From acc25eec35e186abc118b9ca4f097e22fc6b4846 Mon Sep 17 00:00:00 2001 From: Joel Sherrill Date: Thu, 2 Dec 1999 14:31:19 +0000 Subject: Merged of mcp750 and mvme2307 BSP by Eric Valette . As part of this effort, the mpc750 libcpu code is now shared with the ppc6xx. --- .../support/old_exception_processing/README | 80 ++ .../powerpc/support/old_exception_processing/TODO | 8 + .../support/old_exception_processing/c_isr.inl | 4 + .../powerpc/support/old_exception_processing/cpu.c | 853 ++++++++++++++ .../powerpc/support/old_exception_processing/cpu.h | 1200 ++++++++++++++++++++ .../support/old_exception_processing/cpu_asm.S | 809 +++++++++++++ .../support/old_exception_processing/irq_stub.S | 268 +++++ .../support/old_exception_processing/ppccache.c | 61 + .../support/old_exception_processing/rtems.S | 132 +++ 9 files changed, 3415 insertions(+) create mode 100644 c/src/lib/libbsp/powerpc/support/old_exception_processing/README create mode 100644 c/src/lib/libbsp/powerpc/support/old_exception_processing/TODO create mode 100644 c/src/lib/libbsp/powerpc/support/old_exception_processing/c_isr.inl create mode 100644 c/src/lib/libbsp/powerpc/support/old_exception_processing/cpu.c create mode 100644 c/src/lib/libbsp/powerpc/support/old_exception_processing/cpu.h create mode 100644 c/src/lib/libbsp/powerpc/support/old_exception_processing/cpu_asm.S create mode 100644 c/src/lib/libbsp/powerpc/support/old_exception_processing/irq_stub.S create mode 100644 c/src/lib/libbsp/powerpc/support/old_exception_processing/ppccache.c create mode 100644 c/src/lib/libbsp/powerpc/support/old_exception_processing/rtems.S (limited to 'c/src/lib/libbsp/powerpc/support/old_exception_processing') diff --git a/c/src/lib/libbsp/powerpc/support/old_exception_processing/README b/c/src/lib/libbsp/powerpc/support/old_exception_processing/README new file mode 100644 index 0000000000..c72bebfe0c --- /dev/null +++ b/c/src/lib/libbsp/powerpc/support/old_exception_processing/README @@ -0,0 +1,80 @@ +# +# $Id$ +# + +There are various issues regarding this port: + + + +1) Legal + +This port is written by Andrew Bray , and +is copyright 1995 i-cubed ltd. + +This port was later updated by Joel Sherrill +to test the support for the PPC603, PPC603e, and MPC604. This +was tested on the PowerPC simulator PSIM and a VMEbus single board +computer. + +2) CPU support. + +This release fully supports the PPC403GA, PPC403GB, PPC603, PPC603e, +MPC604, MPC750, and numerous MPC8xx processors. A good faith attempt +has been made to include support other models based upon available +documentation including the MPC5xx. There are two interrupt structures +supported by the PowerPC port. The newer structure is supported by +all the MPC750 and MPC604 BSPs. This structure is required to use +the RDBG remote debugging support. + +This port was originally written and tested on the PPC403GA (using +software floating point). Current ports are tested primarily on +60x CPUs using the PowerPC simulator PSIM. + +Andrew Bray received assistance during the initial porting effort +from IBM and Blue Micro and we would like to gratefully acknowledge +that help. + +The support for the PPC602 processor is incomplete as only sketchy +data is currently available. Perhaps this model has been dropped. + +3) Application Binary Interface + +In the context of RTEMS, the ABI is of interest for the following +aspects: + +a) Register usage. Which registers are used to provide static variable + linkage, stack pointer etc. + +b) Function calling convention. How parameters are passed, how function + variables should be invoked, how values are returned, etc. + +c) Stack frame layout. + +I am aware of a number of ABIs for the PowerPC: + +a) The PowerOpen ABI. This is the original Power ABI used on the RS/6000. + This is the only ABI supported by versions of GCC before 2.7.0. + +b) The SVR4 ABI. This is the ABI defined by SunSoft for the Solaris port + to the PowerPC. + +c) The Embedded ABI. This is an embedded ABI for PowerPC use, which has no + operating system interface defined. It is promoted by SunSoft, Motorola, + and Cygnus Support. Cygnus are porting the GNU toolchain to this ABI. + +d) GCC 2.7.0. This compiler is partway along the road to supporting the EABI, + but is currently halfway in between. + +This port was built and tested using the PowerOpen ABI, with the following +caveat: we used an ELF assembler and linker. So some attention may be +required on the assembler files to get them through a traditional (XCOFF) +PowerOpen assembler. + +This port contains support for the other ABIs, but this may prove to be +incomplete as it is untested. + +The RTEMS PowerPC port supports EABI as the primary ABI. The powerpc-rtems +GNU toolset configuration is EABI. + +Andrew Bray, 4 December 1995 +Joel Sherrill, 16 July 1997 diff --git a/c/src/lib/libbsp/powerpc/support/old_exception_processing/TODO b/c/src/lib/libbsp/powerpc/support/old_exception_processing/TODO new file mode 100644 index 0000000000..64c96cb14c --- /dev/null +++ b/c/src/lib/libbsp/powerpc/support/old_exception_processing/TODO @@ -0,0 +1,8 @@ +# +# $Id$ +# + +Todo list: + +Maybe decode external interrupts like the HPPA does. + See c/src/lib/libcpu/powerpc/ppc403/ictrl/* for implementation on ppc403 diff --git a/c/src/lib/libbsp/powerpc/support/old_exception_processing/c_isr.inl b/c/src/lib/libbsp/powerpc/support/old_exception_processing/c_isr.inl new file mode 100644 index 0000000000..706d4f7e4f --- /dev/null +++ b/c/src/lib/libbsp/powerpc/support/old_exception_processing/c_isr.inl @@ -0,0 +1,4 @@ +RTEMS_INLINE_ROUTINE boolean _ISR_Is_in_progress( void ) +{ + return (_ISR_Nest_level != 0); +} diff --git a/c/src/lib/libbsp/powerpc/support/old_exception_processing/cpu.c b/c/src/lib/libbsp/powerpc/support/old_exception_processing/cpu.c new file mode 100644 index 0000000000..7d6824cb26 --- /dev/null +++ b/c/src/lib/libbsp/powerpc/support/old_exception_processing/cpu.c @@ -0,0 +1,853 @@ +/* + * PowerPC CPU Dependent Source + * + * Author: Andrew Bray + * + * COPYRIGHT (c) 1995 by i-cubed ltd. + * + * To anyone who acknowledges that this file is provided "AS IS" + * without any express or implied warranty: + * permission to use, copy, modify, and distribute this file + * for any purpose is hereby granted without fee, provided that + * the above copyright notice and this notice appears in all + * copies, and that the name of i-cubed limited not be used in + * advertising or publicity pertaining to distribution of the + * software without specific, written prior permission. + * i-cubed limited makes no representations about the suitability + * of this software for any purpose. + * + * Derived from c/src/exec/cpu/no_cpu/cpu.c: + * + * COPYRIGHT (c) 1989-1997. + * On-Line Applications Research Corporation (OAR). + * Copyright assigned to U.S. Government, 1994. + * + * The license and distribution terms for this file may be found in + * the file LICENSE in this distribution or at + * http://www.OARcorp.com/rtems/license.html. + * + * $Id$ + */ + +#include +#include +#include +#include +#include + +/* + * These are for testing purposes. + */ + +/* _CPU_Initialize + * + * This routine performs processor dependent initialization. + * + * INPUT PARAMETERS: + * cpu_table - CPU table to initialize + * thread_dispatch - address of disptaching routine + */ + +static void ppc_spurious(int, CPU_Interrupt_frame *); + +void _CPU_Initialize( + rtems_cpu_table *cpu_table, + void (*thread_dispatch) /* ignored on this CPU */ +) +{ + proc_ptr handler = (proc_ptr)ppc_spurious; + int i; +#if (PPC_ABI != PPC_ABI_POWEROPEN) + register unsigned32 r2 = 0; +#if (PPC_ABI != PPC_ABI_GCC27) + register unsigned32 r13 = 0; + + asm ("mr %0,13" : "=r" ((r13)) : "0" ((r13))); + _CPU_IRQ_info.Default_r13 = r13; +#endif + + asm ("mr %0,2" : "=r" ((r2)) : "0" ((r2))); + _CPU_IRQ_info.Default_r2 = r2; +#endif + + _CPU_IRQ_info.Nest_level = &_ISR_Nest_level; + _CPU_IRQ_info.Disable_level = &_Thread_Dispatch_disable_level; + _CPU_IRQ_info.Vector_table = _ISR_Vector_table; +#if (PPC_ABI == PPC_ABI_POWEROPEN) + _CPU_IRQ_info.Dispatch_r2 = ((unsigned32 *)_Thread_Dispatch)[1]; +#endif + _CPU_IRQ_info.Switch_necessary = &_Context_Switch_necessary; + _CPU_IRQ_info.Signal = &_ISR_Signals_to_thread_executing; + +#if (PPC_USE_SPRG) + i = (int)&_CPU_IRQ_info; + asm volatile("mtspr 0x113, %0" : "=r" (i) : "0" (i)); /* SPRG 3 */ +#endif + + /* + * Store Msr Value in the IRQ info structure. + */ + _CPU_MSR_Value(_CPU_IRQ_info.msr_initial); + +#if (PPC_USE_SPRG) + i = _CPU_IRQ_info.msr_initial; + asm volatile("mtspr 0x112, %0" : "=r" (i) : "0" (i)); /* SPRG 2 */ +#endif + + if ( cpu_table->spurious_handler ) + handler = (proc_ptr)cpu_table->spurious_handler; + + for (i = 0; i < PPC_INTERRUPT_MAX; i++) + _ISR_Vector_table[i] = handler; + + _CPU_Table = *cpu_table; +} + +/*PAGE + * + * _CPU_ISR_Calculate_level + * + * The PowerPC puts its interrupt enable status in the MSR register + * which also contains things like endianness control. To be more + * awkward, the layout varies from processor to processor. This + * is why it was necessary to adopt a scheme which allowed the user + * to specify specifically which interrupt sources were enabled. + */ + +unsigned32 _CPU_ISR_Calculate_level( + unsigned32 new_level +) +{ + register unsigned32 new_msr = 0; + + /* + * Set the critical interrupt enable bit + */ + +#if (PPC_HAS_RFCI) + if ( !(new_level & PPC_INTERRUPT_LEVEL_CE) ) + new_msr |= PPC_MSR_CE; +#endif + + if ( !(new_level & PPC_INTERRUPT_LEVEL_ME) ) + new_msr |= PPC_MSR_ME; + + if ( !(new_level & PPC_INTERRUPT_LEVEL_EE) ) + new_msr |= PPC_MSR_EE; + + return new_msr; +} + +/*PAGE + * + * _CPU_ISR_Set_level + * + * This routine sets the requested level in the MSR. + */ + +void _CPU_ISR_Set_level( + unsigned32 new_level +) +{ + register unsigned32 tmp = 0; + register unsigned32 new_msr; + + new_msr = _CPU_ISR_Calculate_level( new_level ); + + asm volatile ( + "mfmsr %0; andc %0,%0,%1; and %2, %2, %1; or %0, %0, %2; mtmsr %0" : + "=&r" ((tmp)) : + "r" ((PPC_MSR_DISABLE_MASK)), "r" ((new_msr)), "0" ((tmp)) + ); +} + +/*PAGE + * + * _CPU_ISR_Get_level + * + * This routine gets the current interrupt level from the MSR and + * converts it to an RTEMS interrupt level. + */ + +unsigned32 _CPU_ISR_Get_level( void ) +{ + unsigned32 level = 0; + unsigned32 msr; + + asm volatile("mfmsr %0" : "=r" ((msr))); + + msr &= PPC_MSR_DISABLE_MASK; + + /* + * Set the critical interrupt enable bit + */ + +#if (PPC_HAS_RFCI) + if ( !(msr & PPC_MSR_CE) ) + level |= PPC_INTERRUPT_LEVEL_CE; +#endif + + if ( !(msr & PPC_MSR_ME) ) + level |= PPC_INTERRUPT_LEVEL_ME; + + if ( !