCR_MODE byte to get rounding. -// -cu_dmnr: - bfextu FPCR_MODE(%a6){#0:#2},%d0 - tstb %d0 //check for extended - beq cu_wrexd //if so, just write result - cmpib #1,%d0 //check for single - beq cu_dmrs //fall through to double -// -// The move is fdmove or round precision is double. Result is zero. -// Check rmode for rp or rm and set lsb accordingly. -// -cu_dmrd: - bfextu FPCR_MODE(%a6){#2:#2},%d1 //get rmode - tstw LOCAL_EX(%a0) //check sign - blts cu_dmdn - cmpib #3,%d1 //check for rp - bne cu_dpd //load double pos zero - bra cu_dpdr //load double pos zero w/lsb -cu_dmdn: - cmpib #2,%d1 //check for rm - bne cu_dnd //load double neg zero - bra cu_dndr //load double neg zero w/lsb -// -// The move is fsmove or round precision is single. Result is zero. -// Check for rp or rm and set lsb accordingly. -// -cu_dmrs: - bfextu FPCR_MODE(%a6){#2:#2},%d1 //get rmode - tstw LOCAL_EX(%a0) //check sign - blts cu_dmsn - cmpib #3,%d1 //check for rp - bne cu_spd //load single pos zero - bra cu_spdr //load single pos zero w/lsb -cu_dmsn: - cmpib #2,%d1 //check for rm - bne cu_snd //load single neg zero - bra cu_sndr //load single neg zero w/lsb -// -// The precision is extended, so the result in etemp is correct. -// Simply set unfl (not inex2 or aunfl) and write the result to -// the correct fp register. -cu_wrexd: - orl #unfl_mask,USER_FPSR(%a6) - tstw LOCAL_EX(%a0) - beq wr_etemp - orl #neg_mask,USER_FPSR(%a6) - bra wr_etemp -// -// These routines write +/- zero in double format. The routines -// cu_dpdr and cu_dndr set the double lsb. -// -cu_dpd: - movel #0x3c010000,LOCAL_EX(%a0) //force pos double zero - clrl LOCAL_HI(%a0) - clrl LOCAL_LO(%a0) - orl #z_mask,USER_FPSR(%a6) - orl #unfinx_mask,USER_FPSR(%a6) - bra wr_etemp -cu_dpdr: - movel #0x3c010000,LOCAL_EX(%a0) //force pos double zero - clrl LOCAL_HI(%a0) - movel #0x800,LOCAL_LO(%a0) //with lsb set - orl #unfinx_mask,USER_FPSR(%a6) - bra wr_etemp -cu_dnd: - movel #0xbc010000,LOCAL_EX(%a0) //force pos double zero - clrl LOCAL_HI(%a0) - clrl LOCAL_LO(%a0) - orl #z_mask,USER_FPSR(%a6) - orl #neg_mask,USER_FPSR(%a6) - orl #unfinx_mask,USER_FPSR(%a6) - bra wr_etemp -cu_dndr: - movel #0xbc010000,LOCAL_EX(%a0) //force pos double zero - clrl LOCAL_HI(%a0) - movel #0x800,LOCAL_LO(%a0) //with lsb set - orl #neg_mask,USER_FPSR(%a6) - orl #unfinx_mask,USER_FPSR(%a6) - bra wr_etemp -// -// These routines write +/- zero in single format. The routines -// cu_dpdr and cu_dndr set the single lsb. -// -cu_spd: - movel #0x3f810000,LOCAL_EX(%a0) //force pos single zero - clrl LOCAL_HI(%a0) - clrl LOCAL_LO(%a0) - orl #z_mask,USER_FPSR(%a6) - orl #unfinx_mask,USER_FPSR(%a6) - bra wr_etemp -cu_spdr: - movel #0x3f810000,LOCAL_EX(%a0) //force pos single zero - movel #0x100,LOCAL_HI(%a0) //with lsb set - clrl LOCAL_LO(%a0) - orl #unfinx_mask,USER_FPSR(%a6) - bra wr_etemp -cu_snd: - movel #0xbf810000,LOCAL_EX(%a0) //force pos single zero - clrl LOCAL_HI(%a0) - clrl LOCAL_LO(%a0) - orl #z_mask,USER_FPSR(%a6) - orl #neg_mask,USER_FPSR(%a6) - orl #unfinx_mask,USER_FPSR(%a6) - bra wr_etemp -cu_sndr: - movel #0xbf810000,LOCAL_EX(%a0) //force pos single zero - movel #0x100,LOCAL_HI(%a0) //with lsb set - clrl LOCAL_LO(%a0) - orl #neg_mask,USER_FPSR(%a6) - orl #unfinx_mask,USER_FPSR(%a6) - bra wr_etemp - -// -// This code checks for 16-bit overflow conditions on dyadic -// operations which are not restorable into the floating-point -// unit and must be completed in software. Basically, this -// condition exists with a very large norm and a denorm. One -// of the operands must be denormalized to enter this code. -// -// Flags used: -// DY_MO_FLG contains 0 for monadic op, $ff for dyadic -// DNRM_FLG contains $00 for neither op denormalized -// $0f for the destination op denormalized -// $f0 for the source op denormalized -// $ff for both ops denormalized -// -// The wrap-around condition occurs for add, sub, div, and cmp -// when -// -// abs(dest_exp - src_exp) >= $8000 -// -// and for mul when -// -// (dest_exp + src_exp) < $0 -// -// we must process the operation here if this case is true. -// -// The rts following the frcfpn routine is the exit from res_func -// for this condition. The restore flag (RES_FLG) is left clear. -// No frestore is done unless an exception is to be reported. -// -// For fadd: -// if(sign_of(dest) != sign_of(src)) -// replace exponent of src with $3fff (keep sign) -// use fpu to perform dest+new_src (user's rmode and X) -// clr sticky -// else -// set sticky -// call round with user's precision and mode -// move result to fpn and wbtemp -// -// For fsub: -// if(sign_of(dest) == sign_of(src)) -// replace exponent of src with $3fff (keep sign) -// use fpu to perform dest+new_src (user's rmode and X) -// clr sticky -// else -// set sticky -// call round with user's precision and mode -// move result to fpn and wbtemp -// -// For fdiv/fsgldiv: -// if(both operands are denorm) -// restore_to_fpu; -// if(dest is norm) -// force_ovf; -// else(dest is denorm) -// force_unf: -// -// For fcmp: -// if(dest is norm) -// N = sign_of(dest); -// else(dest is denorm) -// N = sign_of(src); -// -// For fmul: -// if(both operands are denorm) -// force_unf; -// if((dest_exp + src_exp) < 0) -// force_unf: -// else -// restore_to_fpu; -// -// local equates: - .set addcode,0x22 - .set subcode,0x28 - .set mulcode,0x23 - .set divcode,0x20 - .set cmpcode,0x38 -ck_wrap: - | tstb DY_MO_FLG(%a6) ;check for fsqrt - beq fix_stk //if zero, it is fsqrt - movew CMDREG1B(%a6),%d0 - andiw #0x3b,%d0 //strip to command bits - cmpiw #addcode,%d0 - beq wrap_add - cmpiw #subcode,%d0 - beq wrap_sub - cmpiw #mulcode,%d0 - beq wrap_mul - cmpiw #cmpcode,%d0 - beq wrap_cmp -// -// Inst is fdiv. -// -wrap_div: - cmpb #0xff,DNRM_FLG(%a6) //if both ops denorm, - beq fix_stk //restore to fpu -// -// One of the ops is denormalized. Test for wrap condition -// and force the result. -// - cmpb #0x0f,DNRM_FLG(%a6) //check for dest denorm - bnes div_srcd -div_destd: - bsrl ckinf_ns - bne fix_stk - bfextu ETEMP_EX(%a6){#1:#15},%d0 //get src exp (always pos) - bfexts FPTEMP_EX(%a6){#1:#15},%d1 //get dest exp (always neg) - subl %d1,%d0 //subtract dest from src - cmpl #0x7fff,%d0 - blt fix_stk //if less, not wrap case - clrb WBTEMP_SGN(%a6) - movew ETEMP_EX(%a6),%d0 //find the sign of the result - movew FPTEMP_EX(%a6),%d1 - eorw %d1,%d0 - andiw #0x8000,%d0 - beq force_unf - st WBTEMP_SGN(%a6) - bra force_unf - -ckinf_ns: - moveb STAG(%a6),%d0 //check source tag for inf or nan - bra ck_in_com -ckinf_nd: - moveb DTAG(%a6),%d0 //check destination tag for inf or nan -ck_in_com: - andib #0x60,%d0 //isolate tag bits - cmpb #0x40,%d0 //is it inf? - beq nan_or_inf //not wrap case - cmpb #0x60,%d0 //is it nan? - beq nan_or_inf //yes, not wrap case? - cmpb #0x20,%d0 //is it a zero? - beq nan_or_inf //yes - clrl %d0 - rts //then ; it is either a zero of norm, -// ;check wrap case -nan_or_inf: - moveql #-1,%d0 - rts - - - -div_srcd: - bsrl ckinf_nd - bne fix_stk - bfextu FPTEMP_EX(%a6){#1:#15},%d0 //get dest exp (always pos) - bfexts ETEMP_EX(%a6){#1:#15},%d1 //get src exp (always neg) - subl %d1,%d0 //subtract src from dest - cmpl #0x8000,%d0 - blt fix_stk //if less, not wrap case - clrb WBTEMP_SGN(%a6) - movew ETEMP_EX(%a6),%d0 //find the sign of the result - movew FPTEMP_EX(%a6),%d1 - eorw %d1,%d0 - andiw #0x8000,%d0 - beqs force_ovf - st WBTEMP_SGN(%a6) -// -// This code handles the case of the instruction resulting in -// an overflow condition. -// -force_ovf: - bclrb #E1,E_BYTE(%a6) - orl #ovfl_inx_mask,USER_FPSR(%a6) - clrw NMNEXC(%a6) - leal WBTEMP(%a6),%a0 //point a0 to memory location - movew CMDREG1B(%a6),%d0 - btstl #6,%d0 //test for forced precision - beqs frcovf_fpcr - btstl #2,%d0 //check for double - bnes frcovf_dbl - movel #0x1,%d0 //inst is forced single - bras frcovf_rnd -frcovf_dbl: - movel #0x2,%d0 //inst is forced double - bras frcovf_rnd -frcovf_fpcr: - bfextu FPCR_MODE(%a6){#0:#2},%d0 //inst not forced - use fpcr prec -frcovf_rnd: - -// The 881/882 does not set inex2 for the following case, so the -// line is commented out to be compatible with 881/882 -// tst.b %d0 -// beq.b frcovf_x -// or.l #inex2_mask,USER_FPSR(%a6) ;if prec is s or d, set inex2 - -//frcovf_x: - bsrl ovf_res //get correct result based on -// ;round precision/mode. This -// ;sets FPSR_CC correctly -// ;returns in external format - bfclr WBTEMP_SGN(%a6){#0:#8} - beq frcfpn - bsetb #sign_bit,WBTEMP_EX(%a6) - bra frcfpn -// -// Inst is fadd. -// -wrap_add: - cmpb #0xff,DNRM_FLG(%a6) //if both ops denorm, - beq fix_stk //restore to fpu -// -// One of the ops is denormalized. Test for wrap condition -// and complete the instruction. -// - cmpb #0x0f,DNRM_FLG(%a6) //check for dest denorm - bnes add_srcd -add_destd: - bsrl ckinf_ns - bne fix_stk - bfextu ETEMP_EX(%a6){#1:#15},%d0 //get src exp (always pos) - bfexts FPTEMP_EX(%a6){#1:#15},%d1 //get dest exp (always neg) - subl %d1,%d0 //subtract dest from src - cmpl #0x8000,%d0 - blt fix_stk //if less, not wrap case - bra add_wrap -add_srcd: - bsrl ckinf_nd - bne fix_stk - bfextu FPTEMP_EX(%a6){#1:#15},%d0 //get dest exp (always pos) - bfexts ETEMP_EX(%a6){#1:#15},%d1 //get src exp (always neg) - subl %d1,%d0 //subtract src from dest - cmpl #0x8000,%d0 - blt fix_stk //if less, not wrap case -// -// Check the signs of the operands. If they are unlike, the fpu -// can be used to add the norm and 1.0 with the sign of the -// denorm and it will correctly generate the result in extended -// precision. We can then call round with no sticky and the result -// will be correct for the user's rounding mode and precision. If -// the signs are the same, we call round with the sticky bit set -// and the result will be correct for the user's rounding mode and -// precision. -// -add_wrap: - movew ETEMP_EX(%a6),%d0 - movew FPTEMP_EX(%a6),%d1 - eorw %d1,%d0 - andiw #0x8000,%d0 - beq add_same -// -// The signs are unlike. -// - cmpb #0x0f,DNRM_FLG(%a6) //is dest the denorm? - bnes add_u_srcd - movew FPTEMP_EX(%a6),%d0 - andiw #0x8000,%d0 - orw #0x3fff,%d0 //force the exponent to +/- 1 - movew %d0,FPTEMP_EX(%a6) //in the denorm - movel USER_FPCR(%a6),%d0 - andil #0x30,%d0 - fmovel %d0,%fpcr //set up users rmode and X - fmovex ETEMP(%a6),%fp0 - faddx FPTEMP(%a6),%fp0 - leal WBTEMP(%a6),%a0 //point a0 to wbtemp in frame - fmovel %fpsr,%d1 - orl %d1,USER_FPSR(%a6) //capture cc's and inex from fadd - fmovex %fp0,WBTEMP(%a6) //write result to memory - lsrl #4,%d0 //put rmode in lower 2 bits - movel USER_FPCR(%a6),%d1 - andil #0xc0,%d1 - lsrl #6,%d1 //put precision in upper word - swap %d1 - orl %d0,%d1 //set up for round call - clrl %d0 //force sticky to zero - bclrb #sign_bit,WBTEMP_EX(%a6) - sne WBTEMP_SGN(%a6) - bsrl round //round result to users rmode & prec - bfclr WBTEMP_SGN(%a6){#0:#8} //convert back to IEEE ext format - beq frcfpnr - bsetb #sign_bit,WBTEMP_EX(%a6) - bra frcfpnr -add_u_srcd: - movew ETEMP_EX(%a6),%d0 - andiw #0x8000,%d0 - orw #0x3fff,%d0 //force the exponent to +/- 1 - movew %d0,ETEMP_EX(%a6) //in the denorm - movel USER_FPCR(%a6),%d0 - andil #0x30,%d0 - fmovel %d0,%fpcr //set up users rmode and X - fmovex ETEMP(%a6),%fp0 - faddx FPTEMP(%a6),%fp0 - fmovel %fpsr,%d1 - orl %d1,USER_FPSR(%a6) //capture cc's and inex from fadd - leal WBTEMP(%a6),%a0 //point a0 to wbtemp in frame - fmovex %fp0,WBTEMP(%a6) //write result to memory - lsrl #4,%d0 //put rmode in lower 2 bits - movel USER_FPCR(%a6),%d1 - andil #0xc0,%d1 - lsrl #6,%d1 //put precision in upper word - swap %d1 - orl %d0,%d1 //set up for round call - clrl %d0 //force sticky to zero - bclrb #sign_bit,WBTEMP_EX(%a6) - sne WBTEMP_SGN(%a6) //use internal format for round - bsrl round //round result to users rmode & prec - bfclr WBTEMP_SGN(%a6){#0:#8} //convert back to IEEE ext format - beq frcfpnr - bsetb #sign_bit,WBTEMP_EX(%a6) - bra frcfpnr -// -// Signs are alike: -// -add_same: - cmpb #0x0f,DNRM_FLG(%a6) //is dest the denorm? - bnes add_s_srcd -add_s_destd: - leal ETEMP(%a6),%a0 - movel USER_FPCR(%a6),%d0 - andil #0x30,%d0 - lsrl #4,%d0 //put rmode in lower 2 bits - movel USER_FPCR(%a6),%d1 - andil #0xc0,%d1 - lsrl #6,%d1 //put precision in upper word - swap %d1 - orl %d0,%d1 //set up for round call - movel #0x20000000,%d0 //set sticky for round - bclrb #sign_bit,ETEMP_EX(%a6) - sne ETEMP_SGN(%a6) - bsrl round //round result to users rmode & prec - bfclr ETEMP_SGN(%a6){#0:#8} //convert back to IEEE ext format - beqs add_s_dclr - bsetb #sign_bit,ETEMP_EX(%a6) -add_s_dclr: - leal WBTEMP(%a6),%a0 - movel ETEMP(%a6),(%a0) //write result to wbtemp - movel ETEMP_HI(%a6),4(%a0) - movel ETEMP_LO(%a6),8(%a0) - tstw ETEMP_EX(%a6) - bgt add_ckovf - orl #neg_mask,USER_FPSR(%a6) - bra add_ckovf -add_s_srcd: - leal FPTEMP(%a6),%a0 - movel USER_FPCR(%a6),%d0 - andil #0x30,%d0 - lsrl #4,%d0 //put rmode in lower 2 bits - movel USER_FPCR(%a6),%d1 - andil #0xc0,%d1 - lsrl #6,%d1 //put precision in upper word - swap %d1 - orl %d0,%d1 //set up for round call - movel #0x20000000,%d0 //set sticky for round - bclrb #sign_bit,FPTEMP_EX(%a6) - sne FPTEMP_SGN(%a6) - bsrl round //round result to users rmode & prec - bfclr FPTEMP_SGN(%a6){#0:#8} //convert back to IEEE ext format - beqs add_s_sclr - bsetb #sign_bit,FPTEMP_EX(%a6) -add_s_sclr: - leal WBTEMP(%a6),%a0 - movel FPTEMP(%a6),(%a0) //write result to wbtemp - movel FPTEMP_HI(%a6),4(%a0) - movel FPTEMP_LO(%a6),8(%a0) - tstw FPTEMP_EX(%a6) - bgt add_ckovf - orl #neg_mask,USER_FPSR(%a6) -add_ckovf: - movew WBTEMP_EX(%a6),%d0 - andiw #0x7fff,%d0 - cmpiw #0x7fff,%d0 - bne frcfpnr -// -// The result has overflowed to $7fff exponent. Set I, ovfl, -// and aovfl, and clr the mantissa (incorrectly set by the -// round routine.) -// - orl #inf_mask+ovfl_inx_mask,USER_FPSR(%a6) - clrl 4(%a0) - bra frcfpnr -// -// Inst is fsub. -// -wrap_sub: - cmpb #0xff,DNRM_FLG(%a6) //if both ops denorm, - beq fix_stk //restore to fpu -// -// One of the ops is denormalized. Test for wrap condition -// and complete the instruction. -// - cmpb #0x0f,DNRM_FLG(%a6) //check for dest denorm - bnes sub_srcd -sub_destd: - bsrl ckinf_ns - bne fix_stk - bfextu ETEMP_EX(%a6){#1:#15},%d0 //get src exp (always pos) - bfexts FPTEMP_EX(%a6){#1:#15},%d1 //get dest exp (always neg) - subl %d1,%d0 //subtract src from dest - cmpl #0x8000,%d0 - blt fix_stk //if less, not wrap case - bra sub_wrap -sub_srcd: - bsrl ckinf_nd - bne fix_stk - bfextu FPTEMP_EX(%a6){#1:#15},%d0 //get dest exp (always pos) - bfexts ETEMP_EX(%a6){#1:#15},%d1 //get src exp (always neg) - subl %d1,%d0 //subtract dest from src - cmpl #0x8000,%d0 - blt fix_stk //if less, not wrap case -// -// Check the signs of the operands. If they are alike, the fpu -// can be used to subtract from the norm 1.0 with the sign of the -// denorm and it will correctly generate the result in extended -// precision. We can then call round with no sticky and the result -// will be correct for the user's rounding mode and precision. If -// the signs are unlike, we call round with the sticky bit set -// and the result will be correct for the user's rounding mode and -// precision. -// -sub_wrap: - movew ETEMP_EX(%a6),%d0 - movew FPTEMP_EX(%a6),%d1 - eorw %d1,%d0 - andiw #0x8000,%d0 - bne sub_diff -// -// The signs are alike. -// - cmpb #0x0f,DNRM_FLG(%a6) //is dest the denorm? - bnes sub_u_srcd - movew FPTEMP_EX(%a6),%d0 - andiw #0x8000,%d0 - orw #0x3fff,%d0 //force the exponent to +/- 1 - movew %d0,FPTEMP_EX(%a6) //in the denorm - movel USER_FPCR(%a6),%d0 - andil #0x30,%d0 - fmovel %d0,%fpcr //set up users rmode and X - fmovex FPTEMP(%a6),%fp0 - fsubx ETEMP(%a6),%fp0 - fmovel %fpsr,%d1 - orl %d1,USER_FPSR(%a6) //capture cc's and inex from fadd - leal WBTEMP(%a6),%a0 //point a0 to wbtemp in frame - fmovex %fp0,WBTEMP(%a6) //write result to memory - lsrl #4,%d0 //put rmode in lower 2 bits - movel USER_FPCR(%a6),%d1 - andil #0xc0,%d1 - lsrl #6,%d1 //put precision in upper word - swap %d1 - orl %d0,%d1 //set up for round call - clrl %d0 //force sticky to zero - bclrb #sign_bit,WBTEMP_EX(%a6) - sne WBTEMP_SGN(%a6) - bsrl round //round result to users rmode & prec - bfclr WBTEMP_SGN(%a6){#0:#8} //convert back to IEEE ext format - beq frcfpnr - bsetb #sign_bit,WBTEMP_EX(%a6) - bra frcfpnr -sub_u_srcd: - movew ETEMP_EX(%a6),%d0 - andiw #0x8000,%d0 - orw #0x3fff,%d0 //force the exponent to +/- 1 - movew %d0,ETEMP_EX(%a6) //in the denorm - movel USER_FPCR(%a6),%d0 - andil #0x30,%d0 - fmovel %d0,%fpcr //set up users rmode and X - fmovex FPTEMP(%a6),%fp0 - fsubx ETEMP(%a6),%fp0 - fmovel %fpsr,%d1 - orl %d1,USER_FPSR(%a6) //capture cc's and inex from fadd - leal WBTEMP(%a6),%a0 //point a0 to wbtemp in frame - fmovex %fp0,WBTEMP(%a6) //write result to memory - lsrl #4,%d0 //put rmode in lower 2 bits - movel USER_FPCR(%a6),%d1 - andil #0xc0,%d1 - lsrl #6,%d1 //put precision in upper word - swap %d1 - orl %d0,%d1 //set up for round call - clrl %d0 //force sticky to zero - bclrb #sign_bit,WBTEMP_EX(%a6) - sne WBTEMP_SGN(%a6) - bsrl round //round result to users rmode & prec - bfclr WBTEMP_SGN(%a6){#0:#8} //convert back to IEEE ext format - beq frcfpnr - bsetb #sign_bit,WBTEMP_EX(%a6) - bra frcfpnr -// -// Signs are unlike: -// -sub_diff: - cmpb #0x0f,DNRM_FLG(%a6) //is dest the denorm? - bnes sub_s_srcd -sub_s_destd: - leal ETEMP(%a6),%a0 - movel USER_FPCR(%a6),%d0 - andil #0x30,%d0 - lsrl #4,%d0 //put rmode in lower 2 bits - movel USER_FPCR(%a6),%d1 - andil #0xc0,%d1 - lsrl #6,%d1 //put precision in upper word - swap %d1 - orl %d0,%d1 //set up for round call - movel #0x20000000,%d0 //set sticky for round -// -// Since the dest is the denorm, the sign is the opposite of the -// norm sign. -// - eoriw #0x8000,ETEMP_EX(%a6) //flip sign on result - tstw ETEMP_EX(%a6) - bgts sub_s_dwr - orl #neg_mask,USER_FPSR(%a6) -sub_s_dwr: - bclrb #sign_bit,ETEMP_EX(%a6) - sne ETEMP_SGN(%a6) - bsrl round //round result to users rmode & prec - bfclr ETEMP_SGN(%a6){#0:#8} //convert back to IEEE ext format - beqs sub_s_dclr - bsetb #sign_bit,ETEMP_EX(%a6) -sub_s_dclr: - leal WBTEMP(%a6),%a0 - movel ETEMP(%a6),(%a0) //write result to wbtemp - movel ETEMP_HI(%a6),4(%a0) - movel ETEMP_LO(%a6),8(%a0) - bra sub_ckovf -sub_s_srcd: - leal FPTEMP(%a6),%a0 - movel USER_FPCR(%a6),%d0 - andil #0x30,%d0 - lsrl #4,%d0 //put rmode in lower 2 bits - movel USER_FPCR(%a6),%d1 - andil #0xc0,%d1 - lsrl #6,%d1 //put precision in upper word - swap %d1 - orl %d0,%d1 //set up for round call - movel #0x20000000,%d0 //set sticky for round - bclrb #sign_bit,FPTEMP_EX(%a6) - sne FPTEMP_SGN(%a6) - bsrl round //round result to users rmode & prec - bfclr FPTEMP_SGN(%a6){#0:#8} //convert back to IEEE ext format - beqs sub_s_sclr - bsetb #sign_bit,FPTEMP_EX(%a6) -sub_s_sclr: - leal WBTEMP(%a6),%a0 - movel FPTEMP(%a6),(%a0) //write result to wbtemp - movel FPTEMP_HI(%a6),4(%a0) - movel FPTEMP_LO(%a6),8(%a0) - tstw FPTEMP_EX(%a6) - bgt sub_ckovf - orl #neg_mask,USER_FPSR(%a6) -sub_ckovf: - movew WBTEMP_EX(%a6),%d0 - andiw #0x7fff,%d0 - cmpiw #0x7fff,%d0 - bne frcfpnr -// -// The result has overflowed to $7fff exponent. Set I, ovfl, -// and aovfl, and clr the mantissa (incorrectly set by the -// round routine.) -// - orl #inf_mask+ovfl_inx_mask,USER_FPSR(%a6) - clrl 4(%a0) - bra frcfpnr -// -// Inst is fcmp. -// -wrap_cmp: - cmpb #0xff,DNRM_FLG(%a6) //if both ops denorm, - beq fix_stk //restore to fpu -// -// One of the ops is denormalized. Test for wrap condition -// and complete the instruction. -// - cmpb #0x0f,DNRM_FLG(%a6) //check for dest denorm - bnes cmp_srcd -cmp_destd: - bsrl ckinf_ns - bne fix_stk - bfextu ETEMP_EX(%a6){#1:#15},%d0 //get src exp (always pos) - bfexts FPTEMP_EX(%a6){#1:#15},%d1 //get dest exp (always neg) - subl %d1,%d0 //subtract dest from src - cmpl #0x8000,%d0 - blt fix_stk //if less, not wrap case - tstw ETEMP_EX(%a6) //set N to ~sign_of(src) - bge cmp_setn - rts -cmp_srcd: - bsrl ckinf_nd - bne fix_stk - bfextu FPTEMP_EX(%a6){#1:#15},%d0 //get dest exp (always pos) - bfexts ETEMP_EX(%a6){#1:#15},%d1 //get src exp (always neg) - subl %d1,%d0 //subtract src from dest - cmpl #0x8000,%d0 - blt fix_stk //if less, not wrap case - tstw FPTEMP_EX(%a6) //set N to sign_of(dest) - blt cmp_setn - rts -cmp_setn: - orl #neg_mask,USER_FPSR(%a6) - rts - -// -// Inst is fmul. -// -wrap_mul: - cmpb #0xff,DNRM_FLG(%a6) //if both ops denorm, - beq force_unf //force an underflow (really!) -// -// One of the ops is denormalized. Test for wrap condition -// and complete the instruction. -// - cmpb #0x0f,DNRM_FLG(%a6) //check for dest denorm - bnes mul_srcd -mul_destd: - bsrl ckinf_ns - bne fix_stk - bfextu ETEMP_EX(%a6){#1:#15},%d0 //get src exp (always pos) - bfexts FPTEMP_EX(%a6){#1:#15},%d1 //get dest exp (always neg) - addl %d1,%d0 //subtract dest from src - bgt fix_stk - bra force_unf -mul_srcd: - bsrl ckinf_nd - bne fix_stk - bfextu FPTEMP_EX(%a6){#1:#15},%d0 //get dest exp (always pos) - bfexts ETEMP_EX(%a6){#1:#15},%d1 //get src exp (always neg) - addl %d1,%d0 //subtract src from dest - bgt fix_stk - -// -// This code handles the case of the instruction resulting in -// an underflow condition. -// -force_unf: - bclrb #E1,E_BYTE(%a6) - orl #unfinx_mask,USER_FPSR(%a6) - clrw NMNEXC(%a6) - clrb WBTEMP_SGN(%a6) - movew ETEMP_EX(%a6),%d0 //find the sign of the result - movew FPTEMP_EX(%a6),%d1 - eorw %d1,%d0 - andiw #0x8000,%d0 - beqs frcunfcont - st WBTEMP_SGN(%a6) -frcunfcont: - lea WBTEMP(%a6),%a0 //point a0 to memory location - movew CMDREG1B(%a6),%d0 - btstl #6,%d0 //test for forced precision - beqs frcunf_fpcr - btstl #2,%d0 //check for double - bnes frcunf_dbl - movel #0x1,%d0 //inst is forced single - bras frcunf_rnd -frcunf_dbl: - movel #0x2,%d0 //inst is forced double - bras frcunf_rnd -frcunf_fpcr: - bfextu FPCR_MODE(%a6){#0:#2},%d0 //inst not forced - use fpcr prec -frcunf_rnd: - bsrl unf_sub //get correct result based on -// ;round precision/mode. This -// ;sets FPSR_CC correctly - bfclr WBTEMP_SGN(%a6){#0:#8} //convert back to IEEE ext format - beqs frcfpn - bsetb #sign_bit,WBTEMP_EX(%a6) - bra frcfpn - -// -// Write the result to the user's fpn. All results must be HUGE to be -// written; otherwise the results would have overflowed or underflowed. -// If the rounding precision is single or double, the ovf_res routine -// is needed to correctly supply the max value. -// -frcfpnr: - movew CMDREG1B(%a6),%d0 - btstl #6,%d0 //test for forced precision - beqs frcfpn_fpcr - btstl #2,%d0 //check for double - bnes frcfpn_dbl - movel #0x1,%d0 //inst is forced single - bras frcfpn_rnd -frcfpn_dbl: - movel #0x2,%d0 //inst is forced double - bras frcfpn_rnd -frcfpn_fpcr: - bfextu FPCR_MODE(%a6){#0:#2},%d0 //inst not forced - use fpcr prec - tstb %d0 - beqs frcfpn //if extended, write what you got -frcfpn_rnd: - bclrb #sign_bit,WBTEMP_EX(%a6) - sne WBTEMP_SGN(%a6) - bsrl ovf_res //get correct result based on -// ;round precision/mode. This -// ;sets FPSR_CC correctly - bfclr WBTEMP_SGN(%a6){#0:#8} //convert back to IEEE ext format - beqs frcfpn_clr - bsetb #sign_bit,WBTEMP_EX(%a6) -frcfpn_clr: - orl #ovfinx_mask,USER_FPSR(%a6) -// -// Perform the write. -// -frcfpn: - bfextu CMDREG1B(%a6){#6:#3},%d0 //extract fp destination register - cmpib #3,%d0 - bles frc0123 //check if dest is fp0-fp3 - movel #7,%d1 - subl %d0,%d1 - clrl %d0 - bsetl %d1,%d0 - fmovemx WBTEMP(%a6),%d0 - rts -frc0123: - cmpib #0,%d0 - beqs frc0_dst - cmpib #1,%d0 - beqs frc1_dst - cmpib #2,%d0 - beqs frc2_dst -frc3_dst: - movel WBTEMP_EX(%a6),USER_FP3(%a6) - movel WBTEMP_HI(%a6),USER_FP3+4(%a6) - movel WBTEMP_LO(%a6),USER_FP3+8(%a6) - rts -frc2_dst: - movel WBTEMP_EX(%a6),USER_FP2(%a6) - movel WBTEMP_HI(%a6),USER_FP2+4(%a6) - movel WBTEMP_LO(%a6),USER_FP2+8(%a6) - rts -frc1_dst: - movel WBTEMP_EX(%a6),USER_FP1(%a6) - movel WBTEMP_HI(%a6),USER_FP1+4(%a6) - movel WBTEMP_LO(%a6),USER_FP1+8(%a6) - rts -frc0_dst: - movel WBTEMP_EX(%a6),USER_FP0(%a6) - movel WBTEMP_HI(%a6),USER_FP0+4(%a6) - movel WBTEMP_LO(%a6),USER_FP0+8(%a6) - rts - -// -// Write etemp to fpn. -// A check is made on enabled and signalled snan exceptions, -// and the destination is not overwritten if this condition exists. -// This code is designed to make fmoveins of unsupported data types -// faster. -// -wr_etemp: - btstb #snan_bit,FPSR_EXCEPT(%a6) //if snan is set, and - beqs fmoveinc //enabled, force restore - btstb #snan_bit,FPCR_ENABLE(%a6) //and don't overwrite - beqs fmoveinc //the dest - movel ETEMP_EX(%a6),FPTEMP_EX(%a6) //set up fptemp sign for -// ;snan handler - tstb ETEMP(%a6) //check for negative - blts snan_neg - rts -snan_neg: - orl #neg_bit,USER_FPSR(%a6) //snan is negative; set N - rts -fmoveinc: - clrw NMNEXC(%a6) - bclrb #E1,E_BYTE(%a6) - moveb STAG(%a6),%d0 //check if stag is inf - andib #0xe0,%d0 - cmpib #0x40,%d0 - bnes fminc_cnan - orl #inf_mask,USER_FPSR(%a6) //if inf, nothing yet has set I - tstw LOCAL_EX(%a0) //check sign - bges fminc_con - orl #neg_mask,USER_FPSR(%a6) - bra fminc_con -fminc_cnan: - cmpib #0x60,%d0 //check if stag is NaN - bnes fminc_czero - orl #nan_mask,USER_FPSR(%a6) //if nan, nothing yet has set NaN - movel ETEMP_EX(%a6),FPTEMP_EX(%a6) //set up fptemp sign for -// ;snan handler - tstw LOCAL_EX(%a0) //check sign - bges fminc_con - orl #neg_mask,USER_FPSR(%a6) - bra fminc_con -fminc_czero: - cmpib #0x20,%d0 //check if zero - bnes fminc_con - orl #z_mask,USER_FPSR(%a6) //if zero, set Z - tstw LOCAL_EX(%a0) //check sign - bges fminc_con - orl #neg_mask,USER_FPSR(%a6) -fminc_con: - bfextu CMDREG1B(%a6){#6:#3},%d0 //extract fp destination register - cmpib #3,%d0 - bles fp0123 //check if dest is fp0-fp3 - movel #7,%d1 - subl %d0,%d1 - clrl %d0 - bsetl %d1,%d0 - fmovemx ETEMP(%a6),%d0 - rts - -fp0123: - cmpib #0,%d0 - beqs fp0_dst - cmpib #1,%d0 - beqs fp1_dst - cmpib #2,%d0 - beqs fp2_dst -fp3_dst: - movel ETEMP_EX(%a6),USER_FP3(%a6) - movel ETEMP_HI(%a6),USER_FP3+4(%a6) - movel ETEMP_LO(%a6),USER_FP3+8(%a6) - rts -fp2_dst: - movel ETEMP_EX(%a6),USER_FP2(%a6) - movel ETEMP_HI(%a6),USER_FP2+4(%a6) - movel ETEMP_LO(%a6),USER_FP2+8(%a6) - rts -fp1_dst: - movel ETEMP_EX(%a6),USER_FP1(%a6) - movel ETEMP_HI(%a6),USER_FP1+4(%a6) - movel ETEMP_LO(%a6),USER_FP1+8(%a6) - rts -fp0_dst: - movel ETEMP_EX(%a6),USER_FP0(%a6) - movel ETEMP_HI(%a6),USER_FP0+4(%a6) - movel ETEMP_LO(%a6),USER_FP0+8(%a6) - rts - -opclass3: - st CU_ONLY(%a6) - movew CMDREG1B(%a6),%d0 //check if packed moveout - andiw #0x0c00,%d0 //isolate last 2 bits of size field - cmpiw #0x0c00,%d0 //if size is 011 or 111, it is packed - beq pack_out //else it is norm or denorm - bra mv_out - - -// -// MOVE OUT -// - -mv_tbl: - .long li - .long sgp - .long xp - .long mvout_end //should never be taken - .long wi - .long dp - .long bi - .long mvout_end //should never be taken -mv_out: - bfextu CMDREG1B(%a6){#3:#3},%d1 //put source specifier in d1 - leal mv_tbl,%a0 - movel %a0@(%d1:l:4),%a0 - jmp (%a0) - -// -// This exit is for move-out to memory. The aunfl bit is -// set if the result is inex and unfl is signalled. -// -mvout_end: - btstb #inex2_bit,FPSR_EXCEPT(%a6) - beqs no_aufl - btstb #unfl_bit,FPSR_EXCEPT(%a6) - beqs no_aufl - bsetb #aunfl_bit,FPSR_AEXCEPT(%a6) -no_aufl: - clrw NMNEXC(%a6) - bclrb #E1,E_BYTE(%a6) - fmovel #0,%FPSR //clear any cc bits from res_func -// -// Return ETEMP to extended format from internal extended format so -// that gen_except will have a correctly signed value for ovfl/unfl -// handlers. -// - bfclr ETEMP_SGN(%a6){#0:#8} - beqs mvout_con - bsetb #sign_bit,ETEMP_EX(%a6) -mvout_con: - rts -// -// This exit is for move-out to int register. The aunfl bit is -// not set in any case for this move. -// -mvouti_end: - clrw NMNEXC(%a6) - bclrb #E1,E_BYTE(%a6) - fmovel #0,%FPSR //clear any cc bits from res_func -// -// Return ETEMP to extended format from internal extended format so -// that gen_except will have a correctly signed value for ovfl/unfl -// handlers. -// - bfclr ETEMP_SGN(%a6){#0:#8} - beqs mvouti_con - bsetb #sign_bit,ETEMP_EX(%a6) -mvouti_con: - rts -// -// li is used to handle a long integer source specifier -// - -li: - moveql #4,%d0 //set byte count - - btstb #7,STAG(%a6) //check for extended denorm - bne int_dnrm //if so, branch - - fmovemx ETEMP(%a6),%fp0-%fp0 - fcmpd #0x41dfffffffc00000,%fp0 -// 41dfffffffc00000 in dbl prec = 401d0000fffffffe00000000 in ext prec - fbge lo_plrg - fcmpd #0xc1e0000000000000,%fp0 -// c1e0000000000000 in dbl prec = c01e00008000000000000000 in ext prec - fble lo_nlrg -// -// at this point, the answer is between the largest pos and neg values -// - movel USER_FPCR(%a6),%d1 //use user's rounding mode - andil #0x30,%d1 - fmovel %d1,%fpcr - fmovel %fp0,L_SCR1(%a6) //let the 040 perform conversion - fmovel %fpsr,%d1 - orl %d1,USER_FPSR(%a6) //capture inex2/ainex if set - bra int_wrt - - -lo_plrg: - movel #0x7fffffff,L_SCR1(%a6) //answer is largest positive int - fbeq int_wrt //exact answer - fcmpd #0x41dfffffffe00000,%fp0 -// 41dfffffffe00000 in dbl prec = 401d0000ffffffff00000000 in ext prec - fbge int_operr //set operr - bra int_inx //set inexact - -lo_nlrg: - movel #0x80000000,L_SCR1(%a6) - fbeq int_wrt //exact answer - fcmpd #0xc1e0000000100000,%fp0 -// c1e0000000100000 in dbl prec = c01e00008000000080000000 in ext prec - fblt int_operr //set operr - bra int_inx //set inexact - -// -// wi is used to handle a word integer source specifier -// - -wi: - moveql #2,%d0 //set byte count - - btstb #7,STAG(%a6) //check for extended denorm - bne int_dnrm //branch if so - - fmovemx ETEMP(%a6),%fp0-%fp0 - fcmps #0x46fffe00,%fp0 -// 46fffe00 in sgl prec = 400d0000fffe000000000000 in ext prec - fbge wo_plrg - fcmps #0xc7000000,%fp0 -// c7000000 in sgl prec = c00e00008000000000000000 in ext prec - fble wo_nlrg - -// -// at this point, the answer is between the largest pos and neg values -// - movel USER_FPCR(%a6),%d1 //use user's rounding mode - andil #0x30,%d1 - fmovel %d1,%fpcr - fmovew %fp0,L_SCR1(%a6) //let the 040 perform conversion - fmovel %fpsr,%d1 - orl %d1,USER_FPSR(%a6) //capture inex2/ainex if set - bra int_wrt - -wo_plrg: - movew #0x7fff,L_SCR1(%a6) //answer is largest positive int - fbeq int_wrt //exact answer - fcmps #0x46ffff00,%fp0 -// 46ffff00 in sgl prec = 400d0000ffff000000000000 in ext prec - fbge int_operr //set operr - bra int_inx //set inexact - -wo_nlrg: - movew #0x8000,L_SCR1(%a6) - fbeq int_wrt //exact answer - fcmps #0xc7000080,%fp0 -// c7000080 in sgl prec = c00e00008000800000000000 in ext prec - fblt int_operr //set operr - bra int_inx //set inexact - -// -// bi is used to handle a byte integer source specifier -// - -bi: - moveql #1,%d0 //set byte count - - btstb #7,STAG(%a6) //check for extended denorm - bne int_dnrm //branch if so - - fmovemx ETEMP(%a6),%fp0-%fp0 - fcmps #0x42fe0000,%fp0 -// 42fe0000 in sgl prec = 40050000fe00000000000000 in ext prec - fbge by_plrg - fcmps #0xc3000000,%fp0 -// c3000000 in sgl prec = c00600008000000000000000 in ext prec - fble by_nlrg - -// -// at this point, the answer is between the largest pos and neg values -// - movel USER_FPCR(%a6),%d1 //use user's rounding mode - andil #0x30,%d1 - fmovel %d1,%fpcr - fmoveb %fp0,L_SCR1(%a6) //let the 040 perform conversion - fmovel %fpsr,%d1 - orl %d1,USER_FPSR(%a6) //capture inex2/ainex if set - bra int_wrt - -by_plrg: - moveb #0x7f,L_SCR1(%a6) //answer is largest positive int - fbeq int_wrt //exact answer - fcmps #0x42ff0000,%fp0 -// 42ff0000 in sgl prec = 40050000ff00000000000000 in ext prec - fbge int_operr //set operr - bra int_inx //set inexact - -by_nlrg: - moveb #0x80,L_SCR1(%a6) - fbeq int_wrt //exact answer - fcmps #0xc3008000,%fp0 -// c3008000 in sgl prec = c00600008080000000000000 in ext prec - fblt int_operr //set operr - bra int_inx //set inexact - -// -// Common integer routines -// -// int_drnrm---account for possible nonzero result for round up with positive -// operand and round down for negative answer. In the first case (result = 1) -// byte-width (store in d0) of result must be honored. In the second case, -// -1 in L_SCR1(a6) will cover all contingencies (FMOVE.B/W/L out). - -int_dnrm: - movel #0,L_SCR1(%a6) // initialize result to 0 - bfextu FPCR_MODE(%a6){#2:#2},%d1 // d1 is the rounding mode - cmpb #2,%d1 - bmis int_inx // if RN or RZ, done - bnes int_rp // if RP, continue below - tstw ETEMP(%a6) // RM: store -1 in L_SCR1 if src is negative - bpls int_inx // otherwise result is 0 - movel #-1,L_SCR1(%a6) - bras int_inx -int_rp: - tstw ETEMP(%a6) // RP: store +1 of proper width in L_SCR1 if -// ; source is greater than 0 - bmis int_inx // otherwise, result is 0 - lea L_SCR1(%a6),%a1 // a1 is address of L_SCR1 - addal %d0,%a1 // offset by destination width -1 - subal #1,%a1 - bsetb #0,(%a1) // set low bit at a1 address -int_inx: - oril #inx2a_mask,USER_FPSR(%a6) - bras int_wrt -int_operr: - fmovemx %fp0-%fp0,FPTEMP(%a6) //FPTEMP must contain the extended -// ;precision source that needs to be -// ;converted to integer this is required -// ;if the operr exception is enabled. -// ;set operr/aiop (no inex2 on int ovfl) - - oril #opaop_mask,USER_FPSR(%a6) -// ;fall through to perform int_wrt -int_wrt: - movel EXC_EA(%a6),%a1 //load destination address - tstl %a1 //check to see if it is a dest register - beqs wrt_dn //write data register - lea L_SCR1(%a6),%a0 //point to supervisor source address - bsrl mem_write - bra mvouti_end - -wrt_dn: - movel %d0,-(%sp) //d0 currently contains the size to write - bsrl get_fline //get_fline returns Dn in d0 - andiw #0x7,%d0 //isolate register - movel (%sp)+,%d1 //get size - cmpil #4,%d1 //most frequent case - beqs sz_long - cmpil #2,%d1 - bnes sz_con - orl #8,%d0 //add 'word' size to register# - bras sz_con -sz_long: - orl #0x10,%d0 //add 'long' size to register# -sz_con: - movel %d0,%d1 //reg_dest expects size:reg in d1 - bsrl reg_dest //load proper data register - bra mvouti_end -xp: - lea ETEMP(%a6),%a0 - bclrb #sign_bit,LOCAL_EX(%a0) - sne LOCAL_SGN(%a0) - btstb #7,STAG(%a6) //check for extended denorm - bne xdnrm - clrl %d0 - bras do_fp //do normal case -sgp: - lea ETEMP(%a6),%a0 - bclrb #sign_bit,LOCAL_EX(%a0) - sne LOCAL_SGN(%a0) - btstb #7,STAG(%a6) //check for extended denorm - bne sp_catas //branch if so - movew LOCAL_EX(%a0),%d0 - lea sp_bnds,%a1 - cmpw (%a1),%d0 - blt sp_under - cmpw 2(%a1),%d0 - bgt sp_over - movel #1,%d0 //set destination format to single - bras do_fp //do normal case -dp: - lea ETEMP(%a6),%a0 - bclrb #sign_bit,LOCAL_EX(%a0) - sne LOCAL_SGN(%a0) - - btstb #7,STAG(%a6) //check for extended denorm - bne dp_catas //branch if so - - movew LOCAL_EX(%a0),%d0 - lea dp_bnds,%a1 - - cmpw (%a1),%d0 - blt dp_under - cmpw 2(%a1),%d0 - bgt dp_over - - movel #2,%d0 //set destination format to double -// ;fall through to do_fp -// -do_fp: - bfextu FPCR_MODE(%a6){#2:#2},%d1 //rnd mode in d1 - swap %d0 //rnd prec in upper word - addl %d0,%d1 //d1 has PREC/MODE info - - clrl %d0 //clear g,r,s - - bsrl round //round - - movel %a0,%a1 - movel EXC_EA(%a6),%a0 - - bfextu CMDREG1B(%a6){#3:#3},%d1 //extract destination format -// ;at this point only the dest -// ;formats sgl, dbl, ext are -// ;possible - cmpb #2,%d1 - bgts ddbl //double=5, extended=2, single=1 - bnes dsgl -// ;fall through to dext -dext: - bsrl dest_ext - bra mvout_end -dsgl: - bsrl dest_sgl - bra mvout_end -ddbl: - bsrl dest_dbl - bra mvout_end - -// -// Handle possible denorm or catastrophic underflow cases here -// -xdnrm: - bsr set_xop //initialize WBTEMP - bsetb #wbtemp15_bit,WB_BYTE(%a6) //set wbtemp15 - - movel %a0,%a1 - movel EXC_EA(%a6),%a0 //a0 has the destination pointer - bsrl dest_ext //store to memory - bsetb #unfl_bit,FPSR_EXCEPT(%a6) - bra mvout_end - -sp_under: - bsetb #etemp15_bit,STAG(%a6) - - cmpw 4(%a1),%d0 - blts sp_catas //catastrophic underflow case - - movel #1,%d0 //load in round precision - movel #sgl_thresh,%d1 //load in single denorm threshold - bsrl dpspdnrm //expects d1 to have the proper -// ;denorm threshold - bsrl dest_sgl //stores value to destination - bsetb #unfl_bit,FPSR_EXCEPT(%a6) - bra mvout_end //exit - -dp_under: - bsetb #etemp15_bit,STAG(%a6) - - cmpw 4(%a1),%d0 - blts dp_catas //catastrophic underflow case - - movel #dbl_thresh,%d1 //load in double precision threshold - movel #2,%d0 - bsrl dpspdnrm //expects d1 to have proper -// ;denorm threshold -// ;expects d0 to have round precision - bsrl dest_dbl //store value to destination - bsetb #unfl_bit,FPSR_EXCEPT(%a6) - bra mvout_end //exit - -// -// Handle catastrophic underflow cases here -// -sp_catas: -// Temp fix for z bit set in unf_sub - movel USER_FPSR(%a6),-(%a7) - - movel #1,%d0 //set round precision to sgl - - bsrl unf_sub //a0 points to result - - movel (%a7)+,USER_FPSR(%a6) - - movel #1,%d0 - subw %d0,LOCAL_EX(%a0) //account for difference between -// ;denorm/norm bias - - movel %a0,%a1 //a1 has the operand input - movel EXC_EA(%a6),%a0 //a0 has the destination pointer - - bsrl dest_sgl //store the result - oril #unfinx_mask,USER_FPSR(%a6) - bra mvout_end - -dp_catas: -// Temp fix for z bit set in unf_sub - movel USER_FPSR(%a6),-(%a7) - - movel #2,%d0 //set round precision to dbl - bsrl unf_sub //a0 points to result - - movel (%a7)+,USER_FPSR(%a6) - - movel #1,%d0 - subw %d0,LOCAL_EX(%a0) //account for difference between -// ;denorm/norm bias - - movel %a0,%a1 //a1 has the operand input - movel EXC_EA(%a6),%a0 //a0 has the destination pointer - - bsrl dest_dbl //store the result - oril #unfinx_mask,USER_FPSR(%a6) - bra mvout_end - -// -// Handle catastrophic overflow cases here -// -sp_over: -// Temp fix for z bit set in unf_sub - movel USER_FPSR(%a6),-(%a7) - - movel #1,%d0 - leal FP_SCR1(%a6),%a0 //use FP_SCR1 for creating result - movel ETEMP_EX(%a6),(%a0) - movel ETEMP_HI(%a6),4(%a0) - movel ETEMP_LO(%a6),8(%a0) - bsrl ovf_res - - movel (%a7)+,USER_FPSR(%a6) - - movel %a0,%a1 - movel EXC_EA(%a6),%a0 - bsrl dest_sgl - orl #ovfinx_mask,USER_FPSR(%a6) - bra mvout_end - -dp_over: -// Temp fix for z bit set in ovf_res - movel USER_FPSR(%a6),-(%a7) - - movel #2,%d0 - leal FP_SCR1(%a6),%a0 //use FP_SCR1 for creating result - movel ETEMP_EX(%a6),(%a0) - movel ETEMP_HI(%a6),4(%a0) - movel ETEMP_LO(%a6),8(%a0) - bsrl ovf_res - - movel (%a7)+,USER_FPSR(%a6) - - movel %a0,%a1 - movel EXC_EA(%a6),%a0 - bsrl dest_dbl - orl #ovfinx_mask,USER_FPSR(%a6) - bra mvout_end - -// -// DPSPDNRM -// -// This subroutine takes an extended normalized number and denormalizes -// it to the given round precision. This subroutine also decrements -// the input operand's exponent by 1 to account for the fact that -// dest_sgl or dest_dbl expects a normalized number's bias. -// -// Input: a0 points to a normalized number in internal extended format -// d0 is the round precision (=1 for sgl; =2 for dbl) -// d1 is the the single precision or double precision -// denorm threshold -// -// Output: (In the format for dest_sgl or dest_dbl) -// a0 points to the destination -// a1 points to the operand -// -// Exceptions: Reports inexact 2 exception by setting USER_FPSR bits -// -dpspdnrm: - movel %d0,-(%a7) //save round precision - clrl %d0 //clear initial g,r,s - bsrl dnrm_lp //careful with d0, it's needed by round - - bfextu FPCR_MODE(%a6){#2:#2},%d1 //get rounding mode - swap %d1 - movew 2(%a7),%d1 //set rounding precision - swap %d1 //at this point d1 has PREC/MODE info - bsrl round //round result, sets the inex bit in -// ;USER_FPSR if needed - - movew #1,%d0 - subw %d0,LOCAL_EX(%a0) //account for difference in denorm -// ;vs norm bias - - movel %a0,%a1 //a1 has the operand input - movel EXC_EA(%a6),%a0 //a0 has the destination pointer - addw #4,%a7 //pop stack - rts -// -// SET_XOP initialized WBTEMP with the value pointed to by a0 -// input: a0 points to input operand in the internal extended format -// -set_xop: - movel LOCAL_EX(%a0),WBTEMP_EX(%a6) - movel LOCAL_HI(%a0),WBTEMP_HI(%a6) - movel LOCAL_LO(%a0),WBTEMP_LO(%a6) - bfclr WBTEMP_SGN(%a6){#0:#8} - beqs sxop - bsetb #sign_bit,WBTEMP_EX(%a6) -sxop: - bfclr STAG(%a6){#5:#4} //clear wbtm66,wbtm1,wbtm0,sbit - rts -// -// P_MOVE -// -p_movet: - .long p_move - .long p_movez - .long p_movei - .long p_moven - .long p_move -p_regd: - .long p_dyd0 - .long p_dyd1 - .long p_dyd2 - .long p_dyd3 - .long p_dyd4 - .long p_dyd5 - .long p_dyd6 - .long p_dyd7 - -pack_out: - leal p_movet,%a0 //load jmp table address - movew STAG(%a6),%d0 //get source tag - bfextu %d0{#16:#3},%d0 //isolate source bits - movel (%a0,%d0.w*4),%a0 //load a0 with routine label for tag - jmp (%a0) //go to the routine - -p_write: - movel #0x0c,%d0 //get byte count - movel EXC_EA(%a6),%a1 //get the destination address - bsr mem_write //write the user's destination - moveb #0,CU_SAVEPC(%a6) //set the cu save pc to all 0's - -// -// Also note that the dtag must be set to norm here - this is because -// the 040 uses the dtag to execute the correct microcode. -// - bfclr DTAG(%a6){#0:#3} //set dtag to norm - - rts - -// Notes on handling of special case (zero, inf, and nan) inputs: -// 1. Operr is not signalled if the k-factor is greater than 18. -// 2. Per the manual, status bits are not set. -// - -p_move: - movew CMDREG1B(%a6),%d0 - btstl #kfact_bit,%d0 //test for dynamic k-factor - beqs statick //if clear, k-factor is static -dynamick: - bfextu %d0{#25:#3},%d0 //isolate register for dynamic k-factor - lea p_regd,%a0 - movel %a0@(%d0:l:4),%a0 - jmp (%a0) -statick: - andiw #0x007f,%d0 //get k-factor - bfexts %d0{#25:#7},%d0 //sign extend d0 for bindec - leal ETEMP(%a6),%a0 //a0 will point to the packed decimal - bsrl bindec //perform the convert; data at a6 - leal FP_SCR1(%a6),%a0 //load a0 with result address - bral p_write -p_movez: - leal ETEMP(%a6),%a0 //a0 will point to the packed decimal - clrw 2(%a0) //clear lower word of exp - clrl 