From 25d457b86445bc7f088da5dd9b2c06fb78eb9761 Mon Sep 17 00:00:00 2001 From: Joel Sherrill Date: Thu, 18 Feb 1999 18:16:40 +0000 Subject: Yet another part of automake VI from Ralf Corsepius : > 4) rtems-rc-19990202-0.diff /reorg-score-cpu.sh > > reorg-score-cpu.sh reorganizes the cpu//* subdirectories in a > similar manner than previous reorg scripts did. rtems-rc-19990202-0.diff > contains the diffs after reorg-score-cpu.sh has been run on a > rtems-19981215 snapshot + my patches up to rtems-rc-19990131-2.diff. > > This patch is rather nasty and may break something. However, I've tested > it for about 10 different target/bsp pairs and believe to have shaken > out most bugs. I wonder about the following .h files that were not moved: a29k/asm.h a29k/cpu_asm.h i386/asm.h i960/asm.h m68k/asm.h m68k/m68302.h m68k/m68360.h m68k/qsm.h m68k/sim.h mips64orion/asm.h mips64orion/cpu_asm.h mips64orion/mips64orion.h no_cpu/asm.h no_cpu/cpu_asm.h powerpc/asm.h powerpc/mpc860.h sh/asm.h sparc/asm.h sparc/erc32.h --- c/src/exec/score/cpu/mips64orion/Makefile.in | 62 +- c/src/exec/score/cpu/mips64orion/cpu.h | 969 --------------------------- c/src/exec/score/cpu/mips64orion/idtcpu.h | 440 ------------ c/src/exec/score/cpu/mips64orion/idtmon.h | 171 ----- c/src/exec/score/cpu/mips64orion/iregdef.h | 325 --------- c/src/exec/score/cpu/mips64orion/mipstypes.h | 73 -- 6 files changed, 2 insertions(+), 2038 deletions(-) delete mode 100644 c/src/exec/score/cpu/mips64orion/cpu.h delete mode 100644 c/src/exec/score/cpu/mips64orion/idtcpu.h delete mode 100644 c/src/exec/score/cpu/mips64orion/idtmon.h delete mode 100644 c/src/exec/score/cpu/mips64orion/iregdef.h delete mode 100644 c/src/exec/score/cpu/mips64orion/mipstypes.h (limited to 'c/src/exec/score/cpu/mips64orion') diff --git a/c/src/exec/score/cpu/mips64orion/Makefile.in b/c/src/exec/score/cpu/mips64orion/Makefile.in index 16d0ba4f82..94424f094e 100644 --- a/c/src/exec/score/cpu/mips64orion/Makefile.in +++ b/c/src/exec/score/cpu/mips64orion/Makefile.in @@ -8,65 +8,7 @@ VPATH = @srcdir@ RTEMS_ROOT = @top_srcdir@ PROJECT_ROOT = @PROJECT_ROOT@ -RELS=$(ARCH)/rtems-cpu.rel - -# C source names, if any, go here -- minus the .c -# Normally cpu_asm and rtems are assembly files -C_PIECES=cpu rtems -C_FILES=$(C_PIECES:%=%.c) -C_O_FILES=$(C_PIECES:%=${ARCH}/%.o) - -H_FILES=$(srcdir)/cpu.h $(srcdir)/mips64orion.h $(srcdir)/mipstypes.h \ - $(srcdir)/idtcpu.h $(srcdir)/iregdef.h $(srcdir)/idtmon.h - -# H_FILES that get installed externally -EXTERNAL_H_FILES = $(srcdir)/asm.h - -# Assembly source names, if any, go here -- minus the .s -# Normally cpu_asm and rtems are assembly files -S_PIECES=cpu_asm -S_FILES=$(S_PIECES:%=%.S) -S_O_FILES=$(S_FILES:%.S=${ARCH}/%.o) - -SRCS=$(C_FILES) $(CC_FILES) $(H_FILES) $(S_FILES) $(EXTERNAL_H_FILES) -OBJS=$(C_O_FILES) $(CC_O_FILES) $(S_O_FILES) - include $(RTEMS_ROOT)/make/custom/$(RTEMS_BSP).cfg -include $(RTEMS_ROOT)/make/leaf.cfg - -# -# (OPTIONAL) Add local stuff here using += -# - -DEFINES += -CPPFLAGS += -CFLAGS += $(CFLAGS_OS_V) - -LD_PATHS += -LD_LIBS += -LDFLAGS += - -# -# Add your list of files to delete here. The config files -# already know how to delete some stuff, so you may want -# to just run 'make clean' first to see what gets missed. -# 'make clobber' already includes 'make clean' -# - -CLEAN_ADDITIONS += -CLOBBER_ADDITIONS += - -all: ${ARCH} $(SRCS) preinstall $(OBJS) $(RELS) - $(INSTALL_VARIANT) -m 444 $(RELS) ${PROJECT_RELEASE}/lib - -$(ARCH)/rtems-cpu.rel: $(OBJS) - $(make-rel) - -# Install the program(s), appending _g or _p as appropriate. -# for include files, just use $(INSTALL) - -preinstall: $(ARCH) - $(INSTALL) -m 444 ${H_FILES} $(PROJECT_INCLUDE)/rtems/score -# we will share the basic cpu file - $(INSTALL) -m 444 ${EXTERNAL_H_FILES} $(PROJECT_INCLUDE) +include $(RTEMS_ROOT)/make/directory.cfg +SUB_DIRS = rtems wrap diff --git a/c/src/exec/score/cpu/mips64orion/cpu.h b/c/src/exec/score/cpu/mips64orion/cpu.h deleted file mode 100644 index 0dfa3b0e98..0000000000 --- a/c/src/exec/score/cpu/mips64orion/cpu.h +++ /dev/null @@ -1,969 +0,0 @@ -/* cpu.h - * - * This include file contains information pertaining to the IDT 4650 - * processor. - * - * Author: Craig Lebakken - * - * COPYRIGHT (c) 1996 by Transition Networks Inc. - * - * To anyone who acknowledges that this file is provided "AS IS" - * without any express or implied warranty: - * permission to use, copy, modify, and distribute this file - * for any purpose is hereby granted without fee, provided that - * the above copyright notice and this notice appears in all - * copies, and that the name of Transition Networks not be used in - * advertising or publicity pertaining to distribution of the - * software without specific, written prior permission. - * Transition Networks makes no representations about the suitability - * of this software for any purpose. - * - * Derived from c/src/exec/score/cpu/no_cpu/cpu.h: - * - * COPYRIGHT (c) 1989-1998. - * On-Line Applications Research Corporation (OAR). - * Copyright assigned to U.S. Government, 1994. - * - * The license and distribution terms for this file may be - * found in the file LICENSE in this distribution or at - * http://www.OARcorp.com/rtems/license.html. - * - * $Id$ - */ -/* @(#)cpu.h 08/29/96 1.7 */ - -#ifndef __CPU_h -#define __CPU_h - -#ifdef __cplusplus -extern "C" { -#endif - -#include /* pick up machine definitions */ -#ifndef ASM -#include -#endif - -extern int mips_disable_interrupts( void ); -extern void mips_enable_interrupts( int _level ); -extern int mips_disable_global_interrupts( void ); -extern void mips_enable_global_interrupts( void ); -extern void mips_fatal_error ( int error ); - -/* conditional compilation parameters */ - -/* - * Should the calls to _Thread_Enable_dispatch be inlined? - * - * If TRUE, then they are inlined. - * If FALSE, then a subroutine call is made. - * - * Basically this is an example of the classic trade-off of size - * versus speed. Inlining the call (TRUE) typically increases the - * size of RTEMS while speeding up the enabling of dispatching. - * [NOTE: In general, the _Thread_Dispatch_disable_level will - * only be 0 or 1 unless you are in an interrupt handler and that - * interrupt handler invokes the executive.] When not inlined - * something calls _Thread_Enable_dispatch which in turns calls - * _Thread_Dispatch. If the enable dispatch is inlined, then - * one subroutine call is avoided entirely.] - */ - -#define CPU_INLINE_ENABLE_DISPATCH TRUE - -/* - * Should the body of the search loops in _Thread_queue_Enqueue_priority - * be unrolled one time? In unrolled each iteration of the loop examines - * two "nodes" on the chain being searched. Otherwise, only one node - * is examined per iteration. - * - * If TRUE, then the loops are unrolled. - * If FALSE, then the loops are not unrolled. - * - * The primary factor in making this decision is the cost of disabling - * and enabling interrupts (_ISR_Flash) versus the cost of rest of the - * body of the loop. On some CPUs, the flash is more expensive than - * one iteration of the loop body. In this case, it might be desirable - * to unroll the loop. It is important to note that on some CPUs, this - * code is the longest interrupt disable period in RTEMS. So it is - * necessary to strike a balance when