(msr & PPC_MSR_EE) ) + level |= PPC_INTERRUPT_LEVEL_EE; + + return level; +} + +/*PAGE + * + * _CPU_Context_Initialize + */ + +#if (PPC_ABI == PPC_ABI_POWEROPEN) +#define CPU_MINIMUM_STACK_FRAME_SIZE 56 +#else /* PPC_ABI_SVR4 or PPC_ABI_EABI */ +#define CPU_MINIMUM_STACK_FRAME_SIZE 8 +#endif + +void _CPU_Context_Initialize( + Context_Control *the_context, + unsigned32 *stack_base, + unsigned32 size, + unsigned32 new_level, + void *entry_point, + boolean is_fp +) +{ + unsigned32 msr_value; + unsigned32 sp; + + sp = (unsigned32)stack_base + size - CPU_MINIMUM_STACK_FRAME_SIZE; + *((unsigned32 *)sp) = 0; + the_context->gpr1 = sp; + + the_context->msr = _CPU_ISR_Calculate_level( new_level ); + + /* + * The FP bit of the MSR should only be enabled if this is a floating + * point task. Unfortunately, the vfprintf_r routine in newlib + * ends up pushing a floating point register regardless of whether or + * not a floating point number is being printed. Serious restructuring + * of vfprintf.c will be required to avoid this behavior. At this + * time (7 July 1997), this restructuring is not being done. + */ + + /*if ( is_fp ) */ + the_context->msr |= PPC_MSR_FP; + + /* + * Calculate the task's MSR value: + * + * + Set the exception prefix bit to point to the exception table + * + Force the RI bit + * + Use the DR and IR bits + */ + _CPU_MSR_Value( msr_value ); + the_context->msr |= (msr_value & PPC_MSR_EP); + the_context->msr |= PPC_MSR_RI; + the_context->msr |= msr_value & (PPC_MSR_DR|PPC_MSR_IR); + +#if (PPC_ABI == PPC_ABI_POWEROPEN) + { unsigned32 *desc = (unsigned32 *)entry_point; + + the_context->pc = desc[0]; + the_context->gpr2 = desc[1]; + } +#endif + +#if (PPC_ABI == PPC_ABI_SVR4) + { unsigned r13 = 0; + asm volatile ("mr %0, 13" : "=r" ((r13))); + + the_context->pc = (unsigned32)entry_point; + the_context->gpr13 = r13; + } +#endif + +#if (PPC_ABI == PPC_ABI_EABI) + { unsigned32 r2 = 0; + unsigned r13 = 0; + asm volatile ("mr %0,2; mr %1,13" : "=r" ((r2)), "=r" ((r13))); + + the_context->pc = (unsigned32)entry_point; + the_context->gpr2 = r2; + the_context->gpr13 = r13; + } +#endif +} + + +/* _CPU_ISR_install_vector + * + * This kernel routine installs the RTEMS handler for the + * specified vector. + * + * Input parameters: + * vector - interrupt vector number + * old_handler - former ISR for this vector number + * new_handler - replacement ISR for this vector number + * + * Output parameters: NONE + * + */ + +void _CPU_ISR_install_vector( + unsigned32 vector, + proc_ptr new_handler, + proc_ptr *old_handler +) +{ + proc_ptr ignored; + *old_handler = _ISR_Vector_table[ vector ]; + + /* + * If the interrupt vector table is a table of pointer to isr entry + * points, then we need to install the appropriate RTEMS interrupt + * handler for this vector number. + */ + + /* + * Install the wrapper so this ISR can be invoked properly. + */ + if (_CPU_Table.exceptions_in_RAM) + _CPU_ISR_install_raw_handler( vector, _ISR_Handler, &ignored ); + + /* + * We put the actual user ISR address in '_ISR_vector_table'. This will + * be used by the _ISR_Handler so the user gets control. + */ + + _ISR_Vector_table[ vector ] = new_handler ? (ISR_Handler_entry)new_handler : + _CPU_Table.spurious_handler ? + (ISR_Handler_entry)_CPU_Table.spurious_handler : + (ISR_Handler_entry)ppc_spurious; +} + +/*PAGE + * + * _CPU_Install_interrupt_stack + */ + +void _CPU_Install_interrupt_stack( void ) +{ +#if (PPC_ABI == PPC_ABI_POWEROPEN || PPC_ABI == PPC_ABI_GCC27) + _CPU_IRQ_info.Stack = _CPU_Interrupt_stack_high - 56; +#else + _CPU_IRQ_info.Stack = _CPU_Interrupt_stack_high - 8; +#endif +} + +/* Handle a spurious interrupt */ +static void ppc_spurious(int v, CPU_Interrupt_frame *i) +{ +#if 0 + printf("Spurious interrupt on vector %d from %08.8x\n", + v, i->pc); +#endif +#ifdef ppc403 + if (v == PPC_IRQ_EXTERNAL) + { + register int r = 0; + + asm volatile("mtdcr 0x42, %0" : + "=&r" ((r)) : "0" ((r))); /* EXIER */ + } + else if (v == PPC_IRQ_PIT) + { + register int r = 0x08000000; + + asm volatile("mtspr 0x3d8, %0" : + "=&r" ((r)) : "0" ((r))); /* TSR */ + } + else if (v == PPC_IRQ_FIT) + { + register int r = 0x04000000; + + asm volatile("mtspr 0x3d8, %0" : + "=&r" ((r)) : "0" ((r))); /* TSR */ + } +#endif +} + +void _CPU_Fatal_error(unsigned32 _error) +{ + asm volatile ("mr 3, %0" : : "r" ((_error))); + asm volatile ("tweq 5,5"); + asm volatile ("li 0,0; mtmsr 0"); + while (1) ; +} + +#define PPC_SYNCHRONOUS_TRAP_BIT_MASK 0x100 +#define PPC_ASYNCHRONOUS_TRAP( _trap ) (_trap) +#define PPC_SYNCHRONOUS_TRAP ( _trap ) ((_trap)+PPC_SYNCHRONOUS_TRAP_BIT_MASK) +#define PPC_REAL_TRAP_NUMBER ( _trap ) ((_trap)%PPC_SYNCHRONOUS_TRAP_BIT_MASK) + + +const CPU_Trap_table_entry _CPU_Trap_slot_template = { + +#if (PPC_ABI == PPC_ABI_POWEROPEN || PPC_ABI == PPC_ABI_GCC27) +#error " Vector install not tested." +#if (PPC_HAS_FPU) +#error " Vector install not tested." + 0x9421feb0, /* stwu r1, -(20*4 + 18*8 + IP_END)(r1) */ +#else +#error " Vector install not tested." + 0x9421ff40, /* stwu r1, -(20*4 + IP_END)(r1) */ +#endif +#else + 0x9421ff90, /* stwu r1, -(IP_END)(r1) */ +#endif + + 0x90010008, /* stw %r0, IP_0(%r1) */ + 0x38000000, /* li %r0, PPC_IRQ */ + 0x48000002 /* ba PROC (_ISR_Handler) */ +}; + +#if defined(mpc860) || defined(mpc821) +const CPU_Trap_table_entry _CPU_Trap_slot_template_m860 = { + 0x7c0803ac, /* mtlr %r0 */ + 0x81210028, /* lwz %r9, IP_9(%r1) */ + 0x38000000, /* li %r0, PPC_IRQ */ + 0x48000002 /* b PROC (_ISR_Handler) */ +}; +#endif /* mpc860 */ + +unsigned32 ppc_exception_vector_addr( + unsigned32 vector +); + + +/*PAGE + * + * _CPU_ISR_install_raw_handler + * + * This routine installs the specified handler as a "raw" non-executive + * supported trap handler (a.k.a. interrupt service routine). + * + * Input Parameters: + * vector - trap table entry number plus synchronous + * vs. asynchronous information + * new_handler - address of the handler to be installed + * old_handler - pointer to an address of the handler previously installed + * + * Output Parameters: NONE + * *new_handler - address of the handler previously installed + * + * NOTE: + * + * This routine is based on the SPARC routine _CPU_ISR_install_raw_handler. + * Install a software trap handler as an executive interrupt handler + * (which is desirable since RTEMS takes care of window and register issues), + * then the executive needs to know that the return address is to the trap + * rather than the instruction following the trap. + * + */ + +void _CPU_ISR_install_raw_handler( + unsigned32 vector, + proc_ptr new_handler, + proc_ptr *old_handler +) +{ + unsigned32 real_vector; + CPU_Trap_table_entry *slot; + unsigned32 u32_handler=0; + + /* + * Get the "real" trap number for this vector ignoring the synchronous + * versus asynchronous indicator included with our vector numbers. + */ + + real_vector = vector; + + /* + * Get the current base address of the trap table and calculate a pointer + * to the slot we are interested in. + */ + slot = (CPU_Trap_table_entry *)ppc_exception_vector_addr( real_vector ); + + /* + * Get the address of the old_handler from the trap table. + * + * NOTE: The old_handler returned will be bogus if it does not follow + * the RTEMS model. + */ + +#define HIGH_BITS_MASK 0xFFFFFC00 +#define HIGH_BITS_SHIFT 10 +#define LOW_BITS_MASK 0x000003FF + + if (slot->stwu_r1 == _CPU_Trap_slot_template.stwu_r1) { + /* + * Set u32_handler = to target address + */ + u32_handler = slot->b_Handler & 0x03fffffc; + + /* IMD FIX: sign extend address fragment... */ + if (u32_handler & 0x02000000) { + u32_handler |= 0xfc000000; + } + + *old_handler = (proc_ptr) u32_handler; + } else +/* There are two kinds of handlers for the MPC860. One is the 'standard' + * one like above. The other is for the cascaded interrupts from the SIU + * and CPM. Therefore we must check for the alternate one if the standard + * one is not present + */ +#if defined(mpc860) || defined(mpc821) + if (slot->stwu_r1 == _CPU_Trap_slot_template_m860.stwu_r1) { + /* + * Set u32_handler = to target address + */ + u32_handler = slot->b_Handler & 0x03fffffc; + *old_handler = (proc_ptr) u32_handler; + } else +#endif /* mpc860 */ + + *old_handler = 0; + + /* + * Copy the template to the slot and then fix it. + */ +#if defined(mpc860) || defined(mpc821) + if (vector >= PPC_IRQ_IRQ0) + *slot = _CPU_Trap_slot_template_m860; + else +#endif /* mpc860 */ + *slot = _CPU_Trap_slot_template; + + u32_handler = (unsigned32) new_handler; + + /* + * IMD FIX: insert address fragment only (bits 6..29) + * therefore check for proper address range + * and remove unwanted bits + */ + if ((u32_handler & 0xfc000000) == 0xfc000000) { + u32_handler &= ~0xfc000000; + } + else if ((u32_handler & 0xfc000000) != 0x00000000) { + _Internal_error_Occurred(INTERNAL_ERROR_CORE, + TRUE, + u32_handler); + } + + slot->b_Handler |= u32_handler; + + slot->li_r0_IRQ |= vector; + + _CPU_Data_Cache_Block_Flush( slot ); +} + +unsigned32 ppc_exception_vector_addr( + unsigned32 vector +) +{ +#if (!PPC_HAS_EVPR) + unsigned32 Msr; +#endif + unsigned32 Top = 0; + unsigned32 Offset = 0x000; + +#if (PPC_HAS_EXCEPTION_PREFIX) + _CPU_MSR_Value ( Msr ); + if ( ( Msr & PPC_MSR_EP) != 0 ) /* Vectors at FFFx_xxxx */ + Top = 0xfff00000; +#elif (PPC_HAS_EVPR) + asm volatile( "mfspr %0,0x3d6" : "=r" (Top)); /* EVPR */ + Top = Top & 0xffff0000; +#endif + + switch ( vector ) { + case PPC_IRQ_SYSTEM_RESET: /* on 40x aka PPC_IRQ_CRIT */ + Offset = 0x00100; + break; + case PPC_IRQ_MCHECK: + Offset = 0x00200; + break; + case PPC_IRQ_PROTECT: + Offset = 0x00300; + break; + case PPC_IRQ_ISI: + Offset = 0x00400; + break; + case PPC_IRQ_EXTERNAL: + Offset = 0x00500; + break; + case PPC_IRQ_ALIGNMENT: + Offset = 0x00600; + break; + case PPC_IRQ_PROGRAM: + Offset = 0x00700; + break; + case PPC_IRQ_NOFP: + Offset = 0x00800; + break; + case PPC_IRQ_DECREMENTER: + Offset = 0x00900; + break; + case PPC_IRQ_RESERVED_A: + Offset = 0x00a00; + break; + case PPC_IRQ_RESERVED_B: + Offset = 0x00b00; + break; + case PPC_IRQ_SCALL: + Offset = 0x00c00; + break; + case PPC_IRQ_TRACE: + Offset = 0x00d00; + break; + case PPC_IRQ_FP_ASST: + Offset = 0x00e00; + break; + +#if defined(ppc403) + +/* PPC_IRQ_CRIT is the same vector as PPC_IRQ_RESET + case PPC_IRQ_CRIT: + Offset = 0x00100; + break; +*/ + case PPC_IRQ_PIT: + Offset = 0x01000; + break; + case PPC_IRQ_FIT: + Offset = 0x01010; + break; + case PPC_IRQ_WATCHDOG: + Offset = 0x01020; + break; + case PPC_IRQ_DEBUG: + Offset = 0x02000; + break; + +#elif defined(ppc601) + case PPC_IRQ_TRACE: + Offset = 0x02000; + break; + +#elif defined(ppc603) + case PPC_IRQ_TRANS_MISS: + Offset = 0x1000; + break; + case PPC_IRQ_DATA_LOAD: + Offset = 0x1100; + break; + case PPC_IRQ_DATA_STORE: + Offset = 0x1200; + break; + case PPC_IRQ_ADDR_BRK: + Offset = 0x1300; + break; + case PPC_IRQ_SYS_MGT: + Offset = 0x1400; + break; + +#elif defined(ppc603e) + case PPC_TLB_INST_MISS: + Offset = 0x1000; + break; + case PPC_TLB_LOAD_MISS: + Offset = 0x1100; + break; + case PPC_TLB_STORE_MISS: + Offset = 0x1200; + break; + case PPC_IRQ_ADDRBRK: + Offset = 0x1300; + break; + case PPC_IRQ_SYS_MGT: + Offset = 0x1400; + break; + +#elif defined(mpc604) + case PPC_IRQ_ADDR_BRK: + Offset = 0x1300; + break; + case PPC_IRQ_SYS_MGT: + Offset = 0x1400; + break; + +#elif defined(mpc860) || defined(mpc821) + case PPC_IRQ_EMULATE: + Offset = 0x1000; + break; + case PPC_IRQ_INST_MISS: + Offset = 0x1100; + break; + case PPC_IRQ_DATA_MISS: + Offset = 0x1200; + break; + case PPC_IRQ_INST_ERR: + Offset = 0x1300; + break; + case PPC_IRQ_DATA_ERR: + Offset = 0x1400; + break; + case PPC_IRQ_DATA_BPNT: + Offset = 0x1c00; + break; + case PPC_IRQ_INST_BPNT: + Offset = 0x1d00; + break; + case PPC_IRQ_IO_BPNT: + Offset = 0x1e00; + break; + case PPC_IRQ_DEV_PORT: + Offset = 0x1f00; + break; + case PPC_IRQ_IRQ0: + Offset = 0x2000; + break; + case PPC_IRQ_LVL0: + Offset = 0x2040; + break; + case PPC_IRQ_IRQ1: + Offset = 0x2080; + break; + case PPC_IRQ_LVL1: + Offset = 0x20c0; + break; + case PPC_IRQ_IRQ2: + Offset = 0x2100; + break; + case PPC_IRQ_LVL2: + Offset = 0x2140; + break; + case PPC_IRQ_IRQ3: + Offset = 0x2180; + break; + case PPC_IRQ_LVL3: + Offset = 0x21c0; + break; + case PPC_IRQ_IRQ4: + Offset = 0x2200; + break; + case PPC_IRQ_LVL4: + Offset = 0x2240; + break; + case PPC_IRQ_IRQ5: + Offset = 0x2280; + break; + case PPC_IRQ_LVL5: + Offset = 0x22c0; + break; + case PPC_IRQ_IRQ6: + Offset = 0x2300; + break; + case PPC_IRQ_LVL6: + Offset = 0x2340; + break; + case