4(%a0) //load second lword of ZERO - clrl 8(%a0) //load third lword of ZERO - bra p_write //go write results -p_movei: - fmovel #0,%FPSR //clear aiop - leal ETEMP(%a6),%a0 //a0 will point to the packed decimal - clrw 2(%a0) //clear lower word of exp - bra p_write //go write the result -p_moven: - leal ETEMP(%a6),%a0 //a0 will point to the packed decimal - clrw 2(%a0) //clear lower word of exp - bra p_write //go write the result - -// -// Routines to read the dynamic k-factor from Dn. -// -p_dyd0: - movel USER_D0(%a6),%d0 - bras statick -p_dyd1: - movel USER_D1(%a6),%d0 - bras statick -p_dyd2: - movel %d2,%d0 - bras statick -p_dyd3: - movel %d3,%d0 - bras statick -p_dyd4: - movel %d4,%d0 - bras statick -p_dyd5: - movel %d5,%d0 - bras statick -p_dyd6: - movel %d6,%d0 - bra statick -p_dyd7: - movel %d7,%d0 - bra statick - - |end diff --git a/c/src/lib/libcpu/m68k/m68040/fpsp/round.S b/c/src/lib/libcpu/m68k/m68040/fpsp/round.S deleted file mode 100644 index b9b5be1cc5..0000000000 --- a/c/src/lib/libcpu/m68k/m68040/fpsp/round.S +++ /dev/null @@ -1,651 +0,0 @@ -#include "fpsp-namespace.h" -// -// -// round.sa 3.4 7/29/91 -// -// handle rounding and normalization tasks -// -// -// -// Copyright (C) Motorola, Inc. 1990 -// All Rights Reserved -// -// THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA -// The copyright notice above does not evidence any -// actual or intended publication of such source code. - -//ROUND idnt 2,1 | Motorola 040 Floating Point Software Package - - |section 8 - -#include "fpsp.defs" - -// -// round --- round result according to precision/mode -// -// a0 points to the input operand in the internal extended format -// d1(high word) contains rounding precision: -// ext = $0000xxxx -// sgl = $0001xxxx -// dbl = $0002xxxx -// d1(low word) contains rounding mode: -// RN = $xxxx0000 -// RZ = $xxxx0001 -// RM = $xxxx0010 -// RP = $xxxx0011 -// d0{31:29} contains the g,r,s bits (extended) -// -// On return the value pointed to by a0 is correctly rounded, -// a0 is preserved and the g-r-s bits in d0 are cleared. -// The result is not typed - the tag field is invalid. The -// result is still in the internal extended format. -// -// The INEX bit of USER_FPSR will be set if the rounded result was -// inexact (i.e. if any of the g-r-s bits were set). -// - - .global round -round: -// If g=r=s=0 then result is exact and round is done, else set -// the inex flag in status reg and continue. -// - bsrs ext_grs //this subroutine looks at the -// :rounding precision and sets -// ;the appropriate g-r-s bits. - tstl %d0 //if grs are zero, go force - bne rnd_cont //lower bits to zero for size - - swap %d1 //set up d1.w for round prec. - bra truncate - -rnd_cont: -// -// Use rounding mode as an index into a jump table for these modes. -// - orl #inx2a_mask,USER_FPSR(%a6) //set inex2/ainex - lea mode_tab,%a1 - movel (%a1,%d1.w*4),%a1 - jmp (%a1) -// -// Jump table indexed by rounding mode in d1.w. All following assumes -// grs != 0. -// -mode_tab: - .long rnd_near - .long rnd_zero - .long rnd_mnus - .long rnd_plus -// -// ROUND PLUS INFINITY -// -// If sign of fp number = 0 (positive), then add 1 to l. -// -rnd_plus: - swap %d1 //set up d1 for round prec. - tstb LOCAL_SGN(%a0) //check for sign - bmi truncate //if positive then truncate - movel #0xffffffff,%d0 //force g,r,s to be all f's - lea add_to_l,%a1 - movel (%a1,%d1.w*4),%a1 - jmp (%a1) -// -// ROUND MINUS INFINITY -// -// If sign of fp number = 1 (negative), then add 1 to l. -// -rnd_mnus: - swap %d1 //set up d1 for round prec. - tstb LOCAL_SGN(%a0) //check for sign - bpl truncate //if negative then truncate - movel #0xffffffff,%d0 //force g,r,s to be all f's - lea add_to_l,%a1 - movel (%a1,%d1.w*4),%a1 - jmp (%a1) -// -// ROUND ZERO -// -// Always truncate. -rnd_zero: - swap %d1 //set up d1 for round prec. - bra truncate -// -// -// ROUND NEAREST -// -// If (g=1), then add 1 to l and if (r=s=0), then clear l -// Note that this will round to even in case of a tie. -// -rnd_near: - swap %d1 //set up d1 for round prec. - asll #1,%d0 //shift g-bit to c-bit - bcc truncate //if (g=1) then - lea add_to_l,%a1 - movel (%a1,%d1.w*4),%a1 - jmp (%a1) - -// -// ext_grs --- extract guard, round and sticky bits -// -// Input: d1 = PREC:ROUND -// Output: d0{31:29}= guard, round, sticky -// -// The ext_grs extract the guard/round/sticky bits according to the -// selected rounding precision. It is called by the round subroutine -// only. All registers except d0 are kept intact. d0 becomes an -// updated guard,round,sticky in d0{31:29} -// -// Notes: the ext_grs uses the round PREC, and therefore has to swap d1 -// prior to usage, and needs to restore d1 to original. -// -ext_grs: - swap %d1 //have d1.w point to round precision - cmpiw #0,%d1 - bnes sgl_or_dbl - bras end_ext_grs - -sgl_or_dbl: - moveml %d2/%d3,-(%a7) //make some temp registers - cmpiw #1,%d1 - bnes grs_dbl -grs_sgl: - bfextu LOCAL_HI(%a0){#24:#2},%d3 //sgl prec. g-r are 2 bits right - movel #30,%d2 //of the sgl prec. limits - lsll %d2,%d3 //shift g-r bits to MSB of d3 - movel LOCAL_HI(%a0),%d2 //get word 2 for s-bit test - andil #0x0000003f,%d2 //s bit is the or of all other - bnes st_stky //bits to the right of g-r - tstl LOCAL_LO(%a0) //test lower mantissa - bnes st_stky //if any are set, set sticky - tstl %d0 //test original g,r,s - bnes st_stky //if any are set, set sticky - bras end_sd //if words 3 and 4 are clr, exit -grs_dbl: - bfextu LOCAL_LO(%a0){#21:#2},%d3 //dbl-prec. g-r are 2 bits right - movel #30,%d2 //of the dbl prec. limits - lsll %d2,%d3 //shift g-r bits to the MSB of d3 - movel LOCAL_LO(%a0),%d2 //get lower mantissa for s-bit test - andil #0x000001ff,%d2 //s bit is the or-ing of all - bnes st_stky //other bits to the right of g-r - tstl %d0 //test word original g,r,s - bnes st_stky //if any are set, set sticky - bras end_sd //if clear, exit -st_stky: - bset #rnd_stky_bit,%d3 -end_sd: - movel %d3,%d0 //return grs to d0 - moveml (%a7)+,%d2/%d3 //restore scratch registers -end_ext_grs: - swap %d1 //restore d1 to original - rts - -//******************* Local Equates - .set ad_1_sgl,0x00000100 // constant to add 1 to l-bit in sgl prec - .set ad_1_dbl,0x00000800 // constant to add 1 to l-bit in dbl prec - - -//Jump table for adding 1 to the l-bit indexed by rnd prec - -add_to_l: - .long add_ext - .long add_sgl - .long add_dbl - .long add_dbl -// -// ADD SINGLE -// -add_sgl: - addl #ad_1_sgl,LOCAL_HI(%a0) - bccs scc_clr //no mantissa overflow - roxrw LOCAL_HI(%a0) //shift v-bit back in - roxrw LOCAL_HI+2(%a0) //shift v-bit back in - addw #0x1,LOCAL_EX(%a0) //and incr exponent -scc_clr: - tstl %d0 //test for rs = 0 - bnes sgl_done - andiw #0xfe00,LOCAL_HI+2(%a0) //clear the l-bit -sgl_done: - andil #0xffffff00,LOCAL_HI(%a0) //truncate bits beyond sgl limit - clrl LOCAL_LO(%a0) //clear d2 - rts - -// -// ADD EXTENDED -// -add_ext: - addql #1,LOCAL_LO(%a0) //add 1 to l-bit - bccs xcc_clr //test for carry out - addql #1,LOCAL_HI(%a0) //propagate carry - bccs xcc_clr - roxrw LOCAL_HI(%a0) //mant is 0 so restore v-bit - roxrw LOCAL_HI+2(%a0) //mant is 0 so restore v-bit - roxrw LOCAL_LO(%a0) - roxrw LOCAL_LO+2(%a0) - addw #0x1,LOCAL_EX(%a0) //and inc exp -xcc_clr: - tstl %d0 //test rs = 0 - bnes add_ext_done - andib #0xfe,LOCAL_LO+3(%a0) //clear the l bit -add_ext_done: - rts -// -// ADD DOUBLE -// -add_dbl: - addl #ad_1_dbl,LOCAL_LO(%a0) - bccs dcc_clr - addql #1,LOCAL_HI(%a0) //propagate carry - bccs dcc_clr - roxrw LOCAL_HI(%a0) //mant is 0 so restore v-bit - roxrw LOCAL_HI+2(%a0) //mant is 0 so restore v-bit - roxrw LOCAL_LO(%a0) - roxrw LOCAL_LO+2(%a0) - addw #0x1,LOCAL_EX(%a0) //incr exponent -dcc_clr: - tstl %d0 //test for rs = 0 - bnes dbl_done - andiw #0xf000,LOCAL_LO+2(%a0) //clear the l-bit - -dbl_done: - andil #0xfffff800,LOCAL_LO(%a0) //truncate bits beyond dbl limit - rts - -error: - rts -// -// Truncate all other bits -// -trunct: - .long end_rnd - .long sgl_done - .long dbl_done - .long dbl_done - -truncate: - lea trunct,%a1 - movel (%a1,%d1.w*4),%a1 - jmp (%a1) - -end_rnd: - rts - -// -// NORMALIZE -// -// These routines (nrm_zero & nrm_set) normalize the unnorm. This -// is done by shifting the mantissa left while decrementing the -// exponent. -// -// NRM_SET shifts and decrements until there is a 1 set in the integer -// bit of the mantissa (msb in d1). -// -// NRM_ZERO shifts and decrements until there is a 1 set in the integer -// bit of the mantissa (msb in d1) unless this would mean the exponent -// would go less than 0. In that case the number becomes a denorm - the -// exponent (d0) is set to 0 and the mantissa (d1 & d2) is not -// normalized. -// -// Note that both routines have been optimized (for the worst case) and -// therefore do not have the easy to follow decrement/shift loop. -// -// NRM_ZERO -// -// Distance to first 1 bit in mantissa = X -// Distance to 0 from exponent = Y -// If X < Y -// Then -// nrm_set -// Else -// shift mantissa by Y -// set exponent = 0 -// -//input: -// FP_SCR1 = exponent, ms mantissa part, ls mantissa part -//output: -// L_SCR1{4} = fpte15 or ete15 bit -// - .global nrm_zero -nrm_zero: - movew LOCAL_EX(%a0),%d0 - cmpw #64,%d0 //see if exp > 64 - bmis d0_less - bsr nrm_set //exp > 64 so exp won't exceed 0 - rts -d0_less: - moveml %d2/%d3/%d5/%d6,-(%a7) - movel LOCAL_HI(%a0),%d1 - movel LOCAL_LO(%a0),%d2 - - bfffo %d1{#0:#32},%d3 //get the distance to the first 1 -// ;in ms mant - beqs ms_clr //branch if no bits were set - cmpw %d3,%d0 //of X>Y - bmis greater //then exp will go past 0 (neg) if -// ;it is just shifted - bsr nrm_set //else exp won't go past 0 - moveml (%a7)+,%d2/%d3/%d5/%d6 - rts -greater: - movel %d2,%d6 //save ls mant in d6 - lsll %d0,%d2 //shift ls mant by count - lsll %d0,%d1 //shift ms mant by count - movel #32,%d5 - subl %d0,%d5 //make op a denorm by shifting bits - lsrl %d5,%d6 //by the number in the exp, then -// ;set exp = 0. - orl %d6,%d1 //shift the ls mant bits into the ms mant - movel #0,%d0 //same as if decremented exp to 0 -// ;while shifting - movew %d0,LOCAL_EX(%a0) - movel %d1,LOCAL_HI(%a0) - movel %d2,LOCAL_LO(%a0) - moveml (%a7)+,%d2/%d3/%d5/%d6 - rts -ms_clr: - bfffo %d2{#0:#32},%d3 //check if any bits set in ls mant - beqs all_clr //branch if none set - addw #32,%d3 - cmpw %d3,%d0 //if X>Y - bmis greater //then branch - bsr nrm_set //else exp won't go past 0 - moveml (%a7)+,%d2/%d3/%d5/%d6 - rts -all_clr: - movew #0,LOCAL_EX(%a0) //no mantissa bits set. Set exp = 0. - moveml (%a7)+,%d2/%d3/%d5/%d6 - rts -// -// NRM_SET -// - .global nrm_set -nrm_set: - movel %d7,-(%a7) - bfffo LOCAL_HI(%a0){#0:#32},%d7 //find first 1 in ms mant to d7) - beqs lower //branch if ms mant is all 0's - - movel %d6,-(%a7) - - subw %d7,LOCAL_EX(%a0) //sub exponent by count - movel LOCAL_HI(%a0),%d0 //d0 has ms mant - movel LOCAL_LO(%a0),%d1 //d1 has ls mant - - lsll %d7,%d0 //shift first 1 to j bit position - movel %d1,%d6 //copy ls mant into d6 - lsll %d7,%d6 //shift ls mant by count - movel %d6,LOCAL_LO(%a0) //store ls mant into memory - moveql #32,%d6 - subl %d7,%d6 //continue shift - lsrl %d6,%d1 //shift off all bits but those that will -// ;be shifted into ms mant - orl %d1,%d0 //shift the ls mant bits into the ms mant - movel %d0,LOCAL_HI(%a0) //store ms mant into memory - moveml (%a7)+,%d7/%d6 //restore registers - rts - -// -// We get here if ms mant was = 0, and we assume ls mant has bits -// set (otherwise this would have been tagged a zero not a denorm). -// -lower: - movew LOCAL_EX(%a0),%d0 //d0 has exponent - movel LOCAL_LO(%a0),%d1 //d1 has ls mant - subw #32,%d0 //account for ms mant being all zeros - bfffo %d1{#0:#32},%d7 //find first 1 in ls mant to d7) - subw %d7,%d0 //subtract shift count from exp - lsll %d7,%d1 //shift first 1 to integer bit in ms mant - movew %d0,LOCAL_EX(%a0) //store ms mant - movel %d1,LOCAL_HI(%a0) //store exp - clrl LOCAL_LO(%a0) //clear ls mant - movel (%a7)+,%d7 - rts -// -// denorm --- denormalize an intermediate result -// -// Used by underflow. -// -// Input: -// a0 points to the operand to be denormalized -// (in the internal extended format) -// -// d0: rounding precision -// Output: -// a0 points to the denormalized result -// (in the internal extended format) -// -// d0 is guard,round,sticky -// -// d0 comes into this routine with the rounding precision. It -// is then loaded with the denormalized exponent threshold for the -// rounding precision. -// - - .global denorm -denorm: - btstb #6,LOCAL_EX(%a0) //check for exponents between $7fff-$4000 - beqs no_sgn_ext - bsetb #7,LOCAL_EX(%a0) //sign extend if it is so -no_sgn_ext: - - cmpib #0,%d0 //if 0 then extended precision - bnes not_ext //else branch - - clrl %d1 //load d1 with ext threshold - clrl %d0 //clear the sticky flag - bsr dnrm_lp //denormalize the number - tstb %d1 //check for inex - beq no_inex //if clr, no inex - bras dnrm_inex //if set, set inex - -not_ext: - cmpil #1,%d0 //if 1 then single precision - beqs load_sgl //else must be 2, double prec - -load_dbl: - movew #dbl_thresh,%d1 //put copy of threshold in d1 - movel %d1,%d0 //copy d1 into d0 - subw LOCAL_EX(%a0),%d0 //diff = threshold - exp - cmpw #67,%d0 //if diff > 67 (mant + grs bits) - bpls chk_stky //then branch (all bits would be -// ; shifted off in denorm routine) - clrl %d0 //else clear the sticky flag - bsr dnrm_lp //denormalize the number - tstb %d1 //check flag - beqs no_inex //if clr, no inex - bras dnrm_inex //if set, set inex - -load_sgl: - movew #sgl_thresh,%d1 //put copy of threshold in d1 - movel %d1,%d0 //copy d1 into d0 - subw LOCAL_EX(%a0),%d0 //diff = threshold - exp - cmpw #67,%d0 //if diff > 67 (mant + grs bits) - bpls chk_stky //then branch (all bits would be -// ; shifted off in denorm routine) - clrl %d0 //else clear the sticky flag - bsr dnrm_lp //denormalize the number - tstb %d1 //check flag - beqs no_inex //if clr, no inex - bras dnrm_inex //if set, set inex - -chk_stky: - tstl LOCAL_HI(%a0) //check for any bits set - bnes set_stky - tstl LOCAL_LO(%a0) //check for any bits set - bnes set_stky - bras clr_mant -set_stky: - orl #inx2a_mask,USER_FPSR(%a6) //set inex2/ainex - movel #0x20000000,%d0 //set sticky bit in return value -clr_mant: - movew %d1,LOCAL_EX(%a0) //load exp with threshold - movel #0,LOCAL_HI(%a0) //set d1 = 0 (ms mantissa) - movel #0,LOCAL_LO(%a0) //set d2 = 0 (ms mantissa) - rts -dnrm_inex: - orl #inx2a_mask,USER_FPSR(%a6) //set inex2/ainex -no_inex: - rts - -// -// dnrm_lp --- normalize exponent/mantissa to specified threshold -// -// Input: -// a0 points to the operand to be denormalized -// d0{31:29} initial guard,round,sticky -// d1{15:0} denormalization threshold -// Output: -// a0 points to the denormalized operand -// d0{31:29} final guard,round,sticky -// d1.b inexact flag: all ones means inexact result -// -// The LOCAL_LO and LOCAL_GRS parts of the value are copied to FP_SCR2 -// so that bfext can be used to extract the new low part of the mantissa. -// Dnrm_lp can be called with a0 pointing to ETEMP or WBTEMP and there -// is no LOCAL_GRS scratch word following it on the fsave frame. -// - .global dnrm_lp -dnrm_lp: - movel %d2,-(%sp) //save d2 for temp use - btstb #E3,E_BYTE(%a6) //test for type E3 exception - beqs not_E3 //not type E3 exception - bfextu WBTEMP_GRS(%a6){#6:#3},%d2 //extract guard,round, sticky bit - movel #29,%d0 - lsll %d0,%d2 //shift g,r,s to their positions - movel %d2,%d0 -not_E3: - movel (%sp)+,%d2 //restore d2 - movel LOCAL_LO(%a0),FP_SCR2+LOCAL_LO(%a6) - movel %d0,FP_SCR2+LOCAL_GRS(%a6) - movel %d1,%d0 //copy the denorm threshold - subw LOCAL_EX(%a0),%d1 //d1 = threshold - uns exponent - bles no_lp //d1 <= 0 - cmpw #32,%d1 - blts case_1 //0 = d1 < 32 - cmpw #64,%d1 - blts case_2 //32 <= d1 < 64 - bra case_3 //d1 >= 64 -// -// No normalization necessary -// -no_lp: - clrb %d1 //set no inex2 reported - movel FP_SCR2+LOCAL_GRS(%a6),%d0 //restore original g,r,s - rts -// -// case (0= 64 Force the exponent to be the denorm threshold with the -// correct sign. -// -case_3: - movew %d0,LOCAL_EX(%a0) - tstw LOCAL_SGN(%a0) - bges c3con -c3neg: - orl #0x80000000,LOCAL_EX(%a0) -c3con: - cmpw #64,%d1 - beqs sixty_four - cmpw #65,%d1 - beqs sixty_five -// -// Shift value is out of range. Set d1 for inex2 flag and -// return a zero with the given threshold. -// - clrl LOCAL_HI(%a0) - clrl LOCAL_LO(%a0) - movel #0x20000000,%d0 - st %d1 - rts - -sixty_four: - movel LOCAL_HI(%a0),%d0 - bfextu %d0{#2:#30},%d1 - andil #0xc0000000,%d0 - bras c3com - -sixty_five: - movel LOCAL_HI(%a0),%d0 - bfextu %d0{#1:#31},%d1 - andil #0x80000000,%d0 - lsrl #1,%d0 //shift high bit into R bit - -c3com: - tstl %d1 - bnes c3ssticky - tstl LOCAL_LO(%a0) - bnes c3ssticky - tstb FP_SCR2+LOCAL_GRS(%a6) - bnes c3ssticky - clrb %d1 - bras c3end - -c3ssticky: - bsetl #rnd_stky_bit,%d0 - st %d1 -c3end: - clrl LOCAL_HI(%a0) - clrl LOCAL_LO(%a0) - rts - - |end diff --git a/c/src/lib/libcpu/m68k/m68040/fpsp/rtems_fpsp.c b/c/src/lib/libcpu/m68k/m68040/fpsp/rtems_fpsp.c deleted file mode 100644 index 9a237e7534..0000000000 --- a/c/src/lib/libcpu/m68k/m68040/fpsp/rtems_fpsp.c +++ /dev/null @@ -1,81 +0,0 @@ -#include -/* -#include -*/ - -/* - * User exception handlers - */ -proc_ptr M68040FPSPUserExceptionHandlers[9]; - -/* - * Intercept requests to install an exception handler. - * FPSP exceptions get special treatment. - */ -static int -FPSP_install_raw_handler (uint32_t vector, proc_ptr new_handler, proc_ptr *old_handler) -{ - int fpspVector; - - switch (vector) { - default: return 0; /* Non-FPSP vector */ - case 11: fpspVector = 0; break; /* F-line */ - case 48: fpspVector = 1; break; /* BSUN */ - case 49: fpspVector = 2; break; /* INEXACT */ - case 50: fpspVector = 3; break; /* DIVIDE-BY-ZERO */ - case 51: fpspVector = 4; break; /* UNDERFLOW */ - case 52: fpspVector = 5; break; /* OPERAND ERROR */ - case 53: fpspVector = 6; break; /* OVERFLOW */ - case 54: fpspVector = 7; break; /* SIGNALLING NAN */ - case 55: fpspVector = 8; break; /* UNIMPLEMENTED DATA TYPE */ - } - *old_handler = M68040FPSPUserExceptionHandlers[fpspVector]; - M68040FPSPUserExceptionHandlers[fpspVector] = new_handler; - return 1; -} - -/* - * Exception handlers provided by FPSP package. - */ -extern void _fpspEntry_fline(void); -extern void _fpspEntry_bsun(void); -extern void _fpspEntry_inex(void); -extern void _fpspEntry_dz(void); -extern void _fpspEntry_unfl(void); -extern void _fpspEntry_ovfl(void); -extern void _fpspEntry_operr(void); -extern void _fpspEntry_snan(void); -extern void _fpspEntry_unsupp(void); - -/* - * Attach floating point exception vectors to M68040FPSP entry points - * - * NOTE: Uses M68K rather than M68040 in the name so all CPUs having - * an FPSP can share the same code in RTEMS proper. - */ -void -M68KFPSPInstallExceptionHandlers (void) -{ - static struct { - int vector_number; - void (*handler)(void); - } fpspHandlers[] = { - { 11, _fpspEntry_fline }, - { 48, _fpspEntry_bsun }, - { 49, _fpspEntry_inex }, - { 50, _fpspEntry_dz }, - { 51, _fpspEntry_unfl }, - { 52, _fpspEntry_operr }, - { 53, _fpspEntry_ovfl }, - { 54, _fpspEntry_snan }, - { 55, _fpspEntry_unsupp }, - }; - int i; - proc_ptr oldHandler; - - for (i = 0 ; i < sizeof fpspHandlers / sizeof fpspHandlers[0] ; i++) { - _CPU_ISR_install_raw_handler(fpspHandlers[i].vector_number, fpspHandlers[i].handler, &oldHandler); - M68040FPSPUserExceptionHandlers[i] = oldHandler; - } - _FPSP_install_raw_handler = FPSP_install_raw_handler; -} diff --git a/c/src/lib/libcpu/m68k/m68040/fpsp/rtems_skel.S b/c/src/lib/libcpu/m68k/m68040/fpsp/rtems_skel.S deleted file mode 100644 index 501387f136..0000000000 --- a/c/src/lib/libcpu/m68k/m68040/fpsp/rtems_skel.S +++ /dev/null @@ -1,398 +0,0 @@ -#include "fpsp-namespace.h" -// -// -// skeleton.sa 3.2 4/26/91 -// -// This file contains code that is system dependent and will -// need to be modified to install the FPSP. -// -// Each entry point for exception 'xxxx' begins with a 'jmp fpsp_xxxx'. -// Put any target system specific handling that must be done immediately -// before the jump instruction. If there no handling necessary, then -// the 'fpsp_xxxx' handler entry point should be placed in the exception -// table so that the 'jmp' can be eliminated. If the FPSP determines that the -// exception is one that must be reported then there will be a -// return from the package by a 'jmp real_xxxx'. At that point -// the machine state will be identical to the state before -// the FPSP was entered. In particular, whatever condition -// that caused the exception will still be pending when the FPSP -// package returns. Thus, there will be system specific code -// to handle the exception. -// -// If the exception was completely handled by the package, then -// the return will be via a 'jmp fpsp_done'. Unless there is -// OS specific work to be done (such as handling a context switch or -// interrupt) the user program can be resumed via 'rte'. -// -// In the following skeleton code, some typical 'real_xxxx' handling -// code is shown. This code may need to be moved to an appropriate -// place in the target system, or rewritten. -// - -// Copyright (C) Motorola, Inc. 1990 -// All Rights Reserved -// -// THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA -// The copyright notice above does not evidence any -// actual or intended publication of such source code. - - -// -// Modified for Linux-1.3.x by Jes Sorensen (jds@kom.auc.dk) -// Modified for RTEMS 4.0.0 by Eric Norum (eric@skatter.usask.ca) -// - -#include - -//SKELETON idnt 2,1 | Motorola 040 Floating Point Software Package - -#include "fpsp.defs" - -// -// Divide by Zero exception -// -// All dz exceptions are 'real', hence no fpsp_dz entry point. -// - .global SYM(_fpspEntry_dz) -SYM(_fpspEntry_dz): - link a6,#-LOCAL_SIZE - fsave -(sp) - bclrb #E1,E_BYTE(a6) - frestore (sp)+ - unlk a6 - jmp ([SYM(M68040FPSPUserExceptionHandlers)+3*4],%za0) - -// -// Inexact exception -// -// All inexact exceptions are real, but the 'real' handler -// will probably want to clear the pending exception. -// The provided code will clear the E3 exception (if pending), -// otherwise clear the E1 exception. The frestore is not really -// necessary for E1 exceptions. -// -// Code following the 'inex' label is to handle bug #1232. In this -// bug, if an E1 snan, ovfl, or unfl occurred, and the process was -// swapped out before taking the exception, the exception taken on -// return was inex, rather than the correct exception. The snan, ovfl, -// and unfl exception to be taken must not have been enabled. The -// fix is to check for E1, and the existence of one of snan, ovfl, -// or unfl bits set in the fpsr. If any of these are set, branch -// to the appropriate handler for the exception in the fpsr. Note -// that this fix is only for d43b parts, and is skipped if the -// version number is not $40. -// -// - .global SYM(_fpspEntry_inex) - .global real_inex -SYM(_fpspEntry_inex): - link a6,#-LOCAL_SIZE - fsave -(sp) - cmpib #VER_40,(sp) //test version number - bnes not_fmt40 - fmovel fpsr,-(sp) - btstb #E1,E_BYTE(a6) //test for E1 set - beqs not_b1232 - btstb #snan_bit,2(sp) //test for snan - beq inex_ckofl - addl #4,sp - frestore (sp)+ - unlk a6 - bra snan -inex_ckofl: - btstb #ovfl_bit,2(sp) //test for ovfl - beq inex_ckufl - addl #4,sp - frestore (sp)+ - unlk a6 - bra SYM(_fpspEntry_ovfl) -inex_ckufl: - btstb #unfl_bit,2(sp) //test for unfl - beq not_b1232 - addl #4,sp - frestore (sp)+ - unlk a6 - bra SYM(_fpspEntry_unfl) - -// -// We do not have the bug 1232 case. Clean up the stack and call -// real_inex. -// -not_b1232: - addl #4,sp - frestore (sp)+ - unlk a6 - -real_inex: - link a6,#-LOCAL_SIZE - fsave -(sp) -not_fmt40: - bclrb #E3,E_BYTE(a6) //clear and test E3 flag - beqs inex_cke1 -// -// Clear dirty bit on dest resister in the frame before branching -// to b1238_fix. -// - moveml d0/d1,USER_DA(a6) - bfextu CMDREG1B(a6){#6:#3},d0 //get dest reg no - bclrb d0,FPR_DIRTY_BITS(a6) //clr dest dirty bit - bsrl b1238_fix //test for bug1238 case - moveml USER_DA(a6),d0/d1 - bras inex_done -inex_cke1: - bclrb #E1,E_BYTE(a6) -inex_done: - frestore (sp)+ - unlk a6 - jmp ([SYM(M68040FPSPUserExceptionHandlers)+2*4],%za0) - -// -// Overflow exception -// - .global SYM(_fpspEntry_ovfl) - .global real_ovfl -SYM(_fpspEntry_ovfl): - jmp fpsp_ovfl -real_ovfl: - link a6,#-LOCAL_SIZE - fsave -(sp) - bclrb #E3,E_BYTE(a6) //clear and test E3 flag - bnes ovfl_done - bclrb #E1,E_BYTE(a6) -ovfl_done: - frestore (sp)+ - unlk a6 - jmp ([SYM(M68040FPSPUserExceptionHandlers)+6*4],%za0) - -// -// Underflow exception -// - .global SYM(_fpspEntry_unfl) - .global real_unfl -SYM(_fpspEntry_unfl): - jmp fpsp_unfl -real_unfl: - link a6,#-LOCAL_SIZE - fsave -(sp) - bclrb #E3,E_BYTE(a6) //clear and test E3 flag - bnes unfl_done - bclrb #E1,E_BYTE(a6) -unfl_done: - frestore (sp)+ - unlk a6 - jmp ([SYM(M68040FPSPUserExceptionHandlers)+4*4],%za0) - -// -// Signalling NAN exception -// - .global SYM(_fpspEntry_snan) - .global real_snan -SYM(_fpspEntry_snan): -snan: - jmp fpsp_snan -real_snan: - link a6,#-LOCAL_SIZE - fsave -(sp) - bclrb #E1,E_BYTE(a6) //snan is always an E1 exception - frestore (sp)+ - unlk a6 - jmp ([SYM(M68040FPSPUserExceptionHandlers)+7*4],%za0) - -// -// Operand Error exception -// - .global SYM(_fpspEntry_operr) - .global real_operr -SYM(_fpspEntry_operr): - jmp fpsp_operr -real_operr: - link a6,#-LOCAL_SIZE - fsave -(sp) - bclrb #E1,E_BYTE(a6) //operr is always an E1 exception - frestore (sp)+ - unlk a6 - jmp ([SYM(M68040FPSPUserExceptionHandlers)+5*4],%za0) - -// -// BSUN exception -// -// This sample handler simply clears the nan bit in the FPSR. -// - .global SYM(_fpspEntry_bsun) - .global real_bsun -SYM(_fpspEntry_bsun): - jmp fpsp_bsun -real_bsun: - link a6,#-LOCAL_SIZE - fsave -(sp) - bclrb #E1,E_BYTE(a6) //bsun is always an E1 exception - fmovel fpsr,-(sp) - bclrb #nan_bit,(sp) - fmovel (sp)+,fpsr - frestore (sp)+ - unlk a6 - jmp ([SYM(M68040FPSPUserExceptionHandlers)+1*4],%za0) - -// -// F-line exception -// -// A 'real' F-line exception is one that the FPSP is not supposed to -// handle. E.g. an instruction with a co-processor ID that is not 1. -// - .global SYM(_fpspEntry_fline) - .global real_fline -SYM(_fpspEntry_fline): - jmp fpsp_fline -real_fline: - jmp ([SYM(M68040FPSPUserExceptionHandlers)+0*4],%za0) - -// -// Unsupported data type exception -// - .global SYM(_fpspEntry_unsupp) - .global real_unsupp -SYM(_fpspEntry_unsupp): - jmp fpsp_unsupp -real_unsupp: - link a6,#-LOCAL_SIZE - fsave -(sp) - bclrb #E1,E_BYTE(a6) //unsupp is always an E1 exception - frestore (sp)+ - unlk a6 - jmp ([SYM(M68040FPSPUserExceptionHandlers)+8*4],%za0) - -// -// Trace exception -// - .global real_trace -real_trace: - trap #10 - -// -// fpsp_fmt_error --- exit point for frame format error -// -// The fpu stack frame does not match the frames existing -// or planned at the time of this writing. The fpsp is -// unable to handle frame sizes not in the following -// version:size pairs: -// -// {4060, 4160} - busy frame -// {4028, 4130} - unimp frame -// {4000, 4100} - idle frame -// - .global fpsp_fmt_error -fpsp_fmt_error: - trap #11 - -// -// fpsp_done --- FPSP exit point -// -// The exception has been handled by the package and we are ready -// to return to user mode, but there may be OS specific code -// to execute before we do. If there is, do it now. -// -// For now, the RTEMS does not bother looking at the -// possibility that it is time to reschedule.... -// - - .global fpsp_done -fpsp_done: - rte - -// -// mem_write --- write to user or supervisor address space -// -// Writes to memory while in supervisor mode. -// -// a0 - supervisor source address -// a1 - user/supervisor destination address -// d0 - number of bytes to write (maximum count is 12) -// - .global mem_write -mem_write: - btstb #5,EXC_SR(a6) //check for supervisor state - beqs user_write -super_write: - moveb (a0)+,(a1)+ - subql #1,d0 - bnes super_write - rts -user_write: - movel d1,-(sp) //preserve d1 just in case - movel d0,-(sp) - movel a1,-(sp) - movel a0,-(sp) - jsr copyout - addw #12,sp - movel (sp)+,d1 - rts -// -// mem_read --- read from user or supervisor address space -// -// Reads from memory while in supervisor mode. -// -// The FPSP calls mem_read to read the original F-line instruction in order -// to extract the data register number when the 'Dn' addressing mode is -// used. -// -//Input: -// a0 - user/supervisor source address -// a1 - supervisor destination address -// d0 - number of bytes to read (maximum count is 12) -// -// Like mem_write, mem_read always reads with a supervisor -// destination address on the supervisor stack. Also like mem_write, -// the EXC_SR is checked and a simple memory copy is done if reading -// from supervisor space is indicated. -// - .global mem_read -mem_read: - btstb #5,EXC_SR(a6) //check for supervisor state - beqs user_read -super_read: - moveb (a0)+,(a1)+ - subql #1,d0 - bnes super_read - rts -user_read: - movel d1,-(sp) //preserve d1 just in case - movel d0,-(sp) - movel a1,-(sp) - movel a0,-(sp) - jsr copyin - addw #12,sp - movel (sp)+,d1 - rts - -// -// Use these routines if your kernel does not have copyout/copyin equivalents. -// Assumes that D0/D1/A0/A1 are scratch registers. copyout overwrites DFC, -// and copyin overwrites SFC. -// -copyout: - movel 4(sp),a0 // source - movel 8(sp),a1 // destination - movel 12(sp),d0 // count - subl #1,d0 // dec count by 1 for dbra - movel #1,d1 - movec d1,dfc // set dfc for user data space -moreout: - moveb (a0)+,d1 // fetch supervisor byte - movesb d1,(a1)+ // write user byte - dbf d0,moreout - rts - -copyin: - movel 4(sp),a0 // source - movel 8(sp),a1 // destination - movel 12(sp),d0 // count - subl #1,d0 // dec count by 1 for dbra - movel #1,d1 - movec d1,sfc // set sfc for user space -morein: - movesb (a0)+,d1 // fetch user byte - moveb d1,(a1)+ // write supervisor byte - dbf d0,morein - rts - - |end diff --git a/c/src/lib/libcpu/m68k/m68040/fpsp/sacos.S b/c/src/lib/libcpu/m68k/m68040/fpsp/sacos.S deleted file mode 100644 index fa9409db52..0000000000 --- a/c/src/lib/libcpu/m68k/m68040/fpsp/sacos.S +++ /dev/null @@ -1,117 +0,0 @@ -#include "fpsp-namespace.h" -// -// -// sacos.sa 3.3 12/19/90 -// -// Description: The entry point sAcos computes the inverse cosine of -// an input argument; sAcosd does the same except for denormalized -// input. -// -// Input: Double-extended number X in location pointed to -// by address register a0. -// -// Output: The value arccos(X) returned in floating-point register Fp0. -// -// Accuracy and Monotonicity: The returned result is within 3 ulps in -// 64 significant bit, i.e. within 0.5001 ulp to 53 bits if the -// result is subsequently rounded to double precision. The -// result is provably monotonic in double precision. -// -// Speed: The program sCOS takes approximately 310 cycles. -// -// Algorithm: -// -// ACOS -// 1. If |X| >= 1, go to 3. -// -// 2. (|X| < 1) Calculate acos(X) by -// z := (1-X) / (1+X) -// acos(X) = 2 * atan( sqrt(z) ). -// Exit. -// -// 3. If |X| > 1, go to 5. -// -// 4. (|X| = 1) If X > 0, return 0. Otherwise, return Pi. Exit. -// -// 5. (|X| > 1) Generate an invalid operation by 0 * infinity. -// Exit. -// - -// Copyright (C) Motorola, Inc. 1990 -// All Rights Reserved -// -// THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA -// The copyright notice above does not evidence any -// actual or intended publication of such source code. - -//SACOS idnt 2,1 | Motorola 040 Floating Point Software Package - - |section 8 - -PI: .long 0x40000000,0xC90FDAA2,0x2168C235,0x00000000 -PIBY2: .long 0x3FFF0000,0xC90FDAA2,0x2168C235,0x00000000 - - |xref t_operr - |xref t_frcinx - |xref satan - - .global sacosd -sacosd: -//--ACOS(X) = PI/2 FOR DENORMALIZED X - fmovel %d1,%fpcr // ...load user's rounding mode/precision - fmovex PIBY2,%fp0 - bra t_frcinx - - .global sacos -sacos: - fmovex (%a0),%fp0 // ...LOAD INPUT - - movel (%a0),%d0 // ...pack exponent with upper 16 fraction - movew 4(%a0),%d0 - andil #0x7FFFFFFF,%d0 - cmpil #0x3FFF8000,%d0 - bges ACOSBIG - -//--THIS IS THE USUAL CASE, |X| < 1 -//--ACOS(X) = 2 * ATAN( SQRT( (1-X)/(1+X) ) ) - - fmoves #0x3F800000,%fp1 - faddx %fp0,%fp1 // ...1+X - fnegx %fp0 // ... -X - fadds #0x3F800000,%fp0 // ...1-X - fdivx %fp1,%fp0 // ...(1-X)/(1+X) - fsqrtx %fp0 // ...SQRT((1-X)/(1+X)) - fmovemx %fp0-%fp0,(%a0) // ...overwrite input - movel %d1,-(%sp) //save original users fpcr - clrl %d1 - bsr satan // ...ATAN(SQRT([1-X]/[1+X])) - fmovel (%sp)+,%fpcr //restore users exceptions - faddx %fp0,%fp0 // ...2 * ATAN( STUFF ) - bra t_frcinx - -ACOSBIG: - fabsx %fp0 - fcmps #0x3F800000,%fp0 - fbgt t_operr //cause an operr exception - -//--|X| = 1, ACOS(X) = 0 OR PI - movel (%a0),%d0 // ...pack exponent with upper 16 fraction - movew 4(%a0),%d0 - cmpl #0,%d0 //D0 has original exponent+fraction - bgts ACOSP1 - -//--X = -1 -//Returns PI and inexact exception - fmovex PI,%fp0 - fmovel %d1,%FPCR - fadds #0x00800000,%fp0 //cause an inexact exception to be put -// ;into the 040 - will not trap until next -// ;fp inst. - bra t_frcinx - -ACOSP1: - fmovel %d1,%FPCR - fmoves #0x00000000,%fp0 - rts //Facos ; of +1 is exact - - |end diff --git a/c/src/lib/libcpu/m68k/m68040/fpsp/sasin.S b/c/src/lib/libcpu/m68k/m68040/fpsp/sasin.S deleted file mode 100644 index 529ae83328..0000000000 --- a/c/src/lib/libcpu/m68k/m68040/fpsp/sasin.S +++ /dev/null @@ -1,106 +0,0 @@ -#include "fpsp-namespace.h" -// -// -// sasin.sa 3.3 12/19/90 -// -// Description: The entry point sAsin computes the inverse sine of -// an input argument; sAsind does the same except for denormalized -// input. -// -// Input: Double-extended number X in location pointed to -// by address register a0. -// -// Output: The value arcsin(X) returned in floating-point register Fp0. -// -// Accuracy and Monotonicity: The returned result is within 3 ulps in -// 64 significant bit, i.e. within 0.5001 ulp to 53 bits if the -// result is subsequently rounded to double precision. The -// result is provably monotonic in double precision. -// -// Speed: The program sASIN takes approximately 310 cycles. -// -// Algorithm: -// -// ASIN -// 1. If |X| >= 1, go to 3. -// -// 2. (|X| < 1) Calculate asin(X) by -// z := sqrt( [1-X][1+X] ) -// asin(X) = atan( x / z ). -// Exit. -// -// 3. If |X| > 1, go to 5. -// -// 4. (|X| = 1) sgn := sign(X), return asin(X) := sgn * Pi/2. Exit. -// -// 5. (|X| > 1) Generate an invalid operation by 0 * infinity. -// Exit. -// - -// Copyright (C) Motorola, Inc. 1990 -// All Rights Reserved -// -// THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA -// The copyright notice above does not evidence any -// actual or intended publication of such source code. - -//SASIN idnt 2,1 | Motorola 040 Floating Point Software Package - - |section 8 - -PIBY2: .long 0x3FFF0000,0xC90FDAA2,0x2168C235,0x00000000 - - |xref t_operr - |xref t_frcinx - |xref t_extdnrm - |xref satan - - .global sasind -sasind: -//--ASIN(X) = X FOR DENORMALIZED X - - bra t_extdnrm - - .global sasin -sasin: - fmovex (%a0),%fp0 // ...LOAD INPUT - - movel (%a0),%d0 - movew 4(%a0),%d0 - andil #0x7FFFFFFF,%d0 - cmpil #0x3FFF8000,%d0 - bges asinbig - -//--THIS IS THE USUAL CASE, |X| < 1 -//--ASIN(X) = ATAN( X / SQRT( (1-X)(1+X) ) ) - - fmoves #0x3F800000,%fp1 - fsubx %fp0,%fp1 // ...1-X - fmovemx %fp2-%fp2,-(%a7) - fmoves #0x3F800000,%fp2 - faddx %fp0,%fp2 // ...1+X - fmulx %fp2,%fp1 // ...(1+X)(1-X) - fmovemx (%a7)+,%fp2-%fp2 - fsqrtx %fp1 // ...SQRT([1-X][1+X]) - fdivx %fp1,%fp0 // ...X/SQRT([1-X][1+X]) - fmovemx %fp0-%fp0,(%a0) - bsr satan - bra t_frcinx - -asinbig: - fabsx %fp0 // ...|X| - fcmps #0x3F800000,%fp0 - fbgt t_operr //cause an operr exception - -//--|X| = 1, ASIN(X) = +- PI/2. - - fmovex PIBY2,%fp0 - movel (%a0),%d0 - andil #0x80000000,%d0 // ...SIGN BIT OF X - oril #0x3F800000,%d0 // ...+-1 IN SGL FORMAT - movel %d0,-(%sp) // ...push SIGN(X) IN SGL-FMT - fmovel %d1,%FPCR - fmuls (%sp)+,%fp0 - bra t_frcinx - - |end diff --git a/c/src/lib/libcpu/m68k/m68040/fpsp/satan.S b/c/src/lib/libcpu/m68k/m68040/fpsp/satan.S deleted file mode 100644 index 21bdeefa31..0000000000 --- a/c/src/lib/libcpu/m68k/m68040/fpsp/satan.S +++ /dev/null @@ -1,480 +0,0 @@ -#include "fpsp-namespace.h" -// -// -// satan.sa 3.3 12/19/90 -// -// The entry point satan computes the arctangent of an -// input value. satand does the same except the input value is a -// denormalized number. -// -// Input: Double-extended value in memory location pointed to by address -// register a0. -// -// Output: Arctan(X) returned in floating-point register Fp0. -// -// Accuracy and Monotonicity: The returned result is within 2 ulps in -// 64 significant bit, i.e. within 0.5001 ulp to 53 bits if the -// result is subsequently rounded to double precision. The -// result is provably monotonic in double precision. -// -// Speed: The program satan takes approximately 160 cycles for input -// argument X such that 1/16 < |X| < 16. For the other arguments, -// the program will run no worse than 10% slower. -// -// Algorithm: -// Step 1. If |X| >= 16 or |X| < 1/16, go to Step 5. -// -// Step 2. Let X = sgn * 2**k * 1.xxxxxxxx...x. Note that k = -4, -3,..., or 3. -// Define F = sgn * 2**k * 1.xxxx1, i.e. the first 5 significant bits -// of X with a bit-1 attached at the 6-th bit position. Define u -// to be u = (X-F) / (1 + X*F). -// -// Step 3. Approximate arctan(u) by a polynomial poly. -// -// Step 4. Return arctan(F) + poly, arctan(F) is fetched from a table of values -// calculated beforehand. Exit. -// -// Step 5. If |X| >= 16, go to Step 7. -// -// Step 6. Approximate arctan(X) by an odd polynomial in X. Exit. -// -// Step 7. Define X' = -1/X. Approximate arctan(X') by an odd polynomial in X'. -// Arctan(X) = sign(X)*Pi/2 + arctan(X'). Exit. -// - -// Copyright (C) Motorola, Inc. 1990 -// All Rights Reserved -// -// THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA -// The copyright notice above does not evidence any -// actual or intended publication of such source code. - -//satan idnt 2,1 | Motorola 040 Floating Point Software Package - - |section 8 - -#include "fpsp.defs" - -BOUNDS1: .long 0x3FFB8000,0x4002FFFF - -ONE: .long 0x3F800000 - - .long 0x00000000 - -ATANA3: .long 0xBFF6687E,0x314987D8 -ATANA2: .long 0x4002AC69,0x34A26DB3 - -ATANA1: .long 0xBFC2476F,0x4E1DA28E -ATANB6: .long 0x3FB34444,0x7F876989 - -ATANB5: .long 0xBFB744EE,0x7FAF45DB -ATANB4: .long 0x3FBC71C6,0x46940220 - -ATANB3: .long 0xBFC24924,0x921872F9 -ATANB2: .long 0x3FC99999,0x99998FA9 - -ATANB1: .long 0xBFD55555,0x55555555 -ATANC5: .long 0xBFB70BF3,0x98539E6A - -ATANC4: .long 0x3FBC7187,0x962D1D7D -ATANC3: .long 0xBFC24924,0x827107B8 - -ATANC2: .long 0x3FC99999,0x9996263E -ATANC1: .long 0xBFD55555,0x55555536 - -PPIBY2: .long 0x3FFF0000,0xC90FDAA2,0x2168C235,0x00000000 -NPIBY2: .long 0xBFFF0000,0xC90FDAA2,0x2168C235,0x00000000 -PTINY: .long 0x00010000,0x80000000,0x00000000,0x00000000 -NTINY: .long 0x80010000,0x80000000,0x00000000,0x00000000 - -ATANTBL: - .long 0x3FFB0000,0x83D152C5,0x060B7A51,0x00000000 - .long 0x3FFB0000,0x8BC85445,0x65498B8B,0x00000000 - .long 0x3FFB0000,0x93BE4060,0x17626B0D,0x00000000 - .long 0x3FFB0000,0x9BB3078D,0x35AEC202,0x00000000 - .long 0x3FFB0000,0xA3A69A52,0x5DDCE7DE,0x00000000 - .long 0x3FFB0000,0xAB98E943,0x62765619,0x00000000 - .long 0x3FFB0000,0xB389E502,0xF9C59862,0x00000000 - .long 0x3FFB0000,0xBB797E43,0x6B09E6FB,0x00000000 - .long 0x3FFB0000,0xC367A5C7,0x39E5F446,0x00000000 - .long 0x3FFB0000,0xCB544C61,0xCFF7D5C6,0x00000000 - .long 0x3FFB0000,0xD33F62F8,0x2488533E,0x00000000 - .long 0x3FFB0000,0xDB28DA81,0x62404C77,0x00000000 - .long 0x3FFB0000,0xE310A407,0x8AD34F18,0x00000000 - .long 0x3FFB0000,0xEAF6B0A8,0x188EE1EB,0x00000000 - .long 0x3FFB0000,0xF2DAF194,0x9DBE79D5,0x00000000 - .long 0x3FFB0000,0xFABD5813,0x61D47E3E,0x00000000 - .long 0x3FFC0000,0x8346AC21,0x0959ECC4,0x00000000 - .long 0x3FFC0000,0x8B232A08,0x304282D8,0x00000000 - .long 0x3FFC0000,0x92FB70B8,0xD29AE2F9,0x00000000 - .long 0x3FFC0000,0x9ACF476F,0x5CCD1CB4,0x00000000 - .long 0x3FFC0000,0xA29E7630,0x4954F23F,0x00000000 - .long 0x3FFC0000,0xAA68C5D0,0x8AB85230,0x00000000 - .long 0x3FFC0000,0xB22DFFFD,0x9D539F83,0x00000000 - .long 0x3FFC0000,0xB9EDEF45,0x3E900EA5,0x00000000 - .long 0x3FFC0000,0xC1A85F1C,0xC75E3EA5,0x00000000 - .long 0x3FFC0000,0xC95D1BE8,0x28138DE6,0x00000000 - .long 0x3FFC0000,0xD10BF300,0x840D2DE4,0x00000000 - .long 0x3FFC0000,0xD8B4B2BA,0x6BC05E7A,0x00000000 - .long 0x3FFC0000,0xE0572A6B,0xB42335F6,0x00000000 - .long 0x3FFC0000,0xE7F32A70,0xEA9CAA8F,0x00000000 - .long 0x3FFC0000,0xEF888432,0x64ECEFAA,0x00000000 - .long 0x3FFC0000,0xF7170A28,0xECC06666,0x00000000 - .long 0x3FFD0000,0x812FD288,0x332DAD32,0x00000000 - .long 0x3FFD0000,0x88A8D1B1,0x218E4D64,0x00000000 - .long 0x3FFD0000,0x9012AB3F,0x23E4AEE8,0x00000000 - .long 0x3FFD0000,0x976CC3D4,0x11E7F1B9,0x00000000 - .long 0x3FFD0000,0x9EB68949,0x3889A227,0x00000000 - .long 0x3FFD0000,0xA5EF72C3,0x4487361B,0x00000000 - .long 0x3FFD0000,0xAD1700BA,0xF07A7227,0x00000000 - .long 0x3FFD0000,0xB42CBCFA,0xFD37EFB7,0x00000000 - .long 0x3FFD0000,0xBB303A94,0x0BA80F89,0x00000000 - .long 0x3FFD0000,0xC22115C6,0xFCAEBBAF,0x00000000 - .long 0x3FFD0000,0xC8FEF3E6,0x86331221,0x00000000 - .long 0x3FFD0000,0xCFC98330,0xB4000C70,0x00000000 - .long 0x3FFD0000,0xD6807AA1,0x102C5BF9,0x00000000 - .long 0x3FFD0000,0xDD2399BC,0x31252AA3,0x00000000 - .long 0x3FFD0000,0xE3B2A855,0x6B8FC517,0x00000000 - .long 0x3FFD0000,0xEA2D764F,0x64315989,0x00000000 - .long 0x3FFD0000,0xF3BF5BF8,0xBAD1A21D,0x00000000 - .long 0x3FFE0000,0x801CE39E,0x0D205C9A,0x00000000 - .long 0x3FFE0000,0x8630A2DA,0xDA1ED066,0x00000000 - .long 0x3FFE0000,0x8C1AD445,0xF3E09B8C,0x00000000 - .long 0x3FFE0000,0x91DB8F16,0x64F350E2,0x00000000 - .long 0x3FFE0000,0x97731420,0x365E538C,0x00000000 - .long 0x3FFE0000,0x9CE1C8E6,0xA0B8CDBA,0x00000000 - .long 0x3FFE0000,0xA22832DB,0xCADAAE09,0x00000000 - .long 0x3FFE0000,0xA746F2DD,0xB7602294,0x00000000 - .long 0x3FFE0000,0xAC3EC0FB,0x997DD6A2,0x00000000 - .long 0x3FFE0000,0xB110688A,0xEBDC6F6A,0x00000000 - .long 0x3FFE0000,0xB5BCC490,0x59ECC4B0,0x00000000 - .long 0x3FFE0000,0xBA44BC7D,0xD470782F,0x00000000 - .long 0x3FFE0000,0xBEA94144,0xFD049AAC,0x00000000 - .long 0x3FFE0000,0xC2EB4ABB,0x661628B6,0x00000000 - .long 0x3FFE0000,0xC70BD54C,0xE602EE14,0x00000000 - .long 0x3FFE0000,0xCD000549,0xADEC7159,0x00000000 - .long 0x3FFE0000,0xD48457D2,0xD8EA4EA3,0x00000000 - .long 0x3FFE0000,0xDB948DA7,0x12DECE3B,0x00000000 - .long 0x3FFE0000,0xE23855F9,0x69E8096A,0x00000000 - .long 0x3FFE0000,0xE8771129,0xC4353259,0x00000000 - .long 0x3FFE0000,0xEE57C16E,0x0D379C0D,0x00000000 - .long 0x3FFE0000,0xF3E10211,0xA87C3779,0x00000000 - .long 0x3FFE0000,0xF919039D,0x758B8D41,0x00000000 - .long 0x3FFE0000,0xFE058B8F,0x64935FB3,0x00000000 - .long 0x3FFF0000,0x8155FB49,0x7B685D04,0x00000000 - .long 0x3FFF0000,0x83889E35,0x49D108E1,0x00000000 - .long 0x3FFF0000,0x859CFA76,0x511D724B,0x00000000 - .long 0x3FFF0000,0x87952ECF,0xFF8131E7,0x00000000 - .long 0x3FFF0000,0x89732FD1,0x9557641B,0x00000000 - .long 0x3FFF0000,0x8B38CAD1,0x01932A35,0x00000000 - .long 0x3FFF0000,0x8CE7A8D8,0x301EE6B5,0x00000000 - .long 0x3FFF0000,0x8F46A39E,0x2EAE5281,0x00000000 - .long 0x3FFF0000,0x922DA7D7,0x91888487,0x00000000 - .long 0x3FFF0000,0x94D19FCB,0xDEDF5241,0x00000000 - .long 0x3FFF0000,0x973AB944,0x19D2A08B,0x00000000 - .long 0x3FFF0000,0x996FF00E,0x08E10B96,0x00000000 - .long 0x3FFF0000,0x9B773F95,0x12321DA7,0x00000000 - .long 0x3FFF0000,0x9D55CC32,0x0F935624,0x00000000 - .long 0x3FFF0000,0x9F100575,0x006CC571,0x00000000 - .long 0x3FFF0000,0xA0A9C290,0xD97CC06C,0x00000000 - .long 0x3FFF0000,0xA22659EB,0xEBC0630A,0x00000000 - .long 0x3FFF0000,0xA388B4AF,0xF6EF0EC9,0x00000000 - .long 0x3FFF0000,0xA4D35F10,0x61D292C4,0x00000000 - .long 0x3FFF0000,0xA60895DC,0xFBE3187E,0x00000000 - .long 0x3FFF0000,0xA72A51DC,0x7367BEAC,0x00000000 - .long 0x3FFF0000,0xA83A5153,0x0956168F,0x00000000 - .long 0x3FFF0000,0xA93A2007,0x7539546E,0x00000000 - .long 0x3FFF0000,0xAA9E7245,0x023B2605,0x00000000 - .long 0x3FFF0000,0xAC4C84BA,0x6FE4D58F,0x00000000 - .long 0x3FFF0000,0xADCE4A4A,0x606B9712,0x00000000 - .long 0x3FFF0000,0xAF2A2DCD,0x8D263C9C,0x00000000 - .long 0x3FFF0000,0xB0656F81,0xF22265C7,0x00000000 - .long 0x3FFF0000,0xB1846515,0x0F71496A,0x00000000 - .long 0x3FFF0000,0xB28AAA15,0x6F9ADA35,0x00000000 - .long 0x3FFF0000,0xB37B44FF,0x3766B895,0x00000000 - .long 0x3FFF0000,0xB458C3DC,0xE9630433,0x00000000 - .long 0x3FFF0000,0xB525529D,0x562246BD,0x00000000 - .long 0x3FFF0000,0xB5E2CCA9,0x5F9D88CC,0x00000000 - .long 0x3FFF0000,0xB692CADA,0x7ACA1ADA,0x00000000 - .long 0x3FFF0000,0xB736AEA7,0xA6925838,0x00000000 - .long 0x3FFF0000,0xB7CFAB28,0x7E9F7B36,0x00000000 - .long 0x3FFF0000,0xB85ECC66,0xCB219835,0x00000000 - .long 0x3FFF0000,0xB8E4FD5A,0x20A593DA,0x00000000 - .long 0x3FFF0000,0xB99F41F6,0x4AFF9BB5,0x00000000 - .long 0x3FFF0000,0xBA7F1E17,0x842BBE7B,0x00000000 - .long 0x3FFF0000,0xBB471285,0x7637E17D,0x00000000 - .long 0x3FFF0000,0xBBFABE8A,0x4788DF6F,0x00000000 - .long 0x3FFF0000,0xBC9D0FAD,0x2B689D79,0x00000000 - .long 0x3FFF0000,0xBD306A39,0x471ECD86,0x00000000 - .long 0x3FFF0000,0xBDB6C731,0x856AF18A,0x00000000 - .long 0x3FFF0000,0xBE31CAC5,0x02E80D70,0x00000000 - .long 0x3FFF0000,0xBEA2D55C,0xE33194E2,0x00000000 - .long 0x3FFF0000,0xBF0B10B7,0xC03128F0,0x00000000 - .long 0x3FFF0000,0xBF6B7A18,0xDACB778D,0x00000000 - .long 0x3FFF0000,0xBFC4EA46,0x63FA18F6,0x00000000 - .long 0x3FFF0000,0xC0181BDE,0x8B89A454,0x00000000 - .long 0x3FFF0000,0xC065B066,0xCFBF6439,0x00000000 - .long 0x3FFF0000,0xC0AE345F,0x56340AE6,0x00000000 - .long 0x3FFF0000,0xC0F22291,0x9CB9E6A7,0x00000000 - - .set X,FP_SCR1 - .set XDCARE,X+2 - .set XFRAC,X+4 - .set XFRACLO,X+8 - - .set ATANF,FP_SCR2 - .set ATANFHI,ATANF+4 - .set ATANFLO,ATANF+8 - - - | xref t_frcinx - |xref t_extdnrm - - .global satand -satand: -//--ENTRY POINT FOR ATAN(X) FOR DENORMALIZED ARGUMENT - - bra t_extdnrm - - .global satan -satan: -//--ENTRY POINT FOR ATAN(X), HERE X IS FINITE, NON-ZERO, AND NOT NAN'S - - fmovex (%a0),%fp0 // ...LOAD INPUT - - movel (%a0),%d0 - movew 4(%a0),%d0 - fmovex %fp0,X(%a6) - andil #0x7FFFFFFF,%d0 - - cmpil #0x3FFB8000,%d0 // ...