setting this parameter. - */ - -#define CPU_UNROLL_ENQUEUE_PRIORITY TRUE - -/* - * Does RTEMS manage a dedicated interrupt stack in software? - * - * If TRUE, then a stack is allocated in _Interrupt_Manager_initialization. - * If FALSE, nothing is done. - * - * If the CPU supports a dedicated interrupt stack in hardware, - * then it is generally the responsibility of the BSP to allocate it - * and set it up. - * - * If the CPU does not support a dedicated interrupt stack, then - * the porter has two options: (1) execute interrupts on the - * stack of the interrupted task, and (2) have RTEMS manage a dedicated - * interrupt stack. - * - * If this is TRUE, CPU_ALLOCATE_INTERRUPT_STACK should also be TRUE. - * - * Only one of CPU_HAS_SOFTWARE_INTERRUPT_STACK and - * CPU_HAS_HARDWARE_INTERRUPT_STACK should be set to TRUE. It is - * possible that both are FALSE for a particular CPU. Although it - * is unclear what that would imply about the interrupt processing - * procedure on that CPU. - */ - -#define CPU_HAS_SOFTWARE_INTERRUPT_STACK FALSE - -/* - * Does this CPU have hardware support for a dedicated interrupt stack? - * - * If TRUE, then it must be installed during initialization. - * If FALSE, then no installation is performed. - * - * If this is TRUE, CPU_ALLOCATE_INTERRUPT_STACK should also be TRUE. - * - * Only one of CPU_HAS_SOFTWARE_INTERRUPT_STACK and - * CPU_HAS_HARDWARE_INTERRUPT_STACK should be set to TRUE. It is - * possible that both are FALSE for a particular CPU. Although it - * is unclear what that would imply about the interrupt processing - * procedure on that CPU. - */ - -#define CPU_HAS_HARDWARE_INTERRUPT_STACK FALSE - -/* - * Does RTEMS allocate a dedicated interrupt stack in the Interrupt Manager? - * - * If TRUE, then the memory is allocated during initialization. - * If FALSE, then the memory is allocated during initialization. - * - * This should be TRUE is CPU_HAS_SOFTWARE_INTERRUPT_STACK is TRUE - * or CPU_INSTALL_HARDWARE_INTERRUPT_STACK is TRUE. - */ - -#define CPU_ALLOCATE_INTERRUPT_STACK FALSE - -/* - * Does the RTEMS invoke the user's ISR with the vector number and - * a pointer to the saved interrupt frame (1) or just the vector - * number (0)? - */ - -#define CPU_ISR_PASSES_FRAME_POINTER 0 - -/* - * Does the CPU have hardware floating point? - * - * If TRUE, then the RTEMS_FLOATING_POINT task attribute is supported. - * If FALSE, then the RTEMS_FLOATING_POINT task attribute is ignored. - * - * If there is a FP coprocessor such as the i387 or mc68881, then - * the answer is TRUE. - * - * The macro name "MIPS64ORION_HAS_FPU" should be made CPU specific. - * It indicates whether or not this CPU model has FP support. For - * example, it would be possible to have an i386_nofp CPU model - * which set this to false to indicate that you have an i386 without - * an i387 and wish to leave floating point support out of RTEMS. - */ - -#if ( MIPS64ORION_HAS_FPU == 1 ) -#define CPU_HARDWARE_FP TRUE -#else -#define CPU_HARDWARE_FP FALSE -#endif - -/* - * Are all tasks RTEMS_FLOATING_POINT tasks implicitly? - * - * If TRUE, then the RTEMS_FLOATING_POINT task attribute is assumed. - * If FALSE, then the RTEMS_FLOATING_POINT task attribute is followed. - * - * So far, the only CPU in which this option has been used is the - * HP PA-RISC. The HP C compiler and gcc both implicitly use the - * floating point registers to perform integer multiplies. If - * a function which you would not think utilize the FP unit DOES, - * then one can not easily predict which tasks will use the FP hardware. - * In this case, this option should be TRUE. - * - * If CPU_HARDWARE_FP is FALSE, then this should be FALSE as well. - */ - -#define CPU_ALL_TASKS_ARE_FP FALSE - -/* - * Should the IDLE task have a floating point context? - * - * If TRUE, then the IDLE task is created as a RTEMS_FLOATING_POINT task - * and it has a floating point context which is switched in and out. - * If FALSE, then the IDLE task does not have a floating point context. - * - * Setting this to TRUE negatively impacts the time required to preempt - * the IDLE task from an interrupt because the floating point context - * must be saved as part of the preemption. - */ - -#define CPU_IDLE_TASK_IS_FP FALSE - -/* - * Should the saving of the floating point registers be deferred - * until a context switch is made to another different floating point - * task? - * - * If TRUE, then the floating point context will not be stored until - * necessary. It will remain in the floating point registers and not - * disturned until another floating point task is switched to. - * - * If FALSE, then the floating point context is saved when a floating - * point task is switched out and restored when the next floating point - * task is restored. The state of the floating point registers between - * those two operations is not specified. - * - * If the floating point context does NOT have to be saved as part of - * interrupt dispatching, then it should be safe to set this to TRUE. - * - * Setting this flag to TRUE results in using a different algorithm - * for deciding when to save and restore the floating point context. - * The deferred FP switch algorithm minimizes the number of times - * the FP context is saved and restored. The FP context is not saved - * until a context switch is made to another, different FP task. - * Thus in a system with only one FP task, the FP context will never - * be saved or restored. - */ - -#define CPU_USE_DEFERRED_FP_SWITCH TRUE - -/* - * Does this port provide a CPU dependent IDLE task implementation? - * - * If TRUE, then the routine _CPU_Internal_threads_Idle_thread_body - * must be provided and is the default IDLE thread body instead of - * _Internal_threads_Idle_thread_body. - * - * If FALSE, then use the generic IDLE thread body if the BSP does - * not provide one. - * - * This is intended to allow for supporting processors which have - * a low power or idle mode. When the IDLE thread is executed, then - * the CPU can be powered down. - * - * The order of precedence for selecting the IDLE thread body is: - * - * 1. BSP provided - * 2. CPU dependent (if provided) - * 3. generic (if no BSP and no CPU dependent) - */ - -/* we can use the low power wait instruction for the IDLE thread */ -#define CPU_PROVIDES_IDLE_THREAD_BODY TRUE - -/* - * Does the stack grow up (toward higher addresses) or down - * (toward lower addresses)? - * - * If TRUE, then the grows upward. - * If FALSE, then the grows toward smaller addresses. - */ - -/* our stack grows down */ -#define CPU_STACK_GROWS_UP FALSE - -/* - * The following is the variable attribute used to force alignment - * of critical RTEMS structures. On some processors it may make - * sense to have these aligned on tighter boundaries than - * the minimum requirements of the compiler in order to have as - * much of the critical data area as possible in a cache line. - * - * The placement of this macro in the declaration of the variables - * is based on the syntactically requirements of the GNU C - * "__attribute__" extension. For example with GNU C, use - * the following to force a structures to a 32 byte boundary. - * - * __attribute__ ((aligned (32))) - * - * NOTE: Currently only the Priority Bit Map table uses this feature. - * To benefit from using this, the