PPC_IRQ_IRQ7: + Offset = 0x2380; + break; + case PPC_IRQ_LVL7: + Offset = 0x23c0; + break; + case PPC_IRQ_CPM_RESERVED_0: + Offset = 0x2400; + break; + case PPC_IRQ_CPM_PC4: + Offset = 0x2410; + break; + case PPC_IRQ_CPM_PC5: + Offset = 0x2420; + break; + case PPC_IRQ_CPM_SMC2: + Offset = 0x2430; + break; + case PPC_IRQ_CPM_SMC1: + Offset = 0x2440; + break; + case PPC_IRQ_CPM_SPI: + Offset = 0x2450; + break; + case PPC_IRQ_CPM_PC6: + Offset = 0x2460; + break; + case PPC_IRQ_CPM_TIMER4: + Offset = 0x2470; + break; + case PPC_IRQ_CPM_RESERVED_8: + Offset = 0x2480; + break; + case PPC_IRQ_CPM_PC7: + Offset = 0x2490; + break; + case PPC_IRQ_CPM_PC8: + Offset = 0x24a0; + break; + case PPC_IRQ_CPM_PC9: + Offset = 0x24b0; + break; + case PPC_IRQ_CPM_TIMER3: + Offset = 0x24c0; + break; + case PPC_IRQ_CPM_RESERVED_D: + Offset = 0x24d0; + break; + case PPC_IRQ_CPM_PC10: + Offset = 0x24e0; + break; + case PPC_IRQ_CPM_PC11: + Offset = 0x24f0; + break; + case PPC_IRQ_CPM_I2C: + Offset = 0x2500; + break; + case PPC_IRQ_CPM_RISC_TIMER: + Offset = 0x2510; + break; + case PPC_IRQ_CPM_TIMER2: + Offset = 0x2520; + break; + case PPC_IRQ_CPM_RESERVED_13: + Offset = 0x2530; + break; + case PPC_IRQ_CPM_IDMA2: + Offset = 0x2540; + break; + case PPC_IRQ_CPM_IDMA1: + Offset = 0x2550; + break; + case PPC_IRQ_CPM_SDMA_ERROR: + Offset = 0x2560; + break; + case PPC_IRQ_CPM_PC12: + Offset = 0x2570; + break; + case PPC_IRQ_CPM_PC13: + Offset = 0x2580; + break; + case PPC_IRQ_CPM_TIMER1: + Offset = 0x2590; + break; + case PPC_IRQ_CPM_PC14: + Offset = 0x25a0; + break; + case PPC_IRQ_CPM_SCC4: + Offset = 0x25b0; + break; + case PPC_IRQ_CPM_SCC3: + Offset = 0x25c0; + break; + case PPC_IRQ_CPM_SCC2: + Offset = 0x25d0; + break; + case PPC_IRQ_CPM_SCC1: + Offset = 0x25e0; + break; + case PPC_IRQ_CPM_PC15: + Offset = 0x25f0; + break; +#endif + + } + Top += Offset; + return Top; +} + diff --git a/c/src/lib/libbsp/powerpc/support/old_exception_processing/cpu.h b/c/src/lib/libbsp/powerpc/support/old_exception_processing/cpu.h new file mode 100644 index 0000000000..2a502d0745 --- /dev/null +++ b/c/src/lib/libbsp/powerpc/support/old_exception_processing/cpu.h @@ -0,0 +1,1200 @@ +/* cpu.h + * + * This include file contains information pertaining to the PowerPC + * processor. + * + * Author: Andrew Bray + * + * COPYRIGHT (c) 1995 by i-cubed ltd. + * + * To anyone who acknowledges that this file is provided "AS IS" + * without any express or implied warranty: + * permission to use, copy, modify, and distribute this file + * for any purpose is hereby granted without fee, provided that + * the above copyright notice and this notice appears in all + * copies, and that the name of i-cubed limited not be used in + * advertising or publicity pertaining to distribution of the + * software without specific, written prior permission. + * i-cubed limited makes no representations about the suitability + * of this software for any purpose. + * + * Derived from c/src/exec/cpu/no_cpu/cpu.h: + * + * COPYRIGHT (c) 1989-1997. + * On-Line Applications Research Corporation (OAR). + * Copyright assigned to U.S. Government, 1994. + * + * The license and distribution terms for this file may in + * the file LICENSE in this distribution or at + * http://www.OARcorp.com/rtems/license.html. + * + * $Id$ + */ + +#ifndef __CPU_h +#define __CPU_h + +#ifdef __cplusplus +extern "C" { +#endif + +#include /* pick up machine definitions */ +#ifndef ASM +struct CPU_Interrupt_frame; +typedef void ( *ppc_isr_entry )( int, struct CPU_Interrupt_frame * ); + +#include +#endif + +/* conditional compilation parameters */ + +/* + * Should the calls to _Thread_Enable_dispatch be inlined? + * + * If TRUE, then they are inlined. + * If FALSE, then a subroutine call is made. + * + * Basically this is an example of the classic trade-off of size + * versus speed. Inlining the call (TRUE) typically increases the + * size of RTEMS while speeding up the enabling of dispatching. + * [NOTE: In general, the _Thread_Dispatch_disable_level will + * only be 0 or 1 unless you are in an interrupt handler and that + * interrupt handler invokes the executive.] When not inlined + * something calls _Thread_Enable_dispatch which in turns calls + * _Thread_Dispatch. If the enable dispatch is inlined, then + * one subroutine call is avoided entirely.] + */ + +#define CPU_INLINE_ENABLE_DISPATCH FALSE + +/* + * Should the body of the search loops in _Thread_queue_Enqueue_priority + * be unrolled one time? In unrolled each iteration of the loop examines + * two "nodes" on the chain being searched. Otherwise, only one node + * is examined per iteration. + * + * If TRUE, then the loops are unrolled. + * If FALSE, then the loops are not unrolled. + * + * The primary factor in making this decision is the cost of disabling + * and enabling interrupts (_ISR_Flash) versus the cost of rest of the + * body of the loop. On some CPUs, the flash is more expensive than + * one iteration of the loop body. In this case, it might be desirable + * to unroll the loop. It is important to note that on some CPUs, this + * code is the longest interrupt disable period in RTEMS. So it is + * necessary to strike a balance when setting this parameter. + */ + +#define CPU_UNROLL_ENQUEUE_PRIORITY FALSE + +/* + * Does RTEMS manage a dedicated interrupt stack in software? + * + * If TRUE, then a stack is allocated in _Interrupt_Manager_initialization. + * If FALSE, nothing is done. + * + * If the CPU supports a dedicated interrupt stack in hardware, + * then it is generally the responsibility of the BSP to allocate it + * and set it up. + * + * If the CPU does not support a dedicated interrupt stack, then + * the porter has two options: (1) execute interrupts on the + * stack of the interrupted task, and (2) have RTEMS manage a dedicated + * interrupt stack. + * + * If this is TRUE, CPU_ALLOCATE_INTERRUPT_STACK should also be TRUE. + * + * Only one of CPU_HAS_SOFTWARE_INTERRUPT_STACK and + * CPU_HAS_HARDWARE_INTERRUPT_STACK should be set to TRUE. It is + * possible that both are FALSE for a particular CPU. Although it + * is unclear what that would imply about the interrupt processing + * procedure on that CPU. + */ + +#define CPU_HAS_SOFTWARE_INTERRUPT_STACK FALSE + +/* + * Does this CPU have hardware support for a dedicated interrupt stack? + * + * If TRUE, then it must be installed during initialization. + * If FALSE, then no installation is performed. + * + * If this is TRUE, CPU_ALLOCATE_INTERRUPT_STACK should also be TRUE. + * + * Only one of CPU_HAS_SOFTWARE_INTERRUPT_STACK and + * CPU_HAS_HARDWARE_INTERRUPT_STACK should be set to TRUE. It is + * possible that both are FALSE for a particular CPU. Although it + * is unclear what that would imply about the interrupt processing + * procedure on that CPU. + */ + +/* + * ACB: This is a lie, but it gets us a handle on a call to set up + * a variable derived from the top of the interrupt stack. + */ + +#define CPU_HAS_HARDWARE_INTERRUPT_STACK TRUE + +/* + * Does RTEMS allocate a dedicated interrupt stack in the Interrupt Manager? + * + * If TRUE, then the memory is allocated during initialization. + * If FALSE, then the memory is allocated during initialization. + * + * This should be TRUE is CPU_HAS_SOFTWARE_INTERRUPT_STACK is TRUE + * or CPU_INSTALL_HARDWARE_INTERRUPT_STACK is TRUE. + */ + +#define CPU_ALLOCATE_INTERRUPT_STACK TRUE + +/* + * Does the RTEMS invoke the user's ISR with the vector number and + * a pointer to the saved interrupt frame (1) or just the vector + * number (0)? + */ + +#define CPU_ISR_PASSES_FRAME_POINTER 1 + +/* + * Does the CPU have hardware floating point? + * + * If TRUE, then the RTEMS_FLOATING_POINT task attribute is supported. + * If FALSE, then the RTEMS_FLOATING_POINT task attribute is ignored. + * + * If there is a FP coprocessor such as the i387 or mc68881, then + * the answer is TRUE. + * + * The macro name "PPC_HAS_FPU" should be made CPU specific. + * It indicates whether or not this CPU model has FP support. For + * example, it would be possible to have an i386_nofp CPU model + * which set this to false to indicate that you have an i386 without + * an i387 and wish to leave floating point support out of RTEMS. + */ + +#if ( PPC_HAS_FPU == 1 ) +#define CPU_HARDWARE_FP TRUE +#else +#define CPU_HARDWARE_FP FALSE +#endif + +/* + * Are all tasks RTEMS_FLOATING_POINT tasks implicitly? + * + * If TRUE, then the RTEMS_FLOATING_POINT task attribute is assumed. + * If FALSE, then the RTEMS_FLOATING_POINT task attribute is followed. + * + * So far, the only CPU in which this option has been used is the + * HP PA-RISC. The HP C compiler and gcc both implicitly use the + * floating point registers to perform integer multiplies. If + * a function which you would not think utilize the FP unit DOES, + * then one can not easily predict which tasks will use the FP hardware. + * In this case, this option should be TRUE. + * + * If CPU_HARDWARE_FP is FALSE, then this should be FALSE as well. + */ + +#define CPU_ALL_TASKS_ARE_FP FALSE + +/* + * Should the IDLE task have a floating point context? + * + * If TRUE, then the IDLE task is created as a RTEMS_FLOATING_POINT task + * and it has a floating point context which is switched in and out. + * If FALSE, then the IDLE task does not have a floating point context. + * + * Setting this to TRUE negatively impacts the time required to preempt + * the IDLE task from an interrupt because the floating point context + * must be saved as part of the preemption. + */ + +#define CPU_IDLE_TASK_IS_FP FALSE + +/* + * Should the saving of the floating point registers be deferred + * until a context switch is made to another different floating point + * task? + * + * If TRUE, then the floating point context will not be stored until + * necessary. It will remain in the floating point registers and not + * disturned until another floating point task is switched to. + * + * If FALSE, then the floating point context is saved when a floating + * point task is switched out and restored when the next floating point + * task is restored. The state of the floating point registers between + * those two operations is not specified. + * + * If the floating point context does NOT have to be saved as part of + * interrupt dispatching, then it should be safe to set this to TRUE. + * + * Setting this flag to TRUE results in using a different algorithm + * for deciding when to save and restore the floating point context. + * The deferred FP switch algorithm minimizes the number of times + * the FP context is saved and restored. The FP context is not saved + * until a context switch is made to another, different FP task. + * Thus in a system with only one FP task, the FP context will never + * be saved or restored. + */ +/* + * ACB Note: This could make debugging tricky.. + */ + +#define CPU_USE_DEFERRED_FP_SWITCH TRUE + +/* + * Does this port provide a CPU dependent IDLE task implementation? + * + * If TRUE, then the routine _CPU_Thread_Idle_body + * must be provided and is the default IDLE thread body instead of + * _CPU_Thread_Idle_body. + * + * If FALSE, then use the generic IDLE thread body if the BSP does + * not provide one. + * + * This is intended to allow for supporting processors which have + * a low power or idle mode. When the IDLE thread is executed, then + * the CPU can be powered down. + * + * The order of precedence for selecting the IDLE thread body is: + * + * 1. BSP provided + * 2. CPU dependent (if provided) + * 3. generic (if no BSP and no CPU dependent) + */ + +#define CPU_PROVIDES_IDLE_THREAD_BODY FALSE + +/* + * Does the stack grow up (toward higher addresses) or down + * (toward lower addresses)? + * + * If TRUE, then the grows upward. + * If FALSE, then the grows toward smaller addresses. + */ + +#define CPU_STACK_GROWS_UP FALSE + +/* + * The following is the variable attribute used to force alignment + * of critical RTEMS structures. On some processors it may make + * sense to have these aligned on tighter boundaries than + * the minimum requirements of the compiler in order to have as + * much of the critical data area as possible in a cache line. + * + * The placement of this macro in the declaration of the variables + * is based on the syntactically requirements of the GNU C + * "__attribute__" extension. For example with GNU C, use + * the following to force a structures to a 32 byte boundary. + * + * __attribute__ ((aligned (32))) + * + * NOTE: Currently only the Priority Bit Map table uses this feature. + * To benefit from using this, the data must be heavily + * used so it will stay in the cache and used frequently enough + * in the executive to justify turning this on. + */ + +#define CPU_STRUCTURE_ALIGNMENT \ + __attribute__ ((aligned (PPC_CACHE_ALIGNMENT))) + +/* + * Define what is required to specify how the network to host conversion + * routines are handled. + */ + +#define CPU_HAS_OWN_HOST_TO_NETWORK_ROUTINES FALSE +#define CPU_BIG_ENDIAN TRUE +#define CPU_LITTLE_ENDIAN FALSE + +/* + * The following defines the number of bits actually used in the + * interrupt field of the task mode. How those bits map to the + * CPU interrupt levels is defined by the routine _CPU_ISR_Set_level(). + * + * The interrupt level is bit mapped for the PowerPC family. The + * bits are set to 0 to indicate that a particular exception source + * enabled and 1 if it is disabled. This keeps with RTEMS convention + * that interrupt level 0 means all sources are enabled. + * + * The bits are assigned to correspond to enable bits in the MSR. + */ + +#define PPC_INTERRUPT_LEVEL_ME 0x01 +#define PPC_INTERRUPT_LEVEL_EE 0x02 +#define PPC_INTERRUPT_LEVEL_CE 0x04 + +/* XXX should these be maskable? */ +#if 0 +#define PPC_INTERRUPT_LEVEL_DE 0x08 +#define PPC_INTERRUPT_LEVEL_BE 0x10 +#define PPC_INTERRUPT_LEVEL_SE 0x20 +#endif + +#define CPU_MODES_INTERRUPT_MASK 0x00000007 + +/* + * Processor defined structures + * + * Examples structures include the descriptor tables from the i386 + * and the processor control structure on the i960ca. + */ + +/* may need to put some structures here. */ + +/* + * Contexts + * + * Generally there are 2 types of context to save. + * 1. Interrupt registers to save + * 2. Task level registers to save + * + * This means we have the following 3 context items: + * 1. task level context stuff:: Context_Control + * 2. floating point task stuff:: Context_Control_fp + * 3. special interrupt level context :: Context_Control_interrupt + * + * On some processors, it is cost-effective to save only the callee + * preserved registers during a task context switch. This means + * that the ISR code needs to save those registers which do not + * persist across function calls. It is not mandatory to make this + * distinctions between the caller/callee saves registers for the + * purpose of minimizing context saved during task switch and on interrupts. + * If the cost of saving extra registers is minimal, simplicity is the + * choice. Save the same context on interrupt entry as for tasks in + * this case. + * + * Additionally, if gdb is to be made aware of RTEMS tasks for this CPU, then + * care should be used in designing the context area. + * + * On some CPUs with hardware floating point support, the Context_Control_fp + * structure will not be used or it simply consist of an array of a + * fixed number of bytes. This is done when the floating point context + * is dumped by a "FP save context" type instruction and the format + * is not really defined by the CPU. In this case, there is no need + * to figure out the exact format -- only the size. Of course, although + * this is enough information for RTEMS, it is probably not enough for + * a debugger such as gdb. But that is another problem. + */ + +typedef struct { + unsigned32 gpr1; /* Stack pointer for all */ + unsigned32 gpr2; /* TOC in PowerOpen, reserved SVR4, section ptr EABI + */ + unsigned32 gpr13; /* First non volatile PowerOpen, section ptr SVR4/EABI */ + unsigned32 gpr14; /* Non volatile for all */ + unsigned32 gpr15; /* Non volatile for all */ + unsigned32 gpr16; /* Non volatile for all */ + unsigned32 gpr17; /* Non volatile for all */ + unsigned32 gpr18; /* Non volatile for all */ + unsigned32 gpr19; /* Non volatile for all */ + unsigned32 gpr20; /* Non volatile for all */ + unsigned32 gpr21; /* Non volatile for all */ + unsigned32 gpr22; /* Non volatile for all */ + unsigned32 gpr23; /* Non volatile for all */ + unsigned32 gpr24; /* Non volatile for all */ + unsigned32 gpr25; /* Non volatile for all */ + unsigned32 gpr26; /* Non volatile for all */ + unsigned32 gpr27; /* Non volatile for all */ + unsigned32 gpr28; /* Non volatile for all */ + unsigned32 gpr29; /* Non volatile for all */ + unsigned32 gpr30; /* Non volatile for all */ + unsigned32 gpr31; /* Non volatile for all */ + unsigned32 cr; /* PART of the CR is non volatile for all */ + unsigned32 pc; /* Program counter/Link register */ + unsigned32 msr; /* Initial interrupt level */ +} Context_Control; + +typedef struct { + /* The ABIs (PowerOpen/SVR4/EABI) only require saving f14-f31 over + * procedure calls. However, this would mean that the interrupt + * frame had to hold f0-f13, and the fpscr. And as the majority + * of tasks will not have an FP context, we will save the whole + * context here. + */ +#if (PPC_HAS_DOUBLE == 1) + double f[32]; + double fpscr; +#else + float f[32]; + float fpscr; +#endif +} Context_Control_fp; + +typedef struct CPU_Interrupt_frame { + unsigned32 stacklink; /* Ensure this is a real frame (also reg1 save) */ +#if (PPC_ABI == PPC_ABI_POWEROPEN || PPC_ABI == PPC_ABI_GCC27) + unsigned32 dummy[13]; /* Used by callees: PowerOpen ABI */ +#else + unsigned32 dummy[1]; /* Used by callees: SVR4/EABI */ +#endif + /* This is what is left out of the primary contexts */ + unsigned32 gpr0; + unsigned32 gpr2; /* play safe */ + unsigned32 gpr3; + unsigned32 gpr4; + unsigned32 gpr5; + unsigned32 gpr6; + unsigned32 gpr7; + unsigned32 gpr8; + unsigned32 gpr9; + unsigned32 gpr10; + unsigned32 gpr11; + unsigned32 gpr12; + unsigned32 gpr13; /* Play safe */ + unsigned32 gpr28; /* For internal use by the IRQ handler */ + unsigned32 gpr29; /* For internal use by the IRQ handler */ + unsigned32 gpr30; /* For internal use by the IRQ handler */ + unsigned32 gpr31; /* For internal use by the IRQ handler */ + unsigned32 cr; /* Bits of this are volatile, so no-one may save */ + unsigned32 ctr; + unsigned32 xer; + unsigned32 lr; + unsigned32 pc; + unsigned32 msr; + unsigned32 pad[3]; +} CPU_Interrupt_frame; + + +/* + * The following table contains the information required to configure + * the PowerPC processor specific parameters. + */ + +typedef struct { + void (*pretasking_hook)( void ); + void (*predriver_hook)( void ); + void (*postdriver_hook)( void ); + void (*idle_task)( void ); + boolean do_zero_of_workspace; + unsigned32 idle_task_stack_size; + unsigned32 interrupt_stack_size; + unsigned32 extra_mpci_receive_server_stack; + void * (*stack_allocate_hook)( unsigned32 ); + void (*stack_free_hook)( void* ); + /* end of fields required on all CPUs */ + + unsigned32 clicks_per_usec; /* Timer clicks per microsecond */ + void (*spurious_handler)(unsigned32 vector, CPU_Interrupt_frame *); + boolean exceptions_in_RAM; /* TRUE if in RAM */ + +#if (defined(ppc403) || defined(mpc860) || defined(mpc821)) + unsigned32 serial_per_sec; /* Serial clocks per second */ + boolean serial_external_clock; + boolean serial_xon_xoff; + boolean serial_cts_rts; + unsigned32 serial_rate; + unsigned32 timer_average_overhead; /* Average overhead of timer in ticks */ + unsigned32 timer_least_valid; /* Least valid number from timer */ + boolean timer_internal_clock; /* TRUE, when timer runs with CPU clk */ +#endif + +#if (defined(mpc860) || defined(mpc821)) + unsigned32 clock_speed; /* Speed of CPU in Hz */ +#endif +} rtems_cpu_table; + +/* + * Macros to access required entires in the CPU Table are in + * the file rtems/system.h. + */ + +/* + * Macros to access PowerPC specific additions to the CPU Table + */ + +#define rtems_cpu_configuration_get_clicks_per_usec() \ + (_CPU_Table.clicks_per_usec) + +#define rtems_cpu_configuration_get_spurious_handler() \ + (_CPU_Table.spurious_handler) + +#define rtems_cpu_configuration_get_exceptions_in_ram() \ + (_CPU_Table.exceptions_in_RAM) + +#if (defined(ppc403) || defined(mpc860) || defined(mpc821)) + +#define rtems_cpu_configuration_get_serial_per_sec() \ + (_CPU_Table.serial_per_sec) + +#define rtems_cpu_configuration_get_serial_external_clock() \ + (_CPU_Table.serial_external_clock) + +#define rtems_cpu_configuration_get_serial_xon_xoff() \ + (_CPU_Table.serial_xon_xoff) + +#define rtems_cpu_configuration_get_serial_cts_rts() \ + (_CPU_Table.serial_cts_rts) + +#define rtems_cpu_configuration_get_serial_rate() \ + (_CPU_Table.serial_rate) + +#define rtems_cpu_configuration_get_timer_average_overhead() \ + (_CPU_Table.timer_average_overhead) + +#define rtems_cpu_configuration_get_timer_least_valid() \ + (_CPU_Table.timer_least_valid) + +#define rtems_cpu_configuration_get_timer_internal_clock() \ + (_CPU_Table.timer_internal_clock) + +#endif + +#if (defined(mpc860) || defined(mpc821)) +#define rtems_cpu_configuration_get_clock_speed() \ + (_CPU_Table.clock_speed) +#endif + + +/* + * The following type defines an entry in the PPC's trap table. + * + * NOTE: The instructions chosen are RTEMS dependent although one is + * obligated to use two of the four instructions to perform a + * long jump. The other instructions load one register with the + * trap type (a.k.a. vector) and another with the psr. + */ + +typedef struct { + unsigned32 stwu_r1; /* stwu %r1, -(??+IP_END)(%1)*/ + unsigned32 stw_r0; /* stw %r0, IP_0(%r1) */ + unsigned32 li_r0_IRQ; /* li %r0, _IRQ */ + unsigned32 b_Handler; /* b PROC (_ISR_Handler) */ +} CPU_Trap_table_entry; + +/* + * This variable is optional. It is used on CPUs on which it is difficult + * to generate an "uninitialized" FP context. It is filled in by + * _CPU_Initialize and copied into the task's FP context area during + * _CPU_Context_Initialize. + */ + +/* EXTERN Context_Control_fp _CPU_Null_fp_context; */ + +/* + * On some CPUs, RTEMS supports a software managed interrupt stack. + * This stack is allocated by the Interrupt Manager and the switch + * is performed in _ISR_Handler. These variables contain pointers + * to the lowest and highest addresses in the chunk of memory allocated + * for the interrupt stack. Since it is unknown whether the stack + * grows up or down (in general), this give the CPU dependent + * code the option of picking the version it wants to use. + * + * NOTE: These two variables are required if the macro + * CPU_HAS_SOFTWARE_INTERRUPT_STACK is defined as TRUE. + */ + +SCORE_EXTERN void *_CPU_Interrupt_stack_low; +SCORE_EXTERN void *_CPU_Interrupt_stack_high; + +/* + * With some compilation systems, it is difficult if not impossible to + * call a high-level language routine from assembly language. This + * is especially true of commercial Ada compilers and name mangling + * C++ ones. This variable can be optionally defined by the CPU porter + * and contains the address of the routine _Thread_Dispatch. This + * can make it easier to invoke that routine at the end of the interrupt + * sequence (if a dispatch is necessary). + */ + +/* EXTERN void (*_CPU_Thread_dispatch_pointer)(); */ + +/* + * Nothing prevents the porter from declaring more CPU specific variables. + */ + + +SCORE_EXTERN struct { + unsigned32 *Nest_level; + unsigned32 *Disable_level; + void *Vector_table; + void *Stack; +#if (PPC_ABI == PPC_ABI_POWEROPEN) + unsigned32 Dispatch_r2; +#else + unsigned32 Default_r2; +#if (PPC_ABI != PPC_ABI_GCC27) + unsigned32 Default_r13; +#endif +#endif + volatile boolean *Switch_necessary; + boolean *Signal; + + unsigned32 msr_initial; +} _CPU_IRQ_info CPU_STRUCTURE_ALIGNMENT; + +/* + * The size of the floating point context area. On some CPUs this + * will not be a "sizeof" because the format of the floating point + * area is not defined -- only the size is. This is usually on + * CPUs with a "floating point save context" instruction. + */ + +#define CPU_CONTEXT_FP_SIZE sizeof( Context_Control_fp ) + +/* + * (Optional) # of bytes for libmisc/stackchk to check + * If not specifed, then it defaults to something reasonable + * for most architectures. + */ + +#define CPU_STACK_CHECK_SIZE (128) + +/* + * Amount of extra stack (above minimum stack size) required by + * MPCI receive server thread. Remember that in a multiprocessor + * system this thread must exist and be able to process all directives. + */ + +#define CPU_MPCI_RECEIVE_SERVER_EXTRA_STACK 0 + +/* + * This defines the number of entries in the ISR_Vector_table managed + * by RTEMS. + */ + +#define CPU_INTERRUPT_NUMBER_OF_VECTORS (PPC_INTERRUPT_MAX) +#define CPU_INTERRUPT_MAXIMUM_VECTOR_NUMBER (PPC_INTERRUPT_MAX - 1) + +/* + * Should be large enough to run all RTEMS tests. This insures + * that a "reasonable" small application should not have any problems. + */ + +#define CPU_STACK_MINIMUM_SIZE (1024*8) + +/* + * CPU's worst alignment requirement for data types on a byte boundary. This + * alignment does not take into account the requirements for the stack. + */ + +#define CPU_ALIGNMENT (PPC_ALIGNMENT) + +/* + * This number corresponds to the byte alignment requirement for the + * heap handler. This alignment requirement may be stricter than that + * for the data types alignment specified by CPU_ALIGNMENT. It is + * common for the heap to follow the same alignment requirement as + * CPU_ALIGNMENT. If the CPU_ALIGNMENT is strict enough for the heap, + * then this should be set to CPU_ALIGNMENT. + * + * NOTE: This does not have to be a power of 2. It does have to + * be greater or equal to than CPU_ALIGNMENT. + */ + +#define CPU_HEAP_ALIGNMENT (PPC_ALIGNMENT) + +/* + * This number corresponds to the byte alignment requirement for memory + * buffers allocated by the partition manager. This alignment requirement + * may be stricter than that for the data types alignment specified by + * CPU_ALIGNMENT. It is common for the partition to follow the same + * alignment requirement as CPU_ALIGNMENT. If the CPU_ALIGNMENT is strict + * enough for the partition, then this should be set to CPU_ALIGNMENT. + * + * NOTE: This does not have to be a power of 2. It does have to + * be greater or equal to than CPU_ALIGNMENT. + */ + +#define CPU_PARTITION_ALIGNMENT (PPC_ALIGNMENT) + +/* + * This number corresponds to the byte alignment requirement for the + * stack. This alignment requirement may be stricter than that for the + * data types alignment specified by CPU_ALIGNMENT. If the CPU_ALIGNMENT + * is strict enough for the stack, then this should be set to 0. + * + * NOTE: This must be a power of 2 either 0 or greater than CPU_ALIGNMENT. + */ + +#define CPU_STACK_ALIGNMENT (PPC_STACK_ALIGNMENT) + +/* ISR handler macros */ + +/* + * Disable all interrupts for an RTEMS critical section. The previous + * level is returned in _isr_cookie. + */ + +#define loc_string(a,b) a " (" #b ")\n" + +#define _CPU_MSR_Value( _msr_value ) \ + do { \ + _msr_value = 0; \ + asm volatile ("mfmsr %0" : "=&r" ((_msr_value)) : "0" ((_msr_value))); \ + } while (0) + +#define _CPU_MSR_SET( _msr_value ) \ +{ asm volatile ("mtmsr %0" : "=&r" ((_msr_value)) : "0" ((_msr_value))); } + +#if 0 +#define _CPU_ISR_Disable( _isr_cookie ) \ + { register unsigned int _disable_mask = PPC_MSR_DISABLE_MASK; \ + _isr_cookie = 0; \ + asm volatile ( + "mfmsr %0" : \ + "=r" ((_isr_cookie)) : \ + "0" ((_isr_cookie)) \ + ); \ + asm volatile ( + "andc %1,%0,%1" : \ + "=r" ((_isr_cookie)), "=&r" ((_disable_mask)) : \ + "0" ((_isr_cookie)), "1" ((_disable_mask)) \ + ); \ + asm volatile ( + "mtmsr %1" : \ + "=r" ((_disable_mask)) : \ + "0" ((_disable_mask)) \ + ); \ + } +#endif + +#define _CPU_ISR_Disable( _isr_cookie ) \ + { register unsigned int _disable_mask = PPC_MSR_DISABLE_MASK; \ + _isr_cookie = 0; \ + asm volatile ( \ + "mfmsr %0; andc %1,%0,%1; mtmsr %1" : \ + "=&r" ((_isr_cookie)), "=&r" ((_disable_mask)) : \ + "0" ((_isr_cookie)), "1" ((_disable_mask)) \ + ); \ + } + + +#define _CPU_Data_Cache_Block_Flush( _address ) \ + do { register void *__address = (_address); \ + register unsigned32 _zero = 0; \ + asm volatile ( "dcbf %0,%1" : \ + "=r" (_zero), "=r" (__address) : \ + "0" (_zero), "1" (__address) \ + ); \ + } while (0) + + +/* + * Enable interrupts to the previous level (returned by _CPU_ISR_Disable). + * This indicates the end of an RTEMS critical section. The parameter + * _isr_cookie is not modified. + */ + +#define _CPU_ISR_Enable( _isr_cookie ) \ + { \ + asm volatile ( "mtmsr %0" : \ + "=r" ((_isr_cookie)) : \ + "0" ((_isr_cookie))); \ + } + +/* + * This temporarily restores the interrupt to _isr_cookie before immediately + * disabling them again. This is used to divide long RTEMS critical + * sections into two or more parts. The parameter _isr_cookie is not + * modified. + * + * NOTE: The version being used is not very optimized but it does + * not trip a problem in gcc where the disable mask does not + * get loaded. Check this for future (post 10/97 gcc versions. + */ + +#define _CPU_ISR_Flash( _isr_cookie ) \ + { register unsigned int _disable_mask = PPC_MSR_DISABLE_MASK; \ + asm volatile ( \ + "mtmsr %0; andc %1,%0,%1; mtmsr %1" : \ + "=r" ((_isr_cookie)), "=r" ((_disable_mask)) : \ + "0" ((_isr_cookie)), "1" ((_disable_mask)) \ + ); \ + } + +/* + * Map interrupt level in task mode onto the hardware that the CPU + * actually provides. Currently, interrupt levels which do not + * map onto the CPU in a generic fashion are undefined. Someday, + * it would be nice if these were "mapped" by the application + * via a callout. For example, m68k has 8 levels 0 - 7, levels + * 8 - 255 would be available for bsp/application specific meaning. + * This could be used to manage a programmable interrupt controller + * via the rtems_task_mode directive. + */ + +unsigned32 _CPU_ISR_Calculate_level( + unsigned32 new_level +); + +void _CPU_ISR_Set_level( + unsigned32 new_level +); + +unsigned32 _CPU_ISR_Get_level( void ); + +void _CPU_ISR_install_raw_handler( + unsigned32 vector, + proc_ptr new_handler, + proc_ptr *old_handler +); + +/* end of ISR handler macros */ + +/* + * Simple spin delay in microsecond units for device drivers. + * This is very dependent on the clock speed of the target. + */ + +#define CPU_Get_timebase_low( _value ) \ + asm volatile( "mftb %0" : "=r" (_value) ) + +#define delay( _microseconds ) \ + do { \ + unsigned32 start, ticks, now; \ + CPU_Get_timebase_low( start ) ; \ + ticks = (_microseconds) * _CPU_Table.clicks_per_usec; \ + do \ + CPU_Get_timebase_low( now ) ; \ + while (now - start < ticks); \ + } while (0) + +#define delay_in_bus_cycles( _cycles ) \ + do { \ + unsigned32 start, now; \ + CPU_Get_timebase_low( start ); \ + do \ + CPU_Get_timebase_low( now ); \ + while (now - start < (_cycles)); \ + } while (0) + + + +/* Context handler macros */ + +/* + * Initialize the context to a state suitable for starting a + * task after a context restore operation. Generally, this + * involves: + * + * - setting a starting address + * - preparing the stack + * - preparing the stack and frame pointers + * - setting the proper interrupt level in the context + * - initializing the floating point context + * + * This routine generally does not set any unnecessary register + * in the context. The state of the "general data" registers is + * undefined at task start time. + * + * NOTE: Implemented as a subroutine for the SPARC port. + */ + +void _CPU_Context_Initialize( + Context_Control *the_context, + unsigned32 *stack_base, + unsigned32 size, + unsigned32 new_level, + void *entry_point, + boolean is_fp +); + +/* + * This routine is responsible for somehow restarting the currently + * executing task. If you are lucky, then all that is necessary + * is restoring the context. Otherwise, there will need to be + * a special assembly routine which does something special in this + * case. Context_Restore should work most of the time. It will + * not work if restarting self conflicts with the stack frame + * assumptions of restoring a context. + */ + +#define _CPU_Context_Restart_self( _the_context ) \ + _CPU_Context_restore( (_the_context) ); + +/* + * The purpose of this macro is to allow the initial pointer into + * a floating point context area (used to save the floating point + * context) to be at an arbitrary place in the floating point + * context area. + * + * This is necessary because some FP units are designed to have + * their context saved as a stack which grows into lower addresses. + * Other FP units can be saved by simply moving registers into offsets + * from the base of the context area. Finally some FP units provide + * a "dump context" instruction which could fill in from high to low + * or low to high based on the whim of the CPU designers. + */ + +#define _CPU_Context_Fp_start( _base, _offset ) \ + ( (void *) _Addresses_Add_offset( (_base), (_offset) ) ) + +/* + * This routine initializes the FP context area passed to it to. + * There are a few standard ways in which to initialize the + * floating point context. The code included for this macro assumes + * that this is a CPU in which a "initial" FP context was saved into + * _CPU_Null_fp_context and it simply copies it to the destination + * context passed to it. + * + * Other models include (1) not doing anything, and (2) putting + * a "null FP status word" in the correct place in the FP context. + */ + +#define _CPU_Context_Initialize_fp( _destination ) \ + { \ + ((Context_Control_fp *) *((void **) _destination))->fpscr = PPC_INIT_FPSCR; \ + } + +/* end of Context handler macros */ + +/* Fatal Error manager macros */ + +/* + * This routine copies _error into a known place -- typically a stack + * location or a register, optionally disables interrupts, and + * halts/stops the CPU. + */ + +#define _CPU_Fatal_halt( _error ) \ + _CPU_Fatal_error(_error) + +/* end of Fatal Error manager macros */ + +/* Bitfield handler macros */ + +/* + * This routine sets _output to the bit number of the first bit + * set in _value. _value is of CPU dependent type Priority_Bit_map_control. + * This type may be either 16 or 32 bits wide although only the 16 + * least significant bits will be used. + * + * There are a number of variables in using a "find first bit" type + * instruction. + * + * (1) What happens when run on a value of zero? + * (2) Bits may be numbered from MSB to LSB or vice-versa. + * (3) The numbering may be zero or one based. + * (4) The "find first bit" instruction may search from MSB or LSB. + * + * RTEMS guarantees that (1) will never happen so it is not a concern. + * (2),(3), (4) are handled by the macros _CPU_Priority_mask() and + * _CPU_Priority_Bits_index(). These three form a set of routines + * which must logically operate together. Bits in the _value are + * set and cleared based on masks built by _CPU_Priority_mask(). + * The basic major and minor values calculated by _Priority_Major() + * and _Priority_Minor() are "massaged" by _CPU_Priority_Bits_index() + * to properly range between the values returned by the "find first bit" + * instruction. This makes it possible for _Priority_Get_highest() to + * calculate the major and directly index into the minor table. + * This mapping is necessary to ensure that 0 (a high priority major/minor) + * is the first bit found. + * + * This entire "find first bit" and mapping process depends heavily + * on the manner in which a priority is broken into a major and minor + * components with the major being the 4 MSB of a priority and minor + * the 4 LSB. Thus (0 << 4) + 0 corresponds to priority 0 -- the highest + * priority. And (15 << 4) + 14 corresponds to priority 254 -- the next + * to the lowest priority. + * + * If your CPU does not have a "find first bit" instruction, then + * there are ways to make do without it. Here are a handful of ways + * to implement this in software: + * + * - a series of 16 bit test instructions + * - a "binary search using if's" + * - _number = 0 + * if _value > 0x00ff + * _value >>=8 + * _number = 8; + * + * if _value > 0x0000f + * _value >=8 + * _number += 4 + * + * _number += bit_set_table[ _value ] + * + * where bit_set_table[ 16 ] has values which indicate the first + * bit set + */ + +#define _CPU_Bitfield_Find_first_bit( _value, _output ) \ + { \ + asm volatile ("cntlzw %0, %1" : "=r" ((_output)), "=r" ((_value)) : \ + "1" ((_value))); \ + } + +/* end of Bitfield handler macros */ + +/* + * This routine builds the mask which corresponds to the bit fields + * as searched by _CPU_Bitfield_Find_first_bit(). See the discussion + * for that routine. + */ + +#define _CPU_Priority_Mask( _bit_number ) \ + ( 0x80000000 >> (_bit_number) ) + +/* + * This routine translates the bit numbers returned by + * _CPU_Bitfield_Find_first_bit() into something suitable for use as + * a major or minor component of a priority. See the discussion + * for that routine. + */ + +#define _CPU_Priority_bits_index( _priority ) \ + (_priority) + +/* end of Priority handler macros */ + +/* variables */ + +extern const unsigned32 _CPU_msrs[4]; + +/* functions */ + +/* + * _CPU_Initialize + * + * This routine performs CPU dependent initialization. + */ + +void _CPU_Initialize( + rtems_cpu_table *cpu_table, + void (*thread_dispatch) +); + +/* + * _CPU_ISR_install_vector + * + * This routine installs an interrupt vector. + */ + +void _CPU_ISR_install_vector( + unsigned32 vector, + proc_ptr new_handler, + proc_ptr *old_handler +); + +/* + * _CPU_Install_interrupt_stack + * + * This routine installs the hardware interrupt stack pointer. + * + * NOTE: It need only be provided if CPU_HAS_HARDWARE_INTERRUPT_STACK + * is TRUE. + */ + +void _CPU_Install_interrupt_stack( void ); + +/* + * _CPU_Context_switch + * + * This routine switches from the run context to the heir context. + */ + +void _CPU_Context_switch( + Context_Control *run, + Context_Control *heir +); + +/* + * _CPU_Context_restore + * + * This routine is generallu used only to restart self in an + * efficient manner. It may simply be a label in _CPU_Context_switch. + * + * NOTE: May be unnecessary to reload some registers. + */ + +void _CPU_Context_restore( + Context_Control *new_context +); + +/* + * _CPU_Context_save_fp + * + * This routine saves the floating point context passed to it. + */ + +void _CPU_Context_save_fp( + void **fp_context_ptr +); + +/* + * _CPU_Context_restore_fp + * + * This routine restores the floating point context passed to it. + */ + +void _CPU_Context_restore_fp( + void **fp_context_ptr +); + +void _CPU_Fatal_error( + unsigned32 _error +); + +/* The following routine swaps the endian format of an unsigned int. + * It must be static because it is referenced indirectly. + * + * This version will work on any processor, but if there is a better + * way for your CPU PLEASE use it. The most common way to do this is to: + * + * swap least significant two bytes with 16-bit rotate + * swap upper and lower 16-bits + * swap most significant two bytes with 16-bit rotate + * + * Some CPUs have special instructions which swap a 32-bit quantity in + * a single instruction (e.g. i486). It is probably best to avoid + * an "endian swapping control bit" in the CPU. One good reason is + * that interrupts would probably have to be disabled to insure that + * an interrupt does not try to access the same "chunk" with the wrong + * endian. Another good reason is that on some CPUs, the endian bit + * endianness for ALL fetches -- both code and data -- so the code + * will be fetched incorrectly. + */ + +static inline unsigned int CPU_swap_u32( + unsigned int value +) +{ + unsigned32 swapped; + + asm volatile("rlwimi %0,%1,8,24,31;" + "rlwimi %0,%1,24,16,23;" + "rlwimi %0,%1,8,8,15;" + "rlwimi %0,%1,24,0,7;" : + "=&r" ((swapped)) : "r" ((value))); + + return( swapped ); +} + +#define CPU_swap_u16( value ) \ + (((value&0xff) << 8) | ((value >> 8)&0xff)) + +/* + * Routines to access the decrementer register + */ + +#define PPC_Set_decrementer( _clicks ) \ + do { \ + asm volatile( "mtdec %0" : "=r" ((_clicks)) : "r" ((_clicks)) ); \ + } while (0) + +/* + * Routines to access the time base register + */ + +static inline unsigned64 PPC_Get_timebase_register( void ) +{ + unsigned32 tbr_low; + unsigned32 tbr_high; + unsigned32 tbr_high_old; + unsigned64 tbr; + + do { + asm volatile( "mftbu %0" : "=r" (tbr_high_old)); + asm volatile( "mftb %0" : "=r" (tbr_low)); + asm volatile( "mftbu %0" : "=r" (tbr_high)); + } while ( tbr_high_old != tbr_high ); + + tbr = tbr_high; + tbr <<= 32; + tbr |= tbr_low; + return tbr; +} + +#ifdef __cplusplus +} +#endif + +#endif diff --git a/c/src/lib/libbsp/powerpc/support/old_exception_processing/cpu_asm.S b/c/src/lib/libbsp/powerpc/support/old_exception_processing/cpu_asm.S new file mode 100644 index 0000000000..a377fa5d2a --- /dev/null +++ b/c/src/lib/libbsp/powerpc/support/old_exception_processing/cpu_asm.S @@ -0,0 +1,809 @@ + +/* cpu_asm.s 1.1 - 95/12/04 + * + * This file contains the assembly code for the PowerPC implementation + * of RTEMS. + * + * Author: Andrew Bray + * + * COPYRIGHT (c) 1995 by i-cubed ltd. + * + * To anyone who acknowledges that this file is provided "AS IS" + * without any express or implied warranty: + * permission to use, copy, modify, and distribute this file + * for any purpose is hereby granted without fee, provided that + * the above copyright notice and this notice appears in all + * copies, and that the name of i-cubed limited not be used in + * advertising or publicity pertaining to distribution of the + * software without specific, written prior permission. + * i-cubed limited makes no representations about the suitability + * of this software for any purpose. + * + * Derived from c/src/exec/cpu/no_cpu/cpu_asm.c: + * + * COPYRIGHT (c) 1989-1997. + * On-Line Applications Research Corporation (OAR). + * Copyright assigned to U.S. Government, 1994. + * + * The license and distribution terms for this file may in + * the file LICENSE in this distribution or at + * http://www.OARcorp.com/rtems/license.html. + * + * $Id$ + */ + +#include + +/* + * Offsets for various Contexts + */ + .set GP_1, 0 + .set GP_2, (GP_1 + 4) + .set GP_13, (GP_2 + 4) + .set GP_14, (GP_13 + 4) + + .set GP_15, (GP_14 + 4) + .set GP_16, (GP_15 + 4) + .set GP_17, (GP_16 + 4) + .set GP_18, (GP_17 + 4) + + .set GP_19, (GP_18 + 4) + .set GP_20, (GP_19 + 4) + .set GP_21, (GP_20 + 4) + .set GP_22, (GP_21 + 4) + + .set GP_23, (GP_22 + 4) + .set GP_24, (GP_23 + 4) + .set GP_25, (GP_24 + 4) + .set GP_26, (GP_25 + 4) + + .set GP_27, (GP_26 + 4) + .set GP_28, (GP_27 + 4) + .set GP_29, (GP_28 + 4) + .set GP_30, (GP_29 + 4) + + .set GP_31, (GP_30 + 4) + .set GP_CR, (GP_31 + 4) + .set GP_PC, (GP_CR + 4) + .set GP_MSR, (GP_PC + 4) + +#if (PPC_HAS_DOUBLE == 1) + .set FP_0, 0 + .set FP_1, (FP_0 + 8) + .set FP_2, (FP_1 + 8) + .set FP_3, (FP_2 + 8) + .set FP_4, (FP_3 + 8) + .set FP_5, (FP_4 + 8) + .set FP_6, (FP_5 + 8) + .set FP_7, (FP_6 + 8) + .set FP_8, (FP_7 + 8) + .set FP_9, (FP_8 + 8) + .set FP_10, (FP_9 + 8) + .set FP_11, (FP_10 + 8) + .set FP_12, (FP_11 + 8) + .set FP_13, (FP_12 + 8) + .set FP_14, (FP_13 + 8) + .set FP_15, (FP_14 + 8) + .set FP_16, (FP_15 + 8) + .set FP_17, (FP_16 + 8) + .set FP_18, (FP_17 + 8) + .set FP_19, (FP_18 + 8) + .set FP_20, (FP_19 + 8) + .set FP_21, (FP_20 + 8) + .set FP_22, (FP_21 + 8) + .set FP_23, (FP_22 + 8) + .set FP_24, (FP_23 + 8) + .set FP_25, (FP_24 + 8) + .set FP_26, (FP_25 + 8) + .set FP_27, (FP_26 + 8) + .set FP_28, (FP_27 + 8) + .set FP_29, (FP_28 + 8) + .set FP_30, (FP_29 + 8) + .set FP_31, (FP_30 + 8) + .set FP_FPSCR, (FP_31 + 8) +#else + .set FP_0, 0 + .set FP_1, (FP_0 + 4) + .set FP_2, (FP_1 + 4) + .set FP_3, (FP_2 + 4) + .set FP_4, (FP_3 + 4) + .set FP_5, (FP_4 + 4) + .set FP_6, (FP_5 + 4) + .set FP_7, (FP_6 + 4) + .set FP_8, (FP_7 + 4) + .set FP_9, (FP_8 + 4) + .set FP_10, (FP_9 + 4) + .set FP_11, (FP_10 + 4) + .set FP_12, (FP_11 + 4) + .set FP_13, (FP_12 + 4) + .set FP_14, (FP_13 + 4) + .set FP_15, (FP_14 + 4) + .set FP_16, (FP_15 + 4) + .set FP_17, (FP_16 + 4) + .set FP_18, (FP_17 + 4) + .set FP_19, (FP_18 + 4) + .set FP_20, (FP_19 + 4) + .set FP_21, (FP_20 + 4) + .set FP_22, (FP_21 + 4) + .set FP_23, (FP_22 + 4) + .set FP_24, (FP_23 + 4) + .set FP_25, (FP_24 + 4) + .set FP_26, (FP_25 + 4) + .set FP_27, (FP_26 + 4) + .set FP_28, (FP_27 + 4) + .set FP_29, (FP_28 + 4) + .set FP_30, (FP_29 + 4) + .set FP_31, (FP_30 + 4) + .set FP_FPSCR, (FP_31 + 4) +#endif + + .set IP_LINK, 0 +#if (PPC_ABI == PPC_ABI_POWEROPEN || PPC_ABI == PPC_ABI_GCC27) + .set IP_0, (IP_LINK + 56) +#else + .set IP_0, (IP_LINK + 8) +#endif + .set IP_2, (IP_0 + 4) + + .set IP_3, (IP_2 + 4) + .set IP_4, (IP_3 + 4) + .set IP_5, (IP_4 + 4) + .set IP_6, (IP_5 + 4) + + .set IP_7, (IP_6 + 4) + .set IP_8, (IP_7 + 4) + .set IP_9, (IP_8 + 4) + .set IP_10, (IP_9 + 4) + + .set IP_11, (IP_10 + 4) + .set IP_12, (IP_11 + 4) + .set IP_13, (IP_12 + 4) + .set IP_28, (IP_13 + 4) + + .set IP_29, (IP_28 + 4) + .set IP_30, (IP_29 + 4) + .set IP_31, (IP_30 + 4) + .set IP_CR, (IP_31 + 4) + + .set IP_CTR, (IP_CR + 4) + .set IP_XER, (IP_CTR + 4) + .set IP_LR, (IP_XER + 4) + .set IP_PC, (IP_LR + 4) + + .set IP_MSR, (IP_PC + 4) + .set IP_END, (IP_MSR + 16) + + /* _CPU_IRQ_info offsets */ + + /* These must be in this order */ + .set Nest_level, 0 + .set Disable_level, 4 + .set Vector_table, 8 + .set Stack, 12 +#if (PPC_ABI == PPC_ABI_POWEROPEN) + .set Dispatch_r2, 16 + .set Switch_necessary, 20 +#else + .set Default_r2, 16 +#if (PPC_ABI != PPC_ABI_GCC27) + .set Default_r13, 20 + .set Switch_necessary, 24 +#else + .set Switch_necessary, 20 +#endif +#endif + .set Signal, Switch_necessary + 4 + .set msr_initial, Signal + 4 + + BEGIN_CODE +/* + * _CPU_Context_save_fp_context + * + * This routine is responsible for saving the FP context + * at *fp_context_ptr. If the point to load the FP context + * from is changed then the pointer is modified by this routine. + * + * Sometimes a macro implementation of this is in cpu.h which dereferences + * the ** and a similarly named routine in this file is passed something + * like a (Context_Control_fp *). The general rule on making this decision + * is to avoid writing assembly language. + */ + + ALIGN (PPC_CACHE_ALIGNMENT, PPC_CACHE_ALIGN_POWER) + PUBLIC_PROC (_CPU_Context_save_fp) +PROC (_CPU_Context_save_fp): +#if (PPC_HAS_FPU == 1) + lwz r3, 0(r3) +#if (PPC_HAS_DOUBLE == 1) + stfd f0, FP_0(r3) + stfd f1, FP_1(r3) + stfd f2, FP_2(r3) + stfd f3, FP_3(r3) + stfd f4, FP_4(r3) + stfd f5, FP_5(r3) + stfd f6, FP_6(r3) + stfd f7, FP_7(r3) + stfd f8, FP_8(r3) + stfd f9, FP_9(r3) + stfd f10, FP_10(r3) + stfd f11, FP_11(r3) + stfd f12, FP_12(r3) + stfd f13, FP_13(r3) + stfd f14, FP_14(r3) + stfd f15, FP_15(r3) + stfd f16, FP_16(r3) + stfd f17, FP_17(r3) + stfd f18, FP_18(r3) + stfd f19, FP_19(r3) + stfd f20, FP_20(r3) + stfd f21, FP_21(r3) + stfd f22, FP_22(r3) + stfd f23, FP_23(r3) + stfd f24, FP_24(r3) + stfd f25, FP_25(r3) + stfd f26, FP_26(r3) + stfd f27, FP_27(r3) + stfd f28, FP_28(r3) + stfd f29, FP_29(r3) + stfd f30, FP_30(r3) + stfd f31, FP_31(r3) + mffs f2 + stfd f2, FP_FPSCR(r3) +#else + stfs f0, FP_0(r3) + stfs f1, FP_1(r3) + stfs f2, FP_2(r3) + stfs f3, FP_3(r3) + stfs f4, FP_4(r3) + stfs f5, FP_5(r3) + stfs f6, FP_6(r3) + stfs f7, FP_7(r3) + stfs f8, FP_8(r3) + stfs f9, FP_9(r3) + stfs f10, FP_10(r3) + stfs f11, FP_11(r3) + stfs f12, FP_12(r3) + stfs f13, FP_13(r3) + stfs f14, FP_14(r3) + stfs f15, FP_15(r3) + stfs f16, FP_16(r3) + stfs f17, FP_17(r3) + stfs f18, FP_18(r3) + stfs f19, FP_19(r3) + stfs f20, FP_20(r3) + stfs f21, FP_21(r3) + stfs f22, FP_22(r3) + stfs f23, FP_23(r3) + stfs f24, FP_24(r3) + stfs f25, FP_25(r3) + stfs f26, FP_26(r3) + stfs f27, FP_27(r3) + stfs f28, FP_28(r3) + stfs f29, FP_29(r3) + stfs f30, FP_30(r3) + stfs f31, FP_31(r3) + mffs f2 + stfs f2, FP_FPSCR(r3) +#endif +#endif + blr + +/* + * _CPU_Context_restore_fp_context + * + * This routine is responsible for restoring the FP context + * at *fp_context_ptr. If the point to load the FP context + * from is changed then the pointer is modified by this routine. + * + * Sometimes a macro implementation of this is in cpu.h which dereferences + * the ** and a similarly named routine in this file is passed something + * like a (Context_Control_fp *). The general rule on making this decision + * is to avoid writing assembly language. + */ + + ALIGN (PPC_CACHE_ALIGNMENT, PPC_CACHE_ALIGN_POWER) + PUBLIC_PROC (_CPU_Context_restore_fp) +PROC (_CPU_Context_restore_fp): +#if (PPC_HAS_FPU == 1) + lwz r3, 0(r3) +#if (PPC_HAS_DOUBLE == 1) + lfd f2, FP_FPSCR(r3) + mtfsf 255, f2 + lfd f0, FP_0(r3) + lfd f1, FP_1(r3) + lfd f2, FP_2(r3) + lfd f3, FP_3(r3) + lfd f4, FP_4(r3) + lfd f5, FP_5(r3) + lfd f6, FP_6(r3) + lfd f7, FP_7(r3) + lfd f8, FP_8(r3) + lfd f9, FP_9(r3) + lfd f10, FP_10(r3) + lfd f11, FP_11(r3) + lfd f12, FP_12(r3) + lfd f13, FP_13(r3) + lfd f14, FP_14(r3) + lfd f15, FP_15(r3) + lfd f16, FP_16(r3) + lfd f17, FP_17(r3) + lfd f18, FP_18(r3) + lfd f19, FP_19(r3) + lfd f20, FP_20(r3) + lfd f21, FP_21(r3) + lfd f22, FP_22(r3) + lfd f23, FP_23(r3) + lfd f24, FP_24(r3) + lfd f25, FP_25(r3) + lfd f26, FP_26(r3) + lfd f27, FP_27(r3) + lfd f28, FP_28(r3) + lfd f29, FP_29(r3) + lfd f30, FP_30(r3) + lfd f31, FP_31(r3) +#else + lfs f2, FP_FPSCR(r3) + mtfsf 255, f2 + lfs f0, FP_0(r3) + lfs f1, FP_1(r3) + lfs f2, FP_2(r3) + lfs f3, FP_3(r3) + lfs f4, FP_4(r3) + lfs f5, FP_5(r3) + lfs f6, FP_6(r3) + lfs f7, FP_7(r3) + lfs f8, FP_8(r3) + lfs f9, FP_9(r3) + lfs f10, FP_10(r3) + lfs f11, FP_11(r3) + lfs f12, FP_12(r3) + lfs f13, FP_13(r3) + lfs f14, FP_14(r3) + lfs f15, FP_15(r3) + lfs f16, FP_16(r3) + lfs f17, FP_17(r3) + lfs f18, FP_18(r3) + lfs f19, FP_19(r3) + lfs f20, FP_20(r3) + lfs f21, FP_21(r3) + lfs f22, FP_22(r3) + lfs f23, FP_23(r3) + lfs f24, FP_24(r3) + lfs f25, FP_25(r3) + lfs f26, FP_26(r3) + lfs f27, FP_27(r3) + lfs f28, FP_28(r3) + lfs f29, FP_29(r3) + lfs f30, FP_30(r3) + lfs f31, FP_31(r3) +#endif +#endif + blr + + +/* _CPU_Context_switch + * + * This routine performs a normal non-FP context switch. + */ + ALIGN (PPC_CACHE_ALIGNMENT, PPC_CACHE_ALIGN_POWER) + PUBLIC_PROC (_CPU_Context_switch) +PROC (_CPU_Context_switch): + sync + isync +#if (PPC_CACHE_ALIGNMENT == 4) /* No cache */ + stw r1, GP_1(r3) + lwz r1, GP_1(r4) + stw r2, GP_2(r3) + lwz r2, GP_2(r4) +#if (PPC_USE_MULTIPLE == 1) + stmw r13, GP_13(r3) + lmw r13, GP_13(r4) +#else + stw r13, GP_13(r3) + lwz r13, GP_13(r4) + stw r14, GP_14(r3) + lwz r14, GP_14(r4) + stw r15, GP_15(r3) + lwz r15, GP_15(r4) + stw r16, GP_16(r3) + lwz r16, GP_16(r4) + stw r17, GP_17(r3) + lwz r17, GP_17(r4) + stw r18, GP_18(r3) + lwz r18, GP_18(r4) + stw r19, GP_19(r3) + lwz r19, GP_19(r4) + stw r20, GP_20(r3) + lwz r20, GP_20(r4) + stw r21, GP_21(r3) + lwz r21, GP_21(r4) + stw r22, GP_22(r3) + lwz r22, GP_22(r4) + stw r23, GP_23(r3) + lwz r23, GP_23(r4) + stw r24, GP_24(r3) + lwz r24, GP_24(r4) + stw r25, GP_25(r3) + lwz r25, GP_25(r4) + stw r26, GP_26(r3) + lwz r26, GP_26(r4) + stw r27, GP_27(r3) + lwz r27, GP_27(r4) + stw r28, GP_28(r3) + lwz r28, GP_28(r4) + stw r29, GP_29(r3) + lwz r29, GP_29(r4) + stw r30, GP_30(r3) + lwz r30, GP_30(r4) + stw r31, GP_31(r3) + lwz r31, GP_31(r4) +#endif + mfcr r5 + stw r5, GP_CR(r3) + lwz r5, GP_CR(r4) + mflr r6 + mtcrf 255, r5 + stw r6, GP_PC(r3) + lwz r6, GP_PC(r4) + mfmsr r7 + mtlr r6 + stw r7, GP_MSR(r3) + lwz r7, GP_MSR(r4) + mtmsr r7 +#endif +#if (PPC_CACHE_ALIGNMENT == 16) + /* This assumes that all the registers are in the given order */ + li r5, 16 + addi r3,r3,-4 +#if ( PPC_USE_DATA_CACHE ) + dcbz r5, r3 +#endif + stw r1, GP_1+4(r3) + stw r2, GP_2+4(r3) +#if (PPC_USE_MULTIPLE == 1) + addi r3, r3, GP_14+4 +#if ( PPC_USE_DATA_CACHE ) + dcbz r5, r3 +#endif + + addi r3, r3, GP_18-GP_14 +#if ( PPC_USE_DATA_CACHE ) + dcbz r5, r3 +#endif + addi r3, r3, GP_22-GP_18 +#if ( PPC_USE_DATA_CACHE ) + dcbz r5, r3 +#endif + addi r3, r3, GP_26-GP_22 +#if ( PPC_USE_DATA_CACHE ) + dcbz r5, r3 +#endif + stmw r13, GP_13-GP_26(r3) +#else + stw r13, GP_13+4(r3) + stwu r14, GP_14+4(r3) +#if ( PPC_USE_DATA_CACHE ) + dcbz r5, r3 +#endif + stw r15, GP_15-GP_14(r3) + stw r16, GP_16-GP_14(r3) + stw r17, GP_17-GP_14(r3) + stwu r18, GP_18-GP_14(r3) +#if ( PPC_USE_DATA_CACHE ) + dcbz r5, r3 +#endif + stw r19, GP_19-GP_18(r3) + stw r20, GP_20-GP_18(r3) + stw r21, GP_21-GP_18(r3) + stwu r22, GP_22-GP_18(r3) +#if ( PPC_USE_DATA_CACHE ) + dcbz r5, r3 +#endif + stw r23, GP_23-GP_22(r3) + stw r24, GP_24-GP_22(r3) + stw r25, GP_25-GP_22(r3) + stwu r26, GP_26-GP_22(r3) +#if ( PPC_USE_DATA_CACHE ) + dcbz r5, r3 +#endif + stw r27, GP_27-GP_26(r3) + stw r28, GP_28-GP_26(r3) + stw r29, GP_29-GP_26(r3) + stw r30, GP_30-GP_26(r3) + stw r31, GP_31-GP_26(r3) +#endif +#if ( PPC_USE_DATA_CACHE ) + dcbt r0, r4 +#endif + mfcr r6 + stw r6, GP_CR-GP_26(r3) + mflr r7 + stw r7, GP_PC-GP_26(r3) + mfmsr r8 + stw r8, GP_MSR-GP_26(r3) + +#if ( PPC_USE_DATA_CACHE ) + dcbt r5, r4 +#endif + lwz r1, GP_1(r4) + lwz r2, GP_2(r4) +#if (PPC_USE_MULTIPLE == 1) + addi r4, r4, GP_15 +#if ( PPC_USE_DATA_CACHE ) + dcbt r5, r4 +#endif + addi r4, r4, GP_19-GP_15 +#if ( PPC_USE_DATA_CACHE ) + dcbt r5, r4 +#endif + addi r4, r4, GP_23-GP_19 +#if ( PPC_USE_DATA_CACHE ) + dcbt r5, r4 +#endif + addi r4, r4, GP_27-GP_23 +#if ( PPC_USE_DATA_CACHE ) + dcbt r5, r4 +#endif + lmw r13, GP_13-GP_27(r4) +#else + lwz r13, GP_13(r4) + lwz r14, GP_14(r4) + lwzu r15, GP_15(r4) +#if ( PPC_USE_DATA_CACHE ) + dcbt r5, r4 +#endif + lwz r16, GP_16-GP_15(r4) + lwz r17, GP_17-GP_15(r4) + lwz r18, GP_18-GP_15(r4) + lwzu r19, GP_19-GP_15(r4) +#if ( PPC_USE_DATA_CACHE ) + dcbt r5, r4 +#endif + lwz r20, GP_20-GP_19(r4) + lwz r21, GP_21-GP_19(r4) + lwz r22, GP_22-GP_19(r4) + lwzu r23, GP_23-GP_19(r4) +#if ( PPC_USE_DATA_CACHE ) + dcbt r5, r4 +#endif + lwz r24, GP_24-GP_23(r4) + lwz r25, GP_25-GP_23(r4) + lwz r26, GP_26-GP_23(r4) + lwzu r27, GP_27-GP_23(r4) +#if ( PPC_USE_DATA_CACHE ) + dcbt r5, r4 +#endif + lwz r28, GP_28-GP_27(r4) + lwz r29, GP_29-GP_27(r4) + lwz r30, GP_30-GP_27(r4) + lwz r31, GP_31-GP_27(r4) +#endif + lwz r6, GP_CR-GP_27(r4) + lwz r7, GP_PC-GP_27(r4) + lwz r8, GP_MSR-GP_27(r4) + mtcrf 255, r6 + mtlr r7 + mtmsr r8 +#endif +#if (PPC_CACHE_ALIGNMENT == 32) + /* This assumes that all the registers are in the given order */ + li r5, 32 + addi r3,r3,-4 +#if ( PPC_USE_DATA_CACHE ) + dcbz r5, r3 +#endif + stw r1, GP_1+4(r3) + stw r2, GP_2+4(r3) +#if (PPC_USE_MULTIPLE == 1) + addi r3, r3, GP_18+4 +#if ( PPC_USE_DATA_CACHE ) + dcbz r5, r3 +#endif + stmw r13, GP_13-GP_18(r3) +#else + stw r13, GP_13+4(r3) + stw r14, GP_14+4(r3) + stw r15, GP_15+4(r3) + stw r16, GP_16+4(r3) + stw r17, GP_17+4(r3) + stwu r18, GP_18+4(r3) +#if ( PPC_USE_DATA_CACHE ) + dcbz r5, r3 +#endif + stw r19, GP_19-GP_18(r3) + stw r20, GP_20-GP_18(r3) + stw r21, GP_21-GP_18(r3) + stw r22, GP_22-GP_18(r3) + stw r23, GP_23-GP_18(r3) + stw r24, GP_24-GP_18(r3) + stw r25, GP_25-GP_18(r3) + stw r26, GP_26-GP_18(r3) + stw r27, GP_27-GP_18(r3) + stw r28, GP_28-GP_18(r3) + stw r29, GP_29-GP_18(r3) + stw r30, GP_30-GP_18(r3) + stw r31, GP_31-GP_18(r3) +#endif +#if ( PPC_USE_DATA_CACHE ) + dcbt r0, r4 +#endif + mfcr r6 + stw r6, GP_CR-GP_18(r3) + mflr r7 + stw r7, GP_PC-GP_18(r3) + mfmsr r8 + stw r8, GP_MSR-GP_18(r3) + +#if ( PPC_USE_DATA_CACHE ) + dcbt r5, r4 +#endif + lwz r1, GP_1(r4) + lwz r2, GP_2(r4) +#if (PPC_USE_MULTIPLE == 1) + addi r4, r4, GP_19 +#if ( PPC_USE_DATA_CACHE ) + dcbt r5, r4 +#endif + lmw r13, GP_13-GP_19(r4) +#else + lwz r13, GP_13(r4) + lwz r14, GP_14(r4) + lwz r15, GP_15(r4) + lwz r16, GP_16(r4) + lwz r17, GP_17(r4) + lwz r18, GP_18(r4) + lwzu r19, GP_19(r4) +#if ( PPC_USE_DATA_CACHE ) + dcbt r5, r4 +#endif + lwz r20, GP_20-GP_19(r4) + lwz r21, GP_21-GP_19(r4) + lwz r22, GP_22-GP_19(r4) + lwz r23, GP_23-GP_19(r4) + lwz r24, GP_24-GP_19(r4) + lwz r25, GP_25-GP_19(r4) + lwz r26, GP_26-GP_19(r4) + lwz r27, GP_27-GP_19(r4) + lwz r28, GP_28-GP_19(r4) + lwz r29, GP_29-GP_19(r4) + lwz r30, GP_30-GP_19(r4) + lwz r31, GP_31-GP_19(r4) +#endif + lwz r6, GP_CR-GP_19(r4) + lwz r7, GP_PC-GP_19(r4) + lwz r8, GP_MSR-GP_19(r4) + mtcrf 255, r6 + mtlr r7 + mtmsr r8 +#endif + blr + +/* + * _CPU_Context_restore + * + * This routine is generallu used only to restart self in an + * efficient manner. It may simply be a label in _CPU_Context_switch. + * + * NOTE: May be unnecessary to reload some registers. + */ +/* + * ACB: Don't worry about cache optimisation here - this is not THAT critical. + */ + ALIGN (PPC_CACHE_ALIGNMENT, PPC_CACHE_ALIGN_POWER) + PUBLIC_PROC (_CPU_Context_restore) +PROC (_CPU_Context_restore): + lwz r5, GP_CR(r3) + lwz r6, GP_PC(r3) + lwz r7, GP_MSR(r3) + mtcrf 255, r5 + mtlr r6 + mtmsr r7 + lwz r1, GP_1(r3) + lwz r2, GP_2(r3) +#if (PPC_USE_MULTIPLE == 1) + lmw r13, GP_13(r3) +#else + lwz r13, GP_13(r3) + lwz r14, GP_14(r3) + lwz r15, GP_15(r3) + lwz r16, GP_16(r3) + lwz r17, GP_17(r3) + lwz r18, GP_18(r3) + lwz r19, GP_19(r3) + lwz r20, GP_20(r3) + lwz r21, GP_21(r3) + lwz r22, GP_22(r3) + lwz r23, GP_23(r3) + lwz r24, GP_24(r3) + lwz r25, GP_25(r3) + lwz r26, GP_26(r3) + lwz r27, GP_27(r3) + lwz r28, GP_28(r3) + lwz r29, GP_29(r3) + lwz r30, GP_30(r3) + lwz r31, GP_31(r3) +#endif + + blr + +/* Individual interrupt prologues look like this: + * #if (PPC_ABI == PPC_ABI_POWEROPEN || PPC_ABI == PPC_ABI_GCC27) + * #if (PPC_HAS_FPU) + * stwu r1, -(20*4 + 18*8 + IP_END)(r1) + * #else + * stwu r1, -(20*4 + IP_END)(r1) + * #endif + * #else + * stwu r1, -(IP_END)(r1) + * #endif + * stw r0, IP_0(r1) + * + * li r0, vectornum + * b PROC (_ISR_Handler{,C}) + */ + +/* void __ISR_Handler() + * + * This routine provides the RTEMS interrupt management. + * The vector number is in r0. R0 has already been stacked. + * + */ + ALIGN (PPC_CACHE_ALIGNMENT, PPC_CACHE_ALIGN_POWER) + PUBLIC_PROC (_ISR_Handler) +PROC (_ISR_Handler): +#define LABEL(x) x +/* XXX ?? +#define MTSAVE(x) mtspr sprg0, x +#define MFSAVE(x) mfspr x, sprg0 +*/ +#define MTPC(x) mtspr srr0, x +#define MFPC(x) mfspr x, srr0 +#define MTMSR(x) mtspr srr1, x +#define MFMSR(x) mfspr x, srr1 + + #include "irq_stub.S" + rfi + +#if (PPC_HAS_RFCI == 1) +/* void __ISR_HandlerC() + * + * This routine provides the RTEMS interrupt management. + * For critical interrupts + * + */ + ALIGN (PPC_CACHE_ALIGNMENT, PPC_CACHE_ALIGN_POWER) + PUBLIC_PROC (_ISR_HandlerC) +PROC (_ISR_HandlerC): +#undef LABEL +#undef MTSAVE +#undef MFSAVE +#undef MTPC +#undef MFPC +#undef MTMSR +#undef MFMSR +#define LABEL(x) x##_C +/* XXX?? +#define MTSAVE(x) mtspr sprg1, x +#define MFSAVE(x) mfspr x, sprg1 +*/ +#define MTPC(x) mtspr srr2, x +#define MFPC(x) mfspr x, srr2 +#define MTMSR(x) mtspr srr3, x +#define MFMSR(x) mfspr x, srr3 + #include "irq_stub.S" + rfci +#endif + +/* PowerOpen descriptors for indirect function calls. + */ + +#if (PPC_ABI == PPC_ABI_POWEROPEN) + DESCRIPTOR (_CPU_Context_save_fp) + DESCRIPTOR (_CPU_Context_restore_fp) + DESCRIPTOR (_CPU_Context_switch) + DESCRIPTOR (_CPU_Context_restore) + DESCRIPTOR (_ISR_Handler) +#if (PPC_HAS_RFCI == 1) + DESCRIPTOR (_ISR_HandlerC) +#endif +#endif diff --git a/c/src/lib/libbsp/powerpc/support/old_exception_processing/irq_stub.S b/c/src/lib/libbsp/powerpc/support/old_exception_processing/irq_stub.S new file mode 100644 index 0000000000..76c8927305 --- /dev/null +++ b/c/src/lib/libbsp/powerpc/support/old_exception_processing/irq_stub.S @@ -0,0 +1,268 @@ +/* + * This file contains the interrupt handler assembly code for the PowerPC + * implementation of RTEMS. It is #included from cpu_asm.s. + * + * Author: Andrew Bray + * + * COPYRIGHT (c) 1995 by i-cubed ltd. + * + * To anyone who acknowledges that this file is provided "AS IS" + * without any express or implied warranty: + * permission to use, copy, modify, and distribute this file + * for any purpose is hereby granted without fee, provided that + * the above copyright notice and this notice appears in all + * copies, and that the name of i-cubed limited not be used in + * advertising or publicity pertaining to distribution of the + * software without specific, written prior permission. + * i-cubed limited makes no representations about the suitability + * of this software for any purpose. + * + * $Id$ + */ + +/* void __ISR_Handler() + * + * This routine provides the RTEMS interrupt management. + * The vector number is in r0. R0 has already been stacked. + * + */ + PUBLIC_VAR (_CPU_IRQ_info ) + + /* Finish off the interrupt frame */ + stw r2, IP_2(r1) + stw r3, IP_3(r1) + stw r4, IP_4(r1) + stw r5, IP_5(r1) + stw r6, IP_6(r1) + stw r7, IP_7(r1) + stw r8, IP_8(r1) + stw r9, IP_9(r1) + stw r10, IP_10(r1) + stw r11, IP_11(r1) + stw r12, IP_12(r1) + stw r13, IP_13(r1) + stmw r28, IP_28(r1) + mfcr r5 + mfctr r6 + mfxer r7 + mflr r8 + MFPC (r9) + MFMSR (r10) + /* Establish addressing */ +#if (PPC_USE_SPRG) + mfspr r11, sprg3 +#else + lis r11,_CPU_IRQ_info@ha + addi r11,r11,_CPU_IRQ_info@l +#endif + dcbt r0, r11 + stw r5, IP_CR(r1) + stw r6, IP_CTR(r1) + stw r7, IP_XER(r1) + stw r8, IP_LR(r1) + stw r9, IP_PC(r1) + stw r10, IP_MSR(r1) + + lwz r30, Vector_table(r11) + slwi r4,r0,2 + lwz r28, Nest_level(r11) + add r4, r4, r30 + + lwz r30, 0(r28) + mr r3, r0 + lwz r31, Stack(r11) + /* + * #if ( CPU_HAS_SOFTWARE_INTERRUPT_STACK == TRUE ) + * if ( _ISR_Nest_level == 0 ) + * switch to software interrupt stack + * #endif + */ + /* Switch stacks, here we must prevent ALL interrupts */ +#if (PPC_USE_SPRG) + mfmsr r5 + mfspr r6, sprg2 +#else + lwz r6,msr_initial(r11) + lis r5,~PPC_MSR_DISABLE_MASK@ha + ori r5,r5,~PPC_MSR_DISABLE_MASK@l + and r6,r6,r5 + mfmsr r5 +#endif + mtmsr r6 + cmpwi r30, 0 + lwz r29, Disable_level(r11) + subf r31,r1,r31 + bne LABEL (nested) + stwux r1,r1,r31 +LABEL (nested): + /* + * _ISR_Nest_level++; + */ + lwz r31, 0(r29) + addi r30,r30,1 + stw r30,0(r28) + /* From here on out, interrupts can be re-enabled. RTEMS + * convention says not. + */ + lwz r4,0(r4) + /* + * _Thread_Dispatch_disable_level++; + */ + addi r31,r31,1 + stw r31, 0(r29) +/* SCE 980217 + * + * We need address translation ON when we call our ISR routine + + mtmsr r5 + + */ + + /* + * (*_ISR_Vector_table[ vector ])( vector ); + */ +#if (PPC_ABI == PPC_ABI_POWEROPEN) + lwz r6,0(r4) + lwz r2,4(r4) + mtlr r6 + lwz r11,8(r4) +#endif +#if (PPC_ABI == PPC_ABI_GCC27) + lwz r2, Default_r2(r11) + mtlr r4 + #lwz r2, 0(r2) +#endif +#if (PPC_ABI == PPC_ABI_SVR4 || PPC_ABI == PPC_ABI_EABI) + mtlr r4 + lwz r2, Default_r2(r11) + lwz r13, Default_r13(r11) + #lwz r2, 0(r2) + #lwz r13, 0(r13) +#endif + mr r4,r1 + blrl + /* NOP marker for debuggers */ + or r6,r6,r6 + + /* We must re-disable the interrupts */ +#if (PPC_USE_SPRG) + mfspr r11, sprg3 + mfspr r0, sprg2 +#else + lis r11,_CPU_IRQ_info@ha + addi r11,r11,_CPU_IRQ_info@l + lwz r0,msr_initial(r11) + lis r30,~PPC_MSR_DISABLE_MASK@ha + ori r30,r30,~PPC_MSR_DISABLE_MASK@l + and r0,r0,r30 +#endif + mtmsr r0 + lwz r30, 0(r28) + lwz r31, 0(r29) + + /* + * if (--Thread_Dispatch_disable,--_ISR_Nest_level) + * goto easy_exit; + */ + addi r30, r30, -1 + cmpwi r30, 0 + addi r31, r31, -1 + stw r30, 0(r28) + stw r31, 0(r29) + bne LABEL (easy_exit) + cmpwi r31, 0 + + lwz r30, Switch_necessary(r11) + + /* + * #if ( CPU_HAS_SOFTWARE_INTERRUPT_STACK == TRUE ) + * restore stack + * #endif + */ + lwz r1,0(r1) + bne LABEL (easy_exit) + lwz r30, 0(r30) + lwz r31, Signal(r11) + + /* + * if ( _Context_Switch_necessary ) + * goto switch + */ + cmpwi r30, 0 + lwz r28, 0(r31) + li r6,0 + bne LABEL (switch) + /* + * if ( !_ISR_Signals_to_thread_executing ) + * goto easy_exit + * _ISR_Signals_to_thread_executing = 0; + */ + cmpwi r28, 0 + beq LABEL (easy_exit) + + /* + * switch: + * call _Thread_Dispatch() or prepare to return to _ISR_Dispatch + */ +LABEL (switch): + stw r6, 0(r31) + /* Re-enable interrupts */ + lwz r0, IP_MSR(r1) +#if (PPC_ABI == PPC_ABI_POWEROPEN) + lwz r2, Dispatch_r2(r11) +#else + /* R2 and R13 still hold their values from the last call */ +#endif + mtmsr r0 + bl SYM (_Thread_Dispatch) + /* NOP marker for debuggers */ + or r6,r6,r6 + /* + * prepare to get out of interrupt + */ + /* Re-disable IRQs */ +#if (PPC_USE_SPRG) + mfspr r0, sprg2 +#else + lis r11,_CPU_IRQ_info@ha + addi r11,r11,_CPU_IRQ_info@l + lwz r0,msr_initial(r11) + lis r5,~PPC_MSR_DISABLE_MASK@ha + ori r5,r5,~PPC_MSR_DISABLE_MASK@l + and r0,r0,r5 +#endif + mtmsr r0 + + /* + * easy_exit: + * prepare to get out of interrupt + * return from interrupt + */ +LABEL (easy_exit): + lwz r5, IP_CR(r1) + lwz r6, IP_CTR(r1) + lwz r7, IP_XER(r1) + lwz r8, IP_LR(r1) + lwz r9, IP_PC(r1) + lwz r10, IP_MSR(r1) + mtcrf 255,r5 + mtctr r6 + mtxer r7 + mtlr r8 + MTPC (r9) + MTMSR (r10) + lwz r0, IP_0(r1) + lwz r2, IP_2(r1) + lwz r3, IP_3(r1) + lwz r4, IP_4(r1) + lwz r5, IP_5(r1) + lwz r6, IP_6(r1) + lwz r7, IP_7(r1) + lwz r8, IP_8(r1) + lwz r9, IP_9(r1) + lwz r10, IP_10(r1) + lwz r11, IP_11(r1) + lwz r12, IP_12(r1) + lwz r13, IP_13(r1) + lmw r28, IP_28(r1) + lwz r1, 0(r1) diff --git a/c/src/lib/libbsp/powerpc/support/old_exception_processing/ppccache.c b/c/src/lib/libbsp/powerpc/support/old_exception_processing/ppccache.c new file mode 100644 index 0000000000..ecfb4b96ca --- /dev/null +++ b/c/src/lib/libbsp/powerpc/support/old_exception_processing/ppccache.c @@ -0,0 +1,61 @@ +/* + * PowerPC Cache enable routines + * + * $Id$ + */ + +#include + +#define PPC_Get_HID0( _value ) \ + do { \ + _value = 0; /* to avoid warnings */ \ + asm volatile( \ + "mfspr %0, 0x3f0;" /* get HID0 */ \ + "isync" \ + : "=r" (_value) \ + : "0" (_value) \ + ); \ + } while (0) + +#define PPC_Set_HID0( _value ) \ + do { \ + asm volatile( \ + "isync;" \ + "mtspr 0x3f0, %0;" /* load HID0 */ \ + "isync" \ + : "=r" (_value) \ + : "0" (_value) \ + ); \ + } while (0) + + +void powerpc_instruction_cache_enable () +{ + unsigned32 value; + + /* + * Enable the instruction cache + */ + + PPC_Get_HID0( value ); + + value |= 0x00008000; /* Set ICE bit */ + + PPC_Set_HID0( value ); +} + +void powerpc_data_cache_enable () +{ + unsigned32 value; + + /* + * enable data cache + */ + + PPC_Get_HID0( value ); + + value |= 0x00004000; /* set DCE bit */ + + PPC_Set_HID0( value ); +} + diff --git a/c/src/lib/libbsp/powerpc/support/old_exception_processing/rtems.S b/c/src/lib/libbsp/powerpc/support/old_exception_processing/rtems.S new file mode 100644 index 0000000000..b653152411 --- /dev/null +++ b/c/src/lib/libbsp/powerpc/support/old_exception_processing/rtems.S @@ -0,0 +1,132 @@ +/* rtems.s + * + * This file contains the single entry point code for + * the PowerPC implementation of RTEMS. + * + * Author: Andrew Bray + * + * COPYRIGHT (c) 1995 by i-cubed ltd. + * + * To anyone who acknowledges that this file is provided "AS IS" + * without any express or implied warranty: + * permission to use, copy, modify, and distribute this file + * for any purpose is hereby granted without fee, provided that + * the above copyright notice and this notice appears in all + * copies, and that the name of i-cubed limited not be used in + * advertising or publicity pertaining to distribution of the + * software without specific, written prior permission. + * i-cubed limited makes no representations about the suitability + * of this software for any purpose. + * + * Derived from c/src/exec/cpu/no_cpu/rtems.c: + * + * COPYRIGHT (c) 1989-1997. + * On-Line Applications Research Corporation (OAR). + * Copyright assigned to U.S. Government, 1994. + * + * The license and distribution terms for this file may in + * the file LICENSE in this distribution or at + * http://www.OARcorp.com/rtems/license.html. + * + * $Id$ + */ + +#include + + BEGIN_CODE +/* + * RTEMS + * + * This routine jumps to the directive indicated in r11. + * This routine is used when RTEMS is linked by itself and placed + * in ROM. This routine is the first address in the ROM space for + * RTEMS. The user "calls" this address with the directive arguments + * in the normal place. + * This routine then jumps indirectly to the correct directive + * preserving the arguments. The directive should not realize + * it has been "wrapped" in this way. The table "_Entry_points" + * is used to look up the directive. + */ + + ALIGN (4, 2) + PUBLIC_PROC (RTEMS) +PROC (RTEMS): +#if (PPC_ABI == PPC_ABI_POWEROPEN) + mflr r0 + stw r0, 8(r1) + stwu r1, -64(r1) + + /* Establish addressing */ + bl base +base: + mflr r12 + addi r12, r12, tabaddr - base + + lwz r12, Entry_points-abase(r12) + slwi r11, r11, 2 + lwzx r12, r12, r11 + + stw r2, 56(r1) + lwz r0, 0(r12) + mtlr r0 + lwz r2, 4(r12) + lwz r11, 8(r12) + blrl + lwz r2, 56(r1) + addi r1, r1, 64 + lwz r0, 8(r1) + mtlr r0 +#else + mflr r0 + stw r0, 4(r1) + stwu r1, -16(r1) + + /* Establish addressing */ + bl base +base: + mflr r12 + addi r12, r12, tabaddr - base + + lwz r12, Entry_points-abase(r12) + slwi r11, r11, 2 + lwzx r11, r12, r11 + + stw r2, 8(r1) +#if (PPC_ABI != PPC_ABI_GCC27) + stw r13, 12(r1) +#endif + mtlr r11 + lwz r11, irqinfo-abase(r12) + lwz r2, 0(r11) +#if (PPC_ABI != PPC_ABI_GCC27) + lwz r13, 4(r11) +#endif + blrl + lwz r2, 8(r1) +#if (PPC_ABI != PPC_ABI_GCC27) + lwz r13, 12(r1) +#endif + addi r1, r1, 16 + lwz r0, 4(r1) + mtlr r0 +#endif + blr + + + /* Addressability stuff */ +tabaddr: +abase: + EXTERN_VAR (_Entry_points) +Entry_points: + EXT_SYM_REF (_Entry_points) +#if (PPC_ABI != PPC_ABI_POWEROPEN) + EXTERN_VAR (_CPU_IRQ_info) +irqinfo: + EXT_SYM_REF (_CPU_IRQ_info) +#endif + +#if (PPC_ABI == PPC_ABI_POWEROPEN) + DESCRIPTOR (RTEMS) +#endif + + -- cgit v1.2.3