|X| >= 1/16? - bges ATANOK1 - bra ATANSM - -ATANOK1: - cmpil #0x4002FFFF,%d0 // ...|X| < 16 ? - bles ATANMAIN - bra ATANBIG - - -//--THE MOST LIKELY CASE, |X| IN [1/16, 16). WE USE TABLE TECHNIQUE -//--THE IDEA IS ATAN(X) = ATAN(F) + ATAN( [X-F] / [1+XF] ). -//--SO IF F IS CHOSEN TO BE CLOSE TO X AND ATAN(F) IS STORED IN -//--A TABLE, ALL WE NEED IS TO APPROXIMATE ATAN(U) WHERE -//--U = (X-F)/(1+XF) IS SMALL (REMEMBER F IS CLOSE TO X). IT IS -//--TRUE THAT A DIVIDE IS NOW NEEDED, BUT THE APPROXIMATION FOR -//--ATAN(U) IS A VERY SHORT POLYNOMIAL AND THE INDEXING TO -//--FETCH F AND SAVING OF REGISTERS CAN BE ALL HIDED UNDER THE -//--DIVIDE. IN THE END THIS METHOD IS MUCH FASTER THAN A TRADITIONAL -//--ONE. NOTE ALSO THAT THE TRADITIONAL SCHEME THAT APPROXIMATE -//--ATAN(X) DIRECTLY WILL NEED TO USE A RATIONAL APPROXIMATION -//--(DIVISION NEEDED) ANYWAY BECAUSE A POLYNOMIAL APPROXIMATION -//--WILL INVOLVE A VERY LONG POLYNOMIAL. - -//--NOW WE SEE X AS +-2^K * 1.BBBBBBB....B <- 1. + 63 BITS -//--WE CHOSE F TO BE +-2^K * 1.BBBB1 -//--THAT IS IT MATCHES THE EXPONENT AND FIRST 5 BITS OF X, THE -//--SIXTH BITS IS SET TO BE 1. SINCE K = -4, -3, ..., 3, THERE -//--ARE ONLY 8 TIMES 16 = 2^7 = 128 |F|'S. SINCE ATAN(-|F|) IS -//-- -ATAN(|F|), WE NEED TO STORE ONLY ATAN(|F|). - -ATANMAIN: - - movew #0x0000,XDCARE(%a6) // ...CLEAN UP X JUST IN CASE - andil #0xF8000000,XFRAC(%a6) // ...FIRST 5 BITS - oril #0x04000000,XFRAC(%a6) // ...SET 6-TH BIT TO 1 - movel #0x00000000,XFRACLO(%a6) // ...LOCATION OF X IS NOW F - - fmovex %fp0,%fp1 // ...FP1 IS X - fmulx X(%a6),%fp1 // ...FP1 IS X*F, NOTE THAT X*F > 0 - fsubx X(%a6),%fp0 // ...FP0 IS X-F - fadds #0x3F800000,%fp1 // ...FP1 IS 1 + X*F - fdivx %fp1,%fp0 // ...FP0 IS U = (X-F)/(1+X*F) - -//--WHILE THE DIVISION IS TAKING ITS TIME, WE FETCH ATAN(|F|) -//--CREATE ATAN(F) AND STORE IT IN ATANF, AND -//--SAVE REGISTERS FP2. - - movel %d2,-(%a7) // ...SAVE d2 TEMPORARILY - movel %d0,%d2 // ...THE EXPO AND 16 BITS OF X - andil #0x00007800,%d0 // ...4 VARYING BITS OF F'S FRACTION - andil #0x7FFF0000,%d2 // ...EXPONENT OF F - subil #0x3FFB0000,%d2 // ...K+4 - asrl #1,%d2 - addl %d2,%d0 // ...THE 7 BITS IDENTIFYING F - asrl #7,%d0 // ...INDEX INTO TBL OF ATAN(|F|) - lea ATANTBL,%a1 - addal %d0,%a1 // ...ADDRESS OF ATAN(|F|) - movel (%a1)+,ATANF(%a6) - movel (%a1)+,ATANFHI(%a6) - movel (%a1)+,ATANFLO(%a6) // ...ATANF IS NOW ATAN(|F|) - movel X(%a6),%d0 // ...LOAD SIGN AND EXPO. AGAIN - andil #0x80000000,%d0 // ...SIGN(F) - orl %d0,ATANF(%a6) // ...ATANF IS NOW SIGN(F)*ATAN(|F|) - movel (%a7)+,%d2 // ...RESTORE d2 - -//--THAT'S ALL I HAVE TO DO FOR NOW, -//--BUT ALAS, THE DIVIDE IS STILL CRANKING! - -//--U IN FP0, WE ARE NOW READY TO COMPUTE ATAN(U) AS -//--U + A1*U*V*(A2 + V*(A3 + V)), V = U*U -//--THE POLYNOMIAL MAY LOOK STRANGE, BUT IS NEVERTHELESS CORRECT. -//--THE NATURAL FORM IS U + U*V*(A1 + V*(A2 + V*A3)) -//--WHAT WE HAVE HERE IS MERELY A1 = A3, A2 = A1/A3, A3 = A2/A3. -//--THE REASON FOR THIS REARRANGEMENT IS TO MAKE THE INDEPENDENT -//--PARTS A1*U*V AND (A2 + ... STUFF) MORE LOAD-BALANCED - - - fmovex %fp0,%fp1 - fmulx %fp1,%fp1 - fmoved ATANA3,%fp2 - faddx %fp1,%fp2 // ...A3+V - fmulx %fp1,%fp2 // ...V*(A3+V) - fmulx %fp0,%fp1 // ...U*V - faddd ATANA2,%fp2 // ...A2+V*(A3+V) - fmuld ATANA1,%fp1 // ...A1*U*V - fmulx %fp2,%fp1 // ...A1*U*V*(A2+V*(A3+V)) - - faddx %fp1,%fp0 // ...ATAN(U), FP1 RELEASED - fmovel %d1,%FPCR //restore users exceptions - faddx ATANF(%a6),%fp0 // ...ATAN(X) - bra t_frcinx - -ATANBORS: -//--|X| IS IN d0 IN COMPACT FORM. FP1, d0 SAVED. -//--FP0 IS X AND |X| <= 1/16 OR |X| >= 16. - cmpil #0x3FFF8000,%d0 - bgt ATANBIG // ...I.E. |X| >= 16 - -ATANSM: -//--|X| <= 1/16 -//--IF |X| < 2^(-40), RETURN X AS ANSWER. OTHERWISE, APPROXIMATE -//--ATAN(X) BY X + X*Y*(B1+Y*(B2+Y*(B3+Y*(B4+Y*(B5+Y*B6))))) -//--WHICH IS X + X*Y*( [B1+Z*(B3+Z*B5)] + [Y*(B2+Z*(B4+Z*B6)] ) -//--WHERE Y = X*X, AND Z = Y*Y. - - cmpil #0x3FD78000,%d0 - blt ATANTINY -//--COMPUTE POLYNOMIAL - fmulx %fp0,%fp0 // ...FP0 IS Y = X*X - - - movew #0x0000,XDCARE(%a6) - - fmovex %fp0,%fp1 - fmulx %fp1,%fp1 // ...FP1 IS Z = Y*Y - - fmoved ATANB6,%fp2 - fmoved ATANB5,%fp3 - - fmulx %fp1,%fp2 // ...Z*B6 - fmulx %fp1,%fp3 // ...Z*B5 - - faddd ATANB4,%fp2 // ...B4+Z*B6 - faddd ATANB3,%fp3 // ...B3+Z*B5 - - fmulx %fp1,%fp2 // ...Z*(B4+Z*B6) - fmulx %fp3,%fp1 // ...Z*(B3+Z*B5) - - faddd ATANB2,%fp2 // ...B2+Z*(B4+Z*B6) - faddd ATANB1,%fp1 // ...B1+Z*(B3+Z*B5) - - fmulx %fp0,%fp2 // ...Y*(B2+Z*(B4+Z*B6)) - fmulx X(%a6),%fp0 // ...X*Y - - faddx %fp2,%fp1 // ...[B1+Z*(B3+Z*B5)]+[Y*(B2+Z*(B4+Z*B6))] - - - fmulx %fp1,%fp0 // ...X*Y*([B1+Z*(B3+Z*B5)]+[Y*(B2+Z*(B4+Z*B6))]) - - fmovel %d1,%FPCR //restore users exceptions - faddx X(%a6),%fp0 - - bra t_frcinx - -ATANTINY: -//--|X| < 2^(-40), ATAN(X) = X - movew #0x0000,XDCARE(%a6) - - fmovel %d1,%FPCR //restore users exceptions - fmovex X(%a6),%fp0 //last inst - possible exception set - - bra t_frcinx - -ATANBIG: -//--IF |X| > 2^(100), RETURN SIGN(X)*(PI/2 - TINY). OTHERWISE, -//--RETURN SIGN(X)*PI/2 + ATAN(-1/X). - cmpil #0x40638000,%d0 - bgt ATANHUGE - -//--APPROXIMATE ATAN(-1/X) BY -//--X'+X'*Y*(C1+Y*(C2+Y*(C3+Y*(C4+Y*C5)))), X' = -1/X, Y = X'*X' -//--THIS CAN BE RE-WRITTEN AS -//--X'+X'*Y*( [C1+Z*(C3+Z*C5)] + [Y*(C2+Z*C4)] ), Z = Y*Y. - - fmoves #0xBF800000,%fp1 // ...LOAD -1 - fdivx %fp0,%fp1 // ...FP1 IS -1/X - - -//--DIVIDE IS STILL CRANKING - - fmovex %fp1,%fp0 // ...FP0 IS X' - fmulx %fp0,%fp0 // ...FP0 IS Y = X'*X' - fmovex %fp1,X(%a6) // ...X IS REALLY X' - - fmovex %fp0,%fp1 - fmulx %fp1,%fp1 // ...FP1 IS Z = Y*Y - - fmoved ATANC5,%fp3 - fmoved ATANC4,%fp2 - - fmulx %fp1,%fp3 // ...Z*C5 - fmulx %fp1,%fp2 // ...Z*B4 - - faddd ATANC3,%fp3 // ...C3+Z*C5 - faddd ATANC2,%fp2 // ...C2+Z*C4 - - fmulx %fp3,%fp1 // ...Z*(C3+Z*C5), FP3 RELEASED - fmulx %fp0,%fp2 // ...Y*(C2+Z*C4) - - faddd ATANC1,%fp1 // ...C1+Z*(C3+Z*C5) - fmulx X(%a6),%fp0 // ...X'*Y - - faddx %fp2,%fp1 // ...[Y*(C2+Z*C4)]+[C1+Z*(C3+Z*C5)] - - - fmulx %fp1,%fp0 // ...X'*Y*([B1+Z*(B3+Z*B5)] -// ... +[Y*(B2+Z*(B4+Z*B6))]) - faddx X(%a6),%fp0 - - fmovel %d1,%FPCR //restore users exceptions - - btstb #7,(%a0) - beqs pos_big - -neg_big: - faddx NPIBY2,%fp0 - bra t_frcinx - -pos_big: - faddx PPIBY2,%fp0 - bra t_frcinx - -ATANHUGE: -//--RETURN SIGN(X)*(PIBY2 - TINY) = SIGN(X)*PIBY2 - SIGN(X)*TINY - btstb #7,(%a0) - beqs pos_huge - -neg_huge: - fmovex NPIBY2,%fp0 - fmovel %d1,%fpcr - fsubx NTINY,%fp0 - bra t_frcinx - -pos_huge: - fmovex PPIBY2,%fp0 - fmovel %d1,%fpcr - fsubx PTINY,%fp0 - bra t_frcinx - - |end diff --git a/c/src/lib/libcpu/m68k/m68040/fpsp/satanh.S b/c/src/lib/libcpu/m68k/m68040/fpsp/satanh.S deleted file mode 100644 index 5ca76d8868..0000000000 --- a/c/src/lib/libcpu/m68k/m68040/fpsp/satanh.S +++ /dev/null @@ -1,106 +0,0 @@ -#include "fpsp-namespace.h" -// -// -// satanh.sa 3.3 12/19/90 -// -// The entry point satanh computes the inverse -// hyperbolic tangent of -// an input argument; satanhd does the same except for denormalized -// input. -// -// Input: Double-extended number X in location pointed to -// by address register a0. -// -// Output: The value arctanh(X) returned in floating-point register Fp0. -// -// Accuracy and Monotonicity: The returned result is within 3 ulps in -// 64 significant bit, i.e. within 0.5001 ulp to 53 bits if the -// result is subsequently rounded to double precision. The -// result is provably monotonic in double precision. -// -// Speed: The program satanh takes approximately 270 cycles. -// -// Algorithm: -// -// ATANH -// 1. If |X| >= 1, go to 3. -// -// 2. (|X| < 1) Calculate atanh(X) by -// sgn := sign(X) -// y := |X| -// z := 2y/(1-y) -// atanh(X) := sgn * (1/2) * logp1(z) -// Exit. -// -// 3. If |X| > 1, go to 5. -// -// 4. (|X| = 1) Generate infinity with an appropriate sign and -// divide-by-zero by -// sgn := sign(X) -// atan(X) := sgn / (+0). -// Exit. -// -// 5. (|X| > 1) Generate an invalid operation by 0 * infinity. -// Exit. -// - -// Copyright (C) Motorola, Inc. 1990 -// All Rights Reserved -// -// THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA -// The copyright notice above does not evidence any -// actual or intended publication of such source code. - -//satanh idnt 2,1 | Motorola 040 Floating Point Software Package - - |section 8 - - |xref t_dz - |xref t_operr - |xref t_frcinx - |xref t_extdnrm - |xref slognp1 - - .global satanhd -satanhd: -//--ATANH(X) = X FOR DENORMALIZED X - - bra t_extdnrm - - .global satanh -satanh: - movel (%a0),%d0 - movew 4(%a0),%d0 - andil #0x7FFFFFFF,%d0 - cmpil #0x3FFF8000,%d0 - bges ATANHBIG - -//--THIS IS THE USUAL CASE, |X| < 1 -//--Y = |X|, Z = 2Y/(1-Y), ATANH(X) = SIGN(X) * (1/2) * LOG1P(Z). - - fabsx (%a0),%fp0 // ...Y = |X| - fmovex %fp0,%fp1 - fnegx %fp1 // ...-Y - faddx %fp0,%fp0 // ...2Y - fadds #0x3F800000,%fp1 // ...1-Y - fdivx %fp1,%fp0 // ...2Y/(1-Y) - movel (%a0),%d0 - andil #0x80000000,%d0 - oril #0x3F000000,%d0 // ...SIGN(X)*HALF - movel %d0,-(%sp) - - fmovemx %fp0-%fp0,(%a0) // ...overwrite input - movel %d1,-(%sp) - clrl %d1 - bsr slognp1 // ...LOG1P(Z) - fmovel (%sp)+,%fpcr - fmuls (%sp)+,%fp0 - bra t_frcinx - -ATANHBIG: - fabsx (%a0),%fp0 // ...|X| - fcmps #0x3F800000,%fp0 - fbgt t_operr - bra t_dz - - |end diff --git a/c/src/lib/libcpu/m68k/m68040/fpsp/scale.S b/c/src/lib/libcpu/m68k/m68040/fpsp/scale.S deleted file mode 100644 index 2846c4e157..0000000000 --- a/c/src/lib/libcpu/m68k/m68040/fpsp/scale.S +++ /dev/null @@ -1,373 +0,0 @@ -#include "fpsp-namespace.h" -// -// -// scale.sa 3.3 7/30/91 -// -// The entry point sSCALE computes the destination operand -// scaled by the source operand. If the absolute value of -// the source operand is (>= 2^14) an overflow or underflow -// is returned. -// -// The entry point sscale is called from do_func to emulate -// the fscale unimplemented instruction. -// -// Input: Double-extended destination operand in FPTEMP, -// double-extended source operand in ETEMP. -// -// Output: The function returns scale(X,Y) to fp0. -// -// Modifies: fp0. -// -// Algorithm: -// -// Copyright (C) Motorola, Inc. 1990 -// All Rights Reserved -// -// THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA -// The copyright notice above does not evidence any -// actual or intended publication of such source code. - -//SCALE idnt 2,1 | Motorola 040 Floating Point Software Package - - |section 8 - -#include "fpsp.defs" - - |xref t_ovfl2 - |xref t_unfl - |xref round - |xref t_resdnrm - -SRC_BNDS: .short 0x3fff,0x400c - -// -// This entry point is used by the unimplemented instruction exception -// handler. -// -// -// -// FSCALE -// - .global sscale -sscale: - fmovel #0,%fpcr //clr user enabled exc - clrl %d1 - movew FPTEMP(%a6),%d1 //get dest exponent - smi L_SCR1(%a6) //use L_SCR1 to hold sign - andil #0x7fff,%d1 //strip sign - movew ETEMP(%a6),%d0 //check src bounds - andiw #0x7fff,%d0 //clr sign bit - cmp2w SRC_BNDS,%d0 - bccs src_in - cmpiw #0x400c,%d0 //test for too large - bge src_out -// -// The source input is below 1, so we check for denormalized numbers -// and set unfl. -// -src_small: - moveb DTAG(%a6),%d0 - andib #0xe0,%d0 - tstb %d0 - beqs no_denorm - st STORE_FLG(%a6) //dest already contains result - orl #unfl_mask,USER_FPSR(%a6) //set UNFL -den_done: - leal FPTEMP(%a6),%a0 - bra t_resdnrm -no_denorm: - fmovel USER_FPCR(%a6),%FPCR - fmovex FPTEMP(%a6),%fp0 //simply return dest - rts - - -// -// Source is within 2^14 range. To perform the int operation, -// move it to d0. -// -src_in: - fmovex ETEMP(%a6),%fp0 //move in src for int - fmovel #rz_mode,%fpcr //force rz for src conversion - fmovel %fp0,%d0 //int src to d0 - fmovel #0,%FPSR //clr status from above - tstw ETEMP(%a6) //check src sign - blt src_neg -// -// Source is positive. Add the src to the dest exponent. -// The result can be denormalized, if src = 0, or overflow, -// if the result of the add sets a bit in the upper word. -// -src_pos: - tstw %d1 //check for denorm - beq dst_dnrm - addl %d0,%d1 //add src to dest exp - beqs denorm //if zero, result is denorm - cmpil #0x7fff,%d1 //test for overflow - bges ovfl - tstb L_SCR1(%a6) - beqs spos_pos - orw #0x8000,%d1 -spos_pos: - movew %d1,FPTEMP(%a6) //result in FPTEMP - fmovel USER_FPCR(%a6),%FPCR - fmovex FPTEMP(%a6),%fp0 //write result to fp0 - rts -ovfl: - tstb L_SCR1(%a6) - beqs sovl_pos - orw #0x8000,%d1 -sovl_pos: - movew FPTEMP(%a6),ETEMP(%a6) //result in ETEMP - movel FPTEMP_HI(%a6),ETEMP_HI(%a6) - movel FPTEMP_LO(%a6),ETEMP_LO(%a6) - bra t_ovfl2 - -denorm: - tstb L_SCR1(%a6) - beqs den_pos - orw #0x8000,%d1 -den_pos: - tstl FPTEMP_HI(%a6) //check j bit - blts nden_exit //if set, not denorm - movew %d1,ETEMP(%a6) //input expected in ETEMP - movel FPTEMP_HI(%a6),ETEMP_HI(%a6) - movel FPTEMP_LO(%a6),ETEMP_LO(%a6) - orl #unfl_bit,USER_FPSR(%a6) //set unfl - leal ETEMP(%a6),%a0 - bra t_resdnrm -nden_exit: - movew %d1,FPTEMP(%a6) //result in FPTEMP - fmovel USER_FPCR(%a6),%FPCR - fmovex FPTEMP(%a6),%fp0 //write result to fp0 - rts - -// -// Source is negative. Add the src to the dest exponent. -// (The result exponent will be reduced). The result can be -// denormalized. -// -src_neg: - addl %d0,%d1 //add src to dest - beqs denorm //if zero, result is denorm - blts fix_dnrm //if negative, result is -// ;needing denormalization - tstb L_SCR1(%a6) - beqs sneg_pos - orw #0x8000,%d1 -sneg_pos: - movew %d1,FPTEMP(%a6) //result in FPTEMP - fmovel USER_FPCR(%a6),%FPCR - fmovex FPTEMP(%a6),%fp0 //write result to fp0 - rts - - -// -// The result exponent is below denorm value. Test for catastrophic -// underflow and force zero if true. If not, try to shift the -// mantissa right until a zero exponent exists. -// -fix_dnrm: - cmpiw #0xffc0,%d1 //lower bound for normalization - blt fix_unfl //if lower, catastrophic unfl - movew %d1,%d0 //use d0 for exp - movel %d2,-(%a7) //free d2 for norm - movel FPTEMP_HI(%a6),%d1 - movel FPTEMP_LO(%a6),%d2 - clrl L_SCR2(%a6) -fix_loop: - addw #1,%d0 //drive d0 to 0 - lsrl #1,%d1 //while shifting the - roxrl #1,%d2 //mantissa to the right - bccs no_carry - st L_SCR2(%a6) //use L_SCR2 to capture inex -no_carry: - tstw %d0 //it is finished when - blts fix_loop //d0 is zero or the mantissa - tstb L_SCR2(%a6) - beqs tst_zero - orl #unfl_inx_mask,USER_FPSR(%a6) -// ;set unfl, aunfl, ainex -// -// Test for zero. If zero, simply use fmove to return +/- zero -// to the fpu. -// -tst_zero: - clrw FPTEMP_EX(%a6) - tstb L_SCR1(%a6) //test for sign - beqs tst_con - orw #0x8000,FPTEMP_EX(%a6) //set sign bit -tst_con: - movel %d1,FPTEMP_HI(%a6) - movel %d2,FPTEMP_LO(%a6) - movel (%a7)+,%d2 - tstl %d1 - bnes not_zero - tstl FPTEMP_LO(%a6) - bnes not_zero -// -// Result is zero. Check for rounding mode to set lsb. If the -// mode is rp, and the zero is positive, return smallest denorm. -// If the mode is rm, and the zero is negative, return smallest -// negative denorm. -// - btstb #5,FPCR_MODE(%a6) //test if rm or rp - beqs no_dir - btstb #4,FPCR_MODE(%a6) //check which one - beqs zer_rm -zer_rp: - tstb L_SCR1(%a6) //check sign - bnes no_dir //if set, neg op, no inc - movel #1,FPTEMP_LO(%a6) //set lsb - bras sm_dnrm -zer_rm: - tstb L_SCR1(%a6) //check sign - beqs no_dir //if clr, neg op, no inc - movel #1,FPTEMP_LO(%a6) //set lsb - orl #neg_mask,USER_FPSR(%a6) //set N - bras sm_dnrm -no_dir: - fmovel USER_FPCR(%a6),%FPCR - fmovex FPTEMP(%a6),%fp0 //use fmove to set cc's - rts - -// -// The rounding mode changed the zero to a smallest denorm. Call -// t_resdnrm with exceptional operand in ETEMP. -// -sm_dnrm: - movel FPTEMP_EX(%a6),ETEMP_EX(%a6) - movel FPTEMP_HI(%a6),ETEMP_HI(%a6) - movel FPTEMP_LO(%a6),ETEMP_LO(%a6) - leal ETEMP(%a6),%a0 - bra t_resdnrm - -// -// Result is still denormalized. -// -not_zero: - orl #unfl_mask,USER_FPSR(%a6) //set unfl - tstb L_SCR1(%a6) //check for sign - beqs fix_exit - orl #neg_mask,USER_FPSR(%a6) //set N -fix_exit: - bras sm_dnrm - - -// -// The result has underflowed to zero. Return zero and set -// unfl, aunfl, and ainex. -// -fix_unfl: - orl #unfl_inx_mask,USER_FPSR(%a6) - btstb #5,FPCR_MODE(%a6) //test if rm or rp - beqs no_dir2 - btstb #4,FPCR_MODE(%a6) //check which one - beqs zer_rm2 -zer_rp2: - tstb L_SCR1(%a6) //check sign - bnes no_dir2 //if set, neg op, no inc - clrl FPTEMP_EX(%a6) - clrl FPTEMP_HI(%a6) - movel #1,FPTEMP_LO(%a6) //set lsb - bras sm_dnrm //return smallest denorm -zer_rm2: - tstb L_SCR1(%a6) //check sign - beqs no_dir2 //if clr, neg op, no inc - movew #0x8000,FPTEMP_EX(%a6) - clrl FPTEMP_HI(%a6) - movel #1,FPTEMP_LO(%a6) //set lsb - orl #neg_mask,USER_FPSR(%a6) //set N - bra sm_dnrm //return smallest denorm - -no_dir2: - tstb L_SCR1(%a6) - bges pos_zero -neg_zero: - clrl FP_SCR1(%a6) //clear the exceptional operand - clrl FP_SCR1+4(%a6) //for gen_except. - clrl FP_SCR1+8(%a6) - fmoves #0x80000000,%fp0 - rts -pos_zero: - clrl FP_SCR1(%a6) //clear the exceptional operand - clrl FP_SCR1+4(%a6) //for gen_except. - clrl FP_SCR1+8(%a6) - fmoves #0x00000000,%fp0 - rts - -// -// The destination is a denormalized number. It must be handled -// by first shifting the bits in the mantissa until it is normalized, -// then adding the remainder of the source to the exponent. -// -dst_dnrm: - moveml %d2/%d3,-(%a7) - movew FPTEMP_EX(%a6),%d1 - movel FPTEMP_HI(%a6),%d2 - movel FPTEMP_LO(%a6),%d3 -dst_loop: - tstl %d2 //test for normalized result - blts dst_norm //exit loop if so - tstl %d0 //otherwise, test shift count - beqs dst_fin //if zero, shifting is done - subil #1,%d0 //dec src - lsll #1,%d3 - roxll #1,%d2 - bras dst_loop -// -// Destination became normalized. Simply add the remaining -// portion of the src to the exponent. -// -dst_norm: - addw %d0,%d1 //dst is normalized; add src - tstb L_SCR1(%a6) - beqs dnrm_pos - orl #0x8000,%d1 -dnrm_pos: - movemw %d1,FPTEMP_EX(%a6) - moveml %d2,FPTEMP_HI(%a6) - moveml %d3,FPTEMP_LO(%a6) - fmovel USER_FPCR(%a6),%FPCR - fmovex FPTEMP(%a6),%fp0 - moveml (%a7)+,%d2/%d3 - rts - -// -// Destination remained denormalized. Call t_excdnrm with -// exceptional operand in ETEMP. -// -dst_fin: - tstb L_SCR1(%a6) //check for sign - beqs dst_exit - orl #neg_mask,USER_FPSR(%a6) //set N - orl #0x8000,%d1 -dst_exit: - movemw %d1,ETEMP_EX(%a6) - moveml %d2,ETEMP_HI(%a6) - moveml %d3,ETEMP_LO(%a6) - orl #unfl_mask,USER_FPSR(%a6) //set unfl - moveml (%a7)+,%d2/%d3 - leal ETEMP(%a6),%a0 - bra t_resdnrm - -// -// Source is outside of 2^14 range. Test the sign and branch -// to the appropriate exception handler. -// -src_out: - tstb L_SCR1(%a6) - beqs scro_pos - orl #0x8000,%d1 -scro_pos: - movel FPTEMP_HI(%a6),ETEMP_HI(%a6) - movel FPTEMP_LO(%a6),ETEMP_LO(%a6) - tstw ETEMP(%a6) - blts res_neg -res_pos: - movew %d1,ETEMP(%a6) //result in ETEMP - bra t_ovfl2 -res_neg: - movew %d1,ETEMP(%a6) //result in ETEMP - leal ETEMP(%a6),%a0 - bra t_unfl - |end diff --git a/c/src/lib/libcpu/m68k/m68040/fpsp/scosh.S b/c/src/lib/libcpu/m68k/m68040/fpsp/scosh.S deleted file mode 100644 index 1153ef0b7b..0000000000 --- a/c/src/lib/libcpu/m68k/m68040/fpsp/scosh.S +++ /dev/null @@ -1,134 +0,0 @@ -#include "fpsp-namespace.h" -// -// -// scosh.sa 3.1 12/10/90 -// -// The entry point sCosh computes the hyperbolic cosine of -// an input argument; sCoshd does the same except for denormalized -// input. -// -// Input: Double-extended number X in location pointed to -// by address register a0. -// -// Output: The value cosh(X) returned in floating-point register Fp0. -// -// Accuracy and Monotonicity: The returned result is within 3 ulps in -// 64 significant bit, i.e. within 0.5001 ulp to 53 bits if the -// result is subsequently rounded to double precision. The -// result is provably monotonic in double precision. -// -// Speed: The program sCOSH takes approximately 250 cycles. -// -// Algorithm: -// -// COSH -// 1. If |X| > 16380 log2, go to 3. -// -// 2. (|X| <= 16380 log2) Cosh(X) is obtained by the formulae -// y = |X|, z = exp(Y), and -// cosh(X) = (1/2)*( z + 1/z ). -// Exit. -// -// 3. (|X| > 16380 log2). If |X| > 16480 log2, go to 5. -// -// 4. (16380 log2 < |X| <= 16480 log2) -// cosh(X) = sign(X) * exp(|X|)/2. -// However, invoking exp(|X|) may cause premature overflow. -// Thus, we calculate sinh(X) as follows: -// Y := |X| -// Fact := 2**(16380) -// Y' := Y - 16381 log2 -// cosh(X) := Fact * exp(Y'). -// Exit. -// -// 5. (|X| > 16480 log2) sinh(X) must overflow. Return -// Huge*Huge to generate overflow and an infinity with -// the appropriate sign. Huge is the largest finite number in -// extended format. Exit. -// -// - -// Copyright (C) Motorola, Inc. 1990 -// All Rights Reserved -// -// THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA -// The copyright notice above does not evidence any -// actual or intended publication of such source code. - -//SCOSH idnt 2,1 | Motorola 040 Floating Point Software Package - - |section 8 - - |xref t_ovfl - |xref t_frcinx - |xref setox - -T1: .long 0x40C62D38,0xD3D64634 // ... 16381 LOG2 LEAD -T2: .long 0x3D6F90AE,0xB1E75CC7 // ... 16381 LOG2 TRAIL - -TWO16380: .long 0x7FFB0000,0x80000000,0x00000000,0x00000000 - - .global scoshd -scoshd: -//--COSH(X) = 1 FOR DENORMALIZED X - - fmoves #0x3F800000,%fp0 - - fmovel %d1,%FPCR - fadds #0x00800000,%fp0 - bra t_frcinx - - .global scosh -scosh: - fmovex (%a0),%fp0 // ...LOAD INPUT - - movel (%a0),%d0 - movew 4(%a0),%d0 - andil #0x7FFFFFFF,%d0 - cmpil #0x400CB167,%d0 - bgts COSHBIG - -//--THIS IS THE USUAL CASE, |X| < 16380 LOG2 -//--COSH(X) = (1/2) * ( EXP(X) + 1/EXP(X) ) - - fabsx %fp0 // ...|X| - - movel %d1,-(%sp) - clrl %d1 - fmovemx %fp0-%fp0,(%a0) //pass parameter to setox - bsr setox // ...FP0 IS EXP(|X|) - fmuls #0x3F000000,%fp0 // ...(1/2)EXP(|X|) - movel (%sp)+,%d1 - - fmoves #0x3E800000,%fp1 // ...(1/4) - fdivx %fp0,%fp1 // ...1/(2 EXP(|X|)) - - fmovel %d1,%FPCR - faddx %fp1,%fp0 - - bra t_frcinx - -COSHBIG: - cmpil #0x400CB2B3,%d0 - bgts COSHHUGE - - fabsx %fp0 - fsubd T1(%pc),%fp0 // ...(|X|-16381LOG2_LEAD) - fsubd T2(%pc),%fp0 // ...|X| - 16381 LOG2, ACCURATE - - movel %d1,-(%sp) - clrl %d1 - fmovemx %fp0-%fp0,(%a0) - bsr setox - fmovel (%sp)+,%fpcr - - fmulx TWO16380(%pc),%fp0 - bra t_frcinx - -COSHHUGE: - fmovel #0,%fpsr //clr N bit if set by source - bclrb #7,(%a0) //always return positive value - fmovemx (%a0),%fp0-%fp0 - bra t_ovfl - - |end diff --git a/c/src/lib/libcpu/m68k/m68040/fpsp/setox.S b/c/src/lib/libcpu/m68k/m68040/fpsp/setox.S deleted file mode 100644 index e1f161e803..0000000000 --- a/c/src/lib/libcpu/m68k/m68040/fpsp/setox.S +++ /dev/null @@ -1,867 +0,0 @@ -#include "fpsp-namespace.h" -// -// -// setox.sa 3.1 12/10/90 -// -// The entry point setox computes the exponential of a value. -// setoxd does the same except the input value is a denormalized -// number. setoxm1 computes exp(X)-1, and setoxm1d computes -// exp(X)-1 for denormalized X. -// -// INPUT -// ----- -// Double-extended value in memory location pointed to by address -// register a0. -// -// OUTPUT -// ------ -// exp(X) or exp(X)-1 returned in floating-point register fp0. -// -// ACCURACY and MONOTONICITY -// ------------------------- -// The returned result is within 0.85 ulps in 64 significant bit, i.e. -// within 0.5001 ulp to 53 bits if the result is subsequently rounded -// to double precision. The result is provably monotonic in double -// precision. -// -// SPEED -// ----- -// Two timings are measured, both in the copy-back mode. The -// first one is measured when the function is invoked the first time -// (so the instructions and data are not in cache), and the -// second one is measured when the function is reinvoked at the same -// input argument. -// -// The program setox takes approximately 210/190 cycles for input -// argument X whose magnitude is less than 16380 log2, which -// is the usual situation. For the less common arguments, -// depending on their values, the program may run faster or slower -- -// but no worse than 10% slower even in the extreme cases. -// -// The program setoxm1 takes approximately ???/??? cycles for input -// argument X, 0.25 <= |X| < 70log2. For |X| < 0.25, it takes -// approximately ???/??? cycles. For the less common arguments, -// depending on their values, the program may run faster or slower -- -// but no worse than 10% slower even in the extreme cases. -// -// ALGORITHM and IMPLEMENTATION NOTES -// ---------------------------------- -// -// setoxd -// ------ -// Step 1. Set ans := 1.0 -// -// Step 2. Return ans := ans + sign(X)*2^(-126). Exit. -// Notes: This will always generate one exception -- inexact. -// -// -// setox -// ----- -// -// Step 1. Filter out extreme cases of input argument. -// 1.1 If |X| >= 2^(-65), go to Step 1.3. -// 1.2 Go to Step 7. -// 1.3 If |X| < 16380 log(2), go to Step 2. -// 1.4 Go to Step 8. -// Notes: The usual case should take the branches 1.1 -> 1.3 -> 2. -// To avoid the use of floating-point comparisons, a -// compact representation of |X| is used. This format is a -// 32-bit integer, the upper (more significant) 16 bits are -// the sign and biased exponent field of |X|; the lower 16 -// bits are the 16 most significant fraction (including the -// explicit bit) bits of |X|. Consequently, the comparisons -// in Steps 1.1 and 1.3 can be performed by integer comparison. -// Note also that the constant 16380 log(2) used in Step 1.3 -// is also in the compact form. Thus taking the branch -// to Step 2 guarantees |X| < 16380 log(2). There is no harm -// to have a small number of cases where |X| is less than, -// but close to, 16380 log(2) and the branch to Step 9 is -// taken. -// -// Step 2. Calculate N = round-to-nearest-int( X * 64/log2 ). -// 2.1 Set AdjFlag := 0 (indicates the branch 1.3 -> 2 was taken) -// 2.2 N := round-to-nearest-integer( X * 64/log2 ). -// 2.3 Calculate J = N mod 64; so J = 0,1,2,..., or 63. -// 2.4 Calculate M = (N - J)/64; so N = 64M + J. -// 2.5 Calculate the address of the stored value of 2^(J/64). -// 2.6 Create the value Scale = 2^M. -// Notes: The calculation in 2.2 is really performed by -// -// Z := X * constant -// N := round-to-nearest-integer(Z) -// -// where -// -// constant := single-precision( 64/log 2 ). -// -// Using a single-precision constant avoids memory access. -// Another effect of using a single-precision "constant" is -// that the calculated value Z is -// -// Z = X*(64/log2)*(1+eps), |eps| <= 2^(-24). -// -// This error has to be considered later in Steps 3 and 4. -// -// Step 3. Calculate X - N*log2/64. -// 3.1 R := X + N*L1, where L1 := single-precision(-log2/64). -// 3.2 R := R + N*L2, L2 := extended-precision(-log2/64 - L1). -// Notes: a) The way L1 and L2 are chosen ensures L1+L2 approximate -// the value -log2/64 to 88 bits of accuracy. -// b) N*L1 is exact because N is no longer than 22 bits and -// L1 is no longer than 24 bits. -// c) The calculation X+N*L1 is also exact due to cancellation. -// Thus, R is practically X+N(L1+L2) to full 64 bits. -// d) It is important to estimate how large can |R| be after -// Step 3.2. -// -// N = rnd-to-int( X*64/log2 (1+eps) ), |eps|<=2^(-24) -// X*64/log2 (1+eps) = N + f, |f| <= 0.5 -// X*64/log2 - N = f - eps*X 64/log2 -// X - N*log2/64 = f*log2/64 - eps*X -// -// -// Now |X| <= 16446 log2, thus -// -// |X - N*log2/64| <= (0.5 + 16446/2^(18))*log2/64 -// <= 0.57 log2/64. -// This bound will be used in Step 4. -// -// Step 4. Approximate exp(R)-1 by a polynomial -// p = R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*A5)))) -// Notes: a) In order to reduce memory access, the coefficients are -// made as "short" as possible: A1 (which is 1/2), A4 and A5 -// are single precision; A2 and A3 are double precision. -// b) Even with the restrictions above, -// |p - (exp(R)-1)| < 2^(-68.8) for all |R| <= 0.0062. -// Note that 0.0062 is slightly bigger than 0.57 log2/64. -// c) To fully utilize the pipeline, p is separated into -// two independent pieces of roughly equal complexities -// p = [ R + R*S*(A2 + S*A4) ] + -// [ S*(A1 + S*(A3 + S*A5)) ] -// where S = R*R. -// -// Step 5. Compute 2^(J/64)*exp(R) = 2^(J/64)*(1+p) by -// ans := T + ( T*p + t) -// where T and t are the stored values for 2^(J/64). -// Notes: 2^(J/64) is stored as T and t where T+t approximates -// 2^(J/64) to roughly 85 bits; T is in extended precision -// and t is in single precision. Note also that T is rounded -// to 62 bits so that the last two bits of T are zero. The -// reason for such a special form is that T-1, T-2, and T-8 -// will all be exact --- a property that will give much -// more accurate computation of the function EXPM1. -// -// Step 6. Reconstruction of exp(X) -// exp(X) = 2^M * 2^(J/64) * exp(R). -// 6.1 If AdjFlag = 0, go to 6.3 -// 6.2 ans := ans * AdjScale -// 6.3 Restore the user FPCR -// 6.4 Return ans := ans * Scale. Exit. -// Notes: If AdjFlag = 0, we have X = Mlog2 + Jlog2/64 + R, -// |M| <= 16380, and Scale = 2^M. Moreover, exp(X) will -// neither overflow nor underflow. If AdjFlag = 1, that -// means that -// X = (M1+M)log2 + Jlog2/64 + R, |M1+M| >= 16380. -// Hence, exp(X) may overflow or underflow or neither. -// When that is the case, AdjScale = 2^(M1) where M1 is -// approximately M. Thus 6.2 will never cause over/underflow. -// Possible exception in 6.4 is overflow or underflow. -// The inexact exception is not generated in 6.4. Although -// one can argue that the inexact flag should always be -// raised, to simulate that exception cost to much than the -// flag is worth in practical uses. -// -// Step 7. Return 1 + X. -// 7.1 ans := X -// 7.2 Restore user FPCR. -// 7.3 Return ans := 1 + ans. Exit -// Notes: For non-zero X, the inexact exception will always be -// raised by 7.3. That is the only exception raised by 7.3. -// Note also that we use the FMOVEM instruction to move X -// in Step 7.1 to avoid unnecessary trapping. (Although -// the FMOVEM may not seem relevant since X is normalized, -// the precaution will be useful in the library version of -// this code where the separate entry for denormalized inputs -// will be done away with.) -// -// Step 8. Handle exp(X) where |X| >= 16380log2. -// 8.1 If |X| > 16480 log2, go to Step 9. -// (mimic 2.2 - 2.6) -// 8.2 N := round-to-integer( X * 64/log2 ) -// 8.3 Calculate J = N mod 64, J = 0,1,...,63 -// 8.4 K := (N-J)/64, M1 := truncate(K/2), M = K-M1, AdjFlag := 1. -// 8.5 Calculate the address of the stored value 2^(J/64). -// 8.6 Create the values Scale = 2^M, AdjScale = 2^M1. -// 8.7 Go to Step 3. -// Notes: Refer to notes for 2.2 - 2.6. -// -// Step 9. Handle exp(X), |X| > 16480 log2. -// 9.1 If X < 0, go to 9.3 -// 9.2 ans := Huge, go to 9.4 -// 9.3 ans := Tiny. -// 9.4 Restore user FPCR. -// 9.5 Return ans := ans * ans. Exit. -// Notes: Exp(X) will surely overflow or underflow, depending on -// X's sign. "Huge" and "Tiny" are respectively large/tiny -// extended-precision numbers whose square over/underflow -// with an inexact result. Thus, 9.5 always raises the -// inexact together with either overflow or underflow. -// -// -// setoxm1d -// -------- -// -// Step 1. Set ans := 0 -// -// Step 2. Return ans := X + ans. Exit. -// Notes: This will return X with the appropriate rounding -// precision prescribed by the user FPCR. -// -// setoxm1 -// ------- -// -// Step 1. Check |X| -// 1.1 If |X| >= 1/4, go to Step 1.3. -// 1.2 Go to Step 7. -// 1.3 If |X| < 70 log(2), go to Step 2. -// 1.4 Go to Step 10. -// Notes: The usual case should take the branches 1.1 -> 1.3 -> 2. -// However, it is conceivable |X| can be small very often -// because EXPM1 is intended to evaluate exp(X)-1 accurately -// when |X| is small. For further details on the comparisons, -// see the notes on Step 1 of setox. -// -// Step 2. Calculate N = round-to-nearest-int( X * 64/log2 ). -// 2.1 N := round-to-nearest-integer( X * 64/log2 ). -// 2.2 Calculate J = N mod 64; so J = 0,1,2,..., or 63. -// 2.3 Calculate M = (N - J)/64; so N = 64M + J. -// 2.4 Calculate the address of the stored value of 2^(J/64). -// 2.5 Create the values Sc = 2^M and OnebySc := -2^(-M). -// Notes: See the notes on Step 2 of setox. -// -// Step 3. Calculate X - N*log2/64. -// 3.1 R := X + N*L1, where L1 := single-precision(-log2/64). -// 3.2 R := R + N*L2, L2 := extended-precision(-log2/64 - L1). -// Notes: Applying the analysis of Step 3 of setox in this case -// shows that |R| <= 0.0055 (note that |X| <= 70 log2 in -// this case). -// -// Step 4. Approximate exp(R)-1 by a polynomial -// p = R+R*R*(A1+R*(A2+R*(A3+R*(A4+R*(A5+R*A6))))) -// Notes: a) In order to reduce memory access, the coefficients are -// made as "short" as possible: A1 (which is 1/2), A5 and A6 -// are single precision; A2, A3 and A4 are double precision. -// b) Even with the restriction above, -// |p - (exp(R)-1)| < |R| * 2^(-72.7) -// for all |R| <= 0.0055. -// c) To fully utilize the pipeline, p is separated into -// two independent pieces of roughly equal complexity -// p = [ R*S*(A2 + S*(A4 + S*A6)) ] + -// [ R + S*(A1 + S*(A3 + S*A5)) ] -// where S = R*R. -// -// Step 5. Compute 2^(J/64)*p by -// p := T*p -// where T and t are the stored values for 2^(J/64). -// Notes: 2^(J/64) is stored as T and t where T+t approximates -// 2^(J/64) to roughly 85 bits; T is in extended precision -// and t is in single precision. Note also that T is rounded -// to 62 bits so that the last two bits of T are zero. The -// reason for such a special form is that T-1, T-2, and T-8 -// will all be exact --- a property that will be exploited -// in Step 6 below. The total relative error in p is no -// bigger than 2^(-67.7) compared to the final result. -// -// Step 6. Reconstruction of exp(X)-1 -// exp(X)-1 = 2^M * ( 2^(J/64) + p - 2^(-M) ). -// 6.1 If M <= 63, go to Step 6.3. -// 6.2 ans := T + (p + (t + OnebySc)). Go to 6.6 -// 6.3 If M >= -3, go to 6.5. -// 6.4 ans := (T + (p + t)) + OnebySc. Go to 6.6 -// 6.5 ans := (T + OnebySc) + (p + t). -// 6.6 Restore user FPCR. -// 6.7 Return ans := Sc * ans. Exit. -// Notes: The various arrangements of the expressions give accurate -// evaluations. -// -// Step 7. exp(X)-1 for |X| < 1/4. -// 7.1 If |X| >= 2^(-65), go to Step 9. -// 7.2 Go to Step 8. -// -// Step 8. Calculate exp(X)-1, |X| < 2^(-65). -// 8.1 If |X| < 2^(-16312), goto 8.3 -// 8.2 Restore FPCR; return ans := X - 2^(-16382). Exit. -// 8.3 X := X * 2^(140). -// 8.4 Restore FPCR; ans := ans - 2^(-16382). -// Return ans := ans*2^(140). Exit -// Notes: The idea is to return "X - tiny" under the user -// precision and rounding modes. To avoid unnecessary -// inefficiency, we stay away from denormalized numbers the -// best we can. For |X| >= 2^(-16312), the straightforward -// 8.2 generates the inexact exception as the case warrants. -// -// Step 9. Calculate exp(X)-1, |X| < 1/4, by a polynomial -// p = X + X*X*(B1 + X*(B2 + ... + X*B12)) -// Notes: a) In order to reduce memory access, the coefficients are -// made as "short" as possible: B1 (which is 1/2), B9 to B12 -// are single precision; B3 to B8 are double precision; and -// B2 is double extended. -// b) Even with the restriction above, -// |p - (exp(X)-1)| < |X| 2^(-70.6) -// for all |X| <= 0.251. -// Note that 0.251 is slightly bigger than 1/4. -// c) To fully preserve accuracy, the polynomial is computed -// as X + ( S*B1 + Q ) where S = X*X and -// Q = X*S*(B2 + X*(B3 + ... + X*B12)) -// d) To fully utilize the pipeline, Q is separated into -// two independent pieces of roughly equal complexity -// Q = [ X*S*(B2 + S*(B4 + ... + S*B12)) ] + -// [ S*S*(B3 + S*(B5 + ... + S*B11)) ] -// -// Step 10. Calculate exp(X)-1 for |X| >= 70 log 2. -// 10.1 If X >= 70log2 , exp(X) - 1 = exp(X) for all practical -// purposes. Therefore, go to Step 1 of setox. -// 10.2 If X <= -70log2, exp(X) - 1 = -1 for all practical purposes. -// ans := -1 -// Restore user FPCR -// Return ans := ans + 2^(-126). Exit. -// Notes: 10.2 will always create an inexact and return -1 + tiny -// in the user rounding precision and mode. -// -// - -// Copyright (C) Motorola, Inc. 1990 -// All Rights Reserved -// -// THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA -// The copyright notice above does not evidence any -// actual or intended publication of such source code. - -//setox idnt 2,1 | Motorola 040 Floating Point Software Package - - |section 8 - -#include "fpsp.defs" - -L2: .long 0x3FDC0000,0x82E30865,0x4361C4C6,0x00000000 - -EXPA3: .long 0x3FA55555,0x55554431 -EXPA2: .long 0x3FC55555,0x55554018 - -HUGE: .long 0x7FFE0000,0xFFFFFFFF,0xFFFFFFFF,0x00000000 -TINY: .long 0x00010000,0xFFFFFFFF,0xFFFFFFFF,0x00000000 - -EM1A4: .long 0x3F811111,0x11174385 -EM1A3: .long 0x3FA55555,0x55554F5A - -EM1A2: .long 0x3FC55555,0x55555555,0x00000000,0x00000000 - -EM1B8: .long 0x3EC71DE3,0xA5774682 -EM1B7: .long 0x3EFA01A0,0x19D7CB68 - -EM1B6: .long 0x3F2A01A0,0x1A019DF3 -EM1B5: .long 0x3F56C16C,0x16C170E2 - -EM1B4: .long 0x3F811111,0x11111111 -EM1B3: .long 0x3FA55555,0x55555555 - -EM1B2: .long 0x3FFC0000,0xAAAAAAAA,0xAAAAAAAB - .long 0x00000000 - -TWO140: .long 0x48B00000,0x00000000 -TWON140: .long 0x37300000,0x00000000 - -EXPTBL: - .long 0x3FFF0000,0x80000000,0x00000000,0x00000000 - .long 0x3FFF0000,0x8164D1F3,0xBC030774,0x9F841A9B - .long 0x3FFF0000,0x82CD8698,0xAC2BA1D8,0x9FC1D5B9 - .long 0x3FFF0000,0x843A28C3,0xACDE4048,0xA0728369 - .long 0x3FFF0000,0x85AAC367,0xCC487B14,0x1FC5C95C - .long 0x3FFF0000,0x871F6196,0x9E8D1010,0x1EE85C9F - .long 0x3FFF0000,0x88980E80,0x92DA8528,0x9FA20729 - .long 0x3FFF0000,0x8A14D575,0x496EFD9C,0xA07BF9AF - .long 0x3FFF0000,0x8B95C1E3,0xEA8BD6E8,0xA0020DCF - .long 0x3FFF0000,0x8D1ADF5B,0x7E5BA9E4,0x205A63DA - .long 0x3FFF0000,0x8EA4398B,0x45CD53C0,0x1EB70051 - .long 0x3FFF0000,0x9031DC43,0x1466B1DC,0x1F6EB029 - .long 0x3FFF0000,0x91C3D373,0xAB11C338,0xA0781494 - .long 0x3FFF0000,0x935A2B2F,0x13E6E92C,0x9EB319B0 - .long 0x3FFF0000,0x94F4EFA8,0xFEF70960,0x2017457D - .long 0x3FFF0000,0x96942D37,0x20185A00,0x1F11D537 - .long 0x3FFF0000,0x9837F051,0x8DB8A970,0x9FB952DD - .long 0x3FFF0000,0x99E04593,0x20B7FA64,0x1FE43087 - .long 0x3FFF0000,0x9B8D39B9,0xD54E5538,0x1FA2A818 - .long 0x3FFF0000,0x9D3ED9A7,0x2CFFB750,0x1FDE494D - .long 0x3FFF0000,0x9EF53260,0x91A111AC,0x20504890 - .long 0x3FFF0000,0xA0B0510F,0xB9714FC4,0xA073691C - .long 0x3FFF0000,0xA2704303,0x0C496818,0x1F9B7A05 - .long 0x3FFF0000,0xA43515AE,0x09E680A0,0xA0797126 - .long 0x3FFF0000,0xA5FED6A9,0xB15138EC,0xA071A140 - .long 0x3FFF0000,0xA7CD93B4,0xE9653568,0x204F62DA - .long 0x3FFF0000,0xA9A15AB4,0xEA7C0EF8,0x1F283C4A - .long 0x3FFF0000,0xAB7A39B5,0xA93ED338,0x9F9A7FDC - .long 0x3FFF0000,0xAD583EEA,0x42A14AC8,0xA05B3FAC - .long 0x3FFF0000,0xAF3B78AD,0x690A4374,0x1FDF2610 - .long 0x3FFF0000,0xB123F581,0xD2AC2590,0x9F705F90 - .long 0x3FFF0000,0xB311C412,0xA9112488,0x201F678A - .long 0x3FFF0000,0xB504F333,0xF9DE6484,0x1F32FB13 - .long 0x3FFF0000,0xB6FD91E3,0x28D17790,0x20038B30 - .long 0x3FFF0000,0xB8FBAF47,0x62FB9EE8,0x200DC3CC - .long 0x3FFF0000,0xBAFF5AB2,0x133E45FC,0x9F8B2AE6 - .long 0x3FFF0000,0xBD08A39F,0x580C36C0,0xA02BBF70 - .long 0x3FFF0000,0xBF1799B6,0x7A731084,0xA00BF518 - .long 0x3FFF0000,0xC12C4CCA,0x66709458,0xA041DD41 - .long 0x3FFF0000,0xC346CCDA,0x24976408,0x9FDF137B - .long 0x3FFF0000,0xC5672A11,0x5506DADC,0x201F1568 - .long 0x3FFF0000,0xC78D74C8,0xABB9B15C,0x1FC13A2E - .long 0x3FFF0000,0xC9B9BD86,0x6E2F27A4,0xA03F8F03 - .long 0x3FFF0000,0xCBEC14FE,0xF2727C5C,0x1FF4907D - .long 0x3FFF0000,0xCE248C15,0x1F8480E4,0x9E6E53E4 - .long 0x3FFF0000,0xD06333DA,0xEF2B2594,0x1FD6D45C - .long 0x3FFF0000,0xD2A81D91,0xF12AE45C,0xA076EDB9 - .long 0x3FFF0000,0xD4F35AAB,0xCFEDFA20,0x9FA6DE21 - .long 0x3FFF0000,0xD744FCCA,0xD69D6AF4,0x1EE69A2F - .long 0x3FFF0000,0xD99D15C2,0x78AFD7B4,0x207F439F - .long 0x3FFF0000,0xDBFBB797,0xDAF23754,0x201EC207 - .long 0x3FFF0000,0xDE60F482,0x5E0E9124,0x9E8BE175 - .long 0x3FFF0000,0xE0CCDEEC,0x2A94E110,0x20032C4B - .long 0x3FFF0000,0xE33F8972,0xBE8A5A50,0x2004DFF5 - .long 0x3FFF0000,0xE5B906E7,0x7C8348A8,0x1E72F47A - .long 0x3FFF0000,0xE8396A50,0x3C4BDC68,0x1F722F22 - .long 0x3FFF0000,0xEAC0C6E7,0xDD243930,0xA017E945 - .long 0x3FFF0000,0xED4F301E,0xD9942B84,0x1F401A5B - .long 0x3FFF0000,0xEFE4B99B,0xDCDAF5CC,0x9FB9A9E3 - .long 0x3FFF0000,0xF281773C,0x59FFB138,0x20744C05 - .long 0x3FFF0000,0xF5257D15,0x2486CC2C,0x1F773A19 - .long 0x3FFF0000,0xF7D0DF73,0x0AD13BB8,0x1FFE90D5 - .long 0x3FFF0000,0xFA83B2DB,0x722A033C,0xA041ED22 - .long 0x3FFF0000,0xFD3E0C0C,0xF486C174,0x1F853F3A - - .set ADJFLAG,L_SCR2 - .set SCALE,FP_SCR1 - .set ADJSCALE,FP_SCR2 - .set SC,FP_SCR3 - .set ONEBYSC,FP_SCR4 - - | xref t_frcinx - |xref t_extdnrm - |xref t_unfl - |xref t_ovfl - - .global setoxd -setoxd: -//--entry point for EXP(X), X is denormalized - movel (%a0),%d0 - andil #0x80000000,%d0 - oril #0x00800000,%d0 // ...sign(X)*2^(-126) - movel %d0,-(%sp) - fmoves #0x3F800000,%fp0 - fmovel %d1,%fpcr - fadds (%sp)+,%fp0 - bra t_frcinx - - .global setox -setox: -//--entry point for EXP(X), here X is finite, non-zero, and not NaN's - -//--Step 1. - movel (%a0),%d0 // ...load part of input X - andil #0x7FFF0000,%d0 // ...biased expo. of X - cmpil #0x3FBE0000,%d0 // ...2^(-65) - bges EXPC1 // ...normal case - bra EXPSM - -EXPC1: -//--The case |X| >= 2^(-65) - movew 4(%a0),%d0 // ...expo. and partial sig. of |X| - cmpil #0x400CB167,%d0 // ...16380 log2 trunc. 16 bits - blts EXPMAIN // ...normal case - bra EXPBIG - -EXPMAIN: -//--Step 2. -//--This is the normal branch: 2^(-65) <= |X| < 16380 log2. - fmovex (%a0),%fp0 // ...load input from (a0) - - fmovex %fp0,%fp1 - fmuls #0x42B8AA3B,%fp0 // ...64/log2 * X - fmovemx %fp2-%fp2/%fp3,-(%a7) // ...save fp2 - movel #0,ADJFLAG(%a6) - fmovel %fp0,%d0 // ...N = int( X * 64/log2 ) - lea EXPTBL,%a1 - fmovel %d0,%fp0 // ...convert to floating-format - - movel %d0,L_SCR1(%a6) // ...save N temporarily - andil #0x3F,%d0 // ...D0 is J = N mod 64 - lsll #4,%d0 - addal %d0,%a1 // ...address of 2^(J/64) - movel L_SCR1(%a6),%d0 - asrl #6,%d0 // ...D0 is M - addiw #0x3FFF,%d0 // ...biased expo. of 2^(M) - movew L2,L_SCR1(%a6) // ...prefetch L2, no need in CB - -EXPCONT1: -//--Step 3. -//--fp1,fp2 saved on the stack. fp0 is N, fp1 is X, -//--a0 points to 2^(J/64), D0 is biased expo. of 2^(M) - fmovex %fp0,%fp2 - fmuls #0xBC317218,%fp0 // ...N * L1, L1 = lead(-log2/64) - fmulx L2,%fp2 // ...N * L2, L1+L2 = -log2/64 - faddx %fp1,%fp0 // ...X + N*L1 - faddx %fp2,%fp0 // ...fp0 is R, reduced arg. -// MOVE.W #$3FA5,EXPA3 ...load EXPA3 in cache - -//--Step 4. -//--WE NOW COMPUTE EXP(R)-1 BY A POLYNOMIAL -//-- R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*A5)))) -//--TO FULLY UTILIZE THE PIPELINE, WE COMPUTE S = R*R -//--[R+R*S*(A2+S*A4)] + [S*(A1+S*(A3+S*A5))] - - fmovex %fp0,%fp1 - fmulx %fp1,%fp1 // ...fp1 IS S = R*R - - fmoves #0x3AB60B70,%fp2 // ...fp2 IS A5 -// MOVE.W #0,2(%a1) ...load 2^(J/64) in cache - - fmulx %fp1,%fp2 // ...fp2 IS S*A5 - fmovex %fp1,%fp3 - fmuls #0x3C088895,%fp3 // ...fp3 IS S*A4 - - faddd EXPA3,%fp2 // ...fp2 IS A3+S*A5 - faddd EXPA2,%fp3 // ...fp3 IS A2+S*A4 - - fmulx %fp1,%fp2 // ...fp2 IS S*(A3+S*A5) - movew %d0,SCALE(%a6) // ...SCALE is 2^(M) in extended - clrw SCALE+2(%a6) - movel #0x80000000,SCALE+4(%a6) - clrl SCALE+8(%a6) - - fmulx %fp1,%fp3 // ...fp3 IS S*(A2+S*A4) - - fadds #0x3F000000,%fp2 // ...fp2 IS A1+S*(A3+S*A5) - fmulx %fp0,%fp3 // ...fp3 IS R*S*(A2+S*A4) - - fmulx %fp1,%fp2 // ...fp2 IS S*(A1+S*(A3+S*A5)) - faddx %fp3,%fp0 // ...fp0 IS R+R*S*(A2+S*A4), -// ...fp3 released - - fmovex (%a1)+,%fp1 // ...fp1 is lead. pt. of 2^(J/64) - faddx %fp2,%fp0 // ...fp0 is EXP(R) - 1 -// ...fp2 released - -//--Step 5 -//--final reconstruction process -//--EXP(X) = 2^M * ( 2^(J/64) + 2^(J/64)*(EXP(R)-1) ) - - fmulx %fp1,%fp0 // ...2^(J/64)*(Exp(R)-1) - fmovemx (%a7)+,%fp2-%fp2/%fp3 // ...fp2 restored - fadds (%a1),%fp0 // ...accurate 2^(J/64) - - faddx %fp1,%fp0 // ...2^(J/64) + 2^(J/64)*... - movel ADJFLAG(%a6),%d0 - -//--Step 6 - tstl %d0 - beqs NORMAL -ADJUST: - fmulx ADJSCALE(%a6),%fp0 -NORMAL: - fmovel %d1,%FPCR // ...restore user FPCR - fmulx SCALE(%a6),%fp0 // ...multiply 2^(M) - bra t_frcinx - -EXPSM: -//--Step 7 - fmovemx (%a0),%fp0-%fp0 // ...in case X is denormalized - fmovel %d1,%FPCR - fadds #0x3F800000,%fp0 // ...1+X in user mode - bra t_frcinx - -EXPBIG: -//--Step 8 - cmpil #0x400CB27C,%d0 // ...16480 log2 - bgts EXP2BIG -//--Steps 8.2 -- 8.6 - fmovex (%a0),%fp0 // ...load input from (a0) - - fmovex %fp0,%fp1 - fmuls #0x42B8AA3B,%fp0 // ...64/log2 * X - fmovemx %fp2-%fp2/%fp3,-(%a7) // ...save fp2 - movel #1,ADJFLAG(%a6) - fmovel %fp0,%d0 // ...N = int( X * 64/log2 ) - lea EXPTBL,%a1 - fmovel %d0,%fp0 // ...convert to floating-format - movel %d0,L_SCR1(%a6) // ...save N temporarily - andil #0x3F,%d0 // ...D0 is J = N mod 64 - lsll #4,%d0 - addal %d0,%a1 // ...address of 2^(J/64) - movel L_SCR1(%a6),%d0 - asrl #6,%d0 // ...D0 is K - movel %d0,L_SCR1(%a6) // ...save K temporarily - asrl #1,%d0 // ...D0 is M1 - subl %d0,L_SCR1(%a6) // ...a1 is M - addiw #0x3FFF,%d0 // ...biased expo. of 2^(M1) - movew %d0,ADJSCALE(%a6) // ...ADJSCALE := 2^(M1) - clrw ADJSCALE+2(%a6) - movel #0x80000000,ADJSCALE+4(%a6) - clrl ADJSCALE+8(%a6) - movel L_SCR1(%a6),%d0 // ...D0 is M - addiw #0x3FFF,%d0 // ...biased expo. of 2^(M) - bra EXPCONT1 // ...go back to Step 3 - -EXP2BIG: -//--Step 9 - fmovel %d1,%FPCR - movel (%a0),%d0 - bclrb #sign_bit,(%a0) // ...setox always returns positive - cmpil #0,%d0 - blt t_unfl - bra t_ovfl - - .global setoxm1d -setoxm1d: -//--entry point for EXPM1(X), here X is denormalized -//--Step 0. - bra t_extdnrm - - - .global setoxm1 -setoxm1: -//--entry point for EXPM1(X), here X is finite, non-zero, non-NaN - -//--Step 1. -//--Step 1.1 - movel (%a0),%d0 // ...load part of input X - andil #0x7FFF0000,%d0 // ...biased expo. of X - cmpil #0x3FFD0000,%d0 // ...1/4 - bges EM1CON1 // ...|X| >= 1/4 - bra EM1SM - -EM1CON1: -//--Step 1.3 -//--The case |X| >= 1/4 - movew 4(%a0),%d0 // ...expo. and partial sig. of |X| - cmpil #0x4004C215,%d0 // ...70log2 rounded up to 16 bits - bles EM1MAIN // ...1/4 <= |X| <= 70log2 - bra EM1BIG - -EM1MAIN: -//--Step 2. -//--This is the case: 1/4 <= |X| <= 70 log2. - fmovex (%a0),%fp0 // ...load input from (a0) - - fmovex %fp0,%fp1 - fmuls #0x42B8AA3B,%fp0 // ...64/log2 * X - fmovemx %fp2-%fp2/%fp3,-(%a7) // ...save fp2 -// MOVE.W #$3F81,EM1A4 ...prefetch in CB mode - fmovel %fp0,%d0 // ...N = int( X * 64/log2 ) - lea EXPTBL,%a1 - fmovel %d0,%fp0 // ...convert to floating-format - - movel %d0,L_SCR1(%a6) // ...save N temporarily - andil #0x3F,%d0 // ...D0 is J = N mod 64 - lsll #4,%d0 - addal %d0,%a1 // ...address of 2^(J/64) - movel L_SCR1(%a6),%d0 - asrl #6,%d0 // ...D0 is M - movel %d0,L_SCR1(%a6) // ...save a copy of M -// MOVE.W #$3FDC,L2 ...prefetch L2 in CB mode - -//--Step 3. -//--fp1,fp2 saved on the stack. fp0 is N, fp1 is X, -//--a0 points to 2^(J/64), D0 and a1 both contain M - fmovex %fp0,%fp2 - fmuls #0xBC317218,%fp0 // ...N * L1, L1 = lead(-log2/64) - fmulx L2,%fp2 // ...N * L2, L1+L2 = -log2/64 - faddx %fp1,%fp0 // ...X + N*L1 - faddx %fp2,%fp0 // ...fp0 is R, reduced arg. -// MOVE.W #$3FC5,EM1A2 ...load EM1A2 in cache - addiw #0x3FFF,%d0 // ...D0 is biased expo. of 2^M - -//--Step 4. -//--WE NOW COMPUTE EXP(R)-1 BY A POLYNOMIAL -//-- R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*(A5 + R*A6))))) -//--TO FULLY UTILIZE THE PIPELINE, WE COMPUTE S = R*R -//--[R*S*(A2+S*(A4+S*A6))] + [R+S*(A1+S*(A3+S*A5))] - - fmovex %fp0,%fp1 - fmulx %fp1,%fp1 // ...fp1 IS S = R*R - - fmoves #0x3950097B,%fp2 // ...fp2 IS a6 -// MOVE.W #0,2(%a1) ...load 2^(J/64) in cache - - fmulx %fp1,%fp2 // ...fp2 IS S*A6 - fmovex %fp1,%fp3 - fmuls #0x3AB60B6A,%fp3 // ...fp3 IS S*A5 - - faddd EM1A4,%fp2 // ...fp2 IS A4+S*A6 - faddd EM1A3,%fp3 // ...fp3 IS A3+S*A5 - movew %d0,SC(%a6) // ...SC is 2^(M) in extended - clrw SC+2(%a6) - movel #0x80000000,SC+4(%a6) - clrl SC+8(%a6) - - fmulx %fp1,%fp2 // ...fp2 IS S*(A4+S*A6) - movel L_SCR1(%a6),%d0 // ...D0 is M - negw %d0 // ...D0 is -M - fmulx %fp1,%fp3 // ...fp3 IS S*(A3+S*A5) - addiw #0x3FFF,%d0 // ...biased expo. of 2^(-M) - faddd EM1A2,%fp2 // ...fp2 IS A2+S*(A4+S*A6) - fadds #0x3F000000,%fp3 // ...fp3 IS A1+S*(A3+S*A5) - - fmulx %fp1,%fp2 // ...fp2 IS S*(A2+S*(A4+S*A6)) - oriw #0x8000,%d0 // ...signed/expo. of -2^(-M) - movew %d0,ONEBYSC(%a6) // ...OnebySc is -2^(-M) - clrw ONEBYSC+2(%a6) - movel #0x80000000,ONEBYSC+4(%a6) - clrl ONEBYSC+8(%a6) - fmulx %fp3,%fp1 // ...fp1 IS S*(A1+S*(A3+S*A5)) -// ...fp3 released - - fmulx %fp0,%fp2 // ...fp2 IS R*S*(A2+S*(A4+S*A6)) - faddx %fp1,%fp0 // ...fp0 IS R+S*(A1+S*(A3+S*A5)) -// ...fp1 released - - faddx %fp2,%fp0 // ...fp0 IS EXP(R)-1 -// ...fp2 released - fmovemx (%a7)+,%fp2-%fp2/%fp3 // ...fp2 restored - -//--Step 5 -//--Compute 2^(J/64)*p - - fmulx (%a1),%fp0 // ...2^(J/64)*(Exp(R)-1) - -//--Step 6 -//--Step 6.1 - movel L_SCR1(%a6),%d0 // ...retrieve M - cmpil #63,%d0 - bles MLE63 -//--Step 6.2 M >= 64 - fmoves 12(%a1),%fp1 // ...fp1 is t - faddx ONEBYSC(%a6),%fp1 // ...fp1 is t+OnebySc - faddx %fp1,%fp0 // ...p+(t+OnebySc), fp1 released - faddx (%a1),%fp0 // ...T+(p+(t+OnebySc)) - bras EM1SCALE -MLE63: -//--Step 6.3 M <= 63 - cmpil #-3,%d0 - bges MGEN3 -MLTN3: -//--Step 6.4 M <= -4 - fadds 12(%a1),%fp0 // ...p+t - faddx (%a1),%fp0 // ...T+(p+t) - faddx ONEBYSC(%a6),%fp0 // ...OnebySc + (T+(p+t)) - bras EM1SCALE -MGEN3: -//--Step 6.5 -3 <= M <= 63 - fmovex (%a1)+,%fp1 // ...fp1 is T - fadds (%a1),%fp0 // ...fp0 is p+t - faddx ONEBYSC(%a6),%fp1 // ...fp1 is T+OnebySc - faddx %fp1,%fp0 // ...(T+OnebySc)+(p+t) - -EM1SCALE: -//--Step 6.6 - fmovel %d1,%FPCR - fmulx SC(%a6),%fp0 - - bra t_frcinx - -EM1SM: -//--Step 7 |X| < 1/4. - cmpil #0x3FBE0000,%d0 // ...2^(-65) - bges EM1POLY - -EM1TINY: -//--Step 8 |X| < 2^(-65) - cmpil #0x00330000,%d0 // ...2^(-16312) - blts EM12TINY -//--Step 8.2 - movel #0x80010000,SC(%a6) // ...SC is -2^(-16382) - movel #0x80000000,SC+4(%a6) - clrl SC+8(%a6) - fmovex (%a0),%fp0 - fmovel %d1,%FPCR - faddx SC(%a6),%fp0 - - bra t_frcinx - -EM12TINY: -//--Step 8.3 - fmovex (%a0),%fp0 - fmuld TWO140,%fp0 - movel #0x80010000,SC(%a6) - movel #0x80000000,SC+4(%a6) - clrl SC+8(%a6) - faddx SC(%a6),%fp0 - fmovel %d1,%FPCR - fmuld TWON140,%fp0 - - bra t_frcinx - -EM1POLY: -//--Step 9 exp(X)-1 by a simple polynomial - fmovex (%a0),%fp0 // ...fp0 is X - fmulx %fp0,%fp0 // ...fp0 is S := X*X - fmovemx %fp2-%fp2/%fp3,-(%a7) // ...save fp2 - fmoves #0x2F30CAA8,%fp1 // ...fp1 is B12 - fmulx %fp0,%fp1 // ...fp1 is S*B12 - fmoves #0x310F8290,%fp2 // ...fp2 is B11 - fadds #0x32D73220,%fp1 // ...fp1 is B10+S*B12 - - fmulx %fp0,%fp2 // ...fp2 is S*B11 - fmulx %fp0,%fp1 // ...fp1 is S*(B10 + ... - - fadds #0x3493F281,%fp2 // ...fp2 is B9+S*... - faddd EM1B8,%fp1 // ...fp1 is B8+S*... - - fmulx %fp0,%fp2 // ...fp2 is S*(B9+... - fmulx %fp0,%fp1 // ...fp1 is S*(B8+... - - faddd EM1B7,%fp2 // ...fp2 is B7+S*... - faddd EM1B6,%fp1 // ...fp1 is B6+S*... - - fmulx %fp0,%fp2 // ...fp2 is S*(B7+... - fmulx %fp0,%fp1 // ...fp1 is S*(B6+... - - faddd EM1B5,%fp2 // ...fp2 is B5+S*... - faddd EM1B4,%fp1 // ...fp1 is B4+S*... - - fmulx %fp0,%fp2 // ...fp2 is S*(B5+... - fmulx %fp0,%fp1 // ...fp1 is S*(B4+... - - faddd EM1B3,%fp2 // ...fp2 is B3+S*... - faddx EM1B2,%fp1 // ...fp1 is B2+S*... - - fmulx %fp0,%fp2 // ...fp2 is S*(B3+... - fmulx %fp0,%fp1 // ...fp1 is S*(B2+... - - fmulx %fp0,%fp2 // ...fp2 is S*S*(B3+...) - fmulx (%a0),%fp1 // ...fp1 is X*S*(B2... - - fmuls #0x3F000000,%fp0 // ...fp0 is S*B1 - faddx %fp2,%fp1 // ...fp1 is Q -// ...fp2 released - - fmovemx (%a7)+,%fp2-%fp2/%fp3 // ...fp2 restored - - faddx %fp1,%fp0 // ...fp0 is S*B1+Q -// ...fp1 released - - fmovel %d1,%FPCR - faddx (%a0),%fp0 - - bra t_frcinx - -EM1BIG: -//--Step 10 |X| > 70 log2 - movel (%a0),%d0 - cmpil #0,%d0 - bgt EXPC1 -//--Step 10.2 - fmoves #0xBF800000,%fp0 // ...fp0 is -1 - fmovel %d1,%FPCR - fadds #0x00800000,%fp0 // ...-1 + 2^(-126) - - bra t_frcinx - - |end diff --git a/c/src/lib/libcpu/m68k/m68040/fpsp/sgetem.S b/c/src/lib/libcpu/m68k/m68040/fpsp/sgetem.S deleted file mode 100644 index c661058f3e..0000000000 --- a/c/src/lib/libcpu/m68k/m68040/fpsp/sgetem.S +++ /dev/null @@ -1,143 +0,0 @@ -#include "fpsp-namespace.h" -// -// -// sgetem.sa 3.1 12/10/90 -// -// The entry point sGETEXP returns the exponent portion -// of the input argument. The exponent bias is removed -// and the exponent value is returned as an extended -// precision number in fp0. sGETEXPD handles denormalized -// numbers. -// -// The entry point sGETMAN extracts the mantissa of the -// input argument. The mantissa is converted to an -// extended precision number and returned in fp0. The -// range of the result is [1.0 - 2.0). -// -// -// Input: Double-extended number X in the ETEMP space in -// the floating-point save stack. -// -// Output: The functions return exp(X) or man(X) in fp0. -// -// Modified: fp0. -// -// -// Copyright (C) Motorola, Inc. 1990 -// All Rights Reserved -// -// THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA -// The copyright notice above does not evidence any -// actual or intended publication of such source code. - -//SGETEM idnt 2,1 | Motorola 040 Floating Point Software Package - - |section 8 - -#include "fpsp.defs" - - |xref nrm_set - -// -// This entry point is used by the unimplemented instruction exception -// handler. It points a0 to the input operand. -// -// -// -// SGETEXP -// - - .global sgetexp -sgetexp: - movew LOCAL_EX(%a0),%d0 //get the exponent - bclrl #15,%d0 //clear the sign bit - subw #0x3fff,%d0 //subtract off the bias - fmovew %d0,%fp0 //move the exp to fp0 - rts - - .global sgetexpd -sgetexpd: - bclrb #sign_bit,LOCAL_EX(%a0) - bsr nrm_set //normalize (exp will go negative) - movew LOCAL_EX(%a0),%d0 //load resulting exponent into d0 - subw #0x3fff,%d0 //subtract off the bias - fmovew %d0,%fp0 //move the exp to fp0 - rts -// -// -// This entry point is used by the unimplemented instruction exception -// handler. It points a0 to the input operand. -// -// -// -// SGETMAN -// -// -// For normalized numbers, leave the mantissa alone, simply load -// with an exponent of +/- $3fff. -// - .global sgetman -sgetman: - movel USER_FPCR(%a6),%d0 - andil #0xffffff00,%d0 //clear rounding precision and mode - fmovel %d0,%fpcr //this fpcr setting is used by the 882 - movew LOCAL_EX(%a0),%d0 //get the exp (really just want sign bit) - orw #0x7fff,%d0 //clear old exp - bclrl #14,%d0 //make it the new exp +-3fff - movew %d0,LOCAL_EX(%a0) //move the sign & exp back to fsave stack - fmovex (%a0),%fp0 //put new value back in fp0 - rts - -// -// For denormalized numbers, shift the mantissa until the j-bit = 1, -// then load the exponent with +/1 $3fff. -// - .global sgetmand -sgetmand: - movel LOCAL_HI(%a0),%d0 //load ms mant in d0 - movel LOCAL_LO(%a0),%d1 //load ls mant in d1 - bsr shft //shift mantissa bits till msbit is set - movel %d0,LOCAL_HI(%a0) //put ms mant back on stack - movel %d1,LOCAL_LO(%a0) //put ls mant back on stack - bras sgetman - -// -// SHFT -// -// Shifts the mantissa bits until msbit is set. -// input: -// ms mantissa part in d0 -// ls mantissa part in d1 -// output: -// shifted bits in d0 and d1 -shft: - tstl %d0 //if any bits set in ms mant - bnes upper //then branch -// ;else no bits set in ms mant - tstl %d1 //test if any bits set in ls mant - bnes cont //if set then continue - bras shft_end //else return -cont: - movel %d3,-(%a7) //save d3 - exg %d0,%d1 //shift ls mant to ms mant - bfffo %d0{#0:#32},%d3 //find first 1 in ls mant to d0 - lsll %d3,%d0 //shift first 1 to integer bit in ms mant - movel (%a7)+,%d3 //restore d3 - bras shft_end -upper: - - moveml %d3/%d5/%d6,-(%a7) //save registers - bfffo %d0{#0:#32},%d3 //find first 1 in ls mant to d0 - lsll %d3,%d0 //shift ms mant until j-bit is set - movel %d1,%d6 //save ls mant in d6 - lsll %d3,%d1 //shift ls mant by count - movel #32,%d5 - subl %d3,%d5 //sub 32 from shift for ls mant - lsrl %d5,%d6 //shift off all bits but those that will -// ;be shifted into ms mant - orl %d6,%d0 //shift the ls mant bits into the ms mant - moveml (%a7)+,%d3/%d5/%d6 //restore registers -shft_end: - rts - - |end diff --git a/c/src/lib/libcpu/m68k/m68040/fpsp/sint.S b/c/src/lib/libcpu/m68k/m68040/fpsp/sint.S deleted file mode 100644 index 094eebdeff..0000000000 --- a/c/src/lib/libcpu/m68k/m68040/fpsp/sint.S +++ /dev/null @@ -1,249 +0,0 @@ -#include "fpsp-namespace.h" -// -// -// sint.sa 3.1 12/10/90 -// -// The entry point sINT computes the rounded integer -// equivalent of the input argument, sINTRZ computes -// the integer rounded to zero of the input argument. -// -// Entry points sint and sintrz are called from do_func -// to emulate the fint and fintrz unimplemented instructions, -// respectively. Entry point sintdo is used by bindec. -// -// Input: (Entry points sint and sintrz) Double-extended -// number X in the ETEMP space in the floating-point -// save stack. -// (Entry point sintdo) Double-extended number X in -// location pointed to by the address register a0. -// (Entry point sintd) Double-extended denormalized -// number X in the ETEMP space in the floating-point -// save stack. -// -// Output: The function returns int(X) or intrz(X) in fp0. -// -// Modifies: fp0. -// -// Algorithm: (sint and sintrz) -// -// 1. If exp(X) >= 63, return X. -// If exp(X) < 0, return +/- 0 or +/- 1, according to -// the rounding mode. -// -// 2. (X is in range) set rsc = 63 - exp(X). Unnormalize the -// result to the exponent $403e. -// -// 3. Round the result in the mode given in USER_FPCR. For -// sintrz, force round-to-zero mode. -// -// 4. Normalize the rounded result; store in fp0. -// -// For the denormalized cases, force the correct result -// for the given sign and rounding mode. -// -// Sign(X) -// RMODE + - -// ----- -------- -// RN +0 -0 -// RZ +0 -0 -// RM +0 -1 -// RP +1 -0 -// -// -// Copyright (C) Motorola, Inc. 1990 -// All Rights Reserved -// -// THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA -// The copyright notice above does not evidence any -// actual or intended publication of such source code. - -//SINT idnt 2,1 | Motorola 040 Floating Point Software Package - - |section 8 - -#include "fpsp.defs" - - |xref dnrm_lp - |xref nrm_set - |xref round - |xref t_inx2 - |xref ld_pone - |xref ld_mone - |xref ld_pzero - |xref ld_mzero - |xref snzrinx - -// -// FINT -// - .global sint -sint: - bfextu FPCR_MODE(%a6){#2:#2},%d1 //use user's mode for rounding -// ;implicitly has extend precision -// ;in upper word. - movel %d1,L_SCR1(%a6) //save mode bits - bras sintexc - -// -// FINT with extended denorm inputs. -// - .global sintd -sintd: - btstb #5,FPCR_MODE(%a6) - beq snzrinx //if round nearest or round zero, +/- 0 - btstb #4,FPCR_MODE(%a6) - beqs rnd_mns -rnd_pls: - btstb #sign_bit,LOCAL_EX(%a0) - bnes sintmz - bsr ld_pone //if round plus inf and pos, answer is +1 - bra t_inx2 -rnd_mns: - btstb #sign_bit,LOCAL_EX(%a0) - beqs sintpz - bsr ld_mone //if round mns inf and neg, answer is -1 - bra t_inx2 -sintpz: - bsr ld_pzero - bra t_inx2 -sintmz: - bsr ld_mzero - bra t_inx2 - -// -// FINTRZ -// - .global sintrz -sintrz: - movel #1,L_SCR1(%a6) //use rz mode for rounding -// ;implicitly has extend precision -// ;in upper word. - bras sintexc -// -// SINTDO -// -// Input: a0 points to an IEEE extended format operand -// Output: fp0 has the result -// -// Exceptions: -// -// If the subroutine results in an inexact operation, the inx2 and -// ainx bits in the USER_FPSR are set. -// -// - .global sintdo -sintdo: - bfextu FPCR_MODE(%a6){#2:#2},%d1 //use user's mode for rounding -// ;implicitly has ext precision -// ;in upper word. - movel %d1,L_SCR1(%a6) //save mode bits -// -// Real work of sint is in sintexc -// -sintexc: - bclrb #sign_bit,LOCAL_EX(%a0) //convert to internal extended -// ;format - sne LOCAL_SGN(%a0) - cmpw #0x403e,LOCAL_EX(%a0) //check if (unbiased) exp > 63 - bgts out_rnge //branch if exp < 63 - cmpw #0x3ffd,LOCAL_EX(%a0) //check if (unbiased) exp < 0 - bgt in_rnge //if 63 >= exp > 0, do calc -// -// Input is less than zero. Restore sign, and check for directed -// rounding modes. L_SCR1 contains the rmode in the lower byte. -// -un_rnge: - btstb #1,L_SCR1+3(%a6) //check for rn and rz - beqs un_rnrz - tstb LOCAL_SGN(%a0) //check for sign - bnes un_rmrp_neg -// -// Sign is +. If rp, load +1.0, if rm, load +0.0 -// - cmpib #3,L_SCR1+3(%a6) //check for rp - beqs un_ldpone //if rp, load +1.0 - bsr ld_pzero //if rm, load +0.0 - bra t_inx2 -un_ldpone: - bsr ld_pone - bra t_inx2 -// -// Sign is -. If rm, load -1.0, if rp, load -0.0 -// -un_rmrp_neg: - cmpib #2,L_SCR1+3(%a6) //check for rm - beqs un_ldmone //if rm, load -1.0 - bsr ld_mzero //if rp, load -0.0 - bra t_inx2 -un_ldmone: - bsr ld_mone - bra t_inx2 -// -// Rmode is rn or rz; return signed zero -// -un_rnrz: - tstb LOCAL_SGN(%a0) //check for sign - bnes un_rnrz_neg - bsr ld_pzero - bra t_inx2 -un_rnrz_neg: - bsr ld_mzero - bra t_inx2 - -// -// Input is greater than 2^63. All bits are significant. Return -// the input. -// -out_rnge: - bfclr LOCAL_SGN(%a0){#0:#8} //change back to IEEE ext format - beqs intps - bsetb #sign_bit,LOCAL_EX(%a0) -intps: - fmovel %fpcr,-(%sp) - fmovel #0,%fpcr - fmovex LOCAL_EX(%a0),%fp0 //if exp > 63 -// ;then return X to the user -// ;there are no fraction bits - fmovel (%sp)+,%fpcr - rts - -in_rnge: -// ;shift off fraction bits - clrl %d0 //clear d0 - initial g,r,s for -// ;dnrm_lp - movel #0x403e,%d1 //set threshold for dnrm_lp -// ;assumes a0 points to operand - bsr dnrm_lp -// ;returns unnormalized number -// ;pointed by a0 -// ;output d0 supplies g,r,s -// ;used by round - movel L_SCR1(%a6),%d1 //use selected rounding mode -// -// - bsr round //round the unnorm based on users -// ;input a0 ptr to ext X -// ; d0 g,r,s bits -// ; d1 PREC/MODE info -// ;output a0 ptr to rounded result -// ;inexact flag set in USER_FPSR -// ;if initial grs set -// -// normalize the rounded result and store value in fp0 -// - bsr nrm_set //normalize the unnorm -// ;Input: a0 points to operand to -// ;be normalized -// ;Output: a0 points to normalized -// ;result - bfclr LOCAL_SGN(%a0){#0:#8} - beqs nrmrndp - bsetb #sign_bit,LOCAL_EX(%a0) //return to IEEE extended format -nrmrndp: - fmovel %fpcr,-(%sp) - fmovel #0,%fpcr - fmovex LOCAL_EX(%a0),%fp0 //move result to fp0 - fmovel (%sp)+,%fpcr - rts - - |end diff --git a/c/src/lib/libcpu/m68k/m68040/fpsp/slog2.S b/c/src/lib/libcpu/m68k/m68040/fpsp/slog2.S deleted file mode 100644 index 9e4f15c24e..0000000000 --- a/c/src/lib/libcpu/m68k/m68040/fpsp/slog2.S +++ /dev/null @@ -1,190 +0,0 @@ -#include "fpsp-namespace.h" -// -// -// slog2.sa 3.1 12/10/90 -// -// The entry point slog10 computes the base-10 -// logarithm of an input argument X. -// slog10d does the same except the input value is a -// denormalized number. -// sLog2 and sLog2d are the base-2 analogues. -// -// INPUT: Double-extended value in memory location pointed to -// by address register a0. -// -// OUTPUT: log_10(X) or log_2(X) returned in floating-point -// register fp0. -// -// ACCURACY and MONOTONICITY: The returned result is within 1.7 -// ulps in 64 significant bit, i.e. within 0.5003 ulp -// to 53 bits if the result is subsequently rounded -// to double precision. The result is provably monotonic -// in double precision. -// -// SPEED: Two timings are measured, both in the copy-back mode. -// The first one is measured when the function is invoked -// the first time (so the instructions and data are not -// in cache), and the second one is measured when the -// function is reinvoked at the same input argument. -// -// ALGORITHM and IMPLEMENTATION NOTES: -// -// slog10d: -// -// Step 0. If X < 0, create a NaN and raise the invalid operation -// flag. Otherwise, save FPCR in D1; set FpCR to default. -// Notes: Default means round-to-nearest mode, no floating-point -// traps, and precision control = double extended. -// -// Step 1. Call slognd to obtain Y = log(X), the natural log of X. -// Notes: Even if X is denormalized, log(X) is always normalized. -// -// Step 2. Compute log_10(X) = log(X) * (1/log(10)). -// 2.1 Restore the user FPCR -// 2.2 Return ans := Y * INV_L10. -// -// -// slog10: -// -// Step 0. If X < 0, create a NaN and raise the invalid operation -// flag. Otherwise, save FPCR in D1; set FpCR to default. -// Notes: Default means round-to-nearest mode, no floating-point -// traps, and precision control = double extended. -// -// Step 1. Call sLogN to obtain Y = log(X), the natural log of X. -// -// Step 2. Compute log_10(X) = log(X) * (1/log(10)). -// 2.1 Restore the user FPCR -// 2.2 Return ans := Y * INV_L10. -// -// -// sLog2d: -// -// Step 0. If X < 0, create a NaN and raise the invalid operation -// flag. Otherwise, save FPCR in D1; set FpCR to default. -// Notes: Default means round-to-nearest mode, no floating-point -// traps, and precision control = double extended. -// -// Step 1. Call slognd to obtain Y = log(X), the natural log of X. -// Notes: Even if X is denormalized, log(X) is always normalized. -// -// Step 2. Compute log_10(X) = log(X) * (1/log(2)). -// 2.1 Restore the user FPCR -// 2.2 Return ans := Y * INV_L2. -// -// -// sLog2: -// -// Step 0. If X < 0, create a NaN and raise the invalid operation -// flag. Otherwise, save FPCR in D1; set FpCR to default. -// Notes: Default means round-to-nearest mode, no floating-point -// traps, and precision control = double extended. -// -// Step 1. If X is not an integer power of two, i.e., X != 2^k, -// go to Step 3. -// -// Step 2. Return k. -// 2.1 Get integer k, X = 2^k. -// 2.2 Restore the user FPCR. -// 2.3 Return ans := convert-to-double-extended(k). -// -// Step 3. Call sLogN to obtain Y = log(X), the natural log of X. -// -// Step 4. Compute log_2(X) = log(X) * (1/log(2)). -// 4.1 Restore the user FPCR -// 4.2 Return ans := Y * INV_L2. -// - -// Copyright (C) Motorola, Inc. 1990 -// All Rights Reserved -// -// THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA -// The copyright notice above does not evidence any -// actual or intended publication of such source code. - -//SLOG2 idnt 2,1 | Motorola 040 Floating Point Software Package - - |section 8 - - |xref t_frcinx - |xref t_operr - |xref slogn - |xref slognd - -INV_L10: .long 0x3FFD0000,0xDE5BD8A9,0x37287195,0x00000000 - -INV_L2: .long 0x3FFF0000,0xB8AA3B29,0x5C17F0BC,0x00000000 - - .global slog10d -slog10d: -//--entry point for Log10(X), X is denormalized - movel (%a0),%d0 - blt invalid - movel %d1,-(%sp) - clrl %d1 - bsr slognd // ...log(X), X denorm. - fmovel (%sp)+,%fpcr - fmulx INV_L10,%fp0 - bra t_frcinx - - .global slog10 -slog10: -//--entry point for Log10(X), X is normalized - - movel (%a0),%d0 - blt invalid - movel %d1,-(%sp) - clrl %d1 - bsr slogn // ...log(X), X normal. - fmovel (%sp)+,%fpcr - fmulx INV_L10,%fp0 - bra t_frcinx - - - .global slog2d -slog2d: -//--entry point for Log2(X), X is denormalized - - movel (%a0),%d0 - blt invalid - movel %d1,-(%sp) - clrl %d1 - bsr slognd // ...log(X), X denorm. - fmovel (%sp)+,%fpcr - fmulx INV_L2,%fp0 - bra t_frcinx - - .global slog2 -slog2: -//--entry point for Log2(X), X is normalized - movel (%a0),%d0 - blt invalid - - movel 8(%a0),%d0 - bnes continue // ...X is not 2^k - - movel 4(%a0),%d0 - andl #0x7FFFFFFF,%d0 - tstl %d0 - bnes continue - -//--X = 2^k. - movew (%a0),%d0 - andl #0x00007FFF,%d0 - subl #0x3FFF,%d0 - fmovel %d1,%fpcr - fmovel %d0,%fp0 - bra t_frcinx - -continue: - movel %d1,-(%sp) - clrl %d1 - bsr slogn // ...log(X), X normal. - fmovel (%sp)+,%fpcr - fmulx INV_L2,%fp0 - bra t_frcinx - -invalid: - bra t_operr - - |end diff --git a/c/src/lib/libcpu/m68k/m68040/fpsp/slogn.S b/c/src/lib/libcpu/m68k/m68040/fpsp/slogn.S deleted file mode 100644 index e6dc9846d4..0000000000 --- a/c/src/lib/libcpu/m68k/m68040/fpsp/slogn.S +++ /dev/null @@ -1,594 +0,0 @@ -#include "fpsp-namespace.h" -// -// -// slogn.sa 3.1 12/10/90 -// -// slogn computes the natural logarithm of an -// input value. slognd does the same except the input value is a -// denormalized number. slognp1 computes log(1+X), and slognp1d -// computes log(1+X) for denormalized X. -// -// Input: Double-extended value in memory location pointed to by address -// register a0. -// -// Output: log(X) or log(1+X) returned in floating-point register Fp0. -// -// Accuracy and Monotonicity: The returned result is within 2 ulps in -// 64 significant bit, i.e. within 0.5001 ulp to 53 bits if the -// result is subsequently rounded to double precision. The -// result is provably monotonic in double precision. -// -// Speed: The program slogn takes approximately 190 cycles for input -// argument X such that |X-1| >= 1/16, which is the the usual -// situation. For those arguments, slognp1 takes approximately -// 210 cycles. For the less common arguments, the program will -// run no worse than 10% slower. -// -// Algorithm: -// LOGN: -// Step 1. If |X-1| < 1/16, approximate log(X) by an odd polynomial in -// u, where u = 2(X-1)/(X+1). Otherwise, move on to Step 2. -// -// Step 2. X = 2**k * Y where 1 <= Y < 2. Define F to be the first seven -// significant bits of Y plus 2**(-7), i.e. F = 1.xxxxxx1 in base -// 2 where the six "x" match those of Y. Note that |Y-F| <= 2**(-7). -// -// Step 3. Define u = (Y-F)/F. Approximate log(1+u) by a polynomial in u, -// log(1+u) = poly. -// -// Step 4. Reconstruct log(X) = log( 2**k * Y ) = k*log(2) + log(F) + log(1+u) -// by k*log(2) + (log(F) + poly). The values of log(F) are calculated -// beforehand and stored in the program. -// -// lognp1: -// Step 1: If |X| < 1/16, approximate log(1+X) by an odd polynomial in -// u where u = 2X/(2+X). Otherwise, move on to Step 2. -// -// Step 2: Let 1+X = 2**k * Y, where 1 <= Y < 2. Define F as done in Step 2 -// of the algorithm for LOGN and compute log(1+X) as -// k*log(2) + log(F) + poly where poly approximates log(1+u), -// u = (Y-F)/F. -// -// Implementation Notes: -// Note 1. There are 64 different possible values for F, thus 64 log(F)'s -// need to be tabulated. Moreover, the values of 1/F are also -// tabulated so that the division in (Y-F)/F can be performed by a -// multiplication. -// -// Note 2. In Step 2 of lognp1, in order to preserved accuracy, the value -// Y-F has to be calculated carefully when 1/2 <= X < 3/2. -// -// Note 3. To fully exploit the pipeline, polynomials are usually separated -// into two parts evaluated independently before being added up. -// - -// Copyright (C) Motorola, Inc. 1990 -// All Rights Reserved -// -// THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA -// The copyright notice above does not evidence any -// actual or intended publication of such source code. - -//slogn idnt 2,1 | Motorola 040 Floating Point Software Package - - |section 8 - -#include "fpsp.defs" - -BOUNDS1: .long 0x3FFEF07D,0x3FFF8841 -BOUNDS2: .long 0x3FFE8000,0x3FFFC000 - -LOGOF2: .long 0x3FFE0000,0xB17217F7,0xD1CF79AC,0x00000000 - -one: .long 0x3F800000 -zero: .long 0x00000000 -infty: .long 0x7F800000 -negone: .long 0xBF800000 - -LOGA6: .long 0x3FC2499A,0xB5E4040B -LOGA5: .long 0xBFC555B5,0x848CB7DB - -LOGA4: .long 0x3FC99999,0x987D8730 -LOGA3: .long 0xBFCFFFFF,0xFF6F7E97 - -LOGA2: .long 0x3FD55555,0x555555a4 -LOGA1: .long 0xBFE00000,0x00000008 - -LOGB5: .long 0x3F175496,0xADD7DAD6 -LOGB4: .long 0x3F3C71C2,0xFE80C7E0 - -LOGB3: .long 0x3F624924,0x928BCCFF -LOGB2: .long 0x3F899999,0x999995EC - -LOGB1: .long 0x3FB55555,0x55555555 -TWO: .long 0x40000000,0x00000000 - -LTHOLD: .long 0x3f990000,0x80000000,0x00000000,0x00000000 - -LOGTBL: - .long 0x3FFE0000,0xFE03F80F,0xE03F80FE,0x00000000 - .long 0x3FF70000,0xFF015358,0x833C47E2,0x00000000 - .long 0x3FFE0000,0xFA232CF2,0x52138AC0,0x00000000 - .long 0x3FF90000,0xBDC8D83E,0xAD88D549,0x00000000 - .long 0x3FFE0000,0xF6603D98,0x0F6603DA,0x00000000 - .long 0x3FFA0000,0x9CF43DCF,0xF5EAFD48,0x00000000 - .long 0x3FFE0000,0xF2B9D648,0x0F2B9D65,0x00000000 - .long 0x3FFA0000,0xDA16EB88,0xCB8DF614,0x00000000 - .long 0x3FFE0000,0xEF2EB71F,0xC4345238,0x00000000 - .long 0x3FFB0000,0x8B29B775,0x1BD70743,0x00000000 - .long 0x3FFE0000,0xEBBDB2A5,0xC1619C8C,0x00000000 - .long 0x3FFB0000,0xA8D839F8,0x30C1FB49,0x00000000 - .long 0x3FFE0000,0xE865AC7B,0x7603A197,0x00000000 - .long 0x3FFB0000,0xC61A2EB1,0x8CD907AD,0x00000000 - .long 0x3FFE0000,0xE525982A,0xF70C880E,0x00000000 - .long 0x3FFB0000,0xE2F2A47A,0xDE3A18AF,0x00000000 - .long 0x3FFE0000,0xE1FC780E,0x1FC780E2,0x00000000 - .long 0x3FFB0000,0xFF64898E,0xDF55D551,0x00000000 - .long 0x3FFE0000,0xDEE95C4C,0xA037BA57,0x00000000 - .long 0x3FFC0000,0x8DB956A9,0x7B3D0148,0x00000000 - .long 0x3FFE0000,0xDBEB61EE,0xD19C5958,0x00000000 - .long 0x3FFC0000,0x9B8FE100,0xF47BA1DE,0x00000000 - .long 0x3FFE0000,0xD901B203,0x6406C80E,0x00000000 - .long 0x3FFC0000,0xA9372F1D,0x0DA1BD17,0x00000000 - .long 0x3FFE0000,0xD62B80D6,0x2B80D62C,0x00000000 - .long 0x3FFC0000,0xB6B07F38,0xCE90E46B,0x00000000 - .long 0x3FFE0000,0xD3680D36,0x80D3680D,0x00000000 - .long 0x3FFC0000,0xC3FD0329,0x06488481,0x00000000 - .long 0x3FFE0000,0xD0B69FCB,0xD2580D0B,0x00000000 - .long 0x3FFC0000,0xD11DE0FF,0x15AB18CA,0x00000000 - .long 0x3FFE0000,0xCE168A77,0x25080CE1,0x00000000 - .long 0x3FFC0000,0xDE1433A1,0x6C66B150,0x00000000 - .long 0x3FFE0000,0xCB8727C0,0x65C393E0,0x00000000 - .long 0x3FFC0000,0xEAE10B5A,0x7DDC8ADD,0x00000000 - .long 0x3FFE0000,0xC907DA4E,0x871146AD,0x00000000 - .long 0x3FFC0000,0xF7856E5E,0xE2C9B291,0x00000000 - .long 0x3FFE0000,0xC6980C69,0x80C6980C,0x00000000 - .long 0x3FFD0000,0x82012CA5,0xA68206D7,0x00000000 - .long 0x3FFE0000,0xC4372F85,0x5D824CA6,0x00000000 - .long 0x3FFD0000,0x882C5FCD,0x7256A8C5,0x00000000 - .long 0x3FFE0000,0xC1E4BBD5,0x95F6E947,0x00000000 - .long 0x3FFD0000,0x8E44C60B,0x4CCFD7DE,0x00000000 - .long 0x3FFE0000,0xBFA02FE8,0x0BFA02FF,0x00000000 - .long 0x3FFD0000,0x944AD09E,0xF4351AF6,0x00000000 - .long 0x3FFE0000,0xBD691047,0x07661AA3,0x00000000 - .long 0x3FFD0000,0x9A3EECD4,0xC3EAA6B2,0x00000000 - .long 0x3FFE0000,0xBB3EE721,0xA54D880C,0x00000000 - .long 0x3FFD0000,0xA0218434,0x353F1DE8,0x00000000 - .long 0x3FFE0000,0xB92143FA,0x36F5E02E,0x00000000 - .long 0x3FFD0000,0xA5F2FCAB,0xBBC506DA,0x00000000 - .long 0x3FFE0000,0xB70FBB5A,0x19BE3659,0x00000000 - .long 0x3FFD0000,0xABB3B8BA,0x2AD362A5,0x00000000 - .long 0x3FFE0000,0xB509E68A,0x9B94821F,0x00000000 - .long 0x3FFD0000,0xB1641795,0xCE3CA97B,0x00000000 - .long 0x3FFE0000,0xB30F6352,0x8917C80B,0x00000000 - .long 0x3FFD0000,0xB7047551,0x5D0F1C61,0x00000000 - .long 0x3FFE0000,0xB11FD3B8,0x0B11FD3C,0x00000000 - .long 0x3FFD0000,0xBC952AFE,0xEA3D13E1,0x00000000 - .long 0x3FFE0000,0xAF3ADDC6,0x80AF3ADE,0x00000000 - .long 0x3FFD0000,0xC2168ED0,0xF458BA4A,0x00000000 - .long 0x3FFE0000,0xAD602B58,0x0AD602B6,0x00000000 - .long 0x3FFD0000,0xC788F439,0xB3163BF1,0x00000000 - .long 0x3FFE0000,0xAB8F69E2,0x8359CD11,0x00000000 - .long 0x3FFD0000,0xCCECAC08,0xBF04565D,0x00000000 - .long 0x3FFE0000,0xA9C84A47,0xA07F5638,0x00000000 - .long 0x3FFD0000,0xD2420487,0x2DD85160,0x00000000 - .long 0x3FFE0000,0xA80A80A8,0x0A80A80B,0x00000000 - .long 0x3FFD0000,0xD7894992,0x3BC3588A,0x00000000 - .long 0x3FFE0000,0xA655C439,0x2D7B73A8,0x00000000 - .long 0x3FFD0000,0xDCC2C4B4,0x9887DACC,0x00000000 - .long 0x3FFE0000,0xA4A9CF1D,0x96833751,0x00000000 - .long 0x3FFD0000,0xE1EEBD3E,0x6D6A6B9E,0x00000000 - .long 0x3FFE0000,0xA3065E3F,0xAE7CD0E0,0x00000000 - .long 0x3FFD0000,0xE70D785C,0x2F9F5BDC,0x00000000 - .long 0x3FFE0000,0xA16B312E,0xA8FC377D,0x00000000 - .long 0x3FFD0000,0xEC1F392C,0x5179F283,0x00000000 - .long 0x3FFE0000,0x9FD809FD,0x809FD80A,0x00000000 - .long 0x3FFD0000,0xF12440D3,0xE36130E6,0x00000000 - .long 0x3FFE0000,0x9E4CAD23,0xDD5F3A20,0x00000000 - .long 0x3FFD0000,0xF61CCE92,0x346600BB,0x00000000 - .long 0x3FFE0000,0x9CC8E160,0xC3FB19B9,0x00000000 - .long 0x3FFD0000,0xFB091FD3,0x8145630A,0x00000000 - .long 0x3FFE0000,0x9B4C6F9E,0xF03A3CAA,0x00000000 - .long 0x3FFD0000,0xFFE97042,0xBFA4C2AD,0x00000000 - .long 0x3FFE0000,0x99D722DA,0xBDE58F06,0x00000000 - .long 0x3FFE0000,0x825EFCED,0x49369330,0x00000000 - .long 0x3FFE0000,0x9868C809,0x868C8098,0x00000000 - .long 0x3FFE0000,0x84C37A7A,0xB9A905C9,0x00000000 - .long 0x3FFE0000,0x97012E02,0x5C04B809,0x00000000 - .long 0x3FFE0000,0x87224C2E,0x8E645FB7,0x00000000 - .long 0x3FFE0000,0x95A02568,0x095A0257,0x00000000 - .long 0x3FFE0000,0x897B8CAC,0x9F7DE298,0x00000000 - .long 0x3FFE0000,0x94458094,0x45809446,0x00000000 - .long 0x3FFE0000,0x8BCF55DE,0xC4CD05FE,0x00000000 - .long 0x3FFE0000,0x92F11384,0x0497889C,0x00000000 - .long 0x3FFE0000,0x8E1DC0FB,0x89E125E5,0x00000000 - .long 0x3FFE0000,0x91A2B3C4,0xD5E6F809,0x00000000 - .long 0x3FFE0000,0x9066E68C,0x955B6C9B,0x00000000 - .long 0x3FFE0000,0x905A3863,0x3E06C43B,0x00000000 - .long 0x3FFE0000,0x92AADE74,0xC7BE59E0,0x00000000 - .long 0x3FFE0000,0x8F1779D9,0xFDC3A219,0x00000000 - .long 0x3FFE0000,0x94E9BFF6,0x15845643,0x00000000 - .long 0x3FFE0000,0x8DDA5202,0x37694809,0x00000000 - .long 0x3FFE0000,0x9723A1B7,0x20134203,0x00000000 - .long 0x3FFE0000,0x8CA29C04,0x6514E023,0x00000000 - .long 0x3FFE0000,0x995899C8,0x90EB8990,0x00000000 - .long 0x3FFE0000,0x8B70344A,0x139BC75A,0x00000000 - .long 0x3FFE0000,0x9B88BDAA,0x3A3DAE2F,0x00000000 - .long 0x3FFE0000,0x8A42F870,0x5669DB46,0x00000000 - .long 0x3FFE0000,0x9DB4224F,0xFFE1157C,0x00000000 - .long 0x3FFE0000,0x891AC73A,0xE9819B50,0x00000000 - .long 0x3FFE0000,0x9FDADC26,0x8B7A12DA,0x00000000 - .long 0x3FFE0000,0x87F78087,0xF78087F8,0x00000000 - .long 0x3FFE0000,0xA1FCFF17,0xCE733BD4,0x00000000 - .long 0x3FFE0000,0x86D90544,0x7A34ACC6,0x00000000 - .long 0x3FFE0000,0xA41A9E8F,0x5446FB9F,0x00000000 - .long 0x3FFE0000,0x85BF3761,0x2CEE3C9B,0x00000000 - .long 0x3FFE0000,0xA633CD7E,0x6771CD8B,0x00000000 - .long 0x3FFE0000,0x84A9F9C8,0x084A9F9D,0x00000000 - .long 0x3FFE0000,0xA8489E60,0x0B435A5E,0x00000000 - .long 0x3FFE0000,0x83993052,0x3FBE3368,0x00000000 - .long 0x3FFE0000,0xAA59233C,0xCCA4BD49,0x00000000 - .long 0x3FFE0000,0x828CBFBE,0xB9A020A3,0x00000000 - .long 0x3FFE0000,0xAC656DAE,0x6BCC4985,0x00000000 - .long 0x3FFE0000,0x81848DA8,0xFAF0D277,0x00000000 - .long 0x3FFE0000,0xAE6D8EE3,0x60BB2468,0x00000000 - .long 0x3FFE0000,0x80808080,0x80808081,0x00000000 - .long 0x3FFE0000,0xB07197A2,0x3C46C654,0x00000000 - - .set ADJK,L_SCR1 - - .set X,FP_SCR1 - .set XDCARE,X+2 - .set XFRAC,X+4 - - .set F,FP_SCR2 - .set FFRAC,F+4 - - .set KLOG2,FP_SCR3 - - .set SAVEU,FP_SCR4 - - | xref t_frcinx - |xref t_extdnrm - |xref t_operr - |xref t_dz - - .global slognd -slognd: -//--ENTRY POINT FOR LOG(X) FOR DENORMALIZED INPUT - - movel #-100,ADJK(%a6) // ...INPUT = 2^(ADJK) * FP0 - -//----normalize the input value by left shifting k bits (k to be determined -//----below), adjusting exponent and storing -k to ADJK -//----the value TWOTO100 is no longer needed. -//----Note that this code assumes the denormalized input is NON-ZERO. - - moveml %d2-%d7,-(%a7) // ...save some registers - movel #0x00000000,%d3 // ...D3 is exponent of smallest norm. # - movel 4(%a0),%d4 - movel 8(%a0),%d5 // ...(D4,D5) is (Hi_X,Lo_X) - clrl %d2 // ...D2 used for holding K - - tstl %d4 - bnes HiX_not0 - -HiX_0: - movel %d5,%d4 - clrl %d5 - movel #32,%d2 - clrl %d6 - bfffo %d4{#0:#32},%d6 - lsll %d6,%d4 - addl %d6,%d2 // ...(D3,D4,D5) is normalized - - movel %d3,X(%a6) - movel %d4,XFRAC(%a6) - movel %d5,XFRAC+4(%a6) - negl %d2 - movel %d2,ADJK(%a6) - fmovex X(%a6),%fp0 - moveml (%a7)+,%d2-%d7 // ...restore registers - lea X(%a6),%a0 - bras LOGBGN // ...begin regular log(X) - - -HiX_not0: - clrl %d6 - bfffo %d4{#0:#32},%d6 // ...find first 1 - movel %d6,%d2 // ...get k - lsll %d6,%d4 - movel %d5,%d7 // ...a copy of D5 - lsll %d6,%d5 - negl %d6 - addil #32,%d6 - lsrl %d6,%d7 - orl %d7,%d4 // ...(D3,D4,D5) normalized - - movel %d3,X(%a6) - movel %d4,XFRAC(%a6) - movel %d5,XFRAC+4(%a6) - negl %d2 - movel %d2,ADJK(%a6) - fmovex X(%a6),%fp0 - moveml (%a7)+,%d2-%d7 // ...restore registers - lea X(%a6),%a0 - bras LOGBGN // ...begin regular log(X) - - - .global slogn -slogn: -//--ENTRY POINT FOR LOG(X) FOR X FINITE, NON-ZERO, NOT NAN'S - - fmovex (%a0),%fp0 // ...LOAD INPUT - movel #0x00000000,ADJK(%a6) - -LOGBGN: -//--FPCR SAVED AND CLEARED, INPUT IS 2^(ADJK)*FP0, FP0 CONTAINS -//--A FINITE, NON-ZERO, NORMALIZED NUMBER. - - movel (%a0),%d0 - movew 4(%a0),%d0 - - movel (%a0),X(%a6) - movel 4(%a0),X+4(%a6) - movel 8(%a0),X+8(%a6) - - cmpil #0,%d0 // ...CHECK IF X IS NEGATIVE - blt LOGNEG // ...LOG OF NEGATIVE ARGUMENT IS INVALID - cmp2l BOUNDS1,%d0 // ...X IS POSITIVE, CHECK IF X IS NEAR 1 - bcc LOGNEAR1 // ...BOUNDS IS ROUGHLY [15/16, 17/16] - -LOGMAIN: -//--THIS SHOULD BE THE USUAL CASE, X NOT VERY CLOSE TO 1 - -//--X = 2^(K) * Y, 1 <= Y < 2. THUS, Y = 1.XXXXXXXX....XX IN BINARY. -//--WE DEFINE F = 1.XXXXXX1, I.E. FIRST 7 BITS OF Y AND ATTACH A 1. -//--THE IDEA IS THAT LOG(X) = K*LOG2 + LOG(Y) -//-- = K*LOG2 + LOG(F) + LOG(1 + (Y-F)/F). -//--NOTE THAT U = (Y-F)/F IS VERY SMALL AND THUS APPROXIMATING -//--LOG(1+U) CAN BE VERY EFFICIENT. -//--ALSO NOTE THAT THE VALUE 1/F IS STORED IN A TABLE SO THAT NO -//--DIVISION IS NEEDED TO CALCULATE (Y-F)/F. - -//--GET K, Y, F, AND ADDRESS OF 1/F. - asrl #8,%d0 - asrl #8,%d0 // ...SHIFTED 16 BITS, BIASED EXPO. OF X - subil #0x3FFF,%d0 // ...THIS IS K - addl ADJK(%a6),%d0 // ...ADJUST K, ORIGINAL INPUT MAY BE DENORM. - lea LOGTBL,%a0 // ...BASE ADDRESS OF 1/F AND LOG(F) - fmovel %d0,%fp1 // ...CONVERT K TO FLOATING-POINT FORMAT - -//--WHILE THE CONVERSION IS GOING ON, WE GET F AND ADDRESS OF 1/F - movel #0x3FFF0000,X(%a6) // ...X IS NOW Y, I.E. 2^(-K)*X - movel XFRAC(%a6),FFRAC(%a6) - andil #0xFE000000,FFRAC(%a6) // ...FIRST 7 BITS OF Y - oril #0x01000000,FFRAC(%a6) // ...GET F: ATTACH A 1 AT THE EIGHTH BIT - movel FFRAC(%a6),%d0 // ...READY TO GET ADDRESS OF 1/F - andil #0x7E000000,%d0 - asrl #8,%d0 - asrl #8,%d0 - asrl #4,%d0 // ...SHIFTED 20, D0 IS THE DISPLACEMENT - addal %d0,%a0 // ...A0 IS THE ADDRESS FOR 1/F - - fmovex X(%a6),%fp0 - movel #0x3fff0000,F(%a6) - clrl F+8(%a6) - fsubx F(%a6),%fp0 // ...Y-F - fmovemx %fp2-%fp2/%fp3,-(%sp) // ...SAVE FP2 WHILE FP0 IS NOT READY -//--SUMMARY: FP0 IS Y-F, A0 IS ADDRESS OF 1/F, FP1 IS K -//--REGISTERS SAVED: FPCR, FP1, FP2 - -LP1CONT1: -//--AN RE-ENTRY POINT FOR LOGNP1 - fmulx (%a0),%fp0 // ...FP0 IS U = (Y-F)/F - fmulx LOGOF2,%fp1 // ...GET K*LOG2 WHILE FP0 IS NOT READY - fmovex %fp0,%fp2 - fmulx %fp2,%fp2 // ...FP2 IS V=U*U - fmovex %fp1,KLOG2(%a6) // ...PUT K*LOG2 IN MEMORY, FREE FP1 - -//--LOG(1+U) IS APPROXIMATED BY -//--U + V*(A1+U*(A2+U*(A3+U*(A4+U*(A5+U*A6))))) WHICH IS -//--[U + V*(A1+V*(A3+V*A5))] + [U*V*(A2+V*(A4+V*A6))] - - fmovex %fp2,%fp3 - fmovex %fp2,%fp1 - - fmuld LOGA6,%fp1 // ...V*A6 - fmuld LOGA5,%fp2 // ...V*A5 - - faddd LOGA4,%fp1 // ...A4+V*A6 - faddd LOGA3,%fp2 // ...A3+V*A5 - - fmulx %fp3,%fp1 // ...V*(A4+V*A6) - fmulx %fp3,%fp2 // ...V*(A3+V*A5) - - faddd LOGA2,%fp1 // ...A2+V*(A4+V*A6) - faddd LOGA1,%fp2 // ...A1+V*(A3+V*A5) - - fmulx %fp3,%fp1 // ...V*(A2+V*(A4+V*A6)) - addal #16,%a0 // ...ADDRESS OF LOG(F) - fmulx %fp3,%fp2 // ...V*(A1+V*(A3+V*A5)), FP3 RELEASED - - fmulx %fp0,%fp1 // ...U*V*(A2+V*(A4+V*A6)) - faddx %fp2,%fp0 // ...U+V*(A1+V*(A3+V*A5)), FP2 RELEASED - - faddx (%a0),%fp1 // ...LOG(F)+U*V*(A2+V*(A4+V*A6)) - fmovemx (%sp)+,%fp2-%fp2/%fp3 // ...RESTORE FP2 - faddx %fp1,%fp0 // ...FP0 IS LOG(F) + LOG(1+U) - - fmovel %d1,%fpcr - faddx KLOG2(%a6),%fp0 // ...FINAL ADD - bra t_frcinx - - -LOGNEAR1: -//--REGISTERS SAVED: FPCR, FP1. FP0 CONTAINS THE INPUT. - fmovex %fp0,%fp1 - fsubs one,%fp1 // ...FP1 IS X-1 - fadds one,%fp0 // ...FP0 IS X+1 - faddx %fp1,%fp1 // ...FP1 IS 2(X-1) -//--LOG(X) = LOG(1+U/2)-LOG(1-U/2) WHICH IS AN ODD POLYNOMIAL -//--IN U, U = 2(X-1)/(X+1) = FP1/FP0 - -LP1CONT2: -//--THIS IS AN RE-ENTRY POINT FOR LOGNP1 - fdivx %fp0,%fp1 // ...FP1 IS U - fmovemx %fp2-%fp2/%fp3,-(%sp) // ...SAVE FP2 -//--REGISTERS SAVED ARE NOW FPCR,FP1,FP2,FP3 -//--LET V=U*U, W=V*V, CALCULATE -//--U + U*V*(B1 + V*(B2 + V*(B3 + V*(B4 + V*B5)))) BY -//--U + U*V*( [B1 + W*(B3 + W*B5)] + [V*(B2 + W*B4)] ) - fmovex %fp1,%fp0 - fmulx %fp0,%fp0 // ...FP0 IS V - fmovex %fp1,SAVEU(%a6) // ...STORE U IN MEMORY, FREE FP1 - fmovex %fp0,%fp1 - fmulx %fp1,%fp1 // ...FP1 IS W - - fmoved LOGB5,%fp3 - fmoved LOGB4,%fp2 - - fmulx %fp1,%fp3 // ...W*B5 - fmulx %fp1,%fp2 // ...W*B4 - - faddd LOGB3,%fp3 // ...B3+W*B5 - faddd LOGB2,%fp2 // ...B2+W*B4 - - fmulx %fp3,%fp1 // ...W*(B3+W*B5), FP3 RELEASED - - fmulx %fp0,%fp2 // ...V*(B2+W*B4) - - faddd LOGB1,%fp1 // ...B1+W*(B3+W*B5) - fmulx SAVEU(%a6),%fp0 // ...FP0 IS U*V - - faddx %fp2,%fp1 // ...B1+W*(B3+W*B5) + V*(B2+W*B4), FP2 RELEASED - fmovemx (%sp)+,%fp2-%fp2/%fp3 // ...FP2 RESTORED - - fmulx %fp1,%fp0 // ...U*V*( [B1+W*(B3+W*B5)] + [V*(B2+W*B4)] ) - - fmovel %d1,%fpcr - faddx SAVEU(%a6),%fp0 - bra t_frcinx - rts - -LOGNEG: -//--REGISTERS SAVED FPCR. LOG(-VE) IS INVALID - bra t_operr - - .global slognp1d -slognp1d: -//--ENTRY POINT FOR LOG(1+Z) FOR DENORMALIZED INPUT -// Simply return the denorm - - bra t_extdnrm - - .global slognp1 -slognp1: -//--ENTRY POINT FOR LOG(1+X) FOR X FINITE, NON-ZERO, NOT NAN'S - - fmovex (%a0),%fp0 // ...LOAD INPUT - fabsx %fp0 //test magnitude - fcmpx LTHOLD,%fp0 //compare with min threshold - fbgt LP1REAL //if greater, continue - fmovel #0,%fpsr //clr N flag from compare - fmovel %d1,%fpcr - fmovex (%a0),%fp0 //return signed argument - bra t_frcinx - -LP1REAL: - fmovex (%a0),%fp0 // ...LOAD INPUT - movel #0x00000000,ADJK(%a6) - fmovex %fp0,%fp1 // ...FP1 IS INPUT Z - fadds one,%fp0 // ...X := ROUND(1+Z) - fmovex %fp0,X(%a6) - movew XFRAC(%a6),XDCARE(%a6) - movel X(%a6),%d0 - cmpil #0,%d0 - ble LP1NEG0 // ...LOG OF ZERO OR -VE - cmp2l BOUNDS2,%d0 - bcs LOGMAIN // ...BOUNDS2 IS [1/2,3/2] -//--IF 1+Z > 3/2 OR 1+Z < 1/2, THEN X, WHICH IS ROUNDING 1+Z, -//--CONTAINS AT LEAST 63 BITS OF INFORMATION OF Z. IN THAT CASE, -//--SIMPLY INVOKE LOG(X) FOR LOG(1+Z). - -LP1NEAR1: -//--NEXT SEE IF EXP(-1/16) < X < EXP(1/16) - cmp2l BOUNDS1,%d0 - bcss LP1CARE - -LP1ONE16: -//--EXP(-1/16) < X < EXP(1/16). LOG(1+Z) = LOG(1+U/2) - LOG(1-U/2) -//--WHERE U = 2Z/(2+Z) = 2Z/(1+X). - faddx %fp1,%fp1 // ...FP1 IS 2Z - fadds one,%fp0 // ...FP0 IS 1+X -//--U = FP1/FP0 - bra LP1CONT2 - -LP1CARE: -//--HERE WE USE THE USUAL TABLE DRIVEN APPROACH. CARE HAS TO BE -//--TAKEN BECAUSE 1+Z CAN HAVE 67 BITS OF INFORMATION AND WE MUST -//--PRESERVE ALL THE INFORMATION. BECAUSE 1+Z IS IN [1/2,3/2], -//--THERE ARE ONLY TWO CASES. -//--CASE 1: 1+Z < 1, THEN K = -1 AND Y-F = (2-F) + 2Z -//--CASE 2: 1+Z > 1, THEN K = 0 AND Y-F = (1-F) + Z -//--ON RETURNING TO LP1CONT1, WE MUST HAVE K IN FP1, ADDRESS OF -//--(1/F) IN A0, Y-F IN FP0, AND FP2 SAVED. - - movel XFRAC(%a6),FFRAC(%a6) - andil #0xFE000000,FFRAC(%a6) - oril #0x01000000,FFRAC(%a6) // ...F OBTAINED - cmpil #0x3FFF8000,%d0 // ...SEE IF 1+Z > 1 - bges KISZERO - -KISNEG1: - fmoves TWO,%fp0 - movel #0x3fff0000,F(%a6) - clrl F+8(%a6) - fsubx F(%a6),%fp0 // ...2-F - movel FFRAC(%a6),%d0 - andil #0x7E000000,%d0 - asrl #8,%d0 - asrl #8,%d0 - asrl #4,%d0 // ...D0 CONTAINS DISPLACEMENT FOR 1/F - faddx %fp1,%fp1 // ...GET 2Z - fmovemx %fp2-%fp2/%fp3,-(%sp) // ...SAVE FP2 - faddx %fp1,%fp0 // ...FP0 IS Y-F = (2-F)+2Z - lea LOGTBL,%a0 // ...A0 IS ADDRESS OF 1/F - addal %d0,%a0 - fmoves negone,%fp1 // ...FP1 IS K = -1 - bra LP1CONT1 - -KISZERO: - fmoves one,%fp0 - movel #0x3fff0000,F(%a6) - clrl F+8(%a6) - fsubx F(%a6),%fp0 // ...1-F - movel FFRAC(%a6),%d0 - andil #0x7E000000,%d0 - asrl #8,%d0 - asrl #8,%d0 - asrl #4,%d0 - faddx %fp1,%fp0 // ...FP0 IS Y-F - fmovemx %fp2-%fp2/%fp3,-(%sp) // ...FP2 SAVED - lea LOGTBL,%a0 - addal %d0,%a0 // ...A0 IS ADDRESS OF 1/F - fmoves zero,%fp1 // ...FP1 IS K = 0 - bra LP1CONT1 - -LP1NEG0: -//--FPCR SAVED. D0 IS X IN COMPACT FORM. - cmpil #0,%d0 - blts LP1NEG -LP1ZERO: - fmoves negone,%fp0 - - fmovel %d1,%fpcr - bra t_dz - -LP1NEG: - fmoves zero,%fp0 - - fmovel %d1,%fpcr - bra t_operr - - |end diff --git a/c/src/lib/libcpu/m68k/m68040/fpsp/smovecr.S b/c/src/lib/libcpu/m68k/m68040/fpsp/smovecr.S deleted file mode 100644 index a618aac311..0000000000 --- a/c/src/lib/libcpu/m68k/m68040/fpsp/smovecr.S +++ /dev/null @@ -1,164 +0,0 @@ -#include "fpsp-namespace.h" -// -// -// smovecr.sa 3.1 12/10/90 -// -// The entry point sMOVECR returns the constant at the -// offset given in the instruction field. -// -// Input: An offset in the instruction word. -// -// Output: The constant rounded to the user's rounding -// mode unchecked for overflow. -// -// Modified: fp0. -// -// -// Copyright (C) Motorola, Inc. 1990 -// All Rights Reserved -// -// THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA -// The copyright notice above does not evidence any -// actual or intended publication of such source code. - -//SMOVECR idnt 2,1 | Motorola 040 Floating Point Software Package - - |section 8 - -#include "fpsp.defs" - - |xref nrm_set - |xref round - |xref PIRN - |xref PIRZRM - |xref PIRP - |xref SMALRN - |xref SMALRZRM - |xref SMALRP - |xref BIGRN - |xref BIGRZRM - |xref BIGRP - -FZERO: .long 00000000 -// -// FMOVECR -// - .global smovcr -smovcr: - bfextu CMDREG1B(%a6){#9:#7},%d0 //get offset - bfextu USER_FPCR(%a6){#26:#2},%d1 //get rmode -// -// check range of offset -// - tstb %d0 //if zero, offset is to pi - beqs PI_TBL //it is pi - cmpib #0x0a,%d0 //check range $01 - $0a - bles Z_VAL //if in this range, return zero - cmpib #0x0e,%d0 //check range $0b - $0e - bles SM_TBL //valid constants in this range - cmpib #0x2f,%d0 //check range $10 - $2f - bles Z_VAL //if in this range, return zero - cmpib #0x3f,%d0 //check range $30 - $3f - ble BG_TBL //valid constants in this range -Z_VAL: - fmoves FZERO,%fp0 - rts -PI_TBL: - tstb %d1 //offset is zero, check for rmode - beqs PI_RN //if zero, rn mode - cmpib #0x3,%d1 //check for rp - beqs PI_RP //if 3, rp mode -PI_RZRM: - leal PIRZRM,%a0 //rmode is rz or rm, load PIRZRM in a0 - bra set_finx -PI_RN: - leal PIRN,%a0 //rmode is rn, load PIRN in a0 - bra set_finx -PI_RP: - leal PIRP,%a0 //rmode is rp, load PIRP in a0 - bra set_finx -SM_TBL: - subil #0xb,%d0 //make offset in 0 - 4 range - tstb %d1 //check for rmode - beqs SM_RN //if zero, rn mode - cmpib #0x3,%d1 //check for rp - beqs SM_RP //if 3, rp mode -SM_RZRM: - leal SMALRZRM,%a0 //rmode is rz or rm, load SMRZRM in a0 - cmpib #0x2,%d0 //check if result is inex - ble set_finx //if 0 - 2, it is inexact - bra no_finx //if 3, it is exact -SM_RN: - leal SMALRN,%a0 //rmode is rn, load SMRN in a0 - cmpib #0x2,%d0 //check if result is inex - ble set_finx //if 0 - 2, it is inexact - bra no_finx //if 3, it is exact -SM_RP: - leal SMALRP,%a0 //rmode is rp, load SMRP in a0 - cmpib #0x2,%d0 //check if result is inex - ble set_finx //if 0 - 2, it is inexact - bra no_finx //if 3, it is exact -BG_TBL: - subil #0x30,%d0 //make offset in 0 - f range - tstb %d1 //check for rmode - beqs BG_RN //if zero, rn mode - cmpib #0x3,%d1 //check for rp - beqs BG_RP //if 3, rp mode -BG_RZRM: - leal BIGRZRM,%a0 //rmode is rz or rm, load BGRZRM in a0 - cmpib #0x1,%d0 //check if result is inex - ble set_finx //if 0 - 1, it is inexact - cmpib #0x7,%d0 //second check - ble no_finx //if 0 - 7, it is exact - bra set_finx //if 8 - f, it is inexact -BG_RN: - leal BIGRN,%a0 //rmode is rn, load BGRN in a0 - cmpib #0x1,%d0 //check if result is inex - ble set_finx //if 0 - 1, it is inexact - cmpib #0x7,%d0 //second check - ble no_finx //if 0 - 7, it is exact - bra set_finx //if 8 - f, it is inexact -BG_RP: - leal BIGRP,%a0 //rmode is rp, load SMRP in a0 - cmpib #0x1,%d0 //check if result is inex - ble set_finx //if 0 - 1, it is inexact - cmpib #0x7,%d0 //second check - ble no_finx //if 0 - 7, it is exact -// bra set_finx ;if 8 - f, it is inexact -set_finx: - orl #inx2a_mask,USER_FPSR(%a6) //set inex2/ainex -no_finx: - mulul #12,%d0 //use offset to point into tables - movel %d1,L_SCR1(%a6) //load mode for round call - bfextu USER_FPCR(%a6){#24:#2},%d1 //get precision - tstl %d1 //check if extended precision -// -// Precision is extended -// - bnes not_ext //if extended, do not call round - fmovemx (%a0,%d0),%fp0-%fp0 //return result in fp0 - rts -// -// Precision is single or double -// -not_ext: - swap %d1 //rnd prec in upper word of d1 - addl L_SCR1(%a6),%d1 //merge rmode in low word of d1 - movel (%a0,%d0),FP_SCR1(%a6) //load first word to temp storage - movel 4(%a0,%d0),FP_SCR1+4(%a6) //load second word - movel 8(%a0,%d0),FP_SCR1+8(%a6) //load third word - clrl %d0 //clear g,r,s - lea FP_SCR1(%a6),%a0 - btstb #sign_bit,LOCAL_EX(%a0) - sne LOCAL_SGN(%a0) //convert to internal ext. format - - bsr round //go round the mantissa - - bfclr LOCAL_SGN(%a0){#0:#8} //convert back to IEEE ext format - beqs fin_fcr - bsetb #sign_bit,LOCAL_EX(%a0) -fin_fcr: - fmovemx (%a0),%fp0-%fp0 - rts - - |end diff --git a/c/src/lib/libcpu/m68k/m68040/fpsp/srem_mod.S b/c/src/lib/libcpu/m68k/m68040/fpsp/srem_mod.S deleted file mode 100644 index 9453c9b7d0..0000000000 --- a/c/src/lib/libcpu/m68k/m68040/fpsp/srem_mod.S +++ /dev/null @@ -1,424 +0,0 @@ -#include "fpsp-namespace.h" -// -// -// srem_mod.sa 3.1 12/10/90 -// -// The entry point sMOD computes the floating point MOD of the -// input values X and Y. The entry point sREM computes the floating -// point (IEEE) REM of the input values X and Y. -// -// INPUT -// ----- -// Double-extended value Y is pointed to by address in register -// A0. Double-extended value X is located in -12(A0). The values -// of X and Y are both nonzero and finite; although either or both -// of them can be denormalized. The special cases of zeros, NaNs, -// and infinities are handled elsewhere. -// -// OUTPUT -// ------ -// FREM(X,Y) or FMOD(X,Y), depending on entry point. -// -// ALGORITHM -// --------- -// -// Step 1. Save and strip signs of X and Y: signX := sign(X), -// signY := sign(Y), X := |X|, Y := |Y|, -// signQ := signX EOR signY. Record whether MOD or REM -// is requested. -// -// Step 2. Set L := expo(X)-expo(Y), k := 0, Q := 0. -// If (L < 0) then -// R := X, go to Step 4. -// else -// R := 2^(-L)X, j := L. -// endif -// -// Step 3. Perform MOD(X,Y) -// 3.1 If R = Y, go to Step 9. -// 3.2 If R > Y, then { R := R - Y, Q := Q + 1} -// 3.3 If j = 0, go to Step 4. -// 3.4 k := k + 1, j := j - 1, Q := 2Q, R := 2R. Go to -// Step 3.1. -// -// Step 4. At this point, R = X - QY = MOD(X,Y). Set -// Last_Subtract := false (used in Step 7 below). If -// MOD is requested, go to Step 6. -// -// Step 5. R = MOD(X,Y), but REM(X,Y) is requested. -// 5.1 If R < Y/2, then R = MOD(X,Y) = REM(X,Y). Go to -// Step 6. -// 5.2 If R > Y/2, then { set Last_Subtract := true, -// Q := Q + 1, Y := signY*Y }. Go to Step 6. -// 5.3 This is the tricky case of R = Y/2. If Q is odd, -// then { Q := Q + 1, signX := -signX }. -// -// Step 6. R := signX*R. -// -// Step 7. If Last_Subtract = true, R := R - Y. -// -// Step 8. Return signQ, last 7 bits of Q, and R as required. -// -// Step 9. At this point, R = 2^(-j)*X - Q Y = Y. Thus, -// X = 2^(j)*(Q+1)Y. set Q := 2^(j)*(Q+1), -// R := 0. Return signQ, last 7 bits of Q, and R. -// -// - -// Copyright (C) Motorola, Inc. 1990 -// All Rights Reserved -// -// THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA -// The copyright notice above does not evidence any -// actual or intended publication of such source code. - -SREM_MOD: //idnt 2,1 | Motorola 040 Floating Point Software Package - - |section 8 - -#include "fpsp.defs" - - .set Mod_Flag,L_SCR3 - .set SignY,FP_SCR3+4 - .set SignX,FP_SCR3+8 - .set SignQ,FP_SCR3+12 - .set Sc_Flag,FP_SCR4 - - .set Y,FP_SCR1 - .set Y_Hi,Y+4 - .set Y_Lo,Y+8 - - .set R,FP_SCR2 - .set R_Hi,R+4 - .set R_Lo,R+8 - - -Scale: .long 0x00010000,0x80000000,0x00000000,0x00000000 - - |xref t_avoid_unsupp - - .global smod -smod: - - movel #0,Mod_Flag(%a6) - bras Mod_Rem - - .global srem -srem: - - movel #1,Mod_Flag(%a6) - -Mod_Rem: -//..Save sign of X and Y - moveml %d2-%d7,-(%a7) // ...save data registers - movew (%a0),%d3 - movew %d3,SignY(%a6) - andil #0x00007FFF,%d3 // ...Y := |Y| - -// - movel 4(%a0),%d4 - movel 8(%a0),%d5 // ...(D3,D4,D5) is |Y| - - tstl %d3 - bnes Y_Normal - - movel #0x00003FFE,%d3 // ...$3FFD + 1 - tstl %d4 - bnes HiY_not0 - -HiY_0: - movel %d5,%d4 - clrl %d5 - subil #32,%d3 - clrl %d6 - bfffo %d4{#0:#32},%d6 - lsll %d6,%d4 - subl %d6,%d3 // ...(D3,D4,D5) is normalized -// ...with bias $7FFD - bras Chk_X - -HiY_not0: - clrl %d6 - bfffo %d4{#0:#32},%d6 - subl %d6,%d3 - lsll %d6,%d4 - movel %d5,%d7 // ...a copy of D5 - lsll %d6,%d5 - negl %d6 - addil #32,%d6 - lsrl %d6,%d7 - orl %d7,%d4 // ...(D3,D4,D5) normalized -// ...with bias $7FFD - bras Chk_X - -Y_Normal: - addil #0x00003FFE,%d3 // ...(D3,D4,D5) normalized -// ...with bias $7FFD - -Chk_X: - movew -12(%a0),%d0 - movew %d0,SignX(%a6) - movew SignY(%a6),%d1 - eorl %d0,%d1 - andil #0x00008000,%d1 - movew %d1,SignQ(%a6) // ...sign(Q) obtained - andil #0x00007FFF,%d0 - movel -8(%a0),%d1 - movel -4(%a0),%d2 // ...(D0,D1,D2) is |X| - tstl %d0 - bnes X_Normal - movel #0x00003FFE,%d0 - tstl %d1 - bnes HiX_not0 - -HiX_0: - movel %d2,%d1 - clrl %d2 - subil #32,%d0 - clrl %d6 - bfffo %d1{#0:#32},%d6 - lsll %d6,%d1 - subl %d6,%d0 // ...(D0,D1,D2) is normalized -// ...with bias $7FFD - bras Init - -HiX_not0: - clrl %d6 - bfffo %d1{#0:#32},%d6 - subl %d6,%d0 - lsll %d6,%d1 - movel %d2,%d7 // ...a copy of D2 - lsll %d6,%d2 - negl %d6 - addil #32,%d6 - lsrl %d6,%d7 - orl %d7,%d1 // ...(D0,D1,D2) normalized -// ...with bias $7FFD - bras Init - -X_Normal: - addil #0x00003FFE,%d0 // ...(D0,D1,D2) normalized -// ...with bias $7FFD - -Init: -// - movel %d3,L_SCR1(%a6) // ...save biased expo(Y) - movel %d0,L_SCR2(%a6) //save d0 - subl %d3,%d0 // ...L := expo(X)-expo(Y) -// Move.L D0,L ...D0 is j - clrl %d6 // ...D6 := carry <- 0 - clrl %d3 // ...D3 is Q - moveal #0,%a1 // ...A1 is k; j+k=L, Q=0 - -//..(Carry,D1,D2) is R - tstl %d0 - bges Mod_Loop - -//..expo(X) < expo(Y). Thus X = mod(X,Y) -// - movel L_SCR2(%a6),%d0 //restore d0 - bra Get_Mod - -//..At this point R = 2^(-L)X; Q = 0; k = 0; and k+j = L - - -Mod_Loop: - tstl %d6 // ...test carry bit - bgts R_GT_Y - -//..At this point carry = 0, R = (D1,D2), Y = (D4,D5) - cmpl %d4,%d1 // ...compare hi(R) and hi(Y) - bnes R_NE_Y - cmpl %d5,%d2 // ...compare lo(R) and lo(Y) - bnes R_NE_Y - -//..At this point, R = Y - bra Rem_is_0 - -R_NE_Y: -//..use the borrow of the previous compare - bcss R_LT_Y // ...borrow is set iff R < Y - -R_GT_Y: -//..If Carry is set, then Y < (Carry,D1,D2) < 2Y. Otherwise, Carry = 0 -//..and Y < (D1,D2) < 2Y. Either way, perform R - Y - subl %d5,%d2 // ...lo(R) - lo(Y) - subxl %d4,%d1 // ...hi(R) - hi(Y) - clrl %d6 // ...clear carry - addql #1,%d3 // ...Q := Q + 1 - -R_LT_Y: -//..At this point, Carry=0, R < Y. R = 2^(k-L)X - QY; k+j = L; j >= 0. - tstl %d0 // ...see if j = 0. - beqs PostLoop - - addl %d3,%d3 // ...Q := 2Q - addl %d2,%d2 // ...lo(R) = 2lo(R) - roxll #1,%d1 // ...hi(R) = 2hi(R) + carry - scs %d6 // ...set Carry if 2(R) overflows - addql #1,%a1 // ...k := k+1 - subql #1,%d0 // ...j := j - 1 -//..At this point, R=(Carry,D1,D2) = 2^(k-L)X - QY, j+k=L, j >= 0, R < 2Y. - - bras Mod_Loop - -PostLoop: -//..k = L, j = 0, Carry = 0, R = (D1,D2) = X - QY, R < Y. - -//..normalize R. - movel L_SCR1(%a6),%d0 // ...new biased expo of R - tstl %d1 - bnes HiR_not0 - -HiR_0: - movel %d2,%d1 - clrl %d2 - subil #32,%d0 - clrl %d6 - bfffo %d1{#0:#32},%d6 - lsll %d6,%d1 - subl %d6,%d0 // ...(D0,D1,D2) is normalized -// ...with bias $7FFD - bras Get_Mod - -HiR_not0: - clrl %d6 - bfffo %d1{#0:#32},%d6 - bmis Get_Mod // ...already normalized - subl %d6,%d0 - lsll %d6,%d1 - movel %d2,%d7 // ...a copy of D2 - lsll %d6,%d2 - negl %d6 - addil #32,%d6 - lsrl %d6,%d7 - orl %d7,%d1 // ...(D0,D1,D2) normalized - -// -Get_Mod: - cmpil #0x000041FE,%d0 - bges No_Scale -Do_Scale: - movew %d0,R(%a6) - clrw R+2(%a6) - movel %d1,R_Hi(%a6) - movel %d2,R_Lo(%a6) - movel L_SCR1(%a6),%d6 - movew %d6,Y(%a6) - clrw Y+2(%a6) - movel %d4,Y_Hi(%a6) - movel %d5,Y_Lo(%a6) - fmovex R(%a6),%fp0 // ...no exception - movel #1,Sc_Flag(%a6) - bras ModOrRem -No_Scale: - movel %d1,R_Hi(%a6) - movel %d2,R_Lo(%a6) - subil #0x3FFE,%d0 - movew %d0,R(%a6) - clrw R+2(%a6) - movel L_SCR1(%a6),%d6 - subil #0x3FFE,%d6 - movel %d6,L_SCR1(%a6) - fmovex R(%a6),%fp0 - movew %d6,Y(%a6) - movel %d4,Y_Hi(%a6) - movel %d5,Y_Lo(%a6) - movel #0,Sc_Flag(%a6) - -// - - -ModOrRem: - movel Mod_Flag(%a6),%d6 - beqs Fix_Sign - - movel L_SCR1(%a6),%d6 // ...new biased expo(Y) - subql #1,%d6 // ...biased expo(Y/2) - cmpl %d6,%d0 - blts Fix_Sign - bgts Last_Sub - - cmpl %d4,%d1 - bnes Not_EQ - cmpl %d5,%d2 - bnes Not_EQ - bra Tie_Case - -Not_EQ: - bcss Fix_Sign - -Last_Sub: -// - fsubx Y(%a6),%fp0 // ...no exceptions - addql #1,%d3 // ...Q := Q + 1 - -// - -Fix_Sign: -//..Get sign of X - movew SignX(%a6),%d6 - bges Get_Q - fnegx %fp0 - -//..Get Q -// -Get_Q: - clrl %d6 - movew SignQ(%a6),%d6 // ...D6 is sign(Q) - movel #8,%d7 - lsrl %d7,%d6 - andil #0x0000007F,%d3 // ...7 bits of Q - orl %d6,%d3 // ...sign and bits of Q - swap %d3 - fmovel %fpsr,%d6 - andil #0xFF00FFFF,%d6 - orl %d3,%d6 - fmovel %d6,%fpsr // ...put Q in fpsr - -// -Restore: - moveml (%a7)+,%d2-%d7 - fmovel USER_FPCR(%a6),%fpcr - movel Sc_Flag(%a6),%d0 - beqs Finish - fmulx Scale(%pc),%fp0 // ...may cause underflow - bra t_avoid_unsupp //check for denorm as a -// ;result of the scaling - -Finish: - fmovex %fp0,%fp0 //capture exceptions & round - rts - -Rem_is_0: -//..R = 2^(-j)X - Q Y = Y, thus R = 0 and quotient = 2^j (Q+1) - addql #1,%d3 - cmpil #8,%d0 // ...D0 is j - bges Q_Big - - lsll %d0,%d3 - bras Set_R_0 - -Q_Big: - clrl %d3 - -Set_R_0: - fmoves #0x00000000,%fp0 - movel #0,Sc_Flag(%a6) - bra Fix_Sign - -Tie_Case: -//..Check parity of Q - movel %d3,%d6 - andil #0x00000001,%d6 - tstl %d6 - beq Fix_Sign // ...Q is even - -//..Q is odd, Q := Q + 1, signX := -signX - addql #1,%d3 - movew SignX(%a6),%d6 - eoril #0x00008000,%d6 - movew %d6,SignX(%a6) - bra Fix_Sign - - //end diff --git a/c/src/lib/libcpu/m68k/m68040/fpsp/ssin.S b/c/src/lib/libcpu/m68k/m68040/fpsp/ssin.S deleted file mode 100644 index 2fa14cfaac..0000000000 --- a/c/src/lib/libcpu/m68k/m68040/fpsp/ssin.S +++ /dev/null @@ -1,748 +0,0 @@ -#include "fpsp-namespace.h" -// -// -// ssin.sa 3.3 7/29/91 -// -// The entry point sSIN computes the sine of an input argument -// sCOS computes the cosine, and sSINCOS computes both. The -// corresponding entry points with a "d" computes the same -// corresponding function values for denormalized inputs. -// -// Input: Double-extended number X in location pointed to -// by address register a0. -// -// Output: The function value sin(X) or cos(X) returned in Fp0 if SIN or -// COS is requested. Otherwise, for SINCOS, sin(X) is returned -// in Fp0, and cos(X) is returned in Fp1. -// -// Modifies: Fp0 for SIN or COS; both Fp0 and Fp1 for SINCOS. -// -// Accuracy and Monotonicity: The returned result is within 1 ulp in -// 64 significant bit, i.e. within 0.5001 ulp to 53 bits if the -// result is subsequently rounded to double precision. The -// result is provably monotonic in double precision. -// -// Speed: The programs sSIN and sCOS take approximately 150 cycles for -// input argument X such that |X| < 15Pi, which is the the usual -// situation. The speed for sSINCOS is approximately 190 cycles. -// -// Algorithm: -// -// SIN and COS: -// 1. If SIN is invoked, set AdjN := 0; otherwise, set AdjN := 1. -// -// 2. If |X| >= 15Pi or |X| < 2**(-40), go to 7. -// -// 3. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let -// k = N mod 4, so in particular, k = 0,1,2,or 3. Overwrite -// k by k := k + AdjN. -// -// 4. If k is even, go to 6. -// -// 5. (k is odd) Set j := (k-1)/2, sgn := (-1)**j. Return sgn*cos(r) -// where cos(r) is approximated by an even polynomial in r, -// 1 + r*r*(B1+s*(B2+ ... + s*B8)), s = r*r. -// Exit. -// -// 6. (k is even) Set j := k/2, sgn := (-1)**j. Return sgn*sin(r) -// where sin(r) is approximated by an odd polynomial in r -// r + r*s*(A1+s*(A2+ ... + s*A7)), s = r*r. -// Exit. -// -// 7. If |X| > 1, go to 9. -// -// 8. (|X|<2**(-40)) If SIN is invoked, return X; otherwise return 1. -// -// 9. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi, go back to 3. -// -// SINCOS: -// 1. If |X| >= 15Pi or |X| < 2**(-40), go to 6. -// -// 2. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let -// k = N mod 4, so in particular, k = 0,1,2,or 3. -// -// 3. If k is even, go to 5. -// -// 4. (k is odd) Set j1 := (k-1)/2, j2 := j1 (EOR) (k mod 2), i.e. -// j1 exclusive or with the l.s.b. of k. -// sgn1 := (-1)**j1, sgn2 := (-1)**j2. -// SIN(X) = sgn1 * cos(r) and COS(X) = sgn2*sin(r) where -// sin(r) and cos(r) are computed as odd and even polynomials -// in r, respectively. Exit -// -// 5. (k is even) Set j1 := k/2, sgn1 := (-1)**j1. -// SIN(X) = sgn1 * sin(r) and COS(X) = sgn1*cos(r) where -// sin(r) and cos(r) are computed as odd and even polynomials -// in r, respectively. Exit -// -// 6. If |X| > 1, go to 8. -// -// 7. (|X|<2**(-40)) SIN(X) = X and COS(X) = 1. Exit. -// -// 8. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi, go back to 2. -// - -// Copyright (C) Motorola, Inc. 1990 -// All Rights Reserved -// -// THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA -// The copyright notice above does not evidence any -// actual or intended publication of such source code. - -//SSIN idnt 2,1 | Motorola 040 Floating Point Software Package - - |section 8 - -#include "fpsp.defs" - -BOUNDS1: .long 0x3FD78000,0x4004BC7E -TWOBYPI: .long 0x3FE45F30,0x6DC9C883 - -SINA7: .long 0xBD6AAA77,0xCCC994F5 -SINA6: .long 0x3DE61209,0x7AAE8DA1 - -SINA5: .long 0xBE5AE645,0x2A118AE4 -SINA4: .long 0x3EC71DE3,0xA5341531 - -SINA3: .long 0xBF2A01A0,0x1A018B59,0x00000000,0x00000000 - -SINA2: .long 0x3FF80000,0x88888888,0x888859AF,0x00000000 - -SINA1: .long 0xBFFC0000,0xAAAAAAAA,0xAAAAAA99,0x00000000 - -COSB8: .long 0x3D2AC4D0,0xD6011EE3 -COSB7: .long 0xBDA9396F,0x9F45AC19 - -COSB6: .long 0x3E21EED9,0x0612C972 -COSB5: .long 0xBE927E4F,0xB79D9FCF - -COSB4: .long 0x3EFA01A0,0x1A01D423,0x00000000,0x00000000 - -COSB3: .long 0xBFF50000,0xB60B60B6,0x0B61D438,0x00000000 - -COSB2: .long 0x3FFA0000,0xAAAAAAAA,0xAAAAAB5E -COSB1: .long 0xBF000000 - -INVTWOPI: .long 0x3FFC0000,0xA2F9836E,0x4E44152A - -TWOPI1: .long 0x40010000,0xC90FDAA2,0x00000000,0x00000000 -TWOPI2: .long 0x3FDF0000,0x85A308D4,0x00000000,0x00000000 - - |xref PITBL - - .set INARG,FP_SCR4 - - .set X,FP_SCR5 - .set XDCARE,X+2 - .set XFRAC,X+4 - - .set RPRIME,FP_SCR1 - .set SPRIME,FP_SCR2 - - .set POSNEG1,L_SCR1 - .set TWOTO63,L_SCR1 - - .set ENDFLAG,L_SCR2 - .set N,L_SCR2 - - .set ADJN,L_SCR3 - - | xref t_frcinx - |xref t_extdnrm - |xref sto_cos - - .global ssind -ssind: -//--SIN(X) = X FOR DENORMALIZED X - bra t_extdnrm - - .global scosd -scosd: -//--COS(X) = 1 FOR DENORMALIZED X - - fmoves #0x3F800000,%fp0 -// -// 9D25B Fix: Sometimes the previous fmove.s sets fpsr bits -// - fmovel #0,%fpsr -// - bra t_frcinx - - .global ssin -ssin: -//--SET ADJN TO 0 - movel #0,ADJN(%a6) - bras SINBGN - - .global scos -scos: -//--SET ADJN TO 1 - movel #1,ADJN(%a6) - -SINBGN: -//--SAVE FPCR, FP1. CHECK IF |X| IS TOO SMALL OR LARGE - - fmovex (%a0),%fp0 // ...LOAD INPUT - - movel (%a0),%d0 - movew 4(%a0),%d0 - fmovex %fp0,X(%a6) - andil #0x7FFFFFFF,%d0 // ...COMPACTIFY X - - cmpil #0x3FD78000,%d0 // ...|X| >= 2**(-40)? - bges SOK1 - bra SINSM - -SOK1: - cmpil #0x4004BC7E,%d0 // ...|X| < 15 PI? - blts SINMAIN - bra REDUCEX - -SINMAIN: -//--THIS IS THE USUAL CASE, |X| <= 15 PI. -//--THE ARGUMENT REDUCTION IS DONE BY TABLE LOOK UP. - fmovex %fp0,%fp1 - fmuld TWOBYPI,%fp1 // ...X*2/PI - -//--HIDE THE NEXT THREE INSTRUCTIONS - lea PITBL+0x200,%a1 // ...TABLE OF N*PI/2, N = -32,...,32 - - -//--FP1 IS NOW READY - fmovel %fp1,N(%a6) // ...CONVERT TO INTEGER - - movel N(%a6),%d0 - asll #4,%d0 - addal %d0,%a1 // ...A1 IS THE ADDRESS OF N*PIBY2 -// ...WHICH IS IN TWO PIECES Y1 & Y2 - - fsubx (%a1)+,%fp0 // ...X-Y1 -//--HIDE THE NEXT ONE - fsubs (%a1),%fp0 // ...FP0 IS R = (X-Y1)-Y2 - -SINCONT: -//--continuation from REDUCEX - -//--GET N+ADJN AND SEE IF SIN(R) OR COS(R) IS NEEDED - movel N(%a6),%d0 - addl ADJN(%a6),%d0 // ...SEE IF D0 IS ODD OR EVEN - rorl #1,%d0 // ...D0 WAS ODD IFF D0 IS NEGATIVE - cmpil #0,%d0 - blt COSPOLY - -SINPOLY: -//--LET J BE THE LEAST SIG. BIT OF D0, LET SGN := (-1)**J. -//--THEN WE RETURN SGN*SIN(R). SGN*SIN(R) IS COMPUTED BY -//--R' + R'*S*(A1 + S(A2 + S(A3 + S(A4 + ... + SA7)))), WHERE -//--R' = SGN*R, S=R*R. THIS CAN BE REWRITTEN AS -//--R' + R'*S*( [A1+T(A3+T(A5+TA7))] + [S(A2+T(A4+TA6))]) -//--WHERE T=S*S. -//--NOTE THAT A3 THROUGH A7 ARE STORED IN DOUBLE PRECISION -//--WHILE A1 AND A2 ARE IN DOUBLE-EXTENDED FORMAT. - fmovex %fp0,X(%a6) // ...X IS R - fmulx %fp0,%fp0 // ...FP0 IS S -//---HIDE THE NEXT TWO WHILE WAITING FOR FP0 - fmoved SINA7,%fp3 - fmoved SINA6,%fp2 -//--FP0 IS NOW READY - fmovex %fp0,%fp1 - fmulx %fp1,%fp1 // ...FP1 IS T -//--HIDE THE NEXT TWO WHILE WAITING FOR FP1 - - rorl #1,%d0 - andil #0x80000000,%d0 -// ...LEAST SIG. BIT OF D0 IN SIGN POSITION - eorl %d0,X(%a6) // ...X IS NOW R'= SGN*R - - fmulx %fp1,%fp3 // ...TA7 - fmulx %fp1,%fp2 // ...TA6 - - faddd SINA5,%fp3 // ...A5+TA7 - faddd SINA4,%fp2 // ...A4+TA6 - - fmulx %fp1,%fp3 // ...T(A5+TA7) - fmulx %fp1,%fp2 // ...T(A4+TA6) - - faddd SINA3,%fp3 // ...A3+T(A5+TA7) - faddx SINA2,%fp2 // ...A2+T(A4+TA6) - - fmulx %fp3,%fp1 // ...T(A3+T(A5+TA7)) - - fmulx %fp0,%fp2 // ...S(A2+T(A4+TA6)) - faddx SINA1,%fp1 // ...A1+T(A3+T(A5+TA7)) - fmulx X(%a6),%fp0 // ...R'*S - - faddx %fp2,%fp1 // ...[A1+T(A3+T(A5+TA7))]+[S(A2+T(A4+TA6))] -//--FP3 RELEASED, RESTORE NOW AND TAKE SOME ADVANTAGE OF HIDING -//--FP2 RELEASED, RESTORE NOW AND TAKE FULL ADVANTAGE OF HIDING - - - fmulx %fp1,%fp0 // ...SIN(R')-R' -//--FP1 RELEASED. - - fmovel %d1,%FPCR //restore users exceptions - faddx X(%a6),%fp0 //last inst - possible exception set - bra t_frcinx - - -COSPOLY: -//--LET J BE THE LEAST SIG. BIT OF D0, LET SGN := (-1)**J. -//--THEN WE RETURN SGN*COS(R). SGN*COS(R) IS COMPUTED BY -//--SGN + S'*(B1 + S(B2 + S(B3 + S(B4 + ... + SB8)))), WHERE -//--S=R*R AND S'=SGN*S. THIS CAN BE REWRITTEN AS -//--SGN + S'*([B1+T(B3+T(B5+TB7))] + [S(B2+T(B4+T(B6+TB8)))]) -//--WHERE T=S*S. -//--NOTE THAT B4 THROUGH B8 ARE STORED IN DOUBLE PRECISION -//--WHILE B2 AND B3 ARE IN DOUBLE-EXTENDED FORMAT, B1 IS -1/2 -//--AND IS THEREFORE STORED AS SINGLE PRECISION. - - fmulx %fp0,%fp0 // ...FP0 IS S -//---HIDE THE NEXT TWO WHILE WAITING FOR FP0 - fmoved COSB8,%fp2 - fmoved COSB7,%fp3 -//--FP0 IS NOW READY - fmovex %fp0,%fp1 - fmulx %fp1,%fp1 // ...FP1 IS T -//--HIDE THE NEXT TWO WHILE WAITING FOR FP1 - fmovex %fp0,X(%a6) // ...X IS S - rorl #1,%d0 - andil #0x80000000,%d0 -// ...LEAST SIG. BIT OF D0 IN SIGN POSITION - - fmulx %fp1,%fp2 // ...TB8 -//--HIDE THE NEXT TWO WHILE WAITING FOR THE XU - eorl %d0,X(%a6) // ...X IS NOW S'= SGN*S - andil #0x80000000,%d0 - - fmulx %fp1,%fp3 // ...TB7 -//--HIDE THE NEXT TWO WHILE WAITING FOR THE XU - oril #0x3F800000,%d0 // ...D0 IS SGN IN SINGLE - movel %d0,POSNEG1(%a6) - - faddd COSB6,%fp2 // ...B6+TB8 - faddd COSB5,%fp3 // ...B5+TB7 - - fmulx %fp1,%fp2 // ...T(B6+TB8) - fmulx %fp1,%fp3 // ...T(B5+TB7) - - faddd COSB4,%fp2 // ...B4+T(B6+TB8) - faddx COSB3,%fp3 // ...B3+T(B5+TB7) - - fmulx %fp1,%fp2 // ...T(B4+T(B6+TB8)) - fmulx %fp3,%fp1 // ...T(B3+T(B5+TB7)) - - faddx COSB2,%fp2 // ...B2+T(B4+T(B6+TB8)) - fadds COSB1,%fp1 // ...B1+T(B3+T(B5+TB7)) - - fmulx %fp2,%fp0 // ...S(B2+T(B4+T(B6+TB8))) -//--FP3 RELEASED, RESTORE NOW AND TAKE SOME ADVANTAGE OF HIDING -//--FP2 RELEASED. - - - faddx %fp1,%fp0 -//--FP1 RELEASED - - fmulx X(%a6),%fp0 - - fmovel %d1,%FPCR //restore users exceptions - fadds POSNEG1(%a6),%fp0 //last inst - possible exception set - bra t_frcinx - - -SINBORS: -//--IF |X| > 15PI, WE USE THE GENERAL ARGUMENT REDUCTION. -//--IF |X| < 2**(-40), RETURN X OR 1. - cmpil #0x3FFF8000,%d0 - bgts REDUCEX - - -SINSM: - movel ADJN(%a6),%d0 - cmpil #0,%d0 - bgts COSTINY - -SINTINY: - movew #0x0000,XDCARE(%a6) // ...JUST IN CASE - fmovel %d1,%FPCR //restore users exceptions - fmovex X(%a6),%fp0 //last inst - possible exception set - bra t_frcinx - - -COSTINY: - fmoves #0x3F800000,%fp0 - - fmovel %d1,%FPCR //restore users exceptions - fsubs #0x00800000,%fp0 //last inst - possible exception set - bra t_frcinx - - -REDUCEX: -//--WHEN REDUCEX IS USED, THE CODE WILL INEVITABLY BE SLOW. -//--THIS REDUCTION METHOD, HOWEVER, IS MUCH FASTER THAN USING -//--THE REMAINDER INSTRUCTION WHICH IS NOW IN SOFTWARE. - - fmovemx %fp2-%fp5,-(%a7) // ...save FP2 through FP5 - movel %d2,-(%a7) - fmoves #0x00000000,%fp1 -//--If compact form of abs(arg) in d0=$7ffeffff, argument is so large that -//--there is a danger of unwanted overflow in first LOOP iteration. In this -//--case, reduce argument by one remainder step to make subsequent reduction -//--safe. - cmpil #0x7ffeffff,%d0 //is argument dangerously large? - bnes LOOP - movel #0x7ffe0000,FP_SCR2(%a6) //yes -// ;create 2**16383*PI/2 - movel #0xc90fdaa2,FP_SCR2+4(%a6) - clrl FP_SCR2+8(%a6) - ftstx %fp0 //test sign of argument - movel #0x7fdc0000,FP_SCR3(%a6) //create low half of 2**16383* -// ;PI/2 at FP_SCR3 - movel #0x85a308d3,FP_SCR3+4(%a6) - clrl FP_SCR3+8(%a6) - fblt red_neg - orw #0x8000,FP_SCR2(%a6) //positive arg - orw #0x8000,FP_SCR3(%a6) -red_neg: - faddx FP_SCR2(%a6),%fp0 //high part of reduction is exact - fmovex %fp0,%fp1 //save high result in fp1 - faddx FP_SCR3(%a6),%fp0 //low part of reduction - fsubx %fp0,%fp1 //determine low component of result - faddx FP_SCR3(%a6),%fp1 //fp0/fp1 are reduced argument. - -//--ON ENTRY, FP0 IS X, ON RETURN, FP0 IS X REM PI/2, |X| <= PI/4. -//--integer quotient will be stored in N -//--Intermediate remainder is 66-bit long; (R,r) in (FP0,FP1) - -LOOP: - fmovex %fp0,INARG(%a6) // ...+-2**K * F, 1 <= F < 2 - movew INARG(%a6),%d0 - movel %d0,%a1 // ...save a copy of D0 - andil #0x00007FFF,%d0 - subil #0x00003FFF,%d0 // ...D0 IS K - cmpil #28,%d0 - bles LASTLOOP -CONTLOOP: - subil #27,%d0 // ...D0 IS L := K-27 - movel #0,ENDFLAG(%a6) - bras WORK -LASTLOOP: - clrl %d0 // ...D0 IS L := 0 - movel #1,ENDFLAG(%a6) - -WORK: -//--FIND THE REMAINDER OF (R,r) W.R.T. 2**L * (PI/2). L IS SO CHOSEN -//--THAT INT( X * (2/PI) / 2**(L) ) < 2**29. - -//--CREATE 2**(-L) * (2/PI), SIGN(INARG)*2**(63), -//--2**L * (PIby2_1), 2**L * (PIby2_2) - - movel #0x00003FFE,%d2 // ...BIASED EXPO OF 2/PI - subl %d0,%d2 // ...BIASED EXPO OF 2**(-L)*(2/PI) - - movel #0xA2F9836E,FP_SCR1+4(%a6) - movel #0x4E44152A,FP_SCR1+8(%a6) - movew %d2,FP_SCR1(%a6) // ...FP_SCR1 is 2**(-L)*(2/PI) - - fmovex %fp0,%fp2 - fmulx FP_SCR1(%a6),%fp2 -//--WE MUST NOW FIND INT(FP2). SINCE WE NEED THIS VALUE IN -//--FLOATING POINT FORMAT, THE TWO FMOVE'S FMOVE.L FP <--> N -//--WILL BE TOO INEFFICIENT. THE WAY AROUND IT IS THAT -//--(SIGN(INARG)*2**63 + FP2) - SIGN(INARG)*2**63 WILL GIVE -//--US THE DESIRED VALUE IN FLOATING POINT. - -//--HIDE SIX CYCLES OF INSTRUCTION - movel %a1,%d2 - swap %d2 - andil #0x80000000,%d2 - oril #0x5F000000,%d2 // ...D2 IS SIGN(INARG)*2**63 IN SGL - movel %d2,TWOTO63(%a6) - - movel %d0,%d2 - addil #0x00003FFF,%d2 // ...BIASED EXPO OF 2**L * (PI/2) - -//--FP2 IS READY - fadds TWOTO63(%a6),%fp2 // ...THE FRACTIONAL PART OF FP1 IS ROUNDED - -//--HIDE 4 CYCLES OF INSTRUCTION; creating 2**(L)*Piby2_1 and 2**(L)*Piby2_2 - movew %d2,FP_SCR2(%a6) - clrw FP_SCR2+2(%a6) - movel #0xC90FDAA2,FP_SCR2+4(%a6) - clrl FP_SCR2+8(%a6) // ...FP_SCR2 is 2**(L) * Piby2_1 - -//--FP2 IS READY - fsubs TWOTO63(%a6),%fp2 // ...FP2 is N - - addil #0x00003FDD,%d0 - movew %d0,FP_SCR3(%a6) - clrw FP_SCR3+2(%a6) - movel #0x85A308D3,FP_SCR3+4(%a6) - clrl FP_SCR3+8(%a6) // ...FP_SCR3 is 2**(L) * Piby2_2 - - movel ENDFLAG(%a6),%d0 - -//--We are now ready to perform (R+r) - N*P1 - N*P2, P1 = 2**(L) * Piby2_1 and -//--P2 = 2**(L) * Piby2_2 - fmovex %fp2,%fp4 - fmulx FP_SCR2(%a6),%fp4 // ...W = N*P1 - fmovex %fp2,%fp5 - fmulx FP_SCR3(%a6),%fp5 // ...w = N*P2 - fmovex %fp4,%fp3 -//--we want P+p = W+w but |p| <= half ulp of P -//--Then, we need to compute A := R-P and a := r-p - faddx %fp5,%fp3 // ...FP3 is P - fsubx %fp3,%fp4 // ...W-P - - fsubx %fp3,%fp0 // ...FP0 is A := R - P - faddx %fp5,%fp4 // ...FP4 is p = (W-P)+w - - fmovex %fp0,%fp3 // ...FP3 A - fsubx %fp4,%fp1 // ...FP1 is a := r - p - -//--Now we need to normalize (A,a) to "new (R,r)" where R+r = A+a but -//--|r| <= half ulp of R. - faddx %fp1,%fp0 // ...FP0 is R := A+a -//--No need to calculate r if this is the last loop - cmpil #0,%d0 - bgt RESTORE - -//--Need to calculate r - fsubx %fp0,%fp3 // ...A-R - faddx %fp3,%fp1 // ...FP1 is r := (A-R)+a - bra LOOP - -RESTORE: - fmovel %fp2,N(%a6) - movel (%a7)+,%d2 - fmovemx (%a7)+,%fp2-%fp5 - - - movel ADJN(%a6),%d0 - cmpil #4,%d0 - - blt SINCONT - bras SCCONT - - .global ssincosd -ssincosd: -//--SIN AND COS OF X FOR DENORMALIZED X - - fmoves #0x3F800000,%fp1 - bsr sto_cos //store cosine result - bra t_extdnrm - - .global ssincos -ssincos: -//--SET ADJN TO 4 - movel #4,ADJN(%a6) - - fmovex (%a0),%fp0 // ...LOAD INPUT - - movel (%a0),%d0 - movew 4(%a0),%d0 - fmovex %fp0,X(%a6) - andil #0x7FFFFFFF,%d0 // ...COMPACTIFY X - - cmpil #0x3FD78000,%d0 // ...|X| >= 2**(-40)? - bges SCOK1 - bra SCSM - -SCOK1: - cmpil #0x4004BC7E,%d0 // ...|X| < 15 PI? - blts SCMAIN - bra REDUCEX - - -SCMAIN: -//--THIS IS THE USUAL CASE, |X| <= 15 PI. -//--THE ARGUMENT REDUCTION IS DONE BY TABLE LOOK UP. - fmovex %fp0,%fp1 - fmuld TWOBYPI,%fp1 // ...X*2/PI - -//--HIDE THE NEXT THREE INSTRUCTIONS - lea PITBL+0x200,%a1 // ...TABLE OF N*PI/2, N = -32,...,32 - - -//--FP1 IS NOW READY - fmovel %fp1,N(%a6) // ...CONVERT TO INTEGER - - movel N(%a6),%d0 - asll #4,%d0 - addal %d0,%a1 // ...ADDRESS OF N*PIBY2, IN Y1, Y2 - - fsubx (%a1)+,%fp0 // ...X-Y1 - fsubs (%a1),%fp0 // ...FP0 IS R = (X-Y1)-Y2 - -SCCONT: -//--continuation point from REDUCEX - -//--HIDE THE NEXT TWO - movel N(%a6),%d0 - rorl #1,%d0 - - cmpil #0,%d0 // ...D0 < 0 IFF N IS ODD - bge NEVEN - -NODD: -//--REGISTERS SAVED SO FAR: D0, A0, FP2. - - fmovex %fp0,RPRIME(%a6) - fmulx %fp0,%fp0 // ...FP0 IS S = R*R - fmoved SINA7,%fp1 // ...A7 - fmoved COSB8,%fp2 // ...B8 - fmulx %fp0,%fp1 // ...SA7 - movel %d2,-(%a7) - movel %d0,%d2 - fmulx %fp0,%fp2 // ...SB8 - rorl #1,%d2 - andil #0x80000000,%d2 - - faddd SINA6,%fp1 // ...A6+SA7 - eorl %d0,%d2 - andil #0x80000000,%d2 - faddd COSB7,%fp2 // ...B7+SB8 - - fmulx %fp0,%fp1 // ...S(A6+SA7) - eorl %d2,RPRIME(%a6) - movel (%a7)+,%d2 - fmulx %fp0,%fp2 // ...S(B7+SB8) - rorl #1,%d0 - andil #0x80000000,%d0 - - faddd SINA5,%fp1 // ...A5+S(A6+SA7) - movel #0x3F800000,POSNEG1(%a6) - eorl %d0,POSNEG1(%a6) - faddd COSB6,%fp2 // ...B6+S(B7+SB8) - - fmulx %fp0,%fp1 // ...S(A5+S(A6+SA7)) - fmulx %fp0,%fp2 // ...S(B6+S(B7+SB8)) - fmovex %fp0,SPRIME(%a6) - - faddd SINA4,%fp1 // ...A4+S(A5+S(A6+SA7)) - eorl %d0,SPRIME(%a6) - faddd COSB5,%fp2 // ...B5+S(B6+S(B7+SB8)) - - fmulx %fp0,%fp1 // ...S(A4+...) - fmulx %fp0,%fp2 // ...S(B5+...) - - faddd SINA3,%fp1 // ...A3+S(A4+...) - faddd COSB4,%fp2 // ...B4+S(B5+...) - - fmulx %fp0,%fp1 // ...S(A3+...) - fmulx %fp0,%fp2 // ...S(B4+...) - - faddx SINA2,%fp1 // ...A2+S(A3+...) - faddx COSB3,%fp2 // ...B3+S(B4+...) - - fmulx %fp0,%fp1 // ...S(A2+...) - fmulx %fp0,%fp2 // ...S(B3+...) - - faddx SINA1,%fp1 // ...A1+S(A2+...) - faddx COSB2,%fp2 // ...B2+S(B3+...) - - fmulx %fp0,%fp1 // ...S(A1+...) - fmulx %fp2,%fp0 // ...S(B2+...) - - - - fmulx RPRIME(%a6),%fp1 // ...R'S(A1+...) - fadds COSB1,%fp0 // ...B1+S(B2...) - fmulx SPRIME(%a6),%fp0 // ...S'(B1+S(B2+...)) - - movel %d1,-(%sp) //restore users mode & precision - andil #0xff,%d1 //mask off all exceptions - fmovel %d1,%FPCR - faddx RPRIME(%a6),%fp1 // ...COS(X) - bsr sto_cos //store cosine result - fmovel (%sp)+,%FPCR //restore users exceptions - fadds POSNEG1(%a6),%fp0 // ...SIN(X) - - bra t_frcinx - - -NEVEN: -//--REGISTERS SAVED SO FAR: FP2. - - fmovex %fp0,RPRIME(%a6) - fmulx %fp0,%fp0 // ...FP0 IS S = R*R - fmoved COSB8,%fp1 // ...B8 - fmoved SINA7,%fp2 // ...A7 - fmulx %fp0,%fp1 // ...SB8 - fmovex %fp0,SPRIME(%a6) - fmulx %fp0,%fp2 // ...SA7 - rorl #1,%d0 - andil #0x80000000,%d0 - faddd COSB7,%fp1 // ...B7+SB8 - faddd SINA6,%fp2 // ...A6+SA7 - eorl %d0,RPRIME(%a6) - eorl %d0,SPRIME(%a6) - fmulx %fp0,%fp1 // ...S(B7+SB8) - oril #0x3F800000,%d0 - movel %d0,POSNEG1(%a6) - fmulx %fp0,%fp2 // ...S(A6+SA7) - - faddd COSB6,%fp1 // ...B6+S(B7+SB8) - faddd SINA5,%fp2 // ...A5+S(A6+SA7) - - fmulx %fp0,%fp1 // ...S(B6+S(B7+SB8)) - fmulx %fp0,%fp2 // ...S(A5+S(A6+SA7)) - - faddd COSB5,%fp1 // ...B5+S(B6+S(B7+SB8)) - faddd SINA4,%fp2 // ...A4+S(A5+S(A6+SA7)) - - fmulx %fp0,%fp1 // ...S(B5+...) - fmulx %fp0,%fp2 // ...S(A4+...) - - faddd COSB4,%fp1 // ...B4+S(B5+...) - faddd SINA3,%fp2 // ...A3+S(A4+...) - - fmulx %fp0,%fp1 // ...S(B4+...) - fmulx %fp0,%fp2 // ...S(A3+...) - - faddx COSB3,%fp1 // ...B3+S(B4+...) - faddx SINA2,%fp2 // ...A2+S(A3+...) - - fmulx %fp0,%fp1 // ...S(B3+...) - fmulx %fp0,%fp2 // ...S(A2+...) - - faddx COSB2,%fp1 // ...B2+S(B3+...) - faddx SINA1,%fp2 // ...A1+S(A2+...) - - fmulx %fp0,%fp1 // ...S(B2+...) - fmulx %fp2,%fp0 // ...s(a1+...) - - - - fadds COSB1,%fp1 // ...B1+S(B2...) - fmulx RPRIME(%a6),%fp0 // ...R'S(A1+...) - fmulx SPRIME(%a6),%fp1 // ...S'(B1+S(B2+...)) - - movel %d1,-(%sp) //save users mode & precision - andil #0xff,%d1 //mask off all exceptions - fmovel %d1,%FPCR - fadds POSNEG1(%a6),%fp1 // ...COS(X) - bsr sto_cos //store cosine result - fmovel (%sp)+,%FPCR //restore users exceptions - faddx RPRIME(%a6),%fp0 // ...SIN(X) - - bra t_frcinx - -SCBORS: - cmpil #0x3FFF8000,%d0 - bgt REDUCEX - - -SCSM: - movew #0x0000,XDCARE(%a6) - fmoves #0x3F800000,%fp1 - - movel %d1,-(%sp) //save users mode & precision - andil #0xff,%d1 //mask off all exceptions - fmovel %d1,%FPCR - fsubs #0x00800000,%fp1 - bsr sto_cos //store cosine result - fmovel (%sp)+,%FPCR //restore users exceptions - fmovex X(%a6),%fp0 - bra t_frcinx - - |end diff --git a/c/src/lib/libcpu/m68k/m68040/fpsp/ssinh.S b/c/src/lib/libcpu/m68k/m68040/fpsp/ssinh.S deleted file mode 100644 index d25174ed32..0000000000 --- a/c/src/lib/libcpu/m68k/m68040/fpsp/ssinh.S +++ /dev/null @@ -1,137 +0,0 @@ -#include "fpsp-namespace.h" -// -// -// ssinh.sa 3.1 12/10/90 -// -// The entry point sSinh computes the hyperbolic sine of -// an input argument; sSinhd does the same except for denormalized -// input. -// -// Input: Double-extended number X in location pointed to -// by address register a0. -// -// Output: The value sinh(X) returned in floating-point register Fp0. -// -// Accuracy and Monotonicity: The returned result is within 3 ulps in -// 64 significant bit, i.e. within 0.5001 ulp to 53 bits if the -// result is subsequently rounded to double precision. The -// result is provably monotonic in double precision. -// -// Speed: The program sSINH takes approximately 280 cycles. -// -// Algorithm: -// -// SINH -// 1. If |X| > 16380 log2, go to 3. -// -// 2. (|X| <= 16380 log2) Sinh(X) is obtained by the formulae -// y = |X|, sgn = sign(X), and z = expm1(Y), -// sinh(X) = sgn*(1/2)*( z + z/(1+z) ). -// Exit. -// -// 3. If |X| > 16480 log2, go to 5. -// -// 4. (16380 log2 < |X| <= 16480 log2) -// sinh(X) = sign(X) * exp(|X|)/2. -// However, invoking exp(|X|) may cause premature overflow. -// Thus, we calculate sinh(X) as follows: -// Y := |X| -// sgn := sign(X) -// sgnFact := sgn * 2**(16380) -// Y' := Y - 16381 log2 -// sinh(X) := sgnFact * exp(Y'). -// Exit. -// -// 5. (|X| > 16480 log2) sinh(X) must overflow. Return -// sign(X)*Huge*Huge to generate overflow and an infinity with -// the appropriate sign. Huge is the largest finite number in -// extended format. Exit. -// - -// Copyright (C) Motorola, Inc. 1990 -// All Rights Reserved -// -// THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA -// The copyright notice above does not evidence any -// actual or intended publication of such source code. - -//SSINH idnt 2,1 | Motorola 040 Floating Point Software Package - - |section 8 - -T1: .long 0x40C62D38,0xD3D64634 // ... 16381 LOG2 LEAD -T2: .long 0x3D6F90AE,0xB1E75CC7 // ... 16381 LOG2 TRAIL - - |xref t_frcinx - |xref t_ovfl - |xref t_extdnrm - |xref setox - |xref setoxm1 - - .global ssinhd -ssinhd: -//--SINH(X) = X FOR DENORMALIZED X - - bra t_extdnrm - - .global ssinh -ssinh: - fmovex (%a0),%fp0 // ...LOAD INPUT - - movel (%a0),%d0 - movew 4(%a0),%d0 - movel %d0,%a1 // save a copy of original (compacted) operand - andl #0x7FFFFFFF,%d0 - cmpl #0x400CB167,%d0 - bgts SINHBIG - -//--THIS IS THE USUAL CASE, |X| < 16380 LOG2 -//--Y = |X|, Z = EXPM1(Y), SINH(X) = SIGN(X)*(1/2)*( Z + Z/(1+Z) ) - - fabsx %fp0 // ...Y = |X| - - moveml %a1/%d1,-(%sp) - fmovemx %fp0-%fp0,(%a0) - clrl %d1 - bsr setoxm1 // ...FP0 IS Z = EXPM1(Y) - fmovel #0,%fpcr - moveml (%sp)+,%a1/%d1 - - fmovex %fp0,%fp1 - fadds #0x3F800000,%fp1 // ...1+Z - fmovex %fp0,-(%sp) - fdivx %fp1,%fp0 // ...Z/(1+Z) - movel %a1,%d0 - andl #0x80000000,%d0 - orl #0x3F000000,%d0 - faddx (%sp)+,%fp0 - movel %d0,-(%sp) - - fmovel %d1,%fpcr - fmuls (%sp)+,%fp0 //last fp inst - possible exceptions set - - bra t_frcinx - -SINHBIG: - cmpl #0x400CB2B3,%d0 - bgt t_ovfl - fabsx %fp0 - fsubd T1(%pc),%fp0 // ...(|X|-16381LOG2_LEAD) - movel #0,-(%sp) - movel #0x80000000,-(%sp) - movel %a1,%d0 - andl #0x80000000,%d0 - orl #0x7FFB0000,%d0 - movel %d0,-(%sp) // ...EXTENDED FMT - fsubd T2(%pc),%fp0 // ...|X| - 16381 LOG2, ACCURATE - - movel %d1,-(%sp) - clrl %d1 - fmovemx %fp0-%fp0,(%a0) - bsr setox - fmovel (%sp)+,%fpcr - - fmulx (%sp)+,%fp0 //possible exception - bra t_frcinx - - |end diff --git a/c/src/lib/libcpu/m68k/m68040/fpsp/stan.S b/c/src/lib/libcpu/m68k/m68040/fpsp/stan.S deleted file mode 100644 index 33cad35f48..0000000000 --- a/c/src/lib/libcpu/m68k/m68040/fpsp/stan.S +++ /dev/null @@ -1,457 +0,0 @@ -#include "fpsp-namespace.h" -// -// -// stan.sa 3.3 7/29/91 -// -// The entry point stan computes the tangent of -// an input argument; -// stand does the same except for denormalized input. -// -// Input: Double-extended number X in location pointed to -// by address register a0. -// -// Output: The value tan(X) returned in floating-point register Fp0. -// -// Accuracy and Monotonicity: The returned result is within 3 ulp in -// 64 significant bit, i.e. within 0.5001 ulp to 53 bits if the -// result is subsequently rounded to double precision. The -// result is provably monotonic in double precision. -// -// Speed: The program sTAN takes approximately 170 cycles for -// input argument X such that |X| < 15Pi, which is the the usual -// situation. -// -// Algorithm: -// -// 1. If |X| >= 15Pi or |X| < 2**(-40), go to 6. -// -// 2. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let -// k = N mod 2, so in particular, k = 0 or 1. -// -// 3. If k is odd, go to 5. -// -// 4. (k is even) Tan(X) = tan(r) and tan(r) is approximated by a -// rational function U/V where -// U = r + r*s*(P1 + s*(P2 + s*P3)), and -// V = 1 + s*(Q1 + s*(Q2 + s*(Q3 + s*Q4))), s = r*r. -// Exit. -// -// 4. (k is odd) Tan(X) = -cot(r). Since tan(r) is approximated by a -// rational function U/V where -// U = r + r*s*(P1 + s*(P2 + s*P3)), and -// V = 1 + s*(Q1 + s*(Q2 + s*(Q3 + s*Q4))), s = r*r, -// -Cot(r) = -V/U. Exit. -// -// 6. If |X| > 1, go to 8. -// -// 7. (|X|<2**(-40)) Tan(X) = X. Exit. -// -// 8. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi, go back to 2. -// - -// Copyright (C) Motorola, Inc. 1990 -// All Rights Reserved -// -// THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA -// The copyright notice above does not evidence any -// actual or intended publication of such source code. - -//STAN idnt 2,1 | Motorola 040 Floating Point Software Package - - |section 8 - -#include "fpsp.defs" - -BOUNDS1: .long 0x3FD78000,0x4004BC7E -TWOBYPI: .long 0x3FE45F30,0x6DC9C883 - -TANQ4: .long 0x3EA0B759,0xF50F8688 -TANP3: .long 0xBEF2BAA5,0xA8924F04 - -TANQ3: .long 0xBF346F59,0xB39BA65F,0x00000000,0x00000000 - -TANP2: .long 0x3FF60000,0xE073D3FC,0x199C4A00,0x00000000 - -TANQ2: .long 0x3FF90000,0xD23CD684,0x15D95FA1,0x00000000 - -TANP1: .long 0xBFFC0000,0x8895A6C5,0xFB423BCA,0x00000000 - -TANQ1: .long 0xBFFD0000,0xEEF57E0D,0xA84BC8CE,0x00000000 - -INVTWOPI: .long 0x3FFC0000,0xA2F9836E,0x4E44152A,0x00000000 - -TWOPI1: .long 0x40010000,0xC90FDAA2,0x00000000,0x00000000 -TWOPI2: .long 0x3FDF0000,0x85A308D4,0x00000000,0x00000000 - -//--N*PI/2, -32 <= N <= 32, IN A LEADING TERM IN EXT. AND TRAILING -//--TERM IN SGL. NOTE THAT PI IS 64-BIT LONG, THUS N*PI/2 IS AT -//--MOST 69 BITS LONG. - .global PITBL -PITBL: - .long 0xC0040000,0xC90FDAA2,0x2168C235,0x21800000 - .long 0xC0040000,0xC2C75BCD,0x105D7C23,0xA0D00000 - .long 0xC0040000,0xBC7EDCF7,0xFF523611,0xA1E80000 - .long 0xC0040000,0xB6365E22,0xEE46F000,0x21480000 - .long 0xC0040000,0xAFEDDF4D,0xDD3BA9EE,0xA1200000 - .long 0xC0040000,0xA9A56078,0xCC3063DD,0x21FC0000 - .long 0xC0040000,0xA35CE1A3,0xBB251DCB,0x21100000 - .long 0xC0040000,0x9D1462CE,0xAA19D7B9,0xA1580000 - .long 0xC0040000,0x96CBE3F9,0x990E91A8,0x21E00000 - .long 0xC0040000,0x90836524,0x88034B96,0x20B00000 - .long 0xC0040000,0x8A3AE64F,0x76F80584,0xA1880000 - .long 0xC0040000,0x83F2677A,0x65ECBF73,0x21C40000 - .long 0xC0030000,0xFB53D14A,0xA9C2F2C2,0x20000000 - .long 0xC0030000,0xEEC2D3A0,0x87AC669F,0x21380000 - .long 0xC0030000,0xE231D5F6,0x6595DA7B,0xA1300000 - .long 0xC0030000,0xD5A0D84C,0x437F4E58,0x9FC00000 - .long 0xC0030000,0xC90FDAA2,0x2168C235,0x21000000 - .long 0xC0030000,0xBC7EDCF7,0xFF523611,0xA1680000 - .long 0xC0030000,0xAFEDDF4D,0xDD3BA9EE,0xA0A00000 - .long 0xC0030000,0xA35CE1A3,0xBB251DCB,0x20900000 - .long 0xC0030000,0x96CBE3F9,0x990E91A8,0x21600000 - .long 0xC0030000,0x8A3AE64F,0x76F80584,0xA1080000 - .long 0xC0020000,0xFB53D14A,0xA9C2F2C2,0x1F800000 - .long 0xC0020000,0xE231D5F6,0x6595DA7B,0xA0B00000 - .long 0xC0020000,0xC90FDAA2,0x2168C235,0x20800000 - .long 0xC0020000,0xAFEDDF4D,0xDD3BA9EE,0xA0200000 - .long 0xC0020000,0x96CBE3F9,0x990E91A8,0x20E00000 - .long 0xC0010000,0xFB53D14A,0xA9C2F2C2,0x1F000000 - .long 0xC0010000,0xC90FDAA2,0x2168C235,0x20000000 - .long 0xC0010000,0x96CBE3F9,0x990E91A8,0x20600000 - .long 0xC0000000,0xC90FDAA2,0x2168C235,0x1F800000 - .long 0xBFFF0000,0xC90FDAA2,0x2168C235,0x1F000000 - .long 0x00000000,0x00000000,0x00000000,0x00000000 - .long 0x3FFF0000,0xC90FDAA2,0x2168C235,0x9F000000 - .long 0x40000000,0xC90FDAA2,0x2168C235,0x9F800000 - .long 0x40010000,0x96CBE3F9,0x990E91A8,0xA0600000 - .long 0x40010000,0xC90FDAA2,0x2168C235,0xA0000000 - .long 0x40010000,0xFB53D14A,0xA9C2F2C2,0x9F000000 - .long 0x40020000,0x96CBE3F9,0x990E91A8,0xA0E00000 - .long 0x40020000,0xAFEDDF4D,0xDD3BA9EE,0x20200000 - .long 0x40020000,0xC90FDAA2,0x2168C235,0xA0800000 - .long 0x40020000,0xE231D5F6,0x6595DA7B,0x20B00000 - .long 0x40020000,0xFB53D14A,0xA9C2F2C2,0x9F800000 - .long 0x40030000,0x8A3AE64F,0x76F80584,0x21080000 - .long 0x40030000,0x96CBE3F9,0x990E91A8,0xA1600000 - .long 0x40030000,0xA35CE1A3,0xBB251DCB,0xA0900000 - .long 0x40030000,0xAFEDDF4D,0xDD3BA9EE,0x20A00000 - .long 0x40030000,0xBC7EDCF7,0xFF523611,0x21680000 - .long 0x40030000,0xC90FDAA2,0x2168C235,0xA1000000 - .long 0x40030000,0xD5A0D84C,0x437F4E58,0x1FC00000 - .long 0x40030000,0xE231D5F6,0x6595DA7B,0x21300000 - .long 0x40030000,0xEEC2D3A0,0x87AC669F,0xA1380000 - .long 0x40030000,0xFB53D14A,0xA9C2F2C2,0xA0000000 - .long 0x40040000,0x83F2677A,0x65ECBF73,0xA1C40000 - .long 0x40040000,0x8A3AE64F,0x76F80584,0x21880000 - .long 0x40040000,0x90836524,0x88034B96,0xA0B00000 - .long 0x40040000,0x96CBE3F9,0x990E91A8,0xA1E00000 - .long 0x40040000,0x9D1462CE,0xAA19D7B9,0x21580000 - .long 0x40040000,0xA35CE1A3,0xBB251DCB,0xA1100000 - .long 0x40040000,0xA9A56078,0xCC3063DD,0xA1FC0000 - .long 0x40040000,0xAFEDDF4D,0xDD3BA9EE,0x21200000 - .long 0x40040000,0xB6365E22,0xEE46F000,0xA1480000 - .long 0x40040000,0xBC7EDCF7,0xFF523611,0x21E80000 - .long 0x40040000,0xC2C75BCD,0x105D7C23,0x20D00000 - .long 0x40040000,0xC90FDAA2,0x2168C235,0xA1800000 - - .set INARG,FP_SCR4 - - .set TWOTO63,L_SCR1 - .set ENDFLAG,L_SCR2 - .set N,L_SCR3 - - | xref t_frcinx - |xref t_extdnrm - - .global stand -stand: -//--TAN(X) = X FOR DENORMALIZED X - - bra t_extdnrm - - .global stan -stan: - fmovex (%a0),%fp0 // ...LOAD INPUT - - movel (%a0),%d0 - movew 4(%a0),%d0 - andil #0x7FFFFFFF,%d0 - - cmpil #0x3FD78000,%d0 // ...|X| >= 2**(-40)? - bges TANOK1 - bra TANSM -TANOK1: - cmpil #0x4004BC7E,%d0 // ...|X| < 15 PI? - blts TANMAIN - bra REDUCEX - - -TANMAIN: -//--THIS IS THE USUAL CASE, |X| <= 15 PI. -//--THE ARGUMENT REDUCTION IS DONE BY TABLE LOOK UP. - fmovex %fp0,%fp1 - fmuld TWOBYPI,%fp1 // ...X*2/PI - -//--HIDE THE NEXT TWO INSTRUCTIONS - leal PITBL+0x200,%a1 // ...TABLE OF N*PI/2, N = -32,...,32 - -//--FP1 IS NOW READY - fmovel %fp1,%d0 // ...CONVERT TO INTEGER - - asll #4,%d0 - addal %d0,%a1 // ...ADDRESS N*PIBY2 IN Y1, Y2 - - fsubx (%a1)+,%fp0 // ...X-Y1 -//--HIDE THE NEXT ONE - - fsubs (%a1),%fp0 // ...FP0 IS R = (X-Y1)-Y2 - - rorl #5,%d0 - andil #0x80000000,%d0 // ...D0 WAS ODD IFF D0 < 0 - -TANCONT: - - cmpil #0,%d0 - blt NODD - - fmovex %fp0,%fp1 - fmulx %fp1,%fp1 // ...S = R*R - - fmoved TANQ4,%fp3 - fmoved TANP3,%fp2 - - fmulx %fp1,%fp3 // ...SQ4 - fmulx %fp1,%fp2 // ...SP3 - - faddd TANQ3,%fp3 // ...Q3+SQ4 - faddx TANP2,%fp2 // ...P2+SP3 - - fmulx %fp1,%fp3 // ...S(Q3+SQ4) - fmulx %fp1,%fp2 // ...S(P2+SP3) - - faddx TANQ2,%fp3 // ...Q2+S(Q3+SQ4) - faddx TANP1,%fp2 // ...P1+S(P2+SP3) - - fmulx %fp1,%fp3 // ...S(Q2+S(Q3+SQ4)) - fmulx %fp1,%fp2 // ...S(P1+S(P2+SP3)) - - faddx TANQ1,%fp3 // ...Q1+S(Q2+S(Q3+SQ4)) - fmulx %fp0,%fp2 // ...RS(P1+S(P2+SP3)) - - fmulx %fp3,%fp1 // ...S(Q1+S(Q2+S(Q3+SQ4))) - - - faddx %fp2,%fp0 // ...R+RS(P1+S(P2+SP3)) - - - fadds #0x3F800000,%fp1 // ...1+S(Q1+...) - - fmovel %d1,%fpcr //restore users exceptions - fdivx %fp1,%fp0 //last inst - possible exception set - - bra t_frcinx - -NODD: - fmovex %fp0,%fp1 - fmulx %fp0,%fp0 // ...S = R*R - - fmoved TANQ4,%fp3 - fmoved TANP3,%fp2 - - fmulx %fp0,%fp3 // ...SQ4 - fmulx %fp0,%fp2 // ...SP3 - - faddd TANQ3,%fp3 // ...Q3+SQ4 - faddx TANP2,%fp2 // ...P2+SP3 - - fmulx %fp0,%fp3 // ...S(Q3+SQ4) - fmulx %fp0,%fp2 // ...S(P2+SP3) - - faddx TANQ2,%fp3 // ...Q2+S(Q3+SQ4) - faddx TANP1,%fp2 // ...P1+S(P2+SP3) - - fmulx %fp0,%fp3 // ...S(Q2+S(Q3+SQ4)) - fmulx %fp0,%fp2 // ...S(P1+S(P2+SP3)) - - faddx TANQ1,%fp3 // ...Q1+S(Q2+S(Q3+SQ4)) - fmulx %fp1,%fp2 // ...RS(P1+S(P2+SP3)) - - fmulx %fp3,%fp0 // ...S(Q1+S(Q2+S(Q3+SQ4))) - - - faddx %fp2,%fp1 // ...R+RS(P1+S(P2+SP3)) - fadds #0x3F800000,%fp0 // ...1+S(Q1+...) - - - fmovex %fp1,-(%sp) - eoril #0x80000000,(%sp) - - fmovel %d1,%fpcr //restore users exceptions - fdivx (%sp)+,%fp0 //last inst - possible exception set - - bra t_frcinx - -TANBORS: -//--IF |X| > 15PI, WE USE THE GENERAL ARGUMENT REDUCTION. -//--IF |X| < 2**(-40), RETURN X OR 1. - cmpil #0x3FFF8000,%d0 - bgts REDUCEX - -TANSM: - - fmovex %fp0,-(%sp) - fmovel %d1,%fpcr //restore users exceptions - fmovex (%sp)+,%fp0 //last inst - possible exception set - - bra t_frcinx - - -REDUCEX: -//--WHEN REDUCEX IS USED, THE CODE WILL INEVITABLY BE SLOW. -//--THIS REDUCTION METHOD, HOWEVER, IS MUCH FASTER THAN USING -//--THE REMAINDER INSTRUCTION WHICH IS NOW IN SOFTWARE. - - fmovemx %fp2-%fp5,-(%a7) // ...save FP2 through FP5 - movel %d2,-(%a7) - fmoves #0x00000000,%fp1 - -//--If compact form of abs(arg) in d0=$7ffeffff, argument is so large that -//--there is a danger of unwanted overflow in first LOOP iteration. In this -//--case, reduce argument by one remainder step to make subsequent reduction -//--safe. - cmpil #0x7ffeffff,%d0 //is argument dangerously large? - bnes LOOP - movel #0x7ffe0000,FP_SCR2(%a6) //yes -// ;create 2**16383*PI/2 - movel #0xc90fdaa2,FP_SCR2+4(%a6) - clrl FP_SCR2+8(%a6) - ftstx %fp0 //test sign of argument - movel #0x7fdc0000,FP_SCR3(%a6) //create low half of 2**16383* -// ;PI/2 at FP_SCR3 - movel #0x85a308d3,FP_SCR3+4(%a6) - clrl FP_SCR3+8(%a6) - fblt red_neg - orw #0x8000,FP_SCR2(%a6) //positive arg - orw #0x8000,FP_SCR3(%a6) -red_neg: - faddx FP_SCR2(%a6),%fp0 //high part of reduction is exact - fmovex %fp0,%fp1 //save high result in fp1 - faddx FP_SCR3(%a6),%fp0 //low part of reduction - fsubx %fp0,%fp1 //determine low component of result - faddx FP_SCR3(%a6),%fp1 //fp0/fp1 are reduced argument. - -//--ON ENTRY, FP0 IS X, ON RETURN, FP0 IS X REM PI/2, |X| <= PI/4. -//--integer quotient will be stored in N -//--Intermediate remainder is 66-bit long; (R,r) in (FP0,FP1) - -LOOP: - fmovex %fp0,INARG(%a6) // ...+-2**K * F, 1 <= F < 2 - movew INARG(%a6),%d0 - movel %d0,%a1 // ...save a copy of D0 - andil #0x00007FFF,%d0 - subil #0x00003FFF,%d0 // ...D0 IS K - cmpil #28,%d0 - bles LASTLOOP -CONTLOOP: - subil #27,%d0 // ...D0 IS L := K-27 - movel #0,ENDFLAG(%a6) - bras WORK -LASTLOOP: - clrl %d0 // ...D0 IS L := 0 - movel #1,ENDFLAG(%a6) - -WORK: -//--FIND THE REMAINDER OF (R,r) W.R.T. 2**L * (PI/2). L IS SO CHOSEN -//--THAT INT( X * (2/PI) / 2**(L) ) < 2**29. - -//--CREATE 2**(-L) * (2/PI), SIGN(INARG)*2**(63), -//--2**L * (PIby2_1), 2**L * (PIby2_2) - - movel #0x00003FFE,%d2 // ...BIASED EXPO OF 2/PI - subl %d0,%d2 // ...BIASED EXPO OF 2**(-L)*(2/PI) - - movel #0xA2F9836E,FP_SCR1+4(%a6) - movel #0x4E44152A,FP_SCR1+8(%a6) - movew %d2,FP_SCR1(%a6) // ...FP_SCR1 is 2**(-L)*(2/PI) - - fmovex %fp0,%fp2 - fmulx FP_SCR1(%a6),%fp2 -//--WE MUST NOW FIND INT(FP2). SINCE WE NEED THIS VALUE IN -//--FLOATING POINT FORMAT, THE TWO FMOVE'S FMOVE.L FP <--> N -//--WILL BE TOO INEFFICIENT. THE WAY AROUND IT IS THAT -//--(SIGN(INARG)*2**63 + FP2) - SIGN(INARG)*2**63 WILL GIVE -//--US THE DESIRED VALUE IN FLOATING POINT. - -//--HIDE SIX CYCLES OF INSTRUCTION - movel %a1,%d2 - swap %d2 - andil #0x80000000,%d2 - oril #0x5F000000,%d2 // ...D2 IS SIGN(INARG)*2**63 IN SGL - movel %d2,TWOTO63(%a6) - - movel %d0,%d2 - addil #0x00003FFF,%d2 // ...BIASED EXPO OF 2**L * (PI/2) - -//--FP2 IS READY - fadds TWOTO63(%a6),%fp2 // ...THE FRACTIONAL PART OF FP1 IS ROUNDED - -//--HIDE 4 CYCLES OF INSTRUCTION; creating 2**(L)*Piby2_1 and 2**(L)*Piby2_2 - movew %d2,FP_SCR2(%a6) - clrw FP_SCR2+2(%a6) - movel #0xC90FDAA2,FP_SCR2+4(%a6) - clrl FP_SCR2+8(%a6) // ...FP_SCR2 is 2**(L) * Piby2_1 - -//--FP2 IS READY - fsubs TWOTO63(%a6),%fp2 // ...FP2 is N - - addil #0x00003FDD,%d0 - movew %d0,FP_SCR3(%a6) - clrw FP_SCR3+2(%a6) - movel #0x85A308D3,FP_SCR3+4(%a6) - clrl FP_SCR3+8(%a6) // ...FP_SCR3 is 2**(L) * Piby2_2 - - movel ENDFLAG(%a6),%d0 - -//--We are now ready to perform (R+r) - N*P1 - N*P2, P1 = 2**(L) * Piby2_1 and -//--P2 = 2**(L) * Piby2_2 - fmovex %fp2,%fp4 - fmulx FP_SCR2(%a6),%fp4 // ...W = N*P1 - fmovex %fp2,%fp5 - fmulx FP_SCR3(%a6),%fp5 // ...w = N*P2 - fmovex %fp4,%fp3 -//--we want P+p = W+w but |p| <= half ulp of P -//--Then, we need to compute A := R-P and a := r-p - faddx %fp5,%fp3 // ...FP3 is P - fsubx %fp3,%fp4 // ...W-P - - fsubx %fp3,%fp0 // ...FP0 is A := R - P - faddx %fp5,%fp4 // ...FP4 is p = (W-P)+w - - fmovex %fp0,%fp3 // ...FP3 A - fsubx %fp4,%fp1 // ...FP1 is a := r - p - -//--Now we need to normalize (A,a) to "new (R,r)" where R+r = A+a but -//--|r| <= half ulp of R. - faddx %fp1,%fp0 // ...FP0 is R := A+a -//--No need to calculate r if this is the last loop - cmpil #0,%d0 - bgt RESTORE - -//--Need to calculate r - fsubx %fp0,%fp3 // ...A-R - faddx %fp3,%fp1 // ...FP1 is r := (A-R)+a - bra LOOP - -RESTORE: - fmovel %fp2,N(%a6) - movel (%a7)+,%d2 - fmovemx (%a7)+,%fp2-%fp5 - - - movel N(%a6),%d0 - rorl #1,%d0 - - - bra TANCONT - - |end diff --git a/c/src/lib/libcpu/m68k/m68040/fpsp/stanh.S b/c/src/lib/libcpu/m68k/m68040/fpsp/stanh.S deleted file mode 100644 index 909e037fc2..0000000000 --- a/c/src/lib/libcpu/m68k/m68040/fpsp/stanh.S +++ /dev/null @@ -1,187 +0,0 @@ -#include "fpsp-namespace.h" -// -// -// stanh.sa 3.1 12/10/90 -// -// The entry point sTanh computes the hyperbolic tangent of -// an input argument; sTanhd does the same except for denormalized -// input. -// -// Input: Double-extended number X in location pointed to -// by address register a0. -// -// Output: The value tanh(X) returned in floating-point register Fp0. -// -// Accuracy and Monotonicity: The returned result is within 3 ulps in -// 64 significant bit, i.e. within 0.5001 ulp to 53 bits if the -// result is subsequently rounded to double precision. The -// result is provably monotonic in double precision. -// -// Speed: The program stanh takes approximately 270 cycles. -// -// Algorithm: -// -// TANH -// 1. If |X| >= (5/2) log2 or |X| <= 2**(-40), go to 3. -// -// 2. (2**(-40) < |X| < (5/2) log2) Calculate tanh(X) by -// sgn := sign(X), y := 2|X|, z := expm1(Y), and -// tanh(X) = sgn*( z/(2+z) ). -// Exit. -// -// 3. (|X| <= 2**(-40) or |X| >= (5/2) log2). If |X| < 1, -// go to 7. -// -// 4. (|X| >= (5/2) log2) If |X| >= 50 log2, go to 6. -// -// 5. ((5/2) log2 <= |X| < 50 log2) Calculate tanh(X) by -// sgn := sign(X), y := 2|X|, z := exp(Y), -// tanh(X) = sgn - [ sgn*2/(1+z) ]. -// Exit. -// -// 6. (|X| >= 50 log2) Tanh(X) = +-1 (round to nearest). Thus, we -// calculate Tanh(X) by -// sgn := sign(X), Tiny := 2**(-126), -// tanh(X) := sgn - sgn*Tiny. -// Exit. -// -// 7. (|X| < 2**(-40)). Tanh(X) = X. Exit. -// - -// Copyright (C) Motorola, Inc. 1990 -// All Rights Reserved -// -// THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA -// The copyright notice above does not evidence any -// actual or intended publication of such source code. - -//STANH idnt 2,1 | Motorola 040 Floating Point Software Package - - |section 8 - -#include "fpsp.defs" - - .set X,FP_SCR5 - .set XDCARE,X+2 - .set XFRAC,X+4 - - .set SGN,L_SCR3 - - .set V,FP_SCR6 - -BOUNDS1: .long 0x3FD78000,0x3FFFDDCE // ... 2^(-40), (5/2)LOG2 - - |xref t_frcinx - |xref t_extdnrm - |xref setox - |xref setoxm1 - - .global stanhd -stanhd: -//--TANH(X) = X FOR DENORMALIZED X - - bra t_extdnrm - - .global stanh -stanh: - fmovex (%a0),%fp0 // ...LOAD INPUT - - fmovex %fp0,X(%a6) - movel (%a0),%d0 - movew 4(%a0),%d0 - movel %d0,X(%a6) - andl #0x7FFFFFFF,%d0 - cmp2l BOUNDS1(%pc),%d0 // ...2**(-40) < |X| < (5/2)LOG2 ? - bcss TANHBORS - -//--THIS IS THE USUAL CASE -//--Y = 2|X|, Z = EXPM1(Y), TANH(X) = SIGN(X) * Z / (Z+2). - - movel X(%a6),%d0 - movel %d0,SGN(%a6) - andl #0x7FFF0000,%d0 - addl #0x00010000,%d0 // ...EXPONENT OF 2|X| - movel %d0,X(%a6) - andl #0x80000000,SGN(%a6) - fmovex X(%a6),%fp0 // ...FP0 IS Y = 2|X| - - movel %d1,-(%a7) - clrl %d1 - fmovemx %fp0-%fp0,(%a0) - bsr setoxm1 // ...FP0 IS Z = EXPM1(Y) - movel (%a7)+,%d1 - - fmovex %fp0,%fp1 - fadds #0x40000000,%fp1 // ...Z+2 - movel SGN(%a6),%d0 - fmovex %fp1,V(%a6) - eorl %d0,V(%a6) - - fmovel %d1,%FPCR //restore users exceptions - fdivx V(%a6),%fp0 - bra t_frcinx - -TANHBORS: - cmpl #0x3FFF8000,%d0 - blt TANHSM - - cmpl #0x40048AA1,%d0 - bgt TANHHUGE - -//-- (5/2) LOG2 < |X| < 50 LOG2, -//--TANH(X) = 1 - (2/[EXP(2X)+1]). LET Y = 2|X|, SGN = SIGN(X), -//--TANH(X) = SGN - SGN*2/[EXP(Y)+1]. - - movel X(%a6),%d0 - movel %d0,SGN(%a6) - andl #0x7FFF0000,%d0 - addl #0x00010000,%d0 // ...EXPO OF 2|X| - movel %d0,X(%a6) // ...Y = 2|X| - andl #0x80000000,SGN(%a6) - movel SGN(%a6),%d0 - fmovex X(%a6),%fp0 // ...Y = 2|X| - - movel %d1,-(%a7) - clrl %d1 - fmovemx %fp0-%fp0,(%a0) - bsr setox // ...FP0 IS EXP(Y) - movel (%a7)+,%d1 - movel SGN(%a6),%d0 - fadds #0x3F800000,%fp0 // ...EXP(Y)+1 - - eorl #0xC0000000,%d0 // ...-SIGN(X)*2 - fmoves %d0,%fp1 // ...-SIGN(X)*2 IN SGL FMT - fdivx %fp0,%fp1 // ...-SIGN(X)2 / [EXP(Y)+1 ] - - movel SGN(%a6),%d0 - orl #0x3F800000,%d0 // ...SGN - fmoves %d0,%fp0 // ...SGN IN SGL FMT - - fmovel %d1,%FPCR //restore users exceptions - faddx %fp1,%fp0 - - bra t_frcinx - -TANHSM: - movew #0x0000,XDCARE(%a6) - - fmovel %d1,%FPCR //restore users exceptions - fmovex X(%a6),%fp0 //last inst - possible exception set - - bra t_frcinx - -TANHHUGE: -//---RETURN SGN(X) - SGN(X)EPS - movel X(%a6),%d0 - andl #0x80000000,%d0 - orl #0x3F800000,%d0 - fmoves %d0,%fp0 - andl #0x80000000,%d0 - eorl #0x80800000,%d0 // ...-SIGN(X)*EPS - - fmovel %d1,%FPCR //restore users exceptions - fadds %d0,%fp0 - - bra t_frcinx - - |end diff --git a/c/src/lib/libcpu/m68k/m68040/fpsp/sto_res.S b/c/src/lib/libcpu/m68k/m68040/fpsp/sto_res.S deleted file mode 100644 index b47cb77da2..0000000000 --- a/c/src/lib/libcpu/m68k/m68040/fpsp/sto_res.S +++ /dev/null @@ -1,100 +0,0 @@ -#include "fpsp-namespace.h" -// -// -// sto_res.sa 3.1 12/10/90 -// -// Takes the result and puts it in where the user expects it. -// Library functions return result in fp0. If fp0 is not the -// users destination register then fp0 is moved to the the -// correct floating-point destination register. fp0 and fp1 -// are then restored to the original contents. -// -// Input: result in fp0,fp1 -// -// d2 & a0 should be kept unmodified -// -// Output: moves the result to the true destination reg or mem -// -// Modifies: destination floating point register -// - -// Copyright (C) Motorola, Inc. 1990 -// All Rights Reserved -// -// THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA -// The copyright notice above does not evidence any -// actual or intended publication of such source code. - -STO_RES: //idnt 2,1 | Motorola 040 Floating Point Software Package - - - |section 8 - -#include "fpsp.defs" - - .global sto_cos -sto_cos: - bfextu CMDREG1B(%a6){#13:#3},%d0 //extract cos destination - cmpib #3,%d0 //check for fp0/fp1 cases - bles c_fp0123 - fmovemx %fp1-%fp1,-(%a7) - moveql #7,%d1 - subl %d0,%d1 //d1 = 7- (dest. reg. no.) - clrl %d0 - bsetl %d1,%d0 //d0 is dynamic register mask - fmovemx (%a7)+,%d0 - rts -c_fp0123: - cmpib #0,%d0 - beqs c_is_fp0 - cmpib #1,%d0 - beqs c_is_fp1 - cmpib #2,%d0 - beqs c_is_fp2 -c_is_fp3: - fmovemx %fp1-%fp1,USER_FP3(%a6) - rts -c_is_fp2: - fmovemx %fp1-%fp1,USER_FP2(%a6) - rts -c_is_fp1: - fmovemx %fp1-%fp1,USER_FP1(%a6) - rts -c_is_fp0: - fmovemx %fp1-%fp1,USER_FP0(%a6) - rts - - - .global sto_res -sto_res: - bfextu CMDREG1B(%a6){#6:#3},%d0 //extract destination register - cmpib #3,%d0 //check for fp0/fp1 cases - bles fp0123 - fmovemx %fp0-%fp0,-(%a7) - moveql #7,%d1 - subl %d0,%d1 //d1 = 7- (dest. reg. no.) - clrl %d0 - bsetl %d1,%d0 //d0 is dynamic register mask - fmovemx (%a7)+,%d0 - rts -fp0123: - cmpib #0,%d0 - beqs is_fp0 - cmpib #1,%d0 - beqs is_fp1 - cmpib #2,%d0 - beqs is_fp2 -is_fp3: - fmovemx %fp0-%fp0,USER_FP3(%a6) - rts -is_fp2: - fmovemx %fp0-%fp0,USER_FP2(%a6) - rts -is_fp1: - fmovemx %fp0-%fp0,USER_FP1(%a6) - rts -is_fp0: - fmovemx %fp0-%fp0,USER_FP0(%a6) - rts - - |end diff --git a/c/src/lib/libcpu/m68k/m68040/fpsp/stwotox.S b/c/src/lib/libcpu/m68k/m68040/fpsp/stwotox.S deleted file mode 100644 index 60ccb72e56..0000000000 --- a/c/src/lib/libcpu/m68k/m68040/fpsp/stwotox.S +++ /dev/null @@ -1,429 +0,0 @@ -#include "fpsp-namespace.h" -// -// -// stwotox.sa 3.1 12/10/90 -// -// stwotox --- 2**X -// stwotoxd --- 2**X for denormalized X -// stentox --- 10**X -// stentoxd --- 10**X for denormalized X -// -// Input: Double-extended number X in location pointed to -// by address register a0. -// -// Output: The function values are returned in Fp0. -// -// Accuracy and Monotonicity: The returned result is within 2 ulps in -// 64 significant bit, i.e. within 0.5001 ulp to 53 bits if the -// result is subsequently rounded to double precision. The -// result is provably monotonic in double precision. -// -// Speed: The program stwotox takes approximately 190 cycles and the -// program stentox takes approximately 200 cycles. -// -// Algorithm: -// -// twotox -// 1. If |X| > 16480, go to ExpBig. -// -// 2. If |X| < 2**(-70), go to ExpSm. -// -// 3. Decompose X as X = N/64 + r where |r| <= 1/128. Furthermore -// decompose N as -// N = 64(M + M') + j, j = 0,1,2,...,63. -// -// 4. Overwrite r := r * log2. Then -// 2**X = 2**(M') * 2**(M) * 2**(j/64) * exp(r). -// Go to expr to compute that expression. -// -// tentox -// 1. If |X| > 16480*log_10(2) (base 10 log of 2), go to ExpBig. -// -// 2. If |X| < 2**(-70), go to ExpSm. -// -// 3. Set y := X*log_2(10)*64 (base 2 log of 10). Set -// N := round-to-int(y). Decompose N as -// N = 64(M + M') + j, j = 0,1,2,...,63. -// -// 4. Define r as -// r := ((X - N*L1)-N*L2) * L10 -// where L1, L2 are the leading and trailing parts of log_10(2)/64 -// and L10 is the natural log of 10. Then -// 10**X = 2**(M') * 2**(M) * 2**(j/64) * exp(r). -// Go to expr to compute that expression. -// -// expr -// 1. Fetch 2**(j/64) from table as Fact1 and Fact2. -// -// 2. Overwrite Fact1 and Fact2 by -// Fact1 := 2**(M) * Fact1 -// Fact2 := 2**(M) * Fact2 -// Thus Fact1 + Fact2 = 2**(M) * 2**(j/64). -// -// 3. Calculate P where 1 + P approximates exp(r): -// P = r + r*r*(A1+r*(A2+...+r*A5)). -// -// 4. Let AdjFact := 2**(M'). Return -// AdjFact * ( Fact1 + ((Fact1*P) + Fact2) ). -// Exit. -// -// ExpBig -// 1. Generate overflow by Huge * Huge if X > 0; otherwise, generate -// underflow by Tiny * Tiny. -// -// ExpSm -// 1. Return 1 + X. -// - -// Copyright (C) Motorola, Inc. 1990 -// All Rights Reserved -// -// THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA -// The copyright notice above does not evidence any -// actual or intended publication of such source code. - -//STWOTOX idnt 2,1 | Motorola 040 Floating Point Software Package - - |section 8 - -#include "fpsp.defs" - -BOUNDS1: .long 0x3FB98000,0x400D80C0 // ... 2^(-70),16480 -BOUNDS2: .long 0x3FB98000,0x400B9B07 // ... 2^(-70),16480 LOG2/LOG10 - -L2TEN64: .long 0x406A934F,0x0979A371 // ... 64LOG10/LOG2 -L10TWO1: .long 0x3F734413,0x509F8000 // ... LOG2/64LOG10 - -L10TWO2: .long 0xBFCD0000,0xC0219DC1,0xDA994FD2,0x00000000 - -LOG10: .long 0x40000000,0x935D8DDD,0xAAA8AC17,0x00000000 - -LOG2: .long 0x3FFE0000,0xB17217F7,0xD1CF79AC,0x00000000 - -EXPA5: .long 0x3F56C16D,0x6F7BD0B2 -EXPA4: .long 0x3F811112,0x302C712C -EXPA3: .long 0x3FA55555,0x55554CC1 -EXPA2: .long 0x3FC55555,0x55554A54 -EXPA1: .long 0x3FE00000,0x00000000,0x00000000,0x00000000 - -HUGE: .long 0x7FFE0000,0xFFFFFFFF,0xFFFFFFFF,0x00000000 -TINY: .long 0x00010000,0xFFFFFFFF,0xFFFFFFFF,0x00000000 - -EXPTBL: - .long 0x3FFF0000,0x80000000,0x00000000,0x3F738000 - .long 0x3FFF0000,0x8164D1F3,0xBC030773,0x3FBEF7CA - .long 0x3FFF0000,0x82CD8698,0xAC2BA1D7,0x3FBDF8A9 - .long 0x3FFF0000,0x843A28C3,0xACDE4046,0x3FBCD7C9 - .long 0x3FFF0000,0x85AAC367,0xCC487B15,0xBFBDE8DA - .long 0x3FFF0000,0x871F6196,0x9E8D1010,0x3FBDE85C - .long 0x3FFF0000,0x88980E80,0x92DA8527,0x3FBEBBF1 - .long 0x3FFF0000,0x8A14D575,0x496EFD9A,0x3FBB80CA - .long 0x3FFF0000,0x8B95C1E3,0xEA8BD6E7,0xBFBA8373 - .long 0x3FFF0000,0x8D1ADF5B,0x7E5BA9E6,0xBFBE9670 - .long 0x3FFF0000,0x8EA4398B,0x45CD53C0,0x3FBDB700 - .long 0x3FFF0000,0x9031DC43,0x1466B1DC,0x3FBEEEB0 - .long 0x3FFF0000,0x91C3D373,0xAB11C336,0x3FBBFD6D - .long 0x3FFF0000,0x935A2B2F,0x13E6E92C,0xBFBDB319 - .long 0x3FFF0000,0x94F4EFA8,0xFEF70961,0x3FBDBA2B - .long 0x3FFF0000,0x96942D37,0x20185A00,0x3FBE91D5 - .long 0x3FFF0000,0x9837F051,0x8DB8A96F,0x3FBE8D5A - .long 0x3FFF0000,0x99E04593,0x20B7FA65,0xBFBCDE7B - .long 0x3FFF0000,0x9B8D39B9,0xD54E5539,0xBFBEBAAF - .long 0x3FFF0000,0x9D3ED9A7,0x2CFFB751,0xBFBD86DA - .long 0x3FFF0000,0x9EF53260,0x91A111AE,0xBFBEBEDD - .long 0x3FFF0000,0xA0B0510F,0xB9714FC2,0x3FBCC96E - .long 0x3FFF0000,0xA2704303,0x0C496819,0xBFBEC90B - .long 0x3FFF0000,0xA43515AE,0x09E6809E,0x3FBBD1DB - .long 0x3FFF0000,0xA5FED6A9,0xB15138EA,0x3FBCE5EB - .long 0x3FFF0000,0xA7CD93B4,0xE965356A,0xBFBEC274 - .long 0x3FFF0000,0xA9A15AB4,0xEA7C0EF8,0x3FBEA83C - .long 0x3FFF0000,0xAB7A39B5,0xA93ED337,0x3FBECB00 - .long 0x3FFF0000,0xAD583EEA,0x42A14AC6,0x3FBE9301 - .long 0x3FFF0000,0xAF3B78AD,0x690A4375,0xBFBD8367 - .long 0x3FFF0000,0xB123F581,0xD2AC2590,0xBFBEF05F - .long 0x3FFF0000,0xB311C412,0xA9112489,0x3FBDFB3C - .long 0x3FFF0000,0xB504F333,0xF9DE6484,0x3FBEB2FB - .long 0x3FFF0000,0xB6FD91E3,0x28D17791,0x3FBAE2CB - .long 0x3FFF0000,0xB8FBAF47,0x62FB9EE9,0x3FBCDC3C - .long 0x3FFF0000,0xBAFF5AB2,0x133E45FB,0x3FBEE9AA - .long 0x3FFF0000,0xBD08A39F,0x580C36BF,0xBFBEAEFD - .long 0x3FFF0000,0xBF1799B6,0x7A731083,0xBFBCBF51 - .long 0x3FFF0000,0xC12C4CCA,0x66709456,0x3FBEF88A - .long 0x3FFF0000,0xC346CCDA,0x24976407,0x3FBD83B2 - .long 0x3FFF0000,0xC5672A11,0x5506DADD,0x3FBDF8AB - .long 0x3FFF0000,0xC78D74C8,0xABB9B15D,0xBFBDFB17 - .long 0x3FFF0000,0xC9B9BD86,0x6E2F27A3,0xBFBEFE3C - .long 0x3FFF0000,0xCBEC14FE,0xF2727C5D,0xBFBBB6F8 - .long 0x3FFF0000,0xCE248C15,0x1F8480E4,0xBFBCEE53 - .long 0x3FFF0000,0xD06333DA,0xEF2B2595,0xBFBDA4AE - .long 0x3FFF0000,0xD2A81D91,0xF12AE45A,0x3FBC9124 - .long 0x3FFF0000,0xD4F35AAB,0xCFEDFA1F,0x3FBEB243 - .long 0x3FFF0000,0xD744FCCA,0xD69D6AF4,0x3FBDE69A - .long 0x3FFF0000,0xD99D15C2,0x78AFD7B6,0xBFB8BC61 - .long 0x3FFF0000,0xDBFBB797,0xDAF23755,0x3FBDF610 - .long 0x3FFF0000,0xDE60F482,0x5E0E9124,0xBFBD8BE1 - .long 0x3FFF0000,0xE0CCDEEC,0x2A94E111,0x3FBACB12 - .long 0x3FFF0000,0xE33F8972,0xBE8A5A51,0x3FBB9BFE - .long 0x3FFF0000,0xE5B906E7,0x7C8348A8,0x3FBCF2F4 - .long 0x3FFF0000,0xE8396A50,0x3C4BDC68,0x3FBEF22F - .long 0x3FFF0000,0xEAC0C6E7,0xDD24392F,0xBFBDBF4A - .long 0x3FFF0000,0xED4F301E,0xD9942B84,0x3FBEC01A - .long 0x3FFF0000,0xEFE4B99B,0xDCDAF5CB,0x3FBE8CAC - .long 0x3FFF0000,0xF281773C,0x59FFB13A,0xBFBCBB3F - .long 0x3FFF0000,0xF5257D15,0x2486CC2C,0x3FBEF73A - .long 0x3FFF0000,0xF7D0DF73,0x0AD13BB9,0xBFB8B795 - .long 0x3FFF0000,0xFA83B2DB,0x722A033A,0x3FBEF84B - .long 0x3FFF0000,0xFD3E0C0C,0xF486C175,0xBFBEF581 - - .set N,L_SCR1 - - .set X,FP_SCR1 - .set XDCARE,X+2 - .set XFRAC,X+4 - - .set ADJFACT,FP_SCR2 - - .set FACT1,FP_SCR3 - .set FACT1HI,FACT1+4 - .set FACT1LOW,FACT1+8 - - .set FACT2,FP_SCR4 - .set FACT2HI,FACT2+4 - .set FACT2LOW,FACT2+8 - - | xref t_unfl - |xref t_ovfl - |xref t_frcinx - - .global stwotoxd -stwotoxd: -//--ENTRY POINT FOR 2**(X) FOR DENORMALIZED ARGUMENT - - fmovel %d1,%fpcr // ...set user's rounding mode/precision - fmoves #0x3F800000,%fp0 // ...RETURN 1 + X - movel (%a0),%d0 - orl #0x00800001,%d0 - fadds %d0,%fp0 - bra t_frcinx - - .global stwotox -stwotox: -//--ENTRY POINT FOR 2**(X), HERE X IS FINITE, NON-ZERO, AND NOT NAN'S - fmovemx (%a0),%fp0-%fp0 // ...LOAD INPUT, do not set cc's - - movel (%a0),%d0 - movew 4(%a0),%d0 - fmovex %fp0,X(%a6) - andil #0x7FFFFFFF,%d0 - - cmpil #0x3FB98000,%d0 // ...|X| >= 2**(-70)? - bges TWOOK1 - bra EXPBORS - -TWOOK1: - cmpil #0x400D80C0,%d0 // ...|X| > 16480? - bles TWOMAIN - bra EXPBORS - - -TWOMAIN: -//--USUAL CASE, 2^(-70) <= |X| <= 16480 - - fmovex %fp0,%fp1 - fmuls #0x42800000,%fp1 // ...64 * X - - fmovel %fp1,N(%a6) // ...N = ROUND-TO-INT(64 X) - movel %d2,-(%sp) - lea EXPTBL,%a1 // ...LOAD ADDRESS OF TABLE OF 2^(J/64) - fmovel N(%a6),%fp1 // ...N --> FLOATING FMT - movel N(%a6),%d0 - movel %d0,%d2 - andil #0x3F,%d0 // ...D0 IS J - asll #4,%d0 // ...DISPLACEMENT FOR 2^(J/64) - addal %d0,%a1 // ...ADDRESS FOR 2^(J/64) - asrl #6,%d2 // ...d2 IS L, N = 64L + J - movel %d2,%d0 - asrl #1,%d0 // ...D0 IS M - subl %d0,%d2 // ...d2 IS M', N = 64(M+M') + J - addil #0x3FFF,%d2 - movew %d2,ADJFACT(%a6) // ...ADJFACT IS 2^(M') - movel (%sp)+,%d2 -//--SUMMARY: a1 IS ADDRESS FOR THE LEADING PORTION OF 2^(J/64), -//--D0 IS M WHERE N = 64(M+M') + J. NOTE THAT |M| <= 16140 BY DESIGN. -//--ADJFACT = 2^(M'). -//--REGISTERS SAVED SO FAR ARE (IN ORDER) FPCR, D0, FP1, a1, AND FP2. - - fmuls #0x3C800000,%fp1 // ...(1/64)*N - movel (%a1)+,FACT1(%a6) - movel (%a1)+,FACT1HI(%a6) - movel (%a1)+,FACT1LOW(%a6) - movew (%a1)+,FACT2(%a6) - clrw FACT2+2(%a6) - - fsubx %fp1,%fp0 // ...X - (1/64)*INT(64 X) - - movew (%a1)+,FACT2HI(%a6) - clrw FACT2HI+2(%a6) - clrl FACT2LOW(%a6) - addw %d0,FACT1(%a6) - - fmulx LOG2,%fp0 // ...FP0 IS R - addw %d0,FACT2(%a6) - - bra expr - -EXPBORS: -//--FPCR, D0 SAVED - cmpil #0x3FFF8000,%d0 - bgts EXPBIG - -EXPSM: -//--|X| IS SMALL, RETURN 1 + X - - fmovel %d1,%FPCR //restore users exceptions - fadds #0x3F800000,%fp0 // ...RETURN 1 + X - - bra t_frcinx - -EXPBIG: -//--|X| IS LARGE, GENERATE OVERFLOW IF X > 0; ELSE GENERATE UNDERFLOW -//--REGISTERS SAVE SO FAR ARE FPCR AND D0 - movel X(%a6),%d0 - cmpil #0,%d0 - blts EXPNEG - - bclrb #7,(%a0) //t_ovfl expects positive value - bra t_ovfl - -EXPNEG: - bclrb #7,(%a0) //t_unfl expects positive value - bra t_unfl - - .global stentoxd -stentoxd: -//--ENTRY POINT FOR 10**(X) FOR DENORMALIZED ARGUMENT - - fmovel %d1,%fpcr // ...set user's rounding mode/precision - fmoves #0x3F800000,%fp0 // ...RETURN 1 + X - movel (%a0),%d0 - orl #0x00800001,%d0 - fadds %d0,%fp0 - bra t_frcinx - - .global stentox -stentox: -//--ENTRY POINT FOR 10**(X), HERE X IS FINITE, NON-ZERO, AND NOT NAN'S - fmovemx (%a0),%fp0-%fp0 // ...LOAD INPUT, do not set cc's - - movel (%a0),%d0 - movew 4(%a0),%d0 - fmovex %fp0,X(%a6) - andil #0x7FFFFFFF,%d0 - - cmpil #0x3FB98000,%d0 // ...|X| >= 2**(-70)? - bges TENOK1 - bra EXPBORS - -TENOK1: - cmpil #0x400B9B07,%d0 // ...|X| <= 16480*log2/log10 ? - bles TENMAIN - bra EXPBORS - -TENMAIN: -//--USUAL CASE, 2^(-70) <= |X| <= 16480 LOG 2 / LOG 10 - - fmovex %fp0,%fp1 - fmuld L2TEN64,%fp1 // ...X*64*LOG10/LOG2 - - fmovel %fp1,N(%a6) // ...N=INT(X*64*LOG10/LOG2) - movel %d2,-(%sp) - lea EXPTBL,%a1 // ...LOAD ADDRESS OF TABLE OF 2^(J/64) - fmovel N(%a6),%fp1 // ...N --> FLOATING FMT - movel N(%a6),%d0 - movel %d0,%d2 - andil #0x3F,%d0 // ...D0 IS J - asll #4,%d0 // ...DISPLACEMENT FOR 2^(J/64) - addal %d0,%a1 // ...ADDRESS FOR 2^(J/64) - asrl #6,%d2 // ...d2 IS L, N = 64L + J - movel %d2,%d0 - asrl #1,%d0 // ...D0 IS M - subl %d0,%d2 // ...d2 IS M', N = 64(M+M') + J - addil #0x3FFF,%d2 - movew %d2,ADJFACT(%a6) // ...ADJFACT IS 2^(M') - movel (%sp)+,%d2 - -//--SUMMARY: a1 IS ADDRESS FOR THE LEADING PORTION OF 2^(J/64), -//--D0 IS M WHERE N = 64(M+M') + J. NOTE THAT |M| <= 16140 BY DESIGN. -//--ADJFACT = 2^(M'). -//--REGISTERS SAVED SO FAR ARE (IN ORDER) FPCR, D0, FP1, a1, AND FP2. - - fmovex %fp1,%fp2 - - fmuld L10TWO1,%fp1 // ...N*(LOG2/64LOG10)_LEAD - movel (%a1)+,FACT1(%a6) - - fmulx L10TWO2,%fp2 // ...N*(LOG2/64LOG10)_TRAIL - - movel (%a1)+,FACT1HI(%a6) - movel (%a1)+,FACT1LOW(%a6) - fsubx %fp1,%fp0 // ...X - N L_LEAD - movew (%a1)+,FACT2(%a6) - - fsubx %fp2,%fp0 // ...X - N L_TRAIL - - clrw FACT2+2(%a6) - movew (%a1)+,FACT2HI(%a6) - clrw FACT2HI+2(%a6) - clrl FACT2LOW(%a6) - - fmulx LOG10,%fp0 // ...FP0 IS R - - addw %d0,FACT1(%a6) - addw %d0,FACT2(%a6) - -expr: -//--FPCR, FP2, FP3 ARE SAVED IN ORDER AS SHOWN. -//--ADJFACT CONTAINS 2**(M'), FACT1 + FACT2 = 2**(M) * 2**(J/64). -//--FP0 IS R. THE FOLLOWING CODE COMPUTES -//-- 2**(M'+M) * 2**(J/64) * EXP(R) - - fmovex %fp0,%fp1 - fmulx %fp1,%fp1 // ...FP1 IS S = R*R - - fmoved EXPA5,%fp2 // ...FP2 IS A5 - fmoved EXPA4,%fp3 // ...FP3 IS A4 - - fmulx %fp1,%fp2 // ...FP2 IS S*A5 - fmulx %fp1,%fp3 // ...FP3 IS S*A4 - - faddd EXPA3,%fp2 // ...FP2 IS A3+S*A5 - faddd EXPA2,%fp3 // ...FP3 IS A2+S*A4 - - fmulx %fp1,%fp2 // ...FP2 IS S*(A3+S*A5) - fmulx %fp1,%fp3 // ...FP3 IS S*(A2+S*A4) - - faddd EXPA1,%fp2 // ...FP2 IS A1+S*(A3+S*A5) - fmulx %fp0,%fp3 // ...FP3 IS R*S*(A2+S*A4) - - fmulx %fp1,%fp2 // ...FP2 IS S*(A1+S*(A3+S*A5)) - faddx %fp3,%fp0 // ...FP0 IS R+R*S*(A2+S*A4) - - faddx %fp2,%fp0 // ...FP0 IS EXP(R) - 1 - - -//--FINAL RECONSTRUCTION PROCESS -//--EXP(X) = 2^M*2^(J/64) + 2^M*2^(J/64)*(EXP(R)-1) - (1 OR 0) - - fmulx FACT1(%a6),%fp0 - faddx FACT2(%a6),%fp0 - faddx FACT1(%a6),%fp0 - - fmovel %d1,%FPCR //restore users exceptions - clrw ADJFACT+2(%a6) - movel #0x80000000,ADJFACT+4(%a6) - clrl ADJFACT+8(%a6) - fmulx ADJFACT(%a6),%fp0 // ...FINAL ADJUSTMENT - - bra t_frcinx - - |end diff --git a/c/src/lib/libcpu/m68k/m68040/fpsp/tbldo.S b/c/src/lib/libcpu/m68k/m68040/fpsp/tbldo.S deleted file mode 100644 index acec6aed72..0000000000 --- a/c/src/lib/libcpu/m68k/m68040/fpsp/tbldo.S +++ /dev/null @@ -1,556 +0,0 @@ -#include "fpsp-namespace.h" -// -// -// tbldo.sa 3.1 12/10/90 -// -// Modified: -// 8/16/90 chinds The table was constructed to use only one level -// of indirection in do_func for monadic -// functions. Dyadic functions require two -// levels, and the tables are still contained -// in do_func. The table is arranged for -// index with a 10-bit index, with the first -// 7 bits the opcode, and the remaining 3 -// the stag. For dyadic functions, all -// valid addresses are to the generic entry -// point. -// - -// Copyright (C) Motorola, Inc. 1990 -// All Rights Reserved -// -// THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA -// The copyright notice above does not evidence any -// actual or intended publication of such source code. - -//TBLDO idnt 2,1 | Motorola 040 Floating Point Software Package - - |section 8 - - |xref ld_pinf,ld_pone,ld_ppi2 - |xref t_dz2,t_operr - |xref serror,sone,szero,sinf,snzrinx - |xref sopr_inf,spi_2,src_nan,szr_inf - - |xref smovcr - |xref pmod,prem,pscale - |xref satanh,satanhd - |xref sacos,sacosd,sasin,sasind,satan,satand - |xref setox,setoxd,setoxm1,setoxm1d,setoxm1i - |xref sgetexp,sgetexpd,sgetman,sgetmand - |xref sint,sintd,sintrz - |xref ssincos,ssincosd,ssincosi,ssincosnan,ssincosz - |xref scos,scosd,ssin,ssind,stan,stand - |xref scosh,scoshd,ssinh,ssinhd,stanh,stanhd - |xref sslog10,sslog2,sslogn,sslognp1 - |xref sslog10d,sslog2d,sslognd,slognp1d - |xref stentox,stentoxd,stwotox,stwotoxd - -// instruction ;opcode-stag Notes - .global tblpre -tblpre: - .long smovcr //$00-0 fmovecr all - .long smovcr //$00-1 fmovecr all - .long smovcr //$00-2 fmovecr all - .long smovcr //$00-3 fmovecr all - .long smovcr //$00-4 fmovecr all - .long smovcr //$00-5 fmovecr all - .long smovcr //$00-6 fmovecr all - .long smovcr //$00-7 fmovecr all - - .long sint //$01-0 fint norm - .long szero //$01-1 fint zero - .long sinf //$01-2 fint inf - .long src_nan //$01-3 fint nan - .long sintd //$01-4 fint denorm inx - .long serror //$01-5 fint ERROR - .long serror //$01-6 fint ERROR - .long serror //$01-7 fint ERROR - - .long ssinh //$02-0 fsinh norm - .long szero //$02-1 fsinh zero - .long sinf //$02-2 fsinh inf - .long src_nan //$02-3 fsinh nan - .long ssinhd //$02-4 fsinh denorm - .long serror //$02-5 fsinh ERROR - .long serror //$02-6 fsinh ERROR - .long serror //$02-7 fsinh ERROR - - .long sintrz //$03-0 fintrz norm - .long szero //$03-1 fintrz zero - .long sinf //$03-2 fintrz inf - .long src_nan //$03-3 fintrz nan - .long snzrinx //$03-4 fintrz denorm inx - .long serror //$03-5 fintrz ERROR - .long serror //$03-6 fintrz ERROR - .long serror //$03-7 fintrz ERROR - - .long serror //$04-0 ERROR - illegal extension - .long serror //$04-1 ERROR - illegal extension - .long serror //$04-2 ERROR - illegal extension - .long serror //$04-3 ERROR - illegal extension - .long serror //$04-4 ERROR - illegal extension - .long serror //$04-5 ERROR - illegal extension - .long serror //$04-6 ERROR - illegal extension - .long serror //$04-7 ERROR - illegal extension - - .long serror //$05-0 ERROR - illegal extension - .long serror //$05-1 ERROR - illegal extension - .long serror //$05-2 ERROR - illegal extension - .long serror //$05-3 ERROR - illegal extension - .long serror //$05-4 ERROR - illegal extension - .long serror //$05-5 ERROR - illegal extension - .long serror //$05-6 ERROR - illegal extension - .long serror //$05-7 ERROR - illegal extension - - .long sslognp1 //$06-0 flognp1 norm - .long szero //$06-1 flognp1 zero - .long sopr_inf //$06-2 flognp1 inf - .long src_nan //$06-3 flognp1 nan - .long slognp1d //$06-4 flognp1 denorm - .long serror //$06-5 flognp1 ERROR - .long serror //$06-6 flognp1 ERROR - .long serror //$06-7 flognp1 ERROR - - .long serror //$07-0 ERROR - illegal extension - .long serror //$07-1 ERROR - illegal extension - .long serror //$07-2 ERROR - illegal extension - .long serror //$07-3 ERROR - illegal extension - .long serror //$07-4 ERROR - illegal extension - .long serror //$07-5 ERROR - illegal extension - .long serror //$07-6 ERROR - illegal extension - .long serror //$07-7 ERROR - illegal extension - - .long setoxm1 //$08-0 fetoxm1 norm - .long szero //$08-1 fetoxm1 zero - .long setoxm1i //$08-2 fetoxm1 inf - .long src_nan //$08-3 fetoxm1 nan - .long setoxm1d //$08-4 fetoxm1 denorm - .long serror //$08-5 fetoxm1 ERROR - .long serror //$08-6 fetoxm1 ERROR - .long serror //$08-7 fetoxm1 ERROR - - .long stanh //$09-0 ftanh norm - .long szero //$09-1 ftanh zero - .long sone //$09-2 ftanh inf - .long src_nan //$09-3 ftanh nan - .long stanhd //$09-4 ftanh denorm - .long serror //$09-5 ftanh ERROR - .long serror //$09-6 ftanh ERROR - .long serror //$09-7 ftanh ERROR - - .long satan //$0a-0 fatan norm - .long szero //$0a-1 fatan zero - .long spi_2 //$0a-2 fatan inf - .long src_nan //$0a-3 fatan nan - .long satand //$0a-4 fatan denorm - .long serror //$0a-5 fatan ERROR - .long serror //$0a-6 fatan ERROR - .long serror //$0a-7 fatan ERROR - - .long serror //$0b-0 ERROR - illegal extension - .long serror //$0b-1 ERROR - illegal extension - .long serror //$0b-2 ERROR - illegal extension - .long serror //$0b-3 ERROR - illegal extension - .long serror //$0b-4 ERROR - illegal extension - .long serror //$0b-5 ERROR - illegal extension - .long serror //$0b-6 ERROR - illegal extension - .long serror //$0b-7 ERROR - illegal extension - - .long sasin //$0c-0 fasin norm - .long szero //$0c-1 fasin zero - .long t_operr //$0c-2 fasin inf - .long src_nan //$0c-3 fasin nan - .long sasind //$0c-4 fasin denorm - .long serror //$0c-5 fasin ERROR - .long serror //$0c-6 fasin ERROR - .long serror //$0c-7 fasin ERROR - - .long satanh //$0d-0 fatanh norm - .long szero //$0d-1 fatanh zero - .long t_operr //$0d-2 fatanh inf - .long src_nan //$0d-3 fatanh nan - .long satanhd //$0d-4 fatanh denorm - .long serror //$0d-5 fatanh ERROR - .long serror //$0d-6 fatanh ERROR - .long serror //$0d-7 fatanh ERROR - - .long ssin //$0e-0 fsin norm - .long szero //$0e-1 fsin zero - .long t_operr //$0e-2 fsin inf - .long src_nan //$0e-3 fsin nan - .long ssind //$0e-4 fsin denorm - .long serror //$0e-5 fsin ERROR - .long serror //$0e-6 fsin ERROR - .long serror //$0e-7 fsin ERROR - - .long stan //$0f-0 ftan norm - .long szero //$0f-1 ftan zero - .long t_operr //$0f-2 ftan inf - .long src_nan //$0f-3 ftan nan - .long stand //$0f-4 ftan denorm - .long serror //$0f-5 ftan ERROR - .long serror //$0f-6 ftan ERROR - .long serror //$0f-7 ftan ERROR - - .long setox //$10-0 fetox norm - .long ld_pone //$10-1 fetox zero - .long szr_inf //$10-2 fetox inf - .long src_nan //$10-3 fetox nan - .long setoxd //$10-4 fetox denorm - .long serror //$10-5 fetox ERROR - .long serror //$10-6 fetox ERROR - .long serror //$10-7 fetox ERROR - - .long stwotox //$11-0 ftwotox norm - .long ld_pone //$11-1 ftwotox zero - .long szr_inf //$11-2 ftwotox inf - .long src_nan //$11-3 ftwotox nan - .long stwotoxd //$11-4 ftwotox denorm - .long serror //$11-5 ftwotox ERROR - .long serror //$11-6 ftwotox ERROR - .long serror //$11-7 ftwotox ERROR - - .long stentox //$12-0 ftentox norm - .long ld_pone //$12-1 ftentox zero - .long szr_inf //$12-2 ftentox inf - .long src_nan //$12-3 ftentox nan - .long stentoxd //$12-4 ftentox denorm - .long serror //$12-5 ftentox ERROR - .long serror //$12-6 ftentox ERROR - .long serror //$12-7 ftentox ERROR - - .long serror //$13-0 ERROR - illegal extension - .long serror //$13-1 ERROR - illegal extension - .long serror //$13-2 ERROR - illegal extension - .long serror //$13-3 ERROR - illegal extension - .long serror //$13-4 ERROR - illegal extension - .long serror //$13-5 ERROR - illegal extension - .long serror //$13-6 ERROR - illegal extension - .long serror //$13-7 ERROR - illegal extension - - .long sslogn //$14-0 flogn norm - .long t_dz2 //$14-1 flogn zero - .long sopr_inf //$14-2 flogn inf - .long src_nan //$14-3 flogn nan - .long sslognd //$14-4 flogn denorm - .long serror //$14-5 flogn ERROR - .long serror //$14-6 flogn ERROR - .long serror //$14-7 flogn ERROR - - .long sslog10 //$15-0 flog10 norm - .long t_dz2 //$15-1 flog10 zero - .long sopr_inf //$15-2 flog10 inf - .long src_nan //$15-3 flog10 nan - .long sslog10d //$15-4 flog10 denorm - .long serror //$15-5 flog10 ERROR - .long serror //$15-6 flog10 ERROR - .long serror //$15-7 flog10 ERROR - - .long sslog2 //$16-0 flog2 norm - .long t_dz2 //$16-1 flog2 zero - .long sopr_inf //$16-2 flog2 inf - .long src_nan //$16-3 flog2 nan - .long sslog2d //$16-4 flog2 denorm - .long serror //$16-5 flog2 ERROR - .long serror //$16-6 flog2 ERROR - .long serror //$16-7 flog2 ERROR - - .long serror //$17-0 ERROR - illegal extension - .long serror //$17-1 ERROR - illegal extension - .long serror //$17-2 ERROR - illegal extension - .long serror //$17-3 ERROR - illegal extension - .long serror //$17-4 ERROR - illegal extension - .long serror //$17-5 ERROR - illegal extension - .long serror //$17-6 ERROR - illegal extension - .long serror //$17-7 ERROR - illegal extension - - .long serror //$18-0 ERROR - illegal extension - .long serror //$18-1 ERROR - illegal extension - .long serror //$18-2 ERROR - illegal extension - .long serror //$18-3 ERROR - illegal extension - .long serror //$18-4 ERROR - illegal extension - .long serror //$18-5 ERROR - illegal extension - .long serror //$18-6 ERROR - illegal extension - .long serror //$18-7 ERROR - illegal extension - - .long scosh //$19-0 fcosh norm - .long ld_pone //$19-1 fcosh zero - .long ld_pinf //$19-2 fcosh inf - .long src_nan //$19-3 fcosh nan - .long scoshd //$19-4 fcosh denorm - .long serror //$19-5 fcosh ERROR - .long serror //$19-6 fcosh ERROR - .long serror //$19-7 fcosh ERROR - - .long serror //$1a-0 ERROR - illegal extension - .long serror //$1a-1 ERROR - illegal extension - .long serror //$1a-2 ERROR - illegal extension - .long serror //$1a-3 ERROR - illegal extension - .long serror //$1a-4 ERROR - illegal extension - .long serror //$1a-5 ERROR - illegal extension - .long serror //$1a-6 ERROR - illegal extension - .long serror //$1a-7 ERROR - illegal extension - - .long serror //$1b-0 ERROR - illegal extension - .long serror //$1b-1 ERROR - illegal extension - .long serror //$1b-2 ERROR - illegal extension - .long serror //$1b-3 ERROR - illegal extension - .long serror //$1b-4 ERROR - illegal extension - .long serror //$1b-5 ERROR - illegal extension - .long serror //$1b-6 ERROR - illegal extension - .long serror //$1b-7 ERROR - illegal extension - - .long sacos //$1c-0 facos norm - .long ld_ppi2 //$1c-1 facos zero - .long t_operr //$1c-2 facos inf - .long src_nan //$1c-3 facos nan - .long sacosd //$1c-4 facos denorm - .long serror //$1c-5 facos ERROR - .long serror //$1c-6 facos ERROR - .long serror //$1c-7 facos ERROR - - .long scos //$1d-0 fcos norm - .long ld_pone //$1d-1 fcos zero - .long t_operr //$1d-2 fcos inf - .long src_nan //$1d-3 fcos nan - .long scosd //$1d-4 fcos denorm - .long serror //$1d-5 fcos ERROR - .long serror //$1d-6 fcos ERROR - .long serror //$1d-7 fcos ERROR - - .long sgetexp //$1e-0 fgetexp norm - .long szero //$1e-1 fgetexp zero - .long t_operr //$1e-2 fgetexp inf - .long src_nan //$1e-3 fgetexp nan - .long sgetexpd //$1e-4 fgetexp denorm - .long serror //$1e-5 fgetexp ERROR - .long serror //$1e-6 fgetexp ERROR - .long serror //$1e-7 fgetexp ERROR - - .long sgetman //$1f-0 fgetman norm - .long szero //$1f-1 fgetman zero - .long t_operr //$1f-2 fgetman inf - .long src_nan //$1f-3 fgetman nan - .long sgetmand //$1f-4 fgetman denorm - .long serror //$1f-5 fgetman ERROR - .long serror //$1f-6 fgetman ERROR - .long serror //$1f-7 fgetman ERROR - - .long serror //$20-0 ERROR - illegal extension - .long serror //$20-1 ERROR - illegal extension - .long serror //$20-2 ERROR - illegal extension - .long serror //$20-3 ERROR - illegal extension - .long serror //$20-4 ERROR - illegal extension - .long serror //$20-5 ERROR - illegal extension - .long serror //$20-6 ERROR - illegal extension - .long serror //$20-7 ERROR - illegal extension - - .long pmod //$21-0 fmod all - .long pmod //$21-1 fmod all - .long pmod //$21-2 fmod all - .long pmod //$21-3 fmod all - .long pmod //$21-4 fmod all - .long serror //$21-5 fmod ERROR - .long serror //$21-6 fmod ERROR - .long serror //$21-7 fmod ERROR - - .long serror //$22-0 ERROR - illegal extension - .long serror //$22-1 ERROR - illegal extension - .long serror //$22-2 ERROR - illegal extension - .long serror //$22-3 ERROR - illegal extension - .long serror //$22-4 ERROR - illegal extension - .long serror //$22-5 ERROR - illegal extension - .long serror //$22-6 ERROR - illegal extension - .long serror //$22-7 ERROR - illegal extension - - .long serror //$23-0 ERROR - illegal extension - .long serror //$23-1 ERROR - illegal extension - .long serror //$23-2 ERROR - illegal extension - .long serror //$23-3 ERROR - illegal extension - .long serror //$23-4 ERROR - illegal extension - .long serror //$23-5 ERROR - illegal extension - .long serror //$23-6 ERROR - illegal extension - .long serror //$23-7 ERROR - illegal extension - - .long serror //$24-0 ERROR - illegal extension - .long serror //$24-1 ERROR - illegal extension - .long serror //$24-2 ERROR - illegal extension - .long serror //$24-3 ERROR - illegal extension - .long serror //$24-4 ERROR - illegal extension - .long serror //$24-5 ERROR - illegal extension - .long serror //$24-6 ERROR - illegal extension - .long serror //$24-7 ERROR - illegal extension - - .long prem //$25-0 frem all - .long prem //$25-1 frem all - .long prem //$25-2 frem all - .long prem //$25-3 frem all - .long prem //$25-4 frem all - .long serror //$25-5 frem ERROR - .long serror //$25-6 frem ERROR - .long serror //$25-7 frem ERROR - - .long pscale //$26-0 fscale all - .long pscale //$26-1 fscale all - .long pscale //$26-2 fscale all - .long pscale //$26-3 fscale all - .long pscale //$26-4 fscale all - .long serror //$26-5 fscale ERROR - .long serror //$26-6 fscale ERROR - .long serror //$26-7 fscale ERROR - - .long serror //$27-0 ERROR - illegal extension - .long serror //$27-1 ERROR - illegal extension - .long serror //$27-2 ERROR - illegal extension - .long serror //$27-3 ERROR - illegal extension - .long serror //$27-4 ERROR - illegal extension - .long serror //$27-5 ERROR - illegal extension - .long serror //$27-6 ERROR - illegal extension - .long serror //$27-7 ERROR - illegal extension - - .long serror //$28-0 ERROR - illegal extension - .long serror //$28-1 ERROR - illegal extension - .long serror //$28-2 ERROR - illegal extension - .long serror //$28-3 ERROR - illegal extension - .long serror //$28-4 ERROR - illegal extension - .long serror //$28-5 ERROR - illegal extension - .long serror //$28-6 ERROR - illegal extension - .long serror //$28-7 ERROR - illegal extension - - .long serror //$29-0 ERROR - illegal extension - .long serror //$29-1 ERROR - illegal extension - .long serror //$29-2 ERROR - illegal extension - .long serror //$29-3 ERROR - illegal extension - .long serror //$29-4 ERROR - illegal extension - .long serror //$29-5 ERROR - illegal extension - .long serror //$29-6 ERROR - illegal extension - .long serror //$29-7 ERROR - illegal extension - - .long serror //$2a-0 ERROR - illegal extension - .long serror //$2a-1 ERROR - illegal extension - .long serror //$2a-2 ERROR - illegal extension - .long serror //$2a-3 ERROR - illegal extension - .long serror //$2a-4 ERROR - illegal extension - .long serror //$2a-5 ERROR - illegal extension - .long serror //$2a-6 ERROR - illegal extension - .long serror //$2a-7 ERROR - illegal extension - - .long serror //$2b-0 ERROR - illegal extension - .long serror //$2b-1 ERROR - illegal extension - .long serror //$2b-2 ERROR - illegal extension - .long serror //$2b-3 ERROR - illegal extension - .long serror //$2b-4 ERROR - illegal extension - .long serror //$2b-5 ERROR - illegal extension - .long serror //$2b-6 ERROR - illegal extension - .long serror //$2b-7 ERROR - illegal extension - - .long serror //$2c-0 ERROR - illegal extension - .long serror //$2c-1 ERROR - illegal extension - .long serror //$2c-2 ERROR - illegal extension - .long serror //$2c-3 ERROR - illegal extension - .long serror //$2c-4 ERROR - illegal extension - .long serror //$2c-5 ERROR - illegal extension - .long serror //$2c-6 ERROR - illegal extension - .long serror //$2c-7 ERROR - illegal extension - - .long serror //$2d-0 ERROR - illegal extension - .long serror //$2d-1 ERROR - illegal extension - .long serror //$2d-2 ERROR - illegal extension - .long serror //$2d-3 ERROR - illegal extension - .long serror //$2d-4 ERROR - illegal extension - .long serror //$2d-5 ERROR - illegal extension - .long serror //$2d-6 ERROR - illegal extension - .long serror //$2d-7 ERROR - illegal extension - - .long serror //$2e-0 ERROR - illegal extension - .long serror //$2e-1 ERROR - illegal extension - .long serror //$2e-2 ERROR - illegal extension - .long serror //$2e-3 ERROR - illegal extension - .long serror //$2e-4 ERROR - illegal extension - .long serror //$2e-5 ERROR - illegal extension - .long serror //$2e-6 ERROR - illegal extension - .long serror //$2e-7 ERROR - illegal extension - - .long serror //$2f-0 ERROR - illegal extension - .long serror //$2f-1 ERROR - illegal extension - .long serror //$2f-2 ERROR - illegal extension - .long serror //$2f-3 ERROR - illegal extension - .long serror //$2f-4 ERROR - illegal extension - .long serror //$2f-5 ERROR - illegal extension - .long serror //$2f-6 ERROR - illegal extension - .long serror //$2f-7 ERROR - illegal extension - - .long ssincos //$30-0 fsincos norm - .long ssincosz //$30-1 fsincos zero - .long ssincosi //$30-2 fsincos inf - .long ssincosnan //$30-3 fsincos nan - .long ssincosd //$30-4 fsincos denorm - .long serror //$30-5 fsincos ERROR - .long serror //$30-6 fsincos ERROR - .long serror //$30-7 fsincos ERROR - - .long ssincos //$31-0 fsincos norm - .long ssincosz //$31-1 fsincos zero - .long ssincosi //$31-2 fsincos inf - .long ssincosnan //$31-3 fsincos nan - .long ssincosd //$31-4 fsincos denorm - .long serror //$31-5 fsincos ERROR - .long serror //$31-6 fsincos ERROR - .long serror //$31-7 fsincos ERROR - - .long ssincos //$32-0 fsincos norm - .long ssincosz //$32-1 fsincos zero - .long ssincosi //$32-2 fsincos inf - .long ssincosnan //$32-3 fsincos nan - .long ssincosd //$32-4 fsincos denorm - .long serror //$32-5 fsincos ERROR - .long serror //$32-6 fsincos ERROR - .long serror //$32-7 fsincos ERROR - - .long ssincos //$33-0 fsincos norm - .long ssincosz //$33-1 fsincos zero - .long ssincosi //$33-2 fsincos inf - .long ssincosnan //$33-3 fsincos nan - .long ssincosd //$33-4 fsincos denorm - .long serror //$33-5 fsincos ERROR - .long serror //$33-6 fsincos ERROR - .long serror //$33-7 fsincos ERROR - - .long ssincos //$34-0 fsincos norm - .long ssincosz //$34-1 fsincos zero - .long ssincosi //$34-2 fsincos inf - .long ssincosnan //$34-3 fsincos nan - .long ssincosd //$34-4 fsincos denorm - .long serror //$34-5 fsincos ERROR - .long serror //$34-6 fsincos ERROR - .long serror //$34-7 fsincos ERROR - - .long ssincos //$35-0 fsincos norm - .long ssincosz //$35-1 fsincos zero - .long ssincosi //$35-2 fsincos inf - .long ssincosnan //$35-3 fsincos nan - .long ssincosd //$35-4 fsincos denorm - .long serror //$35-5 fsincos ERROR - .long serror //$35-6 fsincos ERROR - .long serror //$35-7 fsincos ERROR - - .long ssincos //$36-0 fsincos norm - .long ssincosz //$36-1 fsincos zero - .long ssincosi //$36-2 fsincos inf - .long ssincosnan //$36-3 fsincos nan - .long ssincosd //$36-4 fsincos denorm - .long serror //$36-5 fsincos ERROR - .long serror //$36-6 fsincos ERROR - .long serror //$36-7 fsincos ERROR - - .long ssincos //$37-0 fsincos norm - .long ssincosz //$37-1 fsincos zero - .long ssincosi //$37-2 fsincos inf - .long ssincosnan //$37-3 fsincos nan - .long ssincosd //$37-4 fsincos denorm - .long serror //$37-5 fsincos ERROR - .long serror //$37-6 fsincos ERROR - .long serror //$37-7 fsincos ERROR - - |end diff --git a/c/src/lib/libcpu/m68k/m68040/fpsp/util.S b/c/src/lib/libcpu/m68k/m68040/fpsp/util.S deleted file mode 100644 index 38e13db8b7..0000000000 --- a/c/src/lib/libcpu/m68k/m68040/fpsp/util.S +++ /dev/null @@ -1,750 +0,0 @@ -#include "fpsp-namespace.h" -// -// -// util.sa 3.7 7/29/91 -// -// This file contains routines used by other programs. -// -// ovf_res: used by overflow to force the correct -// result. ovf_r_k, ovf_r_x2, ovf_r_x3 are -// derivatives of this routine. -// get_fline: get user's opcode word -// g_dfmtou: returns the destination format. -// g_opcls: returns the opclass of the float instruction. -// g_rndpr: returns the rounding precision. -// reg_dest: write byte, word, or long data to Dn -// -// -// Copyright (C) Motorola, Inc. 1990 -// All Rights Reserved -// -// THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA -// The copyright notice above does not evidence any -// actual or intended publication of such source code. - -//UTIL idnt 2,1 | Motorola 040 Floating Point Software Package - - |section 8 - -#include "fpsp.defs" - - |xref mem_read - - .global g_dfmtou - .global g_opcls - .global g_rndpr - .global get_fline - .global reg_dest - -// -// Final result table for ovf_res. Note that the negative counterparts -// are unnecessary as ovf_res always returns the sign separately from -// the exponent. -// ;+inf -EXT_PINF: .long 0x7fff0000,0x00000000,0x00000000,0x00000000 -// ;largest +ext -EXT_PLRG: .long 0x7ffe0000,0xffffffff,0xffffffff,0x00000000 -// ;largest magnitude +sgl in ext -SGL_PLRG: .long 0x407e0000,0xffffff00,0x00000000,0x00000000 -// ;largest magnitude +dbl in ext -DBL_PLRG: .long 0x43fe0000,0xffffffff,0xfffff800,0x00000000 -// ;largest -ext - -tblovfl: - .long EXT_RN - .long EXT_RZ - .long EXT_RM - .long EXT_RP - .long SGL_RN - .long SGL_RZ - .long SGL_RM - .long SGL_RP - .long DBL_RN - .long DBL_RZ - .long DBL_RM - .long DBL_RP - .long error - .long error - .long error - .long error - - -// -// ovf_r_k --- overflow result calculation -// -// This entry point is used by kernel_ex. -// -// This forces the destination precision to be extended -// -// Input: operand in ETEMP -// Output: a result is in ETEMP (internal extended format) -// - .global ovf_r_k -ovf_r_k: - lea ETEMP(%a6),%a0 //a0 points to source operand - bclrb #sign_bit,ETEMP_EX(%a6) - sne ETEMP_SGN(%a6) //convert to internal IEEE format - -// -// ovf_r_x2 --- overflow result calculation -// -// This entry point used by x_ovfl. (opclass 0 and 2) -// -// Input a0 points to an operand in the internal extended format -// Output a0 points to the result in the internal extended format -// -// This sets the round precision according to the user's FPCR unless the -// instruction is fsgldiv or fsglmul or fsadd, fdadd, fsub, fdsub, fsmul, -// fdmul, fsdiv, fddiv, fssqrt, fsmove, fdmove, fsabs, fdabs, fsneg, fdneg. -// If the instruction is fsgldiv of fsglmul, the rounding precision must be -// extended. If the instruction is not fsgldiv or fsglmul but a force- -// precision instruction, the rounding precision is then set to the force -// precision. - - .global ovf_r_x2 -ovf_r_x2: - btstb #E3,E_BYTE(%a6) //check for nu exception - beql ovf_e1_exc //it is cu exception -ovf_e3_exc: - movew CMDREG3B(%a6),%d0 //get the command word - andiw #0x00000060,%d0 //clear all bits except 6 and 5 - cmpil #0x00000040,%d0 - beql ovff_sgl //force precision is single - cmpil #0x00000060,%d0 - beql ovff_dbl //force precision is double - movew CMDREG3B(%a6),%d0 //get the command word again - andil #0x7f,%d0 //clear all except operation - cmpil #0x33,%d0 - beql ovf_fsgl //fsglmul or fsgldiv - cmpil #0x30,%d0 - beql ovf_fsgl - bra ovf_fpcr //instruction is none of the above -// ;use FPCR -ovf_e1_exc: - movew CMDREG1B(%a6),%d0 //get command word - andil #0x00000044,%d0 //clear all bits except 6 and 2 - cmpil #0x00000040,%d0 - beql ovff_sgl //the instruction is force single - cmpil #0x00000044,%d0 - beql ovff_dbl //the instruction is force double - movew CMDREG1B(%a6),%d0 //again get the command word - andil #0x0000007f,%d0 //clear all except the op code - cmpil #0x00000027,%d0 - beql ovf_fsgl //fsglmul - cmpil #0x00000024,%d0 - beql ovf_fsgl //fsgldiv - bra ovf_fpcr //none of the above, use FPCR -// -// -// Inst is either fsgldiv or fsglmul. Force extended precision. -// -ovf_fsgl: - clrl %d0 - bra ovf_res - -ovff_sgl: - movel #0x00000001,%d0 //set single - bra ovf_res -ovff_dbl: - movel #0x00000002,%d0 //set double - bra ovf_res -// -// The precision is in the fpcr. -// -ovf_fpcr: - bfextu FPCR_MODE(%a6){#0:#2},%d0 //set round precision - bra ovf_res - -// -// -// ovf_r_x3 --- overflow result calculation -// -// This entry point used by x_ovfl. (opclass 3 only) -// -// Input a0 points to an operand in the internal extended format -// Output a0 points to the result in the internal extended format -// -// This sets the round precision according to the destination size. -// - .global ovf_r_x3 -ovf_r_x3: - bsr g_dfmtou //get dest fmt in d0{1:0} -// ;for fmovout, the destination format -// ;is the rounding precision - -// -// ovf_res --- overflow result calculation -// -// Input: -// a0 points to operand in internal extended format -// Output: -// a0 points to result in internal extended format -// - .global ovf_res -ovf_res: - lsll #2,%d0 //move round precision to d0{3:2} - bfextu FPCR_MODE(%a6){#2:#2},%d1 //set round mode - orl %d1,%d0 //index is fmt:mode in d0{3:0} - leal tblovfl,%a1 //load a1 with table address - movel %a1@(%d0:l:4),%a1 //use d0 as index to the table - jmp (%a1) //go to the correct routine -// -//case DEST_FMT = EXT -// -EXT_RN: - leal EXT_PINF,%a1 //answer is +/- infinity - bsetb #inf_bit,FPSR_CC(%a6) - bra set_sign //now go set the sign -EXT_RZ: - leal EXT_PLRG,%a1 //answer is +/- large number - bra set_sign //now go set the sign -EXT_RM: - tstb LOCAL_SGN(%a0) //if negative overflow - beqs e_rm_pos -e_rm_neg: - leal EXT_PINF,%a1 //answer is negative infinity - orl #neginf_mask,USER_FPSR(%a6) - bra end_ovfr -e_rm_pos: - leal EXT_PLRG,%a1 //answer is large positive number - bra end_ovfr -EXT_RP: - tstb LOCAL_SGN(%a0) //if negative overflow - beqs e_rp_pos -e_rp_neg: - leal EXT_PLRG,%a1 //answer is large negative number - bsetb #neg_bit,FPSR_CC(%a6) - bra end_ovfr -e_rp_pos: - leal EXT_PINF,%a1 //answer is positive infinity - bsetb #inf_bit,FPSR_CC(%a6) - bra end_ovfr -// -//case DEST_FMT = DBL -// -DBL_RN: - leal EXT_PINF,%a1 //answer is +/- infinity - bsetb #inf_bit,FPSR_CC(%a6) - bra set_sign -DBL_RZ: - leal DBL_PLRG,%a1 //answer is +/- large number - bra set_sign //now go set the sign -DBL_RM: - tstb LOCAL_SGN(%a0) //if negative overflow - beqs d_rm_pos -d_rm_neg: - leal EXT_PINF,%a1 //answer is negative infinity - orl #neginf_mask,USER_FPSR(%a6) - bra end_ovfr //inf is same for all precisions (ext,dbl,sgl) -d_rm_pos: - leal DBL_PLRG,%a1 //answer is large positive number - bra end_ovfr -DBL_RP: - tstb LOCAL_SGN(%a0) //if negative overflow - beqs d_rp_pos -d_rp_neg: - leal DBL_PLRG,%a1 //answer is large negative number - bsetb #neg_bit,FPSR_CC(%a6) - bra end_ovfr -d_rp_pos: - leal EXT_PINF,%a1 //answer is positive infinity - bsetb #inf_bit,FPSR_CC(%a6) - bra end_ovfr -// -//case DEST_FMT = SGL -// -SGL_RN: - leal EXT_PINF,%a1 //answer is +/- infinity - bsetb #inf_bit,FPSR_CC(%a6) - bras set_sign -SGL_RZ: - leal SGL_PLRG,%a1 //answer is +/- large number - bras set_sign -SGL_RM: - tstb LOCAL_SGN(%a0) //if negative overflow - beqs s_rm_pos -s_rm_neg: - leal EXT_PINF,%a1 //answer is negative infinity - orl #neginf_mask,USER_FPSR(%a6) - bras end_ovfr -s_rm_pos: - leal SGL_PLRG,%a1 //answer is large positive number - bras end_ovfr -SGL_RP: - tstb LOCAL_SGN(%a0) //if negative overflow - beqs s_rp_pos -s_rp_neg: - leal SGL_PLRG,%a1 //answer is large negative number - bsetb #neg_bit,FPSR_CC(%a6) - bras end_ovfr -s_rp_pos: - leal EXT_PINF,%a1 //answer is positive infinity - bsetb #inf_bit,FPSR_CC(%a6) - bras end_ovfr - -set_sign: - tstb LOCAL_SGN(%a0) //if negative overflow - beqs end_ovfr -neg_sign: - bsetb #neg_bit,FPSR_CC(%a6) - -end_ovfr: - movew LOCAL_EX(%a1),LOCAL_EX(%a0) //do not overwrite sign - movel LOCAL_HI(%a1),LOCAL_HI(%a0) - movel LOCAL_LO(%a1),LOCAL_LO(%a0) - rts - - -// -// ERROR -// -error: - rts -// -// get_fline --- get f-line opcode of interrupted instruction -// -// Returns opcode in the low word of d0. -// -get_fline: - movel USER_FPIAR(%a6),%a0 //opcode address - movel #0,-(%a7) //reserve a word on the stack - leal 2(%a7),%a1 //point to low word of temporary - movel #2,%d0 //count - bsrl mem_read - movel (%a7)+,%d0 - rts -// -// g_rndpr --- put rounding precision in d0{1:0} -// -// valid return codes are: -// 00 - extended -// 01 - single -// 10 - double -// -// begin -// get rounding precision (cmdreg3b{6:5}) -// begin -// case opclass = 011 (move out) -// get destination format - this is the also the rounding precision -// -// case opclass = 0x0 -// if E3 -// *case RndPr(from cmdreg3b{6:5} = 11 then RND_PREC = DBL -// *case RndPr(from cmdreg3b{6:5} = 10 then RND_PREC = SGL -// case RndPr(from cmdreg3b{6:5} = 00 | 01 -// use precision from FPCR{7:6} -// case 00 then RND_PREC = EXT -// case 01 then RND_PREC = SGL -// case 10 then RND_PREC = DBL -// else E1 -// use precision in FPCR{7:6} -// case 00 then RND_PREC = EXT -// case 01 then RND_PREC = SGL -// case 10 then RND_PREC = DBL -// end -// -g_rndpr: - bsr g_opcls //get opclass in d0{2:0} - cmpw #0x0003,%d0 //check for opclass 011 - bnes op_0x0 - -// -// For move out instructions (opclass 011) the destination format -// is the same as the rounding precision. Pass results from g_dfmtou. -// - bsr g_dfmtou - rts -op_0x0: - btstb #E3,E_BYTE(%a6) - beql unf_e1_exc //branch to e1 underflow -unf_e3_exc: - movel CMDREG3B(%a6),%d0 //rounding precision in d0{10:9} - bfextu %d0{#9:#2},%d0 //move the rounding prec bits to d0{1:0} - cmpil #0x2,%d0 - beql unff_sgl //force precision is single - cmpil #0x3,%d0 //force precision is double - beql unff_dbl - movew CMDREG3B(%a6),%d0 //get the command word again - andil #0x7f,%d0 //clear all except operation - cmpil #0x33,%d0 - beql unf_fsgl //fsglmul or fsgldiv - cmpil #0x30,%d0 - beql unf_fsgl //fsgldiv or fsglmul - bra unf_fpcr -unf_e1_exc: - movel CMDREG1B(%a6),%d0 //get 32 bits off the stack, 1st 16 bits -// ;are the command word - andil #0x00440000,%d0 //clear all bits except bits 6 and 2 - cmpil #0x00400000,%d0 - beql unff_sgl //force single - cmpil #0x00440000,%d0 //force double - beql unff_dbl - movel CMDREG1B(%a6),%d0 //get the command word again - andil #0x007f0000,%d0 //clear all bits except the operation - cmpil #0x00270000,%d0 - beql unf_fsgl //fsglmul - cmpil #0x00240000,%d0 - beql unf_fsgl //fsgldiv - bra unf_fpcr - -// -// Convert to return format. The values from cmdreg3b and the return -// values are: -// cmdreg3b return precision -// -------- ------ --------- -// 00,01 0 ext -// 10 1 sgl -// 11 2 dbl -// Force single -// -unff_sgl: - movel #1,%d0 //return 1 - rts -// -// Force double -// -unff_dbl: - movel #2,%d0 //return 2 - rts -// -// Force extended -// -unf_fsgl: - movel #0,%d0 - rts -// -// Get rounding precision set in FPCR{7:6}. -// -unf_fpcr: - movel USER_FPCR(%a6),%d0 //rounding precision bits in d0{7:6} - bfextu %d0{#24:#2},%d0 //move the rounding prec bits to d0{1:0} - rts -// -// g_opcls --- put opclass in d0{2:0} -// -g_opcls: - btstb #E3,E_BYTE(%a6) - beqs opc_1b //if set, go to cmdreg1b -opc_3b: - clrl %d0 //if E3, only opclass 0x0 is possible - rts -opc_1b: - movel CMDREG1B(%a6),%d0 - bfextu %d0{#0:#3},%d0 //shift opclass bits d0{31:29} to d0{2:0} - rts -// -// g_dfmtou --- put destination format in d0{1:0} -// -// If E1, the format is from cmdreg1b{12:10} -// If E3, the format is extended. -// -// Dest. Fmt. -// extended 010 -> 00 -// single 001 -> 01 -// double 101 -> 10 -// -g_dfmtou: - btstb #E3,E_BYTE(%a6) - beqs op011 - clrl %d0 //if E1, size is always ext - rts -op011: - movel CMDREG1B(%a6),%d0 - bfextu %d0{#3:#3},%d0 //dest fmt from cmdreg1b{12:10} - cmpb #1,%d0 //check for single - bnes not_sgl - movel #1,%d0 - rts -not_sgl: - cmpb #5,%d0 //check for double - bnes not_dbl - movel #2,%d0 - rts -not_dbl: - clrl %d0 //must be extended - rts - -// -// -// Final result table for unf_sub. Note that the negative counterparts -// are unnecessary as unf_sub always returns the sign separately from -// the exponent. -// ;+zero -EXT_PZRO: .long 0x00000000,0x00000000,0x00000000,0x00000000 -// ;+zero -SGL_PZRO: .long 0x3f810000,0x00000000,0x00000000,0x00000000 -// ;+zero -DBL_PZRO: .long 0x3c010000,0x00000000,0x00000000,0x00000000 -// ;smallest +ext denorm -EXT_PSML: .long 0x00000000,0x00000000,0x00000001,0x00000000 -// ;smallest +sgl denorm -SGL_PSML: .long 0x3f810000,0x00000100,0x00000000,0x00000000 -// ;smallest +dbl denorm -DBL_PSML: .long 0x3c010000,0x00000000,0x00000800,0x00000000 -// -// UNF_SUB --- underflow result calculation -// -// Input: -// d0 contains round precision -// a0 points to input operand in the internal extended format -// -// Output: -// a0 points to correct internal extended precision result. -// - -tblunf: - .long uEXT_RN - .long uEXT_RZ - .long uEXT_RM - .long uEXT_RP - .long uSGL_RN - .long uSGL_RZ - .long uSGL_RM - .long uSGL_RP - .long uDBL_RN - .long uDBL_RZ - .long uDBL_RM - .long uDBL_RP - .long uDBL_RN - .long uDBL_RZ - .long uDBL_RM - .long uDBL_RP - - .global unf_sub -unf_sub: - lsll #2,%d0 //move round precision to d0{3:2} - bfextu FPCR_MODE(%a6){#2:#2},%d1 //set round mode - orl %d1,%d0 //index is fmt:mode in d0{3:0} - leal tblunf,%a1 //load a1 with table address - movel %a1@(%d0:l:4),%a1 //use d0 as index to the table - jmp (%a1) //go to the correct routine -// -//case DEST_FMT = EXT -// -uEXT_RN: - leal EXT_PZRO,%a1 //answer is +/- zero - bsetb #z_bit,FPSR_CC(%a6) - bra uset_sign //now go set the sign -uEXT_RZ: - leal EXT_PZRO,%a1 //answer is +/- zero - bsetb #z_bit,FPSR_CC(%a6) - bra uset_sign //now go set the sign -uEXT_RM: - tstb LOCAL_SGN(%a0) //if negative underflow - beqs ue_rm_pos -ue_rm_neg: - leal EXT_PSML,%a1 //answer is negative smallest denorm - bsetb #neg_bit,FPSR_CC(%a6) - bra end_unfr -ue_rm_pos: - leal EXT_PZRO,%a1 //answer is positive zero - bsetb #z_bit,FPSR_CC(%a6) - bra end_unfr -uEXT_RP: - tstb LOCAL_SGN(%a0) //if negative underflow - beqs ue_rp_pos -ue_rp_neg: - leal EXT_PZRO,%a1 //answer is negative zero - oril #negz_mask,USER_FPSR(%a6) - bra end_unfr -ue_rp_pos: - leal EXT_PSML,%a1 //answer is positive smallest denorm - bra end_unfr -// -//case DEST_FMT = DBL -// -uDBL_RN: - leal DBL_PZRO,%a1 //answer is +/- zero - bsetb #z_bit,FPSR_CC(%a6) - bra uset_sign -uDBL_RZ: - leal DBL_PZRO,%a1 //answer is +/- zero - bsetb #z_bit,FPSR_CC(%a6) - bra uset_sign //now go set the sign -uDBL_RM: - tstb LOCAL_SGN(%a0) //if negative overflow - beqs ud_rm_pos -ud_rm_neg: - leal DBL_PSML,%a1 //answer is smallest denormalized negative - bsetb #neg_bit,FPSR_CC(%a6) - bra end_unfr -ud_rm_pos: - leal DBL_PZRO,%a1 //answer is positive zero - bsetb #z_bit,FPSR_CC(%a6) - bra end_unfr -uDBL_RP: - tstb LOCAL_SGN(%a0) //if negative overflow - beqs ud_rp_pos -ud_rp_neg: - leal DBL_PZRO,%a1 //answer is negative zero - oril #negz_mask,USER_FPSR(%a6) - bra end_unfr -ud_rp_pos: - leal DBL_PSML,%a1 //answer is smallest denormalized negative - bra end_unfr -// -//case DEST_FMT = SGL -// -uSGL_RN: - leal SGL_PZRO,%a1 //answer is +/- zero - bsetb #z_bit,FPSR_CC(%a6) - bras uset_sign -uSGL_RZ: - leal SGL_PZRO,%a1 //answer is +/- zero - bsetb #z_bit,FPSR_CC(%a6) - bras uset_sign -uSGL_RM: - tstb LOCAL_SGN(%a0) //if negative overflow - beqs us_rm_pos -us_rm_neg: - leal SGL_PSML,%a1 //answer is smallest denormalized negative - bsetb #neg_bit,FPSR_CC(%a6) - bras end_unfr -us_rm_pos: - leal SGL_PZRO,%a1 //answer is positive zero - bsetb #z_bit,FPSR_CC(%a6) - bras end_unfr -uSGL_RP: - tstb LOCAL_SGN(%a0) //if negative overflow - beqs us_rp_pos -us_rp_neg: - leal SGL_PZRO,%a1 //answer is negative zero - oril #negz_mask,USER_FPSR(%a6) - bras end_unfr -us_rp_pos: - leal SGL_PSML,%a1 //answer is smallest denormalized positive - bras end_unfr - -uset_sign: - tstb LOCAL_SGN(%a0) //if negative overflow - beqs end_unfr -uneg_sign: - bsetb #neg_bit,FPSR_CC(%a6) - -end_unfr: - movew LOCAL_EX(%a1),LOCAL_EX(%a0) //be careful not to overwrite sign - movel LOCAL_HI(%a1),LOCAL_HI(%a0) - movel LOCAL_LO(%a1),LOCAL_LO(%a0) - rts -// -// reg_dest --- write byte, word, or long data to Dn -// -// -// Input: -// L_SCR1: Data -// d1: data size and dest register number formatted as: -// -// 32 5 4 3 2 1 0 -// ----------------------------------------------- -// | 0 | Size | Dest Reg # | -// ----------------------------------------------- -// -// Size is: -// 0 - Byte -// 1 - Word -// 2 - Long/Single -// -pregdst: - .long byte_d0 - .long byte_d1 - .long byte_d2 - .long byte_d3 - .long byte_d4 - .long byte_d5 - .long byte_d6 - .long byte_d7 - .long word_d0 - .long word_d1 - .long word_d2 - .long word_d3 - .long word_d4 - .long word_d5 - .long word_d6 - .long word_d7 - .long long_d0 - .long long_d1 - .long long_d2 - .long long_d3 - .long long_d4 - .long long_d5 - .long long_d6 - .long long_d7 - -reg_dest: - leal pregdst,%a0 - movel %a0@(%d1:l:4),%a0 - jmp (%a0) - -byte_d0: - moveb L_SCR1(%a6),USER_D0+3(%a6) - rts -byte_d1: - moveb L_SCR1(%a6),USER_D1+3(%a6) - rts -byte_d2: - moveb L_SCR1(%a6),%d2 - rts -byte_d3: - moveb L_SCR1(%a6),%d3 - rts -byte_d4: - moveb L_SCR1(%a6),%d4 - rts -byte_d5: - moveb L_SCR1(%a6),%d5 - rts -byte_d6: - moveb L_SCR1(%a6),%d6 - rts -byte_d7: - moveb L_SCR1(%a6),%d7 - rts -word_d0: - movew L_SCR1(%a6),USER_D0+2(%a6) - rts -word_d1: - movew L_SCR1(%a6),USER_D1+2(%a6) - rts -word_d2: - movew L_SCR1(%a6),%d2 - rts -word_d3: - movew L_SCR1(%a6),%d3 - rts -word_d4: - movew L_SCR1(%a6),%d4 - rts -word_d5: - movew L_SCR1(%a6),%d5 - rts -word_d6: - movew L_SCR1(%a6),%d6 - rts -word_d7: - movew L_SCR1(%a6),%d7 - rts -long_d0: - movel L_SCR1(%a6),USER_D0(%a6) - rts -long_d1: - movel L_SCR1(%a6),USER_D1(%a6) - rts -long_d2: - movel L_SCR1(%a6),%d2 - rts -long_d3: - movel L_SCR1(%a6),%d3 - rts -long_d4: - movel L_SCR1(%a6),%d4 - rts -long_d5: - movel L_SCR1(%a6),%d5 - rts -long_d6: - movel L_SCR1(%a6),%d6 - rts -long_d7: - movel L_SCR1(%a6),%d7 - rts - |end diff --git a/c/src/lib/libcpu/m68k/m68040/fpsp/x_bsun.S b/c/src/lib/libcpu/m68k/m68040/fpsp/x_bsun.S deleted file mode 100644 index da696c4b6f..0000000000 --- a/c/src/lib/libcpu/m68k/m68040/fpsp/x_bsun.S +++ /dev/null @@ -1,49 +0,0 @@ -#include "fpsp-namespace.h" -// -// -// x_bsun.sa 3.3 7/1/91 -// -// fpsp_bsun --- FPSP handler for branch/set on unordered exception -// -// Copy the PC to FPIAR to maintain 881/882 compatibility -// -// The real_bsun handler will need to perform further corrective -// measures as outlined in the 040 User's Manual on pages -// 9-41f, section 9.8.3. -// - -// Copyright (C) Motorola, Inc. 1990 -// All Rights Reserved -// -// THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA -// The copyright notice above does not evidence any -// actual or intended publication of such source code. - -X_BSUN: //idnt 2,1 | Motorola 040 Floating Point Software Package - - |section 8 - -#include "fpsp.defs" - - |xref real_bsun - - .global fpsp_bsun -fpsp_bsun: -// - link %a6,#-LOCAL_SIZE - fsave -(%a7) - moveml %d0-%d1/%a0-%a1,USER_DA(%a6) - fmovemx %fp0-%fp3,USER_FP0(%a6) - fmoveml %fpcr/%fpsr/%fpiar,USER_FPCR(%a6) - -// - movel EXC_PC(%a6),USER_FPIAR(%a6) -// - moveml USER_DA(%a6),%d0-%d1/%a0-%a1 - fmovemx USER_FP0(%a6),%fp0-%fp3 - fmoveml USER_FPCR(%a6),%fpcr/%fpsr/%fpiar - frestore (%a7)+ - unlk %a6 - bral real_bsun -// - |end diff --git a/c/src/lib/libcpu/m68k/m68040/fpsp/x_fline.S b/c/src/lib/libcpu/m68k/m68040/fpsp/x_fline.S deleted file mode 100644 index b4f747c14c..0000000000 --- a/c/src/lib/libcpu/m68k/m68040/fpsp/x_fline.S +++ /dev/null @@ -1,106 +0,0 @@ -#include "fpsp-namespace.h" -// -// -// x_fline.sa 3.3 1/10/91 -// -// fpsp_fline --- FPSP handler for fline exception -// -// First determine if the exception is one of the unimplemented -// floating point instructions. If so, let fpsp_unimp handle it. -// Next, determine if the instruction is an fmovecr with a non-zero -// field. If so, handle here and return. Otherwise, it -// must be a real F-line exception. -// - -// Copyright (C) Motorola, Inc. 1990 -// All Rights Reserved -// -// THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA -// The copyright notice above does not evidence any -// actual or intended publication of such source code. - -X_FLINE: //idnt 2,1 | Motorola 040 Floating Point Software Package - - |section 8 - -#include "fpsp.defs" - - |xref real_fline - |xref fpsp_unimp - |xref uni_2 - |xref mem_read - |xref fpsp_fmt_error - - .global fpsp_fline -fpsp_fline: -// -// check for unimplemented vector first. Use EXC_VEC-4 because -// the equate is valid only after a 'link a6' has pushed one more -// long onto the stack. -// - cmpw #UNIMP_VEC,EXC_VEC-4(%a7) - beql fpsp_unimp - -// -// fmovecr with non-zero handling here -// - subl #4,%a7 //4 accounts for 2-word difference -// ;between six word frame (unimp) and -// ;four word frame - link %a6,#-LOCAL_SIZE - fsave -(%a7) - moveml %d0-%d1/%a0-%a1,USER_DA(%a6) - moveal EXC_PC+4(%a6),%a0 //get address of fline instruction - leal L_SCR1(%a6),%a1 //use L_SCR1 as scratch - movel #4,%d0 - addl #4,%a6 //to offset the sub.l #4,a7 above so that -// ;a6 can point correctly to the stack frame -// ;before branching to mem_read - bsrl mem_read - subl #4,%a6 - movel L_SCR1(%a6),%d0 //d0 contains the fline and command word - bfextu %d0{#4:#3},%d1 //extract coprocessor id - cmpib #1,%d1 //check if cpid=1 - bne not_mvcr //exit if not - bfextu %d0{#16:#6},%d1 - cmpib #0x17,%d1 //check if it is an FMOVECR encoding - bne not_mvcr -// ;if an FMOVECR instruction, fix stack -// ;and go to FPSP_UNIMP -fix_stack: - cmpib #VER_40,(%a7) //test for orig unimp frame - bnes ck_rev - subl #UNIMP_40_SIZE-4,%a7 //emulate an orig fsave - moveb #VER_40,(%a7) - moveb #UNIMP_40_SIZE-4,1(%a7) - clrw 2(%a7) - bras fix_con -ck_rev: - cmpib #VER_41,(%a7) //test for rev unimp frame - bnel fpsp_fmt_error //if not $40 or $41, exit with error - subl #UNIMP_41_SIZE-4,%a7 //emulate a rev fsave - moveb #VER_41,(%a7) - moveb #UNIMP_41_SIZE-4,1(%a7) - clrw 2(%a7) -fix_con: - movew EXC_SR+4(%a6),EXC_SR(%a6) //move stacked sr to new position - movel EXC_PC+4(%a6),EXC_PC(%a6) //move stacked pc to new position - fmovel EXC_PC(%a6),%FPIAR //point FPIAR to fline inst - movel #4,%d1 - addl %d1,EXC_PC(%a6) //increment stacked pc value to next inst - movew #0x202c,EXC_VEC(%a6) //reformat vector to unimp - clrl EXC_EA(%a6) //clear the EXC_EA field - movew %d0,CMDREG1B(%a6) //move the lower word into CMDREG1B - clrl E_BYTE(%a6) - bsetb #UFLAG,T_BYTE(%a6) - moveml USER_DA(%a6),%d0-%d1/%a0-%a1 //restore data registers - bral uni_2 - -not_mvcr: - moveml USER_DA(%a6),%d0-%d1/%a0-%a1 //restore data registers - frestore (%a7)+ - unlk %a6 - addl #4,%a7 - bral real_fline - - |end diff --git a/c/src/lib/libcpu/m68k/m68040/fpsp/x_operr.S b/c/src/lib/libcpu/m68k/m68040/fpsp/x_operr.S deleted file mode 100644 index 23c38fde7a..0000000000 --- a/c/src/lib/libcpu/m68k/m68040/fpsp/x_operr.S +++ /dev/null @@ -1,358 +0,0 @@ -#include "fpsp-namespace.h" -// -// -// x_operr.sa 3.5 7/1/91 -// -// fpsp_operr --- FPSP handler for operand error exception -// -// See 68040 User's Manual pp. 9-44f -// -// Note 1: For trap disabled 040 does the following: -// If the dest is a fp reg, then an extended precision non_signaling -// NAN is stored in the dest reg. If the dest format is b, w, or l and -// the source op is a NAN, then garbage is stored as the result (actually -// the upper 32 bits of the mantissa are sent to the integer unit). If -// the dest format is integer (b, w, l) and the operr is caused by -// integer overflow, or the source op is inf, then the result stored is -// garbage. -// There are three cases in which operr is incorrectly signaled on the -// 040. This occurs for move_out of format b, w, or l for the largest -// negative integer (-2^7 for b, -2^15 for w, -2^31 for l). -// -// On opclass = 011 fmove.(b,w,l) that causes a conversion -// overflow -> OPERR, the exponent in wbte (and fpte) is: -// byte 56 - (62 - exp) -// word 48 - (62 - exp) -// long 32 - (62 - exp) -// -// where exp = (true exp) - 1 -// -// So, wbtemp and fptemp will contain the following on erroneously -// signalled operr: -// fpts = 1 -// fpte = $4000 (15 bit externally) -// byte fptm = $ffffffff ffffff80 -// word fptm = $ffffffff ffff8000 -// long fptm = $ffffffff 80000000 -// -// Note 2: For trap enabled 040 does the following: -// If the inst is move_out, then same as Note 1. -// If the inst is not move_out, the dest is not modified. -// The exceptional operand is not defined for integer overflow -// during a move_out. -// - -// Copyright (C) Motorola, Inc. 1990 -// All Rights Reserved -// -// THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA -// The copyright notice above does not evidence any -// actual or intended publication of such source code. - -X_OPERR: //idnt 2,1 | Motorola 040 Floating Point Software Package - - |section 8 - -#include "fpsp.defs" - - |xref mem_write - |xref real_operr - |xref real_inex - |xref get_fline - |xref fpsp_done - |xref reg_dest - - .global fpsp_operr -fpsp_operr: -// - link %a6,#-LOCAL_SIZE - fsave -(%a7) - moveml %d0-%d1/%a0-%a1,USER_DA(%a6) - fmovemx %fp0-%fp3,USER_FP0(%a6) - fmoveml %fpcr/%fpsr/%fpiar,USER_FPCR(%a6) - -// -// Check if this is an opclass 3 instruction. -// If so, fall through, else branch to operr_end -// - btstb #TFLAG,T_BYTE(%a6) - beqs operr_end - -// -// If the destination size is B,W,or L, the operr must be -// handled here. -// - movel CMDREG1B(%a6),%d0 - bfextu %d0{#3:#3},%d0 //0=long, 4=word, 6=byte - cmpib #0,%d0 //determine size; check long - beq operr_long - cmpib #4,%d0 //check word - beq operr_word - cmpib #6,%d0 //check byte - beq operr_byte - -// -// The size is not B,W,or L, so the operr is handled by the -// kernel handler. Set the operr bits and clean up, leaving -// only the integer exception frame on the stack, and the -// fpu in the original exceptional state. -// -operr_end: - bsetb #operr_bit,FPSR_EXCEPT(%a6) - bsetb #aiop_bit,FPSR_AEXCEPT(%a6) - - moveml USER_DA(%a6),%d0-%d1/%a0-%a1 - fmovemx USER_FP0(%a6),%fp0-%fp3 - fmoveml USER_FPCR(%a6),%fpcr/%fpsr/%fpiar - frestore (%a7)+ - unlk %a6 - bral real_operr - -operr_long: - moveql #4,%d1 //write size to d1 - moveb STAG(%a6),%d0 //test stag for nan - andib #0xe0,%d0 //clr all but tag - cmpib #0x60,%d0 //check for nan - beq operr_nan - cmpil #0x80000000,FPTEMP_LO(%a6) //test if ls lword is special - bnes chklerr //if not equal, check for incorrect operr - bsr check_upper //check if exp and ms mant are special - tstl %d0 - bnes chklerr //if d0 is true, check for incorrect operr - movel #0x80000000,%d0 //store special case result - bsr operr_store - bra not_enabled //clean and exit -// -// CHECK FOR INCORRECTLY GENERATED OPERR EXCEPTION HERE -// -chklerr: - movew FPTEMP_EX(%a6),%d0 - andw #0x7FFF,%d0 //ignore sign bit - cmpw #0x3FFE,%d0 //this is the only possible exponent value - bnes chklerr2 -fixlong: - movel FPTEMP_LO(%a6),%d0 - bsr operr_store - bra not_enabled -chklerr2: - movew FPTEMP_EX(%a6),%d0 - andw #0x7FFF,%d0 //ignore sign bit - cmpw #0x4000,%d0 - bcc store_max //exponent out of range - - movel FPTEMP_LO(%a6),%d0 - andl #0x7FFF0000,%d0 //look for all 1's on bits 30-16 - cmpl #0x7FFF0000,%d0 - beqs fixlong - - tstl FPTEMP_LO(%a6) - bpls chklepos - cmpl #0xFFFFFFFF,FPTEMP_HI(%a6) - beqs fixlong - bra store_max -chklepos: - tstl FPTEMP_HI(%a6) - beqs fixlong - bra store_max - -operr_word: - moveql #2,%d1 //write size to d1 - moveb STAG(%a6),%d0 //test stag for nan - andib #0xe0,%d0 //clr all but tag - cmpib #0x60,%d0 //check for nan - beq operr_nan - cmpil #0xffff8000,FPTEMP_LO(%a6) //test if ls lword is special - bnes chkwerr //if not equal, check for incorrect operr - bsr check_upper //check if exp and ms mant are special - tstl %d0 - bnes chkwerr //if d0 is true, check for incorrect operr - movel #0x80000000,%d0 //store special case result - bsr operr_store - bra not_enabled //clean and exit -// -// CHECK FOR INCORRECTLY GENERATED OPERR EXCEPTION HERE -// -chkwerr: - movew FPTEMP_EX(%a6),%d0 - andw #0x7FFF,%d0 //ignore sign bit - cmpw #0x3FFE,%d0 //this is the only possible exponent value - bnes store_max - movel FPTEMP_LO(%a6),%d0 - swap %d0 - bsr operr_store - bra not_enabled - -operr_byte: - moveql #1,%d1 //write size to d1 - moveb STAG(%a6),%d0 //test stag for nan - andib #0xe0,%d0 //clr all but tag - cmpib #0x60,%d0 //check for nan - beqs operr_nan - cmpil #0xffffff80,FPTEMP_LO(%a6) //test if ls lword is special - bnes chkberr //if not equal, check for incorrect operr - bsr check_upper //check if exp and ms mant are special - tstl %d0 - bnes chkberr //if d0 is true, check for incorrect operr - movel #0x80000000,%d0 //store special case result - bsr operr_store - bra not_enabled //clean and exit -// -// CHECK FOR INCORRECTLY GENERATED OPERR EXCEPTION HERE -// -chkberr: - movew FPTEMP_EX(%a6),%d0 - andw #0x7FFF,%d0 //ignore sign bit - cmpw #0x3FFE,%d0 //this is the only possible exponent value - bnes store_max - movel FPTEMP_LO(%a6),%d0 - asll #8,%d0 - swap %d0 - bsr operr_store - bra not_enabled - -// -// This operr condition is not of the special case. Set operr -// and aiop and write the portion of the nan to memory for the -// given size. -// -operr_nan: - orl #opaop_mask,USER_FPSR(%a6) //set operr & aiop - - movel ETEMP_HI(%a6),%d0 //output will be from upper 32 bits - bsr operr_store - bra end_operr -// -// Store_max loads the max pos or negative for the size, sets -// the operr and aiop bits, and clears inex and ainex, incorrectly -// set by the 040. -// -store_max: - orl #opaop_mask,USER_FPSR(%a6) //set operr & aiop - bclrb #inex2_bit,FPSR_EXCEPT(%a6) - bclrb #ainex_bit,FPSR_AEXCEPT(%a6) - fmovel #0,%FPSR - - tstw FPTEMP_EX(%a6) //check sign - blts load_neg - movel #0x7fffffff,%d0 - bsr operr_store - bra end_operr -load_neg: - movel #0x80000000,%d0 - bsr operr_store - bra end_operr - -// -// This routine stores the data in d0, for the given size in d1, -// to memory or data register as required. A read of the fline -// is required to determine the destination. -// -operr_store: - movel %d0,L_SCR1(%a6) //move write data to L_SCR1 - movel %d1,-(%a7) //save register size - bsrl get_fline //fline returned in d0 - movel (%a7)+,%d1 - bftst %d0{#26:#3} //if mode is zero, dest is Dn - bnes dest_mem -// -// Destination is Dn. Get register number from d0. Data is on -// the stack at (a7). D1 has size: 1=byte,2=word,4=long/single -// - andil #7,%d0 //isolate register number - cmpil #4,%d1 - beqs op_long //the most frequent case - cmpil #2,%d1 - bnes op_con - orl #8,%d0 - bras op_con -op_long: - orl #0x10,%d0 -op_con: - movel %d0,%d1 //format size:reg for reg_dest - bral reg_dest //call to reg_dest returns to caller -// ;of operr_store -// -// Destination is memory. Get from integer exception frame -// and call mem_write. -// -dest_mem: - leal L_SCR1(%a6),%a0 //put ptr to write data in a0 - movel EXC_EA(%a6),%a1 //put user destination address in a1 - movel %d1,%d0 //put size in d0 - bsrl mem_write - rts -// -// Check the exponent for $c000 and the upper 32 bits of the -// mantissa for $ffffffff. If both are true, return d0 clr -// and store the lower n bits of the least lword of FPTEMP -// to d0 for write out. If not, it is a real operr, and set d0. -// -check_upper: - cmpil #0xffffffff,FPTEMP_HI(%a6) //check if first byte is all 1's - bnes true_operr //if not all 1's then was true operr - cmpiw #0xc000,FPTEMP_EX(%a6) //check if incorrectly signalled - beqs not_true_operr //branch if not true operr - cmpiw #0xbfff,FPTEMP_EX(%a6) //check if incorrectly signalled - beqs not_true_operr //branch if not true operr -true_operr: - movel #1,%d0 //signal real operr - rts -not_true_operr: - clrl %d0 //signal no real operr - rts - -// -// End_operr tests for operr enabled. If not, it cleans up the stack -// and does an rte. If enabled, it cleans up the stack and branches -// to the kernel operr handler with only the integer exception -// frame on the stack and the fpu in the original exceptional state -// with correct data written to the destination. -// -end_operr: - btstb #operr_bit,FPCR_ENABLE(%a6) - beqs not_enabled -enabled: - moveml USER_DA(%a6),%d0-%d1/%a0-%a1 - fmovemx USER_FP0(%a6),%fp0-%fp3 - fmoveml USER_FPCR(%a6),%fpcr/%fpsr/%fpiar - frestore (%a7)+ - unlk %a6 - bral real_operr - -not_enabled: -// -// It is possible to have either inex2 or inex1 exceptions with the -// operr. If the inex enable bit is set in the FPCR, and either -// inex2 or inex1 occurred, we must clean up and branch to the -// real inex handler. -// -ck_inex: - moveb FPCR_ENABLE(%a6),%d0 - andb FPSR_EXCEPT(%a6),%d0 - andib #0x3,%d0 - beq operr_exit -// -// Inexact enabled and reported, and we must take an inexact exception. -// -take_inex: - moveb #INEX_VEC,EXC_VEC+1(%a6) - movel USER_FPSR(%a6),FPSR_SHADOW(%a6) - orl #sx_mask,E_BYTE(%a6) - moveml USER_DA(%a6),%d0-%d1/%a0-%a1 - fmovemx USER_FP0(%a6),%fp0-%fp3 - fmoveml USER_FPCR(%a6),%fpcr/%fpsr/%fpiar - frestore (%a7)+ - unlk %a6 - bral real_inex -// -// Since operr is only an E1 exception, there is no need to frestore -// any state back to the fpu. -// -operr_exit: - moveml USER_DA(%a6),%d0-%d1/%a0-%a1 - fmovemx USER_FP0(%a6),%fp0-%fp3 - fmoveml USER_FPCR(%a6),%fpcr/%fpsr/%fpiar - unlk %a6 - bral fpsp_done - - |end diff --git a/c/src/lib/libcpu/m68k/m68040/fpsp/x_ovfl.S b/c/src/lib/libcpu/m68k/m68040/fpsp/x_ovfl.S deleted file mode 100644 index 11ad9bb9f3..0000000000 --- a/c/src/lib/libcpu/m68k/m68040/fpsp/x_ovfl.S +++ /dev/null @@ -1,188 +0,0 @@ -#include "fpsp-namespace.h" -// -// -// x_ovfl.sa 3.5 7/1/91 -// -// fpsp_ovfl --- FPSP handler for overflow exception -// -// Overflow occurs when a floating-point intermediate result is -// too large to be represented in a floating-point data register, -// or when storing to memory, the contents of a floating-point -// data register are too large to be represented in the -// destination format. -// -// Trap disabled results -// -// If the instruction is move_out, then garbage is stored in the -// destination. If the instruction is not move_out, then the -// destination is not affected. For 68881 compatibility, the -// following values should be stored at the destination, based -// on the current rounding mode: -// -// RN Infinity with the sign of the intermediate result. -// RZ Largest magnitude number, with the sign of the -// intermediate result. -// RM For pos overflow, the largest pos number. For neg overflow, -// -infinity -// RP For pos overflow, +infinity. For neg overflow, the largest -// neg number -// -// Trap enabled results -// All trap disabled code applies. In addition the exceptional -// operand needs to be made available to the users exception handler -// with a bias of $6000 subtracted from the exponent. -// -// - -// Copyright (C) Motorola, Inc. 1990 -// All Rights Reserved -// -// THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA -// The copyright notice above does not evidence any -// actual or intended publication of such source code. - -X_OVFL: //idnt 2,1 | Motorola 040 Floating Point Software Package - - |section 8 - -#include "fpsp.defs" - - |xref ovf_r_x2 - |xref ovf_r_x3 - |xref store - |xref real_ovfl - |xref real_inex - |xref fpsp_done - |xref g_opcls - |xref b1238_fix - - .global fpsp_ovfl -fpsp_ovfl: - link %a6,#-LOCAL_SIZE - fsave -(%a7) - moveml %d0-%d1/%a0-%a1,USER_DA(%a6) - fmovemx %fp0-%fp3,USER_FP0(%a6) - fmoveml %fpcr/%fpsr/%fpiar,USER_FPCR(%a6) - -// -// The 040 doesn't set the AINEX bit in the FPSR, the following -// line temporarily rectifies this error. -// - bsetb #ainex_bit,FPSR_AEXCEPT(%a6) -// - bsrl ovf_adj //denormalize, round & store interm op -// -// if overflow traps not enabled check for inexact exception -// - btstb #ovfl_bit,FPCR_ENABLE(%a6) - beqs ck_inex -// - btstb #E3,E_BYTE(%a6) - beqs no_e3_1 - bfextu CMDREG3B(%a6){#6:#3},%d0 //get dest reg no - bclrb %d0,FPR_DIRTY_BITS(%a6) //clr dest dirty bit - bsrl b1238_fix - movel USER_FPSR(%a6),FPSR_SHADOW(%a6) - orl #sx_mask,E_BYTE(%a6) -no_e3_1: - moveml USER_DA(%a6),%d0-%d1/%a0-%a1 - fmovemx USER_FP0(%a6),%fp0-%fp3 - fmoveml USER_FPCR(%a6),%fpcr/%fpsr/%fpiar - frestore (%a7)+ - unlk %a6 - bral real_ovfl -// -// It is possible to have either inex2 or inex1 exceptions with the -// ovfl. If the inex enable bit is set in the FPCR, and either -// inex2 or inex1 occurred, we must clean up and branch to the -// real inex handler. -// -ck_inex: -// move.b FPCR_ENABLE(%a6),%d0 -// and.b FPSR_EXCEPT(%a6),%d0 -// andi.b #$3,%d0 - btstb #inex2_bit,FPCR_ENABLE(%a6) - beqs ovfl_exit -// -// Inexact enabled and reported, and we must take an inexact exception. -// -take_inex: - btstb #E3,E_BYTE(%a6) - beqs no_e3_2 - bfextu CMDREG3B(%a6){#6:#3},%d0 //get dest reg no - bclrb %d0,FPR_DIRTY_BITS(%a6) //clr dest dirty bit - bsrl b1238_fix - movel USER_FPSR(%a6),FPSR_SHADOW(%a6) - orl #sx_mask,E_BYTE(%a6) -no_e3_2: - moveb #INEX_VEC,EXC_VEC+1(%a6) - moveml USER_DA(%a6),%d0-%d1/%a0-%a1 - fmovemx USER_FP0(%a6),%fp0-%fp3 - fmoveml USER_FPCR(%a6),%fpcr/%fpsr/%fpiar - frestore (%a7)+ - unlk %a6 - bral real_inex - -ovfl_exit: - bclrb #E3,E_BYTE(%a6) //test and clear E3 bit - beqs e1_set -// -// Clear dirty bit on dest resister in the frame before branching -// to b1238_fix. -// - bfextu CMDREG3B(%a6){#6:#3},%d0 //get dest reg no - bclrb %d0,FPR_DIRTY_BITS(%a6) //clr dest dirty bit - bsrl b1238_fix //test for bug1238 case - - movel USER_FPSR(%a6),FPSR_SHADOW(%a6) - orl #sx_mask,E_BYTE(%a6) - moveml USER_DA(%a6),%d0-%d1/%a0-%a1 - fmovemx USER_FP0(%a6),%fp0-%fp3 - fmoveml USER_FPCR(%a6),%fpcr/%fpsr/%fpiar - frestore (%a7)+ - unlk %a6 - bral fpsp_done -e1_set: - moveml USER_DA(%a6),%d0-%d1/%a0-%a1 - fmovemx USER_FP0(%a6),%fp0-%fp3 - fmoveml USER_FPCR(%a6),%fpcr/%fpsr/%fpiar - unlk %a6 - bral fpsp_done - -// -// ovf_adj -// -ovf_adj: -// -// Have a0 point to the correct operand. -// - btstb #E3,E_BYTE(%a6) //test E3 bit - beqs ovf_e1 - - lea WBTEMP(%a6),%a0 - bras ovf_com -ovf_e1: - lea ETEMP(%a6),%a0 - -ovf_com: - bclrb #sign_bit,LOCAL_EX(%a0) - sne LOCAL_SGN(%a0) - - bsrl g_opcls //returns opclass in d0 - cmpiw #3,%d0 //check for opclass3 - bnes not_opc011 - -// -// FPSR_CC is saved and restored because ovf_r_x3 affects it. The -// CCs are defined to be 'not affected' for the opclass3 instruction. -// - moveb FPSR_CC(%a6),L_SCR1(%a6) - bsrl ovf_r_x3 //returns a0 pointing to result - moveb L_SCR1(%a6),FPSR_CC(%a6) - bral store //stores to memory or register - -not_opc011: - bsrl ovf_r_x2 //returns a0 pointing to result - bral store //stores to memory or register - - |end diff --git a/c/src/lib/libcpu/m68k/m68040/fpsp/x_snan.S b/c/src/lib/libcpu/m68k/m68040/fpsp/x_snan.S deleted file mode 100644 index aa80a84a56..0000000000 --- a/c/src/lib/libcpu/m68k/m68040/fpsp/x_snan.S +++ /dev/null @@ -1,279 +0,0 @@ -#include "fpsp-namespace.h" -// -// -// x_snan.sa 3.3 7/1/91 -// -// fpsp_snan --- FPSP handler for signalling NAN exception -// -// SNAN for float -> integer conversions (integer conversion of -// an SNAN) is a non-maskable run-time exception. -// -// For trap disabled the 040 does the following: -// If the dest data format is s, d, or x, then the SNAN bit in the NAN -// is set to one and the resulting non-signaling NAN (truncated if -// necessary) is transferred to the dest. If the dest format is b, w, -// or l, then garbage is written to the dest (actually the upper 32 bits -// of the mantissa are sent to the integer unit). -// -// For trap enabled the 040 does the following: -// If the inst is move_out, then the results are the same as for trap -// disabled with the exception posted. If the instruction is not move_ -// out, the dest. is not modified, and the exception is posted. -// - -// Copyright (C) Motorola, Inc. 1990 -// All Rights Reserved -// -// THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA -// The copyright notice above does not evidence any -// actual or intended publication of such source code. - -X_SNAN: //idnt 2,1 | Motorola 040 Floating Point Software Package - - |section 8 - -#include "fpsp.defs" - - |xref get_fline - |xref mem_write - |xref real_snan - |xref real_inex - |xref fpsp_done - |xref reg_dest - - .global fpsp_snan -fpsp_snan: - link %a6,#-LOCAL_SIZE - fsave -(%a7) - moveml %d0-%d1/%a0-%a1,USER_DA(%a6) - fmovemx %fp0-%fp3,USER_FP0(%a6) - fmoveml %fpcr/%fpsr/%fpiar,USER_FPCR(%a6) - -// -// Check if trap enabled -// - btstb #snan_bit,FPCR_ENABLE(%a6) - bnes ena //If enabled, then branch - - bsrl move_out //else SNAN disabled -// -// It is possible to have an inex1 exception with the -// snan. If the inex enable bit is set in the FPCR, and either -// inex2 or inex1 occurred, we must clean up and branch to the -// real inex handler. -// -ck_inex: - moveb FPCR_ENABLE(%a6),%d0 - andb FPSR_EXCEPT(%a6),%d0 - andib #0x3,%d0 - beq end_snan -// -// Inexact enabled and reported, and we must take an inexact exception. -// -take_inex: - moveb #INEX_VEC,EXC_VEC+1(%a6) - moveml USER_DA(%a6),%d0-%d1/%a0-%a1 - fmovemx USER_FP0(%a6),%fp0-%fp3 - fmoveml USER_FPCR(%a6),%fpcr/%fpsr/%fpiar - frestore (%a7)+ - unlk %a6 - bral real_inex -// -// SNAN is enabled. Check if inst is move_out. -// Make any corrections to the 040 output as necessary. -// -ena: - btstb #5,CMDREG1B(%a6) //if set, inst is move out - beq not_out - - bsrl move_out - -report_snan: - moveb (%a7),VER_TMP(%a6) - cmpib #VER_40,(%a7) //test for orig unimp frame - bnes ck_rev - moveql #13,%d0 //need to zero 14 lwords - bras rep_con -ck_rev: - moveql #11,%d0 //need to zero 12 lwords -rep_con: - clrl (%a7) -loop1: - clrl -(%a7) //clear and dec a7 - dbra %d0,loop1 - moveb VER_TMP(%a6),(%a7) //format a busy frame - moveb #BUSY_SIZE-4,1(%a7) - movel USER_FPSR(%a6),FPSR_SHADOW(%a6) - orl #sx_mask,E_BYTE(%a6) - moveml USER_DA(%a6),%d0-%d1/%a0-%a1 - fmovemx USER_FP0(%a6),%fp0-%fp3 - fmoveml USER_FPCR(%a6),%fpcr/%fpsr/%fpiar - frestore (%a7)+ - unlk %a6 - bral real_snan -// -// Exit snan handler by expanding the unimp frame into a busy frame -// -end_snan: - bclrb #E1,E_BYTE(%a6) - - moveb (%a7),VER_TMP(%a6) - cmpib #VER_40,(%a7) //test for orig unimp frame - bnes ck_rev2 - moveql #13,%d0 //need to zero 14 lwords - bras rep_con2 -ck_rev2: - moveql #11,%d0 //need to zero 12 lwords -rep_con2: - clrl (%a7) -loop2: - clrl -(%a7) //clear and dec a7 - dbra %d0,loop2 - moveb VER_TMP(%a6),(%a7) //format a busy frame - moveb #BUSY_SIZE-4,1(%a7) //write busy size - movel USER_FPSR(%a6),FPSR_SHADOW(%a6) - orl #sx_mask,E_BYTE(%a6) - moveml USER_DA(%a6),%d0-%d1/%a0-%a1 - fmovemx USER_FP0(%a6),%fp0-%fp3 - fmoveml USER_FPCR(%a6),%fpcr/%fpsr/%fpiar - frestore (%a7)+ - unlk %a6 - bral fpsp_done - -// -// Move_out -// -move_out: - movel EXC_EA(%a6),%a0 //get from exc frame - - bfextu CMDREG1B(%a6){#3:#3},%d0 //move rx field to d0{2:0} - cmpil #0,%d0 //check for long - beqs sto_long //branch if move_out long - - cmpil #4,%d0 //check for word - beqs sto_word //branch if move_out word - - cmpil #6,%d0 //check for byte - beqs sto_byte //branch if move_out byte - -// -// Not byte, word or long -// - rts -// -// Get the 32 most significant bits of etemp mantissa -// -sto_long: - movel ETEMP_HI(%a6),%d1 - movel #4,%d0 //load byte count -// -// Set signalling nan bit -// - bsetl #30,%d1 -// -// Store to the users destination address -// - tstl %a0 //check if is 0 - beqs wrt_dn //destination is a data register - - movel %d1,-(%a7) //move the snan onto the stack - movel %a0,%a1 //load dest addr into a1 - movel %a7,%a0 //load src addr of snan into a0 - bsrl mem_write //write snan to user memory - movel (%a7)+,%d1 //clear off stack - rts -// -// Get the 16 most significant bits of etemp mantissa -// -sto_word: - movel ETEMP_HI(%a6),%d1 - movel #2,%d0 //load byte count -// -// Set signalling nan bit -// - bsetl #30,%d1 -// -// Store to the users destination address -// - tstl %a0 //check if is 0 - beqs wrt_dn //destination is a data register - - movel %d1,-(%a7) //move the snan onto the stack - movel %a0,%a1 //load dest addr into a1 - movel %a7,%a0 //point to low word - bsrl mem_write //write snan to user memory - movel (%a7)+,%d1 //clear off stack - rts -// -// Get the 8 most significant bits of etemp mantissa -// -sto_byte: - movel ETEMP_HI(%a6),%d1 - movel #1,%d0 //load byte count -// -// Set signalling nan bit -// - bsetl #30,%d1 -// -// Store to the users destination address -// - tstl %a0 //check if is 0 - beqs wrt_dn //destination is a data register - movel %d1,-(%a7) //move the snan onto the stack - movel %a0,%a1 //load dest addr into a1 - movel %a7,%a0 //point to source byte - bsrl mem_write //write snan to user memory - movel (%a7)+,%d1 //clear off stack - rts - -// -// wrt_dn --- write to a data register -// -// We get here with D1 containing the data to write and D0 the -// number of bytes to write: 1=byte,2=word,4=long. -// -wrt_dn: - movel %d1,L_SCR1(%a6) //data - movel %d0,-(%a7) //size - bsrl get_fline //returns fline word in d0 - movel %d0,%d1 - andil #0x7,%d1 //d1 now holds register number - movel (%sp)+,%d0 //get original size - cmpil #4,%d0 - beqs wrt_long - cmpil #2,%d0 - bnes wrt_byte -wrt_word: - orl #0x8,%d1 - bral reg_dest -wrt_long: - orl #0x10,%d1 - bral reg_dest -wrt_byte: - bral reg_dest -// -// Check if it is a src nan or dst nan -// -not_out: - movel DTAG(%a6),%d0 - bfextu %d0{#0:#3},%d0 //isolate dtag in lsbs - - cmpib #3,%d0 //check for nan in destination - bnes issrc //destination nan has priority -dst_nan: - btstb #6,FPTEMP_HI(%a6) //check if dest nan is an snan - bnes issrc //no, so check source for snan - movew FPTEMP_EX(%a6),%d0 - bras cont -issrc: - movew ETEMP_EX(%a6),%d0 -cont: - btstl #15,%d0 //test for sign of snan - beqs clr_neg - bsetb #neg_bit,FPSR_CC(%a6) - bra report_snan -clr_neg: - bclrb #neg_bit,FPSR_CC(%a6) - bra report_snan - - |end diff --git a/c/src/lib/libcpu/m68k/m68040/fpsp/x_store.S b/c/src/lib/libcpu/m68k/m68040/fpsp/x_store.S deleted file mode 100644 index 17b3e38617..0000000000 --- a/c/src/lib/libcpu/m68k/m68040/fpsp/x_store.S +++ /dev/null @@ -1,258 +0,0 @@ -#include "fpsp-namespace.h" -// -// -// x_store.sa 3.2 1/24/91 -// -// store --- store operand to memory or register -// -// Used by underflow and overflow handlers. -// -// a6 = points to fp value to be stored. -// - -// Copyright (C) Motorola, Inc. 1990 -// All Rights Reserved -// -// THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA -// The copyright notice above does not evidence any -// actual or intended publication of such source code. - -X_STORE: //idnt 2,1 | Motorola 040 Floating Point Software Package - - |section 8 - -fpreg_mask: - .byte 0x80,0x40,0x20,0x10,0x08,0x04,0x02,0x01 - -#include "fpsp.defs" - - |xref mem_write - |xref get_fline - |xref g_opcls - |xref g_dfmtou - |xref reg_dest - - .global dest_ext - .global dest_dbl - .global dest_sgl - - .global store -store: - btstb #E3,E_BYTE(%a6) - beqs E1_sto -E3_sto: - movel CMDREG3B(%a6),%d0 - bfextu %d0{#6:#3},%d0 //isolate dest. reg from cmdreg3b -sto_fp: - lea fpreg_mask,%a1 - moveb (%a1,%d0.w),%d0 //convert reg# to dynamic register mask - tstb LOCAL_SGN(%a0) - beqs is_pos - bsetb #sign_bit,LOCAL_EX(%a0) -is_pos: - fmovemx (%a0),%d0 //move to correct register -// -// if fp0-fp3 is being modified, we must put a copy -// in the USER_FPn variable on the stack because all exception -// handlers restore fp0-fp3 from there. -// - cmpb #0x80,%d0 - bnes not_fp0 - fmovemx %fp0-%fp0,USER_FP0(%a6) - rts -not_fp0: - cmpb #0x40,%d0 - bnes not_fp1 - fmovemx %fp1-%fp1,USER_FP1(%a6) - rts -not_fp1: - cmpb #0x20,%d0 - bnes not_fp2 - fmovemx %fp2-%fp2,USER_FP2(%a6) - rts -not_fp2: - cmpb #0x10,%d0 - bnes not_fp3 - fmovemx %fp3-%fp3,USER_FP3(%a6) - rts -not_fp3: - rts - -E1_sto: - bsrl g_opcls //returns opclass in d0 - cmpib #3,%d0 - beq opc011 //branch if opclass 3 - movel CMDREG1B(%a6),%d0 - bfextu %d0{#6:#3},%d0 //extract destination register - bras sto_fp - -opc011: - bsrl g_dfmtou //returns dest format in d0 -// ;ext=00, sgl=01, dbl=10 - movel %a0,%a1 //save source addr in a1 - movel EXC_EA(%a6),%a0 //get the address - cmpil #0,%d0 //if dest format is extended - beq dest_ext //then branch - cmpil #1,%d0 //if dest format is single - beq dest_sgl //then branch -// -// fall through to dest_dbl -// - -// -// dest_dbl --- write double precision value to user space -// -//Input -// a0 -> destination address -// a1 -> source in extended precision -//Output -// a0 -> destroyed -// a1 -> destroyed -// d0 -> 0 -// -//Changes extended precision to double precision. -// Note: no attempt is made to round the extended value to double. -// dbl_sign = ext_sign -// dbl_exp = ext_exp - $3fff(ext bias) + $7ff(dbl bias) -// get rid of ext integer bit -// dbl_mant = ext_mant{62:12} -// -// --------------- --------------- --------------- -// extended -> |s| exp | |1| ms mant | | ls mant | -// --------------- --------------- --------------- -// 95 64 63 62 32 31 11 0 -// | | -// | | -// | | -// v v -// --------------- --------------- -// double -> |s|exp| mant | | mant | -// --------------- --------------- -// 63 51 32 31 0 -// -dest_dbl: - clrl %d0 //clear d0 - movew LOCAL_EX(%a1),%d0 //get exponent - subw #0x3fff,%d0 //subtract extended precision bias - cmpw #0x4000,%d0 //check if inf - beqs inf //if so, special case - addw #0x3ff,%d0 //add double precision bias - swap %d0 //d0 now in upper word - lsll #4,%d0 //d0 now in proper place for dbl prec exp - tstb LOCAL_SGN(%a1) - beqs get_mant //if positive, go process mantissa - bsetl #31,%d0 //if negative, put in sign information -// ; before continuing - bras get_mant //go process mantissa -inf: - movel #0x7ff00000,%d0 //load dbl inf exponent - clrl LOCAL_HI(%a1) //clear msb - tstb LOCAL_SGN(%a1) - beqs dbl_inf //if positive, go ahead and write it - bsetl #31,%d0 //if negative put in sign information -dbl_inf: - movel %d0,LOCAL_EX(%a1) //put the new exp back on the stack - bras dbl_wrt -get_mant: - movel LOCAL_HI(%a1),%d1 //get ms mantissa - bfextu %d1{#1:#20},%d1 //get upper 20 bits of ms - orl %d1,%d0 //put these bits in ms word of double - movel %d0,LOCAL_EX(%a1) //put the new exp back on the stack - movel LOCAL_HI(%a1),%d1 //get ms mantissa - movel #21,%d0 //load shift count - lsll %d0,%d1 //put lower 11 bits in upper bits - movel %d1,LOCAL_HI(%a1) //build lower lword in memory - movel LOCAL_LO(%a1),%d1 //get ls mantissa - bfextu %d1{#0:#21},%d0 //get ls 21 bits of double - orl %d0,LOCAL_HI(%a1) //put them in double result -dbl_wrt: - movel #0x8,%d0 //byte count for double precision number - exg %a0,%a1 //a0=supervisor source, a1=user dest - bsrl mem_write //move the number to the user's memory - rts -// -// dest_sgl --- write single precision value to user space -// -//Input -// a0 -> destination address -// a1 -> source in extended precision -// -//Output -// a0 -> destroyed -// a1 -> destroyed -// d0 -> 0 -// -//Changes extended precision to single precision. -// sgl_sign = ext_sign -// sgl_exp = ext_exp - $3fff(ext bias) + $7f(sgl bias) -// get rid of ext integer bit -// sgl_mant = ext_mant{62:12} -// -// --------------- --------------- --------------- -// extended -> |s| exp | |1| ms mant | | ls mant | -// --------------- --------------- --------------- -// 95 64 63 62 40 32 31 12 0 -// | | -// | | -// | | -// v v -// --------------- -// single -> |s|exp| mant | -// --------------- -// 31 22 0 -// -dest_sgl: - clrl %d0 - movew LOCAL_EX(%a1),%d0 //get exponent - subw #0x3fff,%d0 //subtract extended precision bias - cmpw #0x4000,%d0 //check if inf - beqs sinf //if so, special case - addw #0x7f,%d0 //add single precision bias - swap %d0 //put exp in upper word of d0 - lsll #7,%d0 //shift it into single exp bits - tstb LOCAL_SGN(%a1) - beqs get_sman //if positive, continue - bsetl #31,%d0 //if negative, put in sign first - bras get_sman //get mantissa -sinf: - movel #0x7f800000,%d0 //load single inf exp to d0 - tstb LOCAL_SGN(%a1) - beqs sgl_wrt //if positive, continue - bsetl #31,%d0 //if negative, put in sign info - bras sgl_wrt - -get_sman: - movel LOCAL_HI(%a1),%d1 //get ms mantissa - bfextu %d1{#1:#23},%d1 //get upper 23 bits of ms - orl %d1,%d0 //put these bits in ms word of single - -sgl_wrt: - movel %d0,L_SCR1(%a6) //put the new exp back on the stack - movel #0x4,%d0 //byte count for single precision number - tstl %a0 //users destination address - beqs sgl_Dn //destination is a data register - exg %a0,%a1 //a0=supervisor source, a1=user dest - leal L_SCR1(%a6),%a0 //point a0 to data - bsrl mem_write //move the number to the user's memory - rts -sgl_Dn: - bsrl get_fline //returns fline word in d0 - andw #0x7,%d0 //isolate register number - movel %d0,%d1 //d1 has size:reg formatted for reg_dest - orl #0x10,%d1 //reg_dest wants size added to reg# - bral reg_dest //size is X, rts in reg_dest will -// ;return to caller of dest_sgl - -dest_ext: - tstb LOCAL_SGN(%a1) //put back sign into exponent word - beqs dstx_cont - bsetb #sign_bit,LOCAL_EX(%a1) -dstx_cont: - clrb LOCAL_SGN(%a1) //clear out the sign byte - - movel #0x0c,%d0 //byte count for extended number - exg %a0,%a1 //a0=supervisor source, a1=user dest - bsrl mem_write //move the number to the user's memory - rts - - |end diff --git a/c/src/lib/libcpu/m68k/m68040/fpsp/x_unfl.S b/c/src/lib/libcpu/m68k/m68040/fpsp/x_unfl.S deleted file mode 100644 index e28f925db4..0000000000 --- a/c/src/lib/libcpu/m68k/m68040/fpsp/x_unfl.S +++ /dev/null @@ -1,271 +0,0 @@ -#include "fpsp-namespace.h" -// -// -// x_unfl.sa 3.4 7/1/91 -// -// fpsp_unfl --- FPSP handler for underflow exception -// -// Trap disabled results -// For 881/2 compatibility, sw must denormalize the intermediate -// result, then store the result. Denormalization is accomplished -// by taking the intermediate result (which is always normalized) and -// shifting the mantissa right while incrementing the exponent until -// it is equal to the denormalized exponent for the destination -// format. After denormalization, the result is rounded to the -// destination format. -// -// Trap enabled results -// All trap disabled code applies. In addition the exceptional -// operand needs to made available to the user with a bias of $6000 -// added to the exponent. -// - -// Copyright (C) Motorola, Inc. 1990 -// All Rights Reserved -// -// THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA -// The copyright notice above does not evidence any -// actual or intended publication of such source code. - -X_UNFL: //idnt 2,1 | Motorola 040 Floating Point Software Package - - |section 8 - -#include "fpsp.defs" - - |xref denorm - |xref round - |xref store - |xref g_rndpr - |xref g_opcls - |xref g_dfmtou - |xref real_unfl - |xref real_inex - |xref fpsp_done - |xref b1238_fix - - .global fpsp_unfl -fpsp_unfl: - link %a6,#-LOCAL_SIZE - fsave -(%a7) - moveml %d0-%d1/%a0-%a1,USER_DA(%a6) - fmovemx %fp0-%fp3,USER_FP0(%a6) - fmoveml %fpcr/%fpsr/%fpiar,USER_FPCR(%a6) - -// - bsrl unf_res //denormalize, round & store interm op -// -// If underflow exceptions are not enabled, check for inexact -// exception -// - btstb #unfl_bit,FPCR_ENABLE(%a6) - beqs ck_inex - - btstb #E3,E_BYTE(%a6) - beqs no_e3_1 -// -// Clear dirty bit on dest resister in the frame before branching -// to b1238_fix. -// - bfextu CMDREG3B(%a6){#6:#3},%d0 //get dest reg no - bclrb %d0,FPR_DIRTY_BITS(%a6) //clr dest dirty bit - bsrl b1238_fix //test for bug1238 case - movel USER_FPSR(%a6),FPSR_SHADOW(%a6) - orl #sx_mask,E_BYTE(%a6) -no_e3_1: - moveml USER_DA(%a6),%d0-%d1/%a0-%a1 - fmovemx USER_FP0(%a6),%fp0-%fp3 - fmoveml USER_FPCR(%a6),%fpcr/%fpsr/%fpiar - frestore (%a7)+ - unlk %a6 - bral real_unfl -// -// It is possible to have either inex2 or inex1 exceptions with the -// unfl. If the inex enable bit is set in the FPCR, and either -// inex2 or inex1 occurred, we must clean up and branch to the -// real inex handler. -// -ck_inex: - moveb FPCR_ENABLE(%a6),%d0 - andb FPSR_EXCEPT(%a6),%d0 - andib #0x3,%d0 - beqs unfl_done - -// -// Inexact enabled and reported, and we must take an inexact exception -// -take_inex: - btstb #E3,E_BYTE(%a6) - beqs no_e3_2 -// -// Clear dirty bit on dest resister in the frame before branching -// to b1238_fix. -// - bfextu CMDREG3B(%a6){#6:#3},%d0 //get dest reg no - bclrb %d0,FPR_DIRTY_BITS(%a6) //clr dest dirty bit - bsrl b1238_fix //test for bug1238 case - movel USER_FPSR(%a6),FPSR_SHADOW(%a6) - orl #sx_mask,E_BYTE(%a6) -no_e3_2: - moveb #INEX_VEC,EXC_VEC+1(%a6) - moveml USER_DA(%a6),%d0-%d1/%a0-%a1 - fmovemx USER_FP0(%a6),%fp0-%fp3 - fmoveml USER_FPCR(%a6),%fpcr/%fpsr/%fpiar - frestore (%a7)+ - unlk %a6 - bral real_inex - -unfl_done: - bclrb #E3,E_BYTE(%a6) - beqs e1_set //if set then branch -// -// Clear dirty bit on dest resister in the frame before branching -// to b1238_fix. -// - bfextu CMDREG3B(%a6){#6:#3},%d0 //get dest reg no - bclrb %d0,FPR_DIRTY_BITS(%a6) //clr dest dirty bit - bsrl b1238_fix //test for bug1238 case - movel USER_FPSR(%a6),FPSR_SHADOW(%a6) - orl #sx_mask,E_BYTE(%a6) - moveml USER_DA(%a6),%d0-%d1/%a0-%a1 - fmovemx USER_FP0(%a6),%fp0-%fp3 - fmoveml USER_FPCR(%a6),%fpcr/%fpsr/%fpiar - frestore (%a7)+ - unlk %a6 - bral fpsp_done -e1_set: - moveml USER_DA(%a6),%d0-%d1/%a0-%a1 - fmovemx USER_FP0(%a6),%fp0-%fp3 - fmoveml USER_FPCR(%a6),%fpcr/%fpsr/%fpiar - unlk %a6 - bral fpsp_done -// -// unf_res --- underflow result calculation -// -unf_res: - bsrl g_rndpr //returns RND_PREC in d0 0=ext, -// ;1=sgl, 2=dbl -// ;we need the RND_PREC in the -// ;upper word for round - movew #0,-(%a7) - movew %d0,-(%a7) //copy RND_PREC to stack -// -// -// If the exception bit set is E3, the exceptional operand from the -// fpu is in WBTEMP; else it is in FPTEMP. -// - btstb #E3,E_BYTE(%a6) - beqs unf_E1 -unf_E3: - lea WBTEMP(%a6),%a0 //a0 now points to operand -// -// Test for fsgldiv and fsglmul. If the inst was one of these, then -// force the precision to extended for the denorm routine. Use -// the user's precision for the round routine. -// - movew CMDREG3B(%a6),%d1 //check for fsgldiv or fsglmul - andiw #0x7f,%d1 - cmpiw #0x30,%d1 //check for sgldiv - beqs unf_sgl - cmpiw #0x33,%d1 //check for sglmul - bnes unf_cont //if not, use fpcr prec in round -unf_sgl: - clrl %d0 - movew #0x1,(%a7) //override g_rndpr precision -// ;force single - bras unf_cont -unf_E1: - lea FPTEMP(%a6),%a0 //a0 now points to operand -unf_cont: - bclrb #sign_bit,LOCAL_EX(%a0) //clear sign bit - sne LOCAL_SGN(%a0) //store sign - - bsrl denorm //returns denorm, a0 points to it -// -// WARNING: -// ;d0 has guard,round sticky bit -// ;make sure that it is not corrupted -// ;before it reaches the round subroutine -// ;also ensure that a0 isn't corrupted - -// -// Set up d1 for round subroutine d1 contains the PREC/MODE -// information respectively on upper/lower register halves. -// - bfextu FPCR_MODE(%a6){#2:#2},%d1 //get mode from FPCR -// ;mode in lower d1 - addl (%a7)+,%d1 //merge PREC/MODE -// -// WARNING: a0 and d0 are assumed to be intact between the denorm and -// round subroutines. All code between these two subroutines -// must not corrupt a0 and d0. -// -// -// Perform Round -// Input: a0 points to input operand -// d0{31:29} has guard, round, sticky -// d1{01:00} has rounding mode -// d1{17:16} has rounding precision -// Output: a0 points to rounded operand -// - - bsrl round //returns rounded denorm at (a0) -// -// Differentiate between store to memory vs. store to register -// -unf_store: - bsrl g_opcls //returns opclass in d0{2:0} - cmpib #0x3,%d0 - bnes not_opc011 -// -// At this point, a store to memory is pending -// -opc011: - bsrl g_dfmtou - tstb %d0 - beqs ext_opc011 //If extended, do not subtract -// ;If destination format is sgl/dbl, - tstb LOCAL_HI(%a0) //If rounded result is normal,don't -// ;subtract - bmis ext_opc011 - subqw #1,LOCAL_EX(%a0) //account for denorm bias vs. -// ;normalized bias -// ; normalized denormalized -// ;single $7f $7e -// ;double $3ff $3fe -// -ext_opc011: - bsrl store //stores to memory - bras unf_done //finish up - -// -// At this point, a store to a float register is pending -// -not_opc011: - bsrl store //stores to float register -// ;a0 is not corrupted on a store to a -// ;float register. -// -// Set the condition codes according to result -// - tstl LOCAL_HI(%a0) //check upper mantissa - bnes ck_sgn - tstl LOCAL_LO(%a0) //check lower mantissa - bnes ck_sgn - bsetb #z_bit,FPSR_CC(%a6) //set condition codes if zero -ck_sgn: - btstb #sign_bit,LOCAL_EX(%a0) //check the sign bit - beqs unf_done - bsetb #neg_bit,FPSR_CC(%a6) - -// -// Finish. -// -unf_done: - btstb #inex2_bit,FPSR_EXCEPT(%a6) - beqs no_aunfl - bsetb #aunfl_bit,FPSR_AEXCEPT(%a6) -no_aunfl: - rts - - |end diff --git a/c/src/lib/libcpu/m68k/m68040/fpsp/x_unimp.S b/c/src/lib/libcpu/m68k/m68040/fpsp/x_unimp.S deleted file mode 100644 index d153f62186..0000000000 --- a/c/src/lib/libcpu/m68k/m68040/fpsp/x_unimp.S +++ /dev/null @@ -1,79 +0,0 @@ -#include "fpsp-namespace.h" -// -// -// x_unimp.sa 3.3 7/1/91 -// -// fpsp_unimp --- FPSP handler for unimplemented instruction -// exception. -// -// Invoked when the user program encounters a floating-point -// op-code that hardware does not support. Trap vector# 11 -// (See table 8-1 MC68030 User's Manual). -// -// -// Note: An fsave for an unimplemented inst. will create a short -// fsave stack. -// -// Input: 1. Six word stack frame for unimplemented inst, four word -// for illegal -// (See table 8-7 MC68030 User's Manual). -// 2. Unimp (short) fsave state frame created here by fsave -// instruction. -// -// -// Copyright (C) Motorola, Inc. 1990 -// All Rights Reserved -// -// THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA -// The copyright notice above does not evidence any -// actual or intended publication of such source code. - -X_UNIMP: //idnt 2,1 | Motorola 040 Floating Point Software Package - - |section 8 - -#include "fpsp.defs" - - |xref get_op - |xref do_func - |xref sto_res - |xref gen_except - |xref fpsp_fmt_error - - .global fpsp_unimp - .global uni_2 -fpsp_unimp: - link %a6,#-LOCAL_SIZE - fsave -(%a7) -uni_2: - moveml %d0-%d1/%a0-%a1,USER_DA(%a6) - fmovemx %fp0-%fp3,USER_FP0(%a6) - fmoveml %fpcr/%fpsr/%fpiar,USER_FPCR(%a6) - moveb (%a7),%d0 //test for valid version num - andib #0xf0,%d0 //test for $4x - cmpib #VER_4,%d0 //must be $4x or exit - bnel fpsp_fmt_error -// -// Temporary D25B Fix -// The following lines are used to ensure that the FPSR -// exception byte and condition codes are clear before proceeding -// - movel USER_FPSR(%a6),%d0 - andl #0xFF00FF,%d0 //clear all but accrued exceptions - movel %d0,USER_FPSR(%a6) - fmovel #0,%FPSR //clear all user bits - fmovel #0,%FPCR //clear all user exceptions for FPSP - - clrb UFLG_TMP(%a6) //clr flag for unsupp data - - bsrl get_op //go get operand(s) - clrb STORE_FLG(%a6) - bsrl do_func //do the function - fsave -(%a7) //capture possible exc state - tstb STORE_FLG(%a6) - bnes no_store //if STORE_FLG is set, no store - bsrl sto_res //store the result in user space -no_store: - bral gen_except //post any exceptions and return - - |end diff --git a/c/src/lib/libcpu/m68k/m68040/fpsp/x_unsupp.S b/c/src/lib/libcpu/m68k/m68040/fpsp/x_unsupp.S deleted file mode 100644 index 8f428e4b4f..0000000000 --- a/c/src/lib/libcpu/m68k/m68040/fpsp/x_unsupp.S +++ /dev/null @@ -1,85 +0,0 @@ -#include "fpsp-namespace.h" -// -// -// x_unsupp.sa 3.3 7/1/91 -// -// fpsp_unsupp --- FPSP handler for unsupported data type exception -// -// Trap vector #55 (See table 8-1 Mc68030 User's manual). -// Invoked when the user program encounters a data format (packed) that -// hardware does not support or a data type (denormalized numbers or un- -// normalized numbers). -// Normalizes denorms and unnorms, unpacks packed numbers then stores -// them back into the machine to let the 040 finish the operation. -// -// Unsupp calls two routines: -// 1. get_op - gets the operand(s) -// 2. res_func - restore the function back into the 040 or -// if fmove.p fpm, then pack source (fpm) -// and store in users memory . -// -// Input: Long fsave stack frame -// -// - -// Copyright (C) Motorola, Inc. 1990 -// All Rights Reserved -// -// THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA -// The copyright notice above does not evidence any -// actual or intended publication of such source code. - -X_UNSUPP: //idnt 2,1 | Motorola 040 Floating Point Software Package - - |section 8 - -#include "fpsp.defs" - - |xref get_op - |xref res_func - |xref gen_except - |xref fpsp_fmt_error - - .global fpsp_unsupp -fpsp_unsupp: -// - link %a6,#-LOCAL_SIZE - fsave -(%a7) - moveml %d0-%d1/%a0-%a1,USER_DA(%a6) - fmovemx %fp0-%fp3,USER_FP0(%a6) - fmoveml %fpcr/%fpsr/%fpiar,USER_FPCR(%a6) - - - moveb (%a7),VER_TMP(%a6) //save version number - moveb (%a7),%d0 //test for valid version num - andib #0xf0,%d0 //test for $4x - cmpib #VER_4,%d0 //must be $4x or exit - bnel fpsp_fmt_error - - fmovel #0,%FPSR //clear all user status bits - fmovel #0,%FPCR //clear all user control bits -// -// The following lines are used to ensure that the FPSR -// exception byte and condition codes are clear before proceeding, -// except in the case of fmove, which leaves the cc's intact. -// -unsupp_con: - movel USER_FPSR(%a6),%d1 - btst #5,CMDREG1B(%a6) //looking for fmove out - bne fmove_con - andl #0xFF00FF,%d1 //clear all but aexcs and qbyte - bras end_fix -fmove_con: - andl #0x0FFF40FF,%d1 //clear all but cc's, snan bit, aexcs, and qbyte -end_fix: - movel %d1,USER_FPSR(%a6) - - st UFLG_TMP(%a6) //set flag for unsupp data - - bsrl get_op //everything okay, go get operand(s) - bsrl res_func //fix up stack frame so can restore it - clrl -(%a7) - moveb VER_TMP(%a6),(%a7) //move idle fmt word to top of stack - bral gen_except -// - |end -- cgit v1.2.3