data must be heavily - * used so it will stay in the cache and used frequently enough - * in the executive to justify turning this on. - */ - -/* our cache line size is 16 bytes */ -#if __GNUC__ -#define CPU_STRUCTURE_ALIGNMENT __attribute__ ((aligned (16))) -#else -#define CPU_STRUCTURE_ALIGNMENT -#endif - -/* - * Define what is required to specify how the network to host conversion - * routines are handled. - */ - -#define CPU_CPU_HAS_OWN_HOST_TO_NETWORK_ROUTINES FALSE -#define CPU_BIG_ENDIAN TRUE -#define CPU_LITTLE_ENDIAN FALSE - -/* - * The following defines the number of bits actually used in the - * interrupt field of the task mode. How those bits map to the - * CPU interrupt levels is defined by the routine _CPU_ISR_Set_level(). - */ - -#define CPU_MODES_INTERRUPT_MASK 0x00000001 - -/* - * Processor defined structures - * - * Examples structures include the descriptor tables from the i386 - * and the processor control structure on the i960ca. - */ - -/* may need to put some structures here. */ - -/* - * Contexts - * - * Generally there are 2 types of context to save. - * 1. Interrupt registers to save - * 2. Task level registers to save - * - * This means we have the following 3 context items: - * 1. task level context stuff:: Context_Control - * 2. floating point task stuff:: Context_Control_fp - * 3. special interrupt level context :: Context_Control_interrupt - * - * On some processors, it is cost-effective to save only the callee - * preserved registers during a task context switch. This means - * that the ISR code needs to save those registers which do not - * persist across function calls. It is not mandatory to make this - * distinctions between the caller/callee saves registers for the - * purpose of minimizing context saved during task switch and on interrupts. - * If the cost of saving extra registers is minimal, simplicity is the - * choice. Save the same context on interrupt entry as for tasks in - * this case. - * - * Additionally, if gdb is to be made aware of RTEMS tasks for this CPU, then - * care should be used in designing the context area. - * - * On some CPUs with hardware floating point support, the Context_Control_fp - * structure will not be used or it simply consist of an array of a - * fixed number of bytes. This is done when the floating point context - * is dumped by a "FP save context" type instruction and the format - * is not really defined by the CPU. In this case, there is no need - * to figure out the exact format -- only the size. Of course, although - * this is enough information for RTEMS, it is probably not enough for - * a debugger such as gdb. But that is another problem. - */ - -/* WARNING: If this structure is modified, the constants in cpu.h must be updated. */ -typedef struct { - unsigned64 s0; - unsigned64 s1; - unsigned64 s2; - unsigned64 s3; - unsigned64 s4; - unsigned64 s5; - unsigned64 s6; - unsigned64 s7; - unsigned64 sp; - unsigned64 fp; - unsigned64 ra; - unsigned64 c0_sr; - unsigned64 c0_epc; -} Context_Control; - -/* WARNING: If this structure is modified, the constants in cpu.h must be updated. */ -typedef struct { - unsigned32 fp0; - unsigned32 fp1; - unsigned32 fp2; - unsigned32 fp3; - unsigned32 fp4; - unsigned32 fp5; - unsigned32 fp6; - unsigned32 fp7; - unsigned32 fp8; - unsigned32 fp9; - unsigned32 fp10; - unsigned32 fp11; - unsigned32 fp12; - unsigned32 fp13; - unsigned32 fp14; - unsigned32 fp15; - unsigned32 fp16; - unsigned32 fp17; - unsigned32 fp18; - unsigned32 fp19; - unsigned32 fp20; - unsigned32 fp21; - unsigned32 fp22; - unsigned32 fp23; - unsigned32 fp24; - unsigned32 fp25; - unsigned32 fp26; - unsigned32 fp27; - unsigned32 fp28; - unsigned32 fp29; - unsigned32 fp30; - unsigned32 fp31; -} Context_Control_fp; - -typedef struct { - unsigned32 special_interrupt_register; -} CPU_Interrupt_frame; - - -/* - * The following table contains the information required to configure - * the mips processor specific parameters. - */ - -typedef struct { - void (*pretasking_hook)( void ); - void (*predriver_hook)( void ); - void (*postdriver_hook)( void ); - void (*idle_task)( void ); - boolean do_zero_of_workspace; - unsigned32 idle_task_stack_size; - unsigned32 interrupt_stack_size; - unsigned32 extra_mpci_receive_server_stack; - void * (*stack_allocate_hook)( unsigned32 ); - void (*stack_free_hook)( void* ); - /* end of fields required on all CPUs */ - - unsigned32 some_other_cpu_dependent_info; -} rtems_cpu_table; - -/* - * This variable is optional. It is used on CPUs on which it is difficult - * to generate an "uninitialized" FP context. It is filled in by - * _CPU_Initialize and copied into the task's FP context area during - * _CPU_Context_Initialize. - */ - -SCORE_EXTERN Context_Control_fp _CPU_Null_fp_context; - -/* - * On some CPUs, RTEMS supports a software managed interrupt stack. - * This stack is allocated by the Interrupt Manager and the switch - * is performed in _ISR_Handler. These variables contain pointers - * to the lowest and highest addresses in the chunk of memory allocated - * for the interrupt stack. Since it is unknown whether the stack - * grows up or down (in general), this give the CPU dependent - * code the option of picking the version it wants to use. - * - * NOTE: These two variables are required if the macro - * CPU_HAS_SOFTWARE_INTERRUPT_STACK is defined as TRUE. - */ - -SCORE_EXTERN void *_CPU_Interrupt_stack_low; -SCORE_EXTERN void *_CPU_Interrupt_stack_high; - -/* - * With some compilation systems, it is difficult if not impossible to - * call a high-level language routine from assembly language. This - * is especially true of commercial Ada compilers and name mangling - * C++ ones. This variable can be optionally defined by the CPU porter - * and contains the address of the routine _Thread_Dispatch. This - * can make it easier to invoke that routine at the end of the interrupt - * sequence (if a dispatch is necessary). - */ - -SCORE_EXTERN void (*_CPU_Thread_dispatch_pointer)(); - -/* - * Nothing prevents the porter from declaring more CPU specific variables. - */ - -/* XXX: if needed, put more variables here */ - -/* - * The size of the floating point context area. On some CPUs this - * will not be a "sizeof" because the format of the floating point - * area is not defined -- only the size is. This is usually on - * CPUs with a "floating point save context" instruction. - */ - -#define CPU_CONTEXT_FP_SIZE sizeof( Context_Control_fp ) - -/* - * Amount of extra stack (above minimum stack size) required by - * system initialization thread. Remember that in a multiprocessor - * system the system intialization thread becomes the MP server thread. - */ - -#define CPU_MPCI_RECEIVE_SERVER_EXTRA_STACK 0 - -/* - * This defines the number of entries in the ISR_Vector_table managed - * by RTEMS. - */ - -#define CPU_INTERRUPT_NUMBER_OF_VECTORS 8 -#define CPU_INTERRUPT_MAXIMUM_VECTOR_NUMBER (CPU_INTERRUPT_NUMBER_OF_VECTORS - 1) - -/* - * Should be large enough to run all RTEMS tests. This insures - * that a "reasonable" small application should not have any problems. - */ - -#define CPU_STACK_MINIMUM_SIZE (2048*sizeof(unsigned32)) - -/* - * CPU's worst alignment requirement for data types on a byte boundary. This - * alignment does not take into account the requirements for the stack. - */ - -#define CPU_ALIGNMENT 8 - -/* - * This number corresponds to the byte alignment requirement for the - * heap handler. This alignment requirement may be stricter than that - * for the data types alignment specified by CPU_ALIGNMENT. It is - * common for the heap to follow the same alignment requirement as - * CPU_ALIGNMENT. If the CPU_ALIGNMENT is strict enough for the heap, - * then this should be set to CPU_ALIGNMENT. - * - * NOTE: This does not have to be a power of 2. It does have to - * be greater or equal to than CPU_ALIGNMENT. - */ - -#define CPU_HEAP_ALIGNMENT CPU_ALIGNMENT - -/* - * This number corresponds to the byte alignment requirement for memory - * buffers allocated by the partition manager. This alignment requirement - * may be stricter than that for the data types alignment specified by - * CPU_ALIGNMENT. It is common for the partition to follow the same - * alignment requirement as CPU_ALIGNMENT. If the CPU_ALIGNMENT is strict - * enough for the partition, then this should be set to CPU_ALIGNMENT. - * - * NOTE: This does not have to be a power of 2. It does have to - * be greater or equal to than CPU_ALIGNMENT. - */ - -#define CPU_PARTITION_ALIGNMENT CPU_ALIGNMENT - -/* - * This number corresponds to the byte alignment requirement for the - * stack. This alignment requirement may be stricter than that for the - * data types alignment specified by CPU_ALIGNMENT. If the CPU_ALIGNMENT - * is strict enough for the stack, then this should be set to 0. - * - * NOTE: This must be a power of 2 either 0 or greater than CPU_ALIGNMENT. - */ - -#define CPU_STACK_ALIGNMENT CPU_ALIGNMENT - -/* ISR handler macros */ - -/* - * Disable all interrupts for an RTEMS critical section. The previous - * level is returned in _level. - */ - -#define _CPU_ISR_Disable( _int_level ) \ - do{ \ - _int_level = mips_disable_interrupts(); \ - }while(0) - -/* - * Enable interrupts to the previous level (returned by _CPU_ISR_Disable). - * This indicates the end of an RTEMS critical section. The parameter - * _level is not modified. - */ - -#define _CPU_ISR_Enable( _level ) \ - do{ \ - mips_enable_interrupts(_level); \ - }while(0) - -/* - * This temporarily restores the interrupt to _level before immediately - * disabling them again. This is used to divide long RTEMS critical - * sections into two or more parts. The parameter _level is not - * modified. - */ - -#define _CPU_ISR_Flash( _xlevel ) \ - do{ \ - int _scratch; \ - _CPU_ISR_Enable( _xlevel ); \ - _CPU_ISR_Disable( _scratch ); \ - }while(0) - -/* - * Map interrupt level in task mode onto the hardware that the CPU - * actually provides. Currently, interrupt levels which do not - * map onto the CPU in a generic fashion are undefined. Someday, - * it would be nice if these were "mapped" by the application - * via a callout. For example, m68k has 8 levels 0 - 7, levels - * 8 - 255 would be available for bsp/application specific meaning. - * This could be used to manage a programmable interrupt controller - * via the rtems_task_mode directive. - */ -extern void _CPU_ISR_Set_level( unsigned32 _new_level ); - -unsigned32 _CPU_ISR_Get_level( void ); - -/* end of ISR handler macros */ - -/* Context handler macros */ - -/* - * Initialize the context to a state suitable for starting a - * task after a context restore operation. Generally, this - * involves: - * - * - setting a starting address - * - preparing the stack - * - preparing the stack and frame pointers - * - setting the proper interrupt level in the context - * - initializing the floating point context - * - * This routine generally does not set any unnecessary register - * in the context. The state of the "general data" registers is - * undefined at task start time. - * - * NOTE: This is_fp parameter is TRUE if the thread is to be a floating - * point thread. This is typically only used on CPUs where the - * FPU may be easily disabled by software such as on the SPARC - * where the PSR contains an enable FPU bit. - */ - -#define _CPU_Context_Initialize( _the_context, _stack_base, _size, \ - _isr, _entry_point, _is_fp ) \ - { \ - unsigned32 _stack_tmp = (unsigned32)(_stack_base) + (_size) - CPU_STACK_ALIGNMENT; \ - _stack_tmp &= ~(CPU_STACK_ALIGNMENT - 1); \ - (_the_context)->sp = _stack_tmp; \ - (_the_context)->fp = _stack_tmp; \ - (_the_context)->ra = (unsigned64)_entry_point; \ - (_the_context)->c0_sr = 0; \ - } - -/* - * This routine is responsible for somehow restarting the currently - * executing task. If you are lucky, then all that is necessary - * is restoring the context. Otherwise, there will need to be - * a special assembly routine which does something special in this - * case. Context_Restore should work most of the time. It will - * not work if restarting self conflicts with the stack frame - * assumptions of restoring a context. - */ - -#define _CPU_Context_Restart_self( _the_context ) \ - _CPU_Context_restore( (_the_context) ); - -/* - * The purpose of this macro is to allow the initial pointer into - * A floating point context area (used to save the floating point - * context) to be at an arbitrary place in the floating point - * context area. - * - * This is necessary because some FP units are designed to have - * their context saved as a stack which grows into lower addresses. - * Other FP units can be saved by simply moving registers into offsets - * from the base of the context area. Finally some FP units provide - * a "dump context" instruction which could fill in from high to low - * or low to high based on the whim of the CPU designers. - */ - -#define _CPU_Context_Fp_start( _base, _offset ) \ - ( (void *) _Addresses_Add_offset( (_base), (_offset) ) ) - -/* - * This routine initializes the FP context area passed to it to. - * There are a few standard ways in which to initialize the - * floating point context. The code included for this macro assumes - * that this is a CPU in which a "initial" FP context was saved into - * _CPU_Null_fp_context and it simply copies it to the destination - * context passed to it. - * - * Other models include (1) not doing anything, and (2) putting - * a "null FP status word" in the correct place in the FP context. - */ - -#define _CPU_Context_Initialize_fp( _destination ) \ - { \ - *((Context_Control_fp *) *((void **) _destination)) = _CPU_Null_fp_context; \ - } - -/* end of Context handler macros */ - -/* Fatal Error manager macros */ - -/* - * This routine copies _error into a known place -- typically a stack - * location or a register, optionally disables interrupts, and - * halts/stops the CPU. - */ - -#define _CPU_Fatal_halt( _error ) \ - { \ - mips_disable_global_interrupts(); \ - mips_fatal_error(_error); \ - } - -/* end of Fatal Error manager macros */ - -/* Bitfield handler macros */ - -/* - * This routine sets _output to the bit number of the first bit - * set in _value. _value is of CPU dependent type Priority_Bit_map_control. - * This type may be either 16 or 32 bits wide although only the 16 - * least significant bits will be used. - * - * There are a number of variables in using a "find first bit" type - * instruction. - * - * (1) What happens when run on a value of zero? - * (2) Bits may be numbered from MSB to LSB or vice-versa. - * (3) The numbering may be zero or one based. - * (4) The "find first bit" instruction may search from MSB or LSB. - * - * RTEMS guarantees that (1) will never happen so it is not a concern. - * (2),(3), (4) are handled by the macros _CPU_Priority_mask() and - * _CPU_Priority_bits_index(). These three form a set of routines - * which must logically operate together. Bits in the _value are - * set and cleared based on masks built by _CPU_Priority_mask(). - * The basic major and minor values calculated by _Priority_Major() - * and _Priority_Minor() are "massaged" by _CPU_Priority_bits_index() - * to properly range between the values returned by the "find first bit" - * instruction. This makes it possible for _Priority_Get_highest() to - * calculate the major and directly index into the minor table. - * This mapping is necessary to ensure that 0 (a high priority major/minor) - * is the first bit found. - * - * This entire "find first bit" and mapping process depends heavily - * on the manner in which a priority is broken into a major and minor - * components with the major being the 4 MSB of a priority and minor - * the 4 LSB. Thus (0 << 4) + 0 corresponds to priority 0 -- the highest - * priority. And (15 << 4) + 14 corresponds to priority 254 -- the next - * to the lowest priority. - * - * If your CPU does not have a "find first bit" instruction, then - * there are ways to make do without it. Here are a handful of ways - * to implement this in software: - * - * - a series of 16 bit test instructions - * - a "binary search using if's" - * - _number = 0 - * if _value > 0x00ff - * _value >>=8 - * _number = 8; - * - * if _value > 0x0000f - * _value >=8 - * _number += 4 - * - * _number += bit_set_table[ _value ] - * - * where bit_set_table[ 16 ] has values which indicate the first - * bit set - */ - -#define CPU_USE_GENERIC_BITFIELD_CODE TRUE -#define CPU_USE_GENERIC_BITFIELD_DATA TRUE - -#if (CPU_USE_GENERIC_BITFIELD_CODE == FALSE) - -#define _CPU_Bitfield_Find_first_bit( _value, _output ) \ - { \ - (_output) = 0; /* do something to prevent warnings */ \ - } - -#endif - -/* end of Bitfield handler macros */ - -/* - * This routine builds the mask which corresponds to the bit fields - * as searched by _CPU_Bitfield_Find_first_bit(). See the discussion - * for that routine. - */ - -#if (CPU_USE_GENERIC_BITFIELD_CODE == FALSE) - -#define _CPU_Priority_Mask( _bit_number ) \ - ( 1 << (_bit_number) ) - -#endif - -/* - * This routine translates the bit numbers returned by - * _CPU_Bitfield_Find_first_bit() into something suitable for use as - * a major or minor component of a priority. See the discussion - * for that routine. - */ - -#if (CPU_USE_GENERIC_BITFIELD_CODE == FALSE) - -#define _CPU_Priority_bits_index( _priority ) \ - (_priority) - -#endif - -/* end of Priority handler macros */ - -/* functions */ - -/* - * _CPU_Initialize - * - * This routine performs CPU dependent initialization. - */ - -void _CPU_Initialize( - rtems_cpu_table *cpu_table, - void (*thread_dispatch) -); - -/* - * _CPU_ISR_install_raw_handler - * - * This routine installs a "raw" interrupt handler directly into the - * processor's vector table. - */ - -void _CPU_ISR_install_raw_handler( - unsigned32 vector, - proc_ptr new_handler, - proc_ptr *old_handler -); - -/* - * _CPU_ISR_install_vector - * - * This routine installs an interrupt vector. - */ - -void _CPU_ISR_install_vector( - unsigned32 vector, - proc_ptr new_handler, - proc_ptr *old_handler -); - -/* - * _CPU_Install_interrupt_stack - * - * This routine installs the hardware interrupt stack pointer. - * - * NOTE: It need only be provided if CPU_HAS_HARDWARE_INTERRUPT_STACK - * is TRUE. - */ - -void _CPU_Install_interrupt_stack( void ); - -/* - * _CPU_Internal_threads_Idle_thread_body - * - * This routine is the CPU dependent IDLE thread body. - * - * NOTE: It need only be provided if CPU_PROVIDES_IDLE_THREAD_BODY - * is TRUE. - */ - -void _CPU_Thread_Idle_body( void ); - -/* - * _CPU_Context_switch - * - * This routine switches from the run context to the heir context. - */ - -void _CPU_Context_switch( - Context_Control *run, - Context_Control *heir -); - -/* - * _CPU_Context_restore - * - * This routine is generally used only to restart self in an - * efficient manner. It may simply be a label in _CPU_Context_switch. - * - * NOTE: May be unnecessary to reload some registers. - */ - -void _CPU_Context_restore( - Context_Control *new_context -); - -/* - * _CPU_Context_save_fp - * - * This routine saves the floating point context passed to it. - */ - -void _CPU_Context_save_fp( - void **fp_context_ptr -); - -/* - * _CPU_Context_restore_fp - * - * This routine restores the floating point context passed to it. - */ - -void _CPU_Context_restore_fp( - void **fp_context_ptr -); - -/* The following routine swaps the endian format of an unsigned int. - * It must be static because it is referenced indirectly. - * - * This version will work on any processor, but if there is a better - * way for your CPU PLEASE use it. The most common way to do this is to: - * - * swap least significant two bytes with 16-bit rotate - * swap upper and lower 16-bits - * swap most significant two bytes with 16-bit rotate - * - * Some CPUs have special instructions which swap a 32-bit quantity in - * a single instruction (e.g. i486). It is probably best to avoid - * an "endian swapping control bit" in the CPU. One good reason is - * that interrupts would probably have to be disabled to insure that - * an interrupt does not try to access the same "chunk" with the wrong - * endian. Another good reason is that on some CPUs, the endian bit - * endianness for ALL fetches -- both code and data -- so the code - * will be fetched incorrectly. - */ - -static inline unsigned int CPU_swap_u32( - unsigned int value -) -{ - unsigned32 byte1, byte2, byte3, byte4, swapped; - - byte4 = (value >> 24) & 0xff; - byte3 = (value >> 16) & 0xff; - byte2 = (value >> 8) & 0xff; - byte1 = value & 0xff; - - swapped = (byte1 << 24) | (byte2 << 16) | (byte3 << 8) | byte4; - return( swapped ); -} - -#define CPU_swap_u16( value ) \ - (((value&0xff) << 8) | ((value >> 8)&0xff)) - -/* - * Miscellaneous prototypes - * - * NOTE: The names should have mips64orion in them. - */ - -void disable_int( unsigned32 mask ); -void enable_int( unsigned32 mask ); - -#ifdef __cplusplus -} -#endif - -#endif diff --git a/c/src/exec/score/cpu/mips64orion/idtcpu.h b/c/src/exec/score/cpu/mips64orion/idtcpu.h deleted file mode 100644 index f921e85ef6..0000000000 --- a/c/src/exec/score/cpu/mips64orion/idtcpu.h +++ /dev/null @@ -1,440 +0,0 @@ -/* - -Based upon IDT provided code with the following release: - -This source code has been made available to you by IDT on an AS-IS -basis. Anyone receiving this source is licensed under IDT copyrights -to use it in any way he or she deems fit, including copying it, -modifying it, compiling it, and redistributing it either with or -without modifications. No license under IDT patents or patent -applications is to be implied by the copyright license. - -Any user of this software should understand that IDT cannot provide -technical support for this software and will not be responsible for -any consequences resulting from the use of this software. - -Any person who transfers this source code or any derivative work must -include the IDT copyright notice, this paragraph, and the preceeding -two paragraphs in the transferred software. - -COPYRIGHT IDT CORPORATION 1996 -LICENSED MATERIAL - PROGRAM PROPERTY OF IDT - - $Id$ -*/ - -/* -** idtcpu.h -- cpu related defines -*/ - -#ifndef _IDTCPU_H__ -#define _IDTCPU_H__ - -/* - * 950313: Ketan added Register definition for XContext reg. - * added define for WAIT instruction. - * 950421: Ketan added Register definition for Config reg (R3081) - */ - -/* -** memory configuration and mapping -*/ -#define K0BASE 0x80000000 -#define K0SIZE 0x20000000 -#define K1BASE 0xa0000000 -#define K1SIZE 0x20000000 -#define K2BASE 0xc0000000 -#define K2SIZE 0x20000000 -#if defined(CPU_R4000) -#define KSBASE 0xe0000000 -#define KSSIZE 0x20000000 -#endif - -#define KUBASE 0 -#define KUSIZE 0x80000000 - -/* -** Exception Vectors -*/ -#if defined(CPU_R3000) -#define UT_VEC K0BASE /* utlbmiss vector */ -#define E_VEC (K0BASE+0x80) /* exception vevtor */ -#endif -#if defined(CPU_R4000) -#define T_VEC (K0BASE+0x000) /* tlbmiss vector */ -#define X_VEC (K0BASE+0x080) /* xtlbmiss vector */ -#define C_VEC (K0BASE+0x100) /* cache error vector */ -#define E_VEC (K0BASE+0x180) /* exception vector */ -#endif -#define R_VEC (K1BASE+0x1fc00000) /* reset vector */ - -/* -** Address conversion macros -*/ -#ifdef CLANGUAGE -#define CAST(as) (as) -#else -#define CAST(as) -#endif -#define K0_TO_K1(x) (CAST(unsigned)(x)|0xA0000000) /* kseg0 to kseg1 */ -#define K1_TO_K0(x) (CAST(unsigned)(x)&0x9FFFFFFF) /* kseg1 to kseg0 */ -#define K0_TO_PHYS(x) (CAST(unsigned)(x)&0x1FFFFFFF) /* kseg0 to physical */ -#define K1_TO_PHYS(x) (CAST(unsigned)(x)&0x1FFFFFFF) /* kseg1 to physical */ -#define PHYS_TO_K0(x) (CAST(unsigned)(x)|0x80000000) /* physical to kseg0 */ -#define PHYS_TO_K1(x) (CAST(unsigned)(x)|0xA0000000) /* physical to kseg1 */ - -/* -** Cache size constants -*/ -#define MINCACHE 0x200 /* 512 For 3041. */ -#define MAXCACHE 0x40000 /* 256*1024 256k */ - -#if defined(CPU_R4000) -/* R4000 configuration register definitions */ -#define CFG_CM 0x80000000 /* Master-Checker mode */ -#define CFG_ECMASK 0x70000000 /* System Clock Ratio */ -#define CFG_ECBY2 0x00000000 /* divide by 2 */ -#define CFG_ECBY3 0x10000000 /* divide by 3 */ -#define CFG_ECBY4 0x20000000 /* divide by 4 */ -#define CFG_EPMASK 0x0f000000 /* Transmit data pattern */ -#define CFG_EPD 0x00000000 /* D */ -#define CFG_EPDDX 0x01000000 /* DDX */ -#define CFG_EPDDXX 0x02000000 /* DDXX */ -#define CFG_EPDXDX 0x03000000 /* DXDX */ -#define CFG_EPDDXXX 0x04000000 /* DDXXX */ -#define CFG_EPDDXXXX 0x05000000 /* DDXXXX */ -#define CFG_EPDXXDXX 0x06000000 /* DXXDXX */ -#define CFG_EPDDXXXXX 0x07000000 /* DDXXXXX */ -#define CFG_EPDXXXDXXX 0x08000000 /* DXXXDXXX */ -#define CFG_SBMASK 0x00c00000 /* Secondary cache block size */ -#define CFG_SBSHIFT 22 -#define CFG_SB4 0x00000000 /* 4 words */ -#define CFG_SB8 0x00400000 /* 8 words */ -#define CFG_SB16 0x00800000 /* 16 words */ -#define CFG_SB32 0x00c00000 /* 32 words */ -#define CFG_SS 0x00200000 /* Split secondary cache */ -#define CFG_SW 0x00100000 /* Secondary cache port width */ -#define CFG_EWMASK 0x000c0000 /* System port width */ -#define CFG_EWSHIFT 18 -#define CFG_EW64 0x00000000 /* 64 bit */ -#define CFG_EW32 0x00010000 /* 32 bit */ -#define CFG_SC 0x00020000 /* Secondary cache absent */ -#define CFG_SM 0x00010000 /* Dirty Shared mode disabled */ -#define CFG_BE 0x00008000 /* Big Endian */ -#define CFG_EM 0x00004000 /* ECC mode enable */ -#define CFG_EB 0x00002000 /* Block ordering */ -#define CFG_ICMASK 0x00000e00 /* Instruction cache size */ -#define CFG_ICSHIFT 9 -#define CFG_DCMASK 0x000001c0 /* Data cache size */ -#define CFG_DCSHIFT 6 -#define CFG_IB 0x00000020 /* Instruction cache block size */ -#define CFG_DB 0x00000010 /* Data cache block size */ -#define CFG_CU 0x00000008 /* Update on Store Conditional */ -#define CFG_K0MASK 0x00000007 /* KSEG0 coherency algorithm */ - -/* - * R4000 primary cache mode - */ -#define CFG_C_UNCACHED 2 -#define CFG_C_NONCOHERENT 3 -#define CFG_C_COHERENTXCL 4 -#define CFG_C_COHERENTXCLW 5 -#define CFG_C_COHERENTUPD 6 - -/* - * R4000 cache operations (should be in assembler...?) - */ -#define Index_Invalidate_I 0x0 /* 0 0 */ -#define Index_Writeback_Inv_D 0x1 /* 0 1 */ -#define Index_Invalidate_SI 0x2 /* 0 2 */ -#define Index_Writeback_Inv_SD 0x3 /* 0 3 */ -#define Index_Load_Tag_I 0x4 /* 1 0 */ -#define Index_Load_Tag_D 0x5 /* 1 1 */ -#define Index_Load_Tag_SI 0x6 /* 1 2 */ -#define Index_Load_Tag_SD 0x7 /* 1 3 */ -#define Index_Store_Tag_I 0x8 /* 2 0 */ -#define Index_Store_Tag_D 0x9 /* 2 1 */ -#define Index_Store_Tag_SI 0xA /* 2 2 */ -#define Index_Store_Tag_SD 0xB /* 2 3 */ -#define Create_Dirty_Exc_D 0xD /* 3 1 */ -#define Create_Dirty_Exc_SD 0xF /* 3 3 */ -#define Hit_Invalidate_I 0x10 /* 4 0 */ -#define Hit_Invalidate_D 0x11 /* 4 1 */ -#define Hit_Invalidate_SI 0x12 /* 4 2 */ -#define Hit_Invalidate_SD 0x13 /* 4 3 */ -#define Hit_Writeback_Inv_D 0x15 /* 5 1 */ -#define Hit_Writeback_Inv_SD 0x17 /* 5 3 */ -#define Fill_I 0x14 /* 5 0 */ -#define Hit_Writeback_D 0x19 /* 6 1 */ -#define Hit_Writeback_SD 0x1B /* 6 3 */ -#define Hit_Writeback_I 0x18 /* 6 0 */ -#define Hit_Set_Virtual_SI 0x1E /* 7 2 */ -#define Hit_Set_Virtual_SD 0x1F /* 7 3 */ - -#ifndef WAIT -#define WAIT .word 0x42000020 -#endif WAIT - -#ifndef wait -#define wait .word 0x42000020 -#endif wait - -#endif - -/* -** TLB resource defines -*/ -#if defined(CPU_R3000) -#define N_TLB_ENTRIES 64 -#define TLB_PGSIZE 0x1000 -#define RANDBASE 8 -#define TLBLO_PFNMASK 0xfffff000 -#define TLBLO_PFNSHIFT 12 -#define TLBLO_N 0x800 /* non-cacheable */ -#define TLBLO_D 0x400 /* writeable */ -#define TLBLO_V 0x200 /* valid bit */ -#define TLBLO_G 0x100 /* global access bit */ - -#define TLBHI_VPNMASK 0xfffff000 -#define TLBHI_VPNSHIFT 12 -#define TLBHI_PIDMASK 0xfc0 -#define TLBHI_PIDSHIFT 6 -#define TLBHI_NPID 64 - -#define TLBINX_PROBE 0x80000000 -#define TLBINX_INXMASK 0x00003f00 -#define TLBINX_INXSHIFT 8 - -#define TLBRAND_RANDMASK 0x00003f00 -#define TLBRAND_RANDSHIFT 8 - -#define TLBCTXT_BASEMASK 0xffe00000 -#define TLBCTXT_BASESHIFT 21 - -#define TLBCTXT_VPNMASK 0x001ffffc -#define TLBCTXT_VPNSHIFT 2 -#endif -#if defined(CPU_R4000) -#define N_TLB_ENTRIES 48 - -#define TLBHI_VPN2MASK 0xffffe000 -#define TLBHI_PIDMASK 0x000000ff -#define TLBHI_NPID 256 - -#define TLBLO_PFNMASK 0x3fffffc0 -#define TLBLO_PFNSHIFT 6 -#define TLBLO_D 0x00000004 /* writeable */ -#define TLBLO_V 0x00000002 /* valid bit */ -#define TLBLO_G 0x00000001 /* global access bit */ -#define TLBLO_CMASK 0x00000038 /* cache algorithm mask */ -#define TLBLO_CSHIFT 3 - -#define TLBLO_UNCACHED (CFG_C_UNCACHED< k, 1 => u */ -#define SR_IEO 0x00000010 /* old interrupt enable, 1 => enable */ -#define SR_KUP 0x00000008 /* prev kernel/user, 0 => k, 1 => u */ -#define SR_IEP 0x00000004 /* prev interrupt enable, 1 => enable */ -#define SR_KUC 0x00000002 /* cur kernel/user, 0 => k, 1 => u */ -#define SR_IEC 0x00000001 /* cur interrupt enable, 1 => enable */ -#endif - -#if defined(CPU_R4000) -#define SR_CUMASK 0xf0000000 /* coproc usable bits */ -#define SR_CU3 0x80000000 /* Coprocessor 3 usable */ -#define SR_CU2 0x40000000 /* Coprocessor 2 usable */ -#define SR_CU1 0x20000000 /* Coprocessor 1 usable */ -#define SR_CU0 0x10000000 /* Coprocessor 0 usable */ - -#define SR_RP 0x08000000 /* Reduced power operation */ -#define SR_FR 0x04000000 /* Additional floating point registers */ -#define SR_RE 0x02000000 /* Reverse endian in user mode */ - -#define SR_BEV 0x00400000 /* Use boot exception vectors */ -#define SR_TS 0x00200000 /* TLB shutdown */ -#define SR_SR 0x00100000 /* Soft reset */ -#define SR_CH 0x00040000 /* Cache hit */ -#define SR_CE 0x00020000 /* Use cache ECC */ -#define SR_DE 0x00010000 /* Disable cache exceptions */ - -/* -** status register interrupt masks and bits -*/ - -#define SR_IMASK 0x0000ff00 /* Interrupt mask */ -#define SR_IMASK8 0x00000000 /* mask level 8 */ -#define SR_IMASK7 0x00008000 /* mask level 7 */ -#define SR_IMASK6 0x0000c000 /* mask level 6 */ -#define SR_IMASK5 0x0000e000 /* mask level 5 */ -#define SR_IMASK4 0x0000f000 /* mask level 4 */ -#define SR_IMASK3 0x0000f800 /* mask level 3 */ -#define SR_IMASK2 0x0000fc00 /* mask level 2 */ -#define SR_IMASK1 0x0000fe00 /* mask level 1 */ -#define SR_IMASK0 0x0000ff00 /* mask level 0 */ - -#define SR_IMASKSHIFT 8 - -#define SR_IBIT8 0x00008000 /* bit level 8 */ -#define SR_IBIT7 0x00004000 /* bit level 7 */ -#define SR_IBIT6 0x00002000 /* bit level 6 */ -#define SR_IBIT5 0x00001000 /* bit level 5 */ -#define SR_IBIT4 0x00000800 /* bit level 4 */ -#define SR_IBIT3 0x00000400 /* bit level 3 */ -#define SR_IBIT2 0x00000200 /* bit level 2 */ -#define SR_IBIT1 0x00000100 /* bit level 1 */ - -#define SR_KSMASK 0x00000018 /* Kernel mode mask */ -#define SR_KSUSER 0x00000010 /* User mode */ -#define SR_KSSUPER 0x00000008 /* Supervisor mode */ -#define SR_KSKERNEL 0x00000000 /* Kernel mode */ -#define SR_ERL 0x00000004 /* Error level */ -#define SR_EXL 0x00000002 /* Exception level */ -#define SR_IE 0x00000001 /* Interrupts enabled */ -#endif - - - -/* - * Cause Register - */ -#define CAUSE_BD 0x80000000 /* Branch delay slot */ -#define CAUSE_CEMASK 0x30000000 /* coprocessor error */ -#define CAUSE_CESHIFT 28 - - -#define CAUSE_IPMASK 0x0000FF00 /* Pending interrupt mask */ -#define CAUSE_IPSHIFT 8 - -#define CAUSE_EXCMASK 0x0000003C /* Cause code bits */ -#define CAUSE_EXCSHIFT 2 - -#ifndef XDS -/* -** Coprocessor 0 registers -*/ -#define C0_INX $0 /* tlb index */ -#define C0_RAND $1 /* tlb random */ -#if defined(CPU_R3000) -#define C0_TLBLO $2 /* tlb entry low */ -#endif -#if defined(CPU_R4000) -#define C0_TLBLO0 $2 /* tlb entry low 0 */ -#define C0_TLBLO1 $3 /* tlb entry low 1 */ -#endif - -#define C0_CTXT $4 /* tlb context */ - -#if defined(CPU_R4000) -#define C0_PAGEMASK $5 /* tlb page mask */ -#define C0_WIRED $6 /* number of wired tlb entries */ -#endif - -#define C0_BADVADDR $8 /* bad virtual address */ - -#if defined(CPU_R4000) -#define C0_COUNT $9 /* cycle count */ -#endif - -#define C0_TLBHI $10 /* tlb entry hi */ - -#if defined(CPU_R4000) -#define C0_COMPARE $11 /* cyccle count comparator */ -#endif - -#define C0_SR $12 /* status register */ -#define C0_CAUSE $13 /* exception cause */ -#define C0_EPC $14 /* exception pc */ -#define C0_PRID $15 /* revision identifier */ - -#if defined(CPU_R3000) -#define C0_CONFIG $3 /* configuration register R3081*/ -#endif - -#if defined(CPU_R4000) -#define C0_CONFIG $16 /* configuration register */ -#define C0_LLADDR $17 /* linked load address */ -#define C0_WATCHLO $18 /* watchpoint trap register */ -#define C0_WATCHHI $19 /* watchpoint trap register */ -#define C0_XCTXT $20 /* extended tlb context */ -#define C0_ECC $26 /* secondary cache ECC control */ -#define C0_CACHEERR $27 /* cache error status */ -#define C0_TAGLO $28 /* cache tag lo */ -#define C0_TAGHI $29 /* cache tag hi */ -#define C0_ERRPC $30 /* cache error pc */ -#endif - -#endif XDS - -#ifdef R4650 -#define IWATCH $18 -#define DWATCH $19 -#define IBASE $0 -#define IBOUND $1 -#define DBASE $2 -#define DBOUND $3 -#define CALG $17 -#endif - -#endif /* _IDTCPU_H__ */ - diff --git a/c/src/exec/score/cpu/mips64orion/idtmon.h b/c/src/exec/score/cpu/mips64orion/idtmon.h deleted file mode 100644 index 2dacfe052e..0000000000 --- a/c/src/exec/score/cpu/mips64orion/idtmon.h +++ /dev/null @@ -1,171 +0,0 @@ -/* - -Based upon IDT provided code with the following release: - -This source code has been made available to you by IDT on an AS-IS -basis. Anyone receiving this source is licensed under IDT copyrights -to use it in any way he or she deems fit, including copying it, -modifying it, compiling it, and redistributing it either with or -without modifications. No license under IDT patents or patent -applications is to be implied by the copyright license. - -Any user of this software should understand that IDT cannot provide -technical support for this software and will not be responsible for -any consequences resulting from the use of this software. - -Any person who transfers this source code or any derivative work must -include the IDT copyright notice, this paragraph, and the preceeding -two paragraphs in the transferred software. - -COPYRIGHT IDT CORPORATION 1996 -LICENSED MATERIAL - PROGRAM PROPERTY OF IDT - - $Id$ -*/ - -/* -** idtmon.h - General header file for the IDT Prom Monitor -** -** Copyright 1989 Integrated Device Technology, Inc. -** All Rights Reserved. -** -** June 1989 - D.Cahoon -*/ -#ifndef __IDTMON_H__ -#define __IDTMON_H__ - -/* -** P_STACKSIZE is the size of the Prom Stack. -** the prom stack grows downward -*/ -#define P_STACKSIZE 0x2000 /* sets stack size to 8k */ - -/* -** M_BUSWIDTH -** Memory bus width (including bank interleaving) in bytes -** used when doing memory sizing to prevent bus capacitance -** reporting ghost memory locations -*/ -#if defined(CPU_R3000) -#define M_BUSWIDTH 8 /* 32bit memory bank interleaved */ -#endif -#if defined(CPU_R4000) -#define M_BUSWIDTH 16 /* 64 bit memory bank interleaved */ -#endif - -/* -** this is the default value for the number of bytes to add in calculating -** the checksums in the checksum command -*/ -#define CHK_SUM_CNT 0x20000 /* number of bytes to calc chksum for */ - -/* -** Monitor modes -*/ -#define MODE_MONITOR 5 /* IDT Prom Monitor is executing */ -#define MODE_USER 0xa /* USER is executing */ - -/* -** memory reference widths -*/ -#define SW_BYTE 1 -#define SW_HALFWORD 2 -#define SW_WORD 4 -#define SW_TRIBYTEL 12 -#define SW_TRIBYTER 20 - -#ifdef CPU_R4000 -/* -** definitions for select_cache call -*/ -#define DCACHE 0 -#define ICACHE 1 -#define SCACHE 2 - -#endif - -#ifndef ASM -typedef struct { - unsigned int mem_size; - unsigned int icache_size; - unsigned int dcache_size; -#ifdef CPU_R4000 - unsigned int scache_size; -#endif - - } mem_config; - -#endif - -/* -** general equates for diagnostics and boolean functions -*/ -#define PASS 0 -#define FAIL 1 - -#ifndef TRUE -#define TRUE 1 -#endif TRUE -#ifndef NULL -#define NULL 0 -#endif NULL - -#ifndef FALSE -#define FALSE 0 -#endif FALSE - - -/* -** portablility equates -*/ - -#ifndef BOOL -#define BOOL unsigned int -#endif BOOL - -#ifndef GLOBAL -#define GLOBAL /**/ -#endif GLOBAL - -#ifndef MLOCAL -#define MLOCAL static -#endif MLOCAL - - -#ifdef XDS -#define CONST const -#else -#define CONST -#endif XDS - -#define u_char unsigned char -#define u_short unsigned short -#define u_int unsigned int -/* -** assembly instructions for compatability between xds and mips -*/ -#ifndef XDS -#define sllv sll -#define srlv srl -#endif XDS -/* -** debugger macros for assembly language routines. Allows the -** programmer to set up the necessary stack frame info -** required by debuggers to do stack traces. -*/ - -#ifndef XDS -#define FRAME(name,frm_reg,offset,ret_reg) \ - .globl name; \ - .ent name; \ -name:; \ - .frame frm_reg,offset,ret_reg -#define ENDFRAME(name) \ - .end name -#else -#define FRAME(name,frm_reg,offset,ret_reg) \ - .globl _##name;\ -_##name: -#define ENDFRAME(name) -#endif XDS -#endif /* __IDTMON_H__ */ diff --git a/c/src/exec/score/cpu/mips64orion/iregdef.h b/c/src/exec/score/cpu/mips64orion/iregdef.h deleted file mode 100644 index f0953da852..0000000000 --- a/c/src/exec/score/cpu/mips64orion/iregdef.h +++ /dev/null @@ -1,325 +0,0 @@ -/* - -Based upon IDT provided code with the following release: - -This source code has been made available to you by IDT on an AS-IS -basis. Anyone receiving this source is licensed under IDT copyrights -to use it in any way he or she deems fit, including copying it, -modifying it, compiling it, and redistributing it either with or -without modifications. No license under IDT patents or patent -applications is to be implied by the copyright license. - -Any user of this software should understand that IDT cannot provide -technical support for this software and will not be responsible for -any consequences resulting from the use of this software. - -Any person who transfers this source code or any derivative work must -include the IDT copyright notice, this paragraph, and the preceeding -two paragraphs in the transferred software. - -COPYRIGHT IDT CORPORATION 1996 -LICENSED MATERIAL - PROGRAM PROPERTY OF IDT - - $Id$ -*/ - -/* -** iregdef.h - IDT R3000 register structure header file -** -** Copyright 1989 Integrated Device Technology, Inc -** All Rights Reserved -** -*/ -#ifndef __IREGDEF_H__ -#define __IREGDEF_H__ - -/* - * 950313: Ketan added sreg/lreg and R_SZ for 64-bit saves - * added Register definition for XContext reg. - * Look towards end of this file. - */ -/* -** register names -*/ -#define r0 $0 -#define r1 $1 -#define r2 $2 -#define r3 $3 -#define r4 $4 -#define r5 $5 -#define r6 $6 -#define r7 $7 -#define r8 $8 -#define r9 $9 -#define r10 $10 -#define r11 $11 -#define r12 $12 -#define r13 $13 - -#define r14 $14 -#define r15 $15 -#define r16 $16 -#define r17 $17 -#define r18 $18 -#define r19 $19 -#define r20 $20 -#define r21 $21 -#define r22 $22 -#define r23 $23 -#define r24 $24 -#define r25 $25 -#define r26 $26 -#define r27 $27 -#define r28 $28 -#define r29 $29 -#define r30 $30 -#define r31 $31 - -#define fp0 $f0 -#define fp1 $f1 -#define fp2 $f2 -#define fp3 $f3 -#define fp4 $f4 -#define fp5 $f5 -#define fp6 $f6 -#define fp7 $f7 -#define fp8 $f8 -#define fp9 $f9 -#define fp10 $f10 -#define fp11 $f11 -#define fp12 $f12 -#define fp13 $f13 -#define fp14 $f14 -#define fp15 $f15 -#define fp16 $f16 -#define fp17 $f17 -#define fp18 $f18 -#define fp19 $f19 -#define fp20 $f20 -#define fp21 $f21 -#define fp22 $f22 -#define fp23 $f23 -#define fp24 $f24 -#define fp25 $f25 -#define fp26 $f26 -#define fp27 $f27 -#define fp28 $f28 -#define fp29 $f29 -#define fp30 $f30 -#define fp31 $f31 - -#define fcr0 $0 -#define fcr30 $30 -#define fcr31 $31 - -#define zero $0 /* wired zero */ -#define AT $at /* assembler temp */ -#define v0 $2 /* return value */ -#define v1 $3 -#define a0 $4 /* argument registers a0-a3 */ -#define a1 $5 -#define a2 $6 -#define a3 $7 -#define t0 $8 /* caller saved t0-t9 */ -#define t1 $9 -#define t2 $10 -#define t3 $11 -#define t4 $12 -#define t5 $13 -#define t6 $14 -#define t7 $15 -#define s0 $16 /* callee saved s0-s8 */ -#define s1 $17 -#define s2 $18 -#define s3 $19 -#define s4 $20 -#define s5 $21 -#define s6 $22 -#define s7 $23 -#define t8 $24 -#define t9 $25 -#define k0 $26 /* kernel usage */ -#define k1 $27 /* kernel usage */ -#define gp $28 /* sdata pointer */ -#define sp $29 /* stack pointer */ -#define s8 $30 /* yet another saved reg for the callee */ -#define fp $30 /* frame pointer - this is being phased out by MIPS */ -#define ra $31 /* return address */ - - -/* -** relative position of registers in save reg area -*/ -#define R_R0 0 -#define R_R1 1 -#define R_R2 2 -#define R_R3 3 -#define R_R4 4 -#define R_R5 5 -#define R_R6 6 -#define R_R7 7 -#define R_R8 8 -#define R_R9 9 -#define R_R10 10 -#define R_R11 11 -#define R_R12 12 -#define R_R13 13 -#define R_R14 14 -#define R_R15 15 -#define R_R16 16 -#define R_R17 17 -#define R_R18 18 -#define R_R19 19 -#define R_R20 20 -#define R_R21 21 -#define R_R22 22 -#define R_R23 23 -#define R_R24 24 -#define R_R25 25 -#define R_R26 26 -#define R_R27 27 -#define R_R28 28 -#define R_R29 29 -#define R_R30 30 -#define R_R31 31 -#define R_F0 32 -#define R_F1 33 -#define R_F2 34 -#define R_F3 35 -#define R_F4 36 -#define R_F5 37 -#define R_F6 38 -#define R_F7 39 -#define R_F8 40 -#define R_F9 41 -#define R_F10 42 -#define R_F11 43 -#define R_F12 44 -#define R_F13 45 -#define R_F14 46 -#define R_F15 47 -#define R_F16 48 -#define R_F17 49 -#define R_F18 50 -#define R_F19 51 -#define R_F20 52 -#define R_F21 53 -#define R_F22 54 -#define R_F23 55 -#define R_F24 56 -#define R_F25 57 -#define R_F26 58 -#define R_F27 59 -#define R_F28 60 -#define R_F29 61 -#define R_F30 62 -#define R_F31 63 -#define NCLIENTREGS 64 -#define R_EPC 64 -#define R_MDHI 65 -#define R_MDLO 66 -#define R_SR 67 -#define R_CAUSE 68 -#define R_TLBHI 69 -#if defined(CPU_R3000) -#define R_TLBLO 70 -#endif -#if defined(CPU_R4000) -#define R_TLBLO0 70 -#endif -#define R_BADVADDR 71 -#define R_INX 72 -#define R_RAND 73 -#define R_CTXT 74 -#define R_EXCTYPE 75 -#define R_MODE 76 -#define R_PRID 77 -#define R_FCSR 78 -#define R_FEIR 79 -#if defined(CPU_R3000) -#define NREGS 80 -#endif -#if defined(CPU_R4000) -#define R_TLBLO1 80 -#define R_PAGEMASK 81 -#define R_WIRED 82 -#define R_COUNT 83 -#define R_COMPARE 84 -#define R_CONFIG 85 -#define R_LLADDR 86 -#define R_WATCHLO 87 -#define R_WATCHHI 88 -#define R_ECC 89 -#define R_CACHEERR 90 -#define R_TAGLO 91 -#define R_TAGHI 92 -#define R_ERRPC 93 -#define R_XCTXT 94 /* Ketan added from SIM64bit */ - -#define NREGS 95 -#endif - -/* -** For those who like to think in terms of the compiler names for the regs -*/ -#define R_ZERO R_R0 -#define R_AT R_R1 -#define R_V0 R_R2 -#define R_V1 R_R3 -#define R_A0 R_R4 -#define R_A1 R_R5 -#define R_A2 R_R6 -#define R_A3 R_R7 -#define R_T0 R_R8 -#define R_T1 R_R9 -#define R_T2 R_R10 -#define R_T3 R_R11 -#define R_T4 R_R12 -#define R_T5 R_R13 -#define R_T6 R_R14 -#define R_T7 R_R15 -#define R_S0 R_R16 -#define R_S1 R_R17 -#define R_S2 R_R18 -#define R_S3 R_R19 -#define R_S4 R_R20 -#define R_S5 R_R21 -#define R_S6 R_R22 -#define R_S7 R_R23 -#define R_T8 R_R24 -#define R_T9 R_R25 -#define R_K0 R_R26 -#define R_K1 R_R27 -#define R_GP R_R28 -#define R_SP R_R29 -#define R_FP R_R30 -#define R_RA R_R31 - -/* Ketan added the following */ -#ifdef CPU_R3000 -#define sreg sw -#define lreg lw -#define rmfc0 mfc0 -#define rmtc0 mtc0 -#define R_SZ 4 -#endif CPU_R3000 - -#ifdef CPU_R4000 -#if __mips < 3 -#define sreg sw -#define lreg lw -#define rmfc0 mfc0 -#define rmtc0 mtc0 -#define R_SZ 4 -#else -#define sreg sd -#define lreg ld -#define rmfc0 dmfc0 -#define rmtc0 dmtc0 -#define R_SZ 8 -#endif -#endif CPU_R4000 -/* Ketan till here */ - -#endif /* __IREGDEF_H__ */ - diff --git a/c/src/exec/score/cpu/mips64orion/mipstypes.h b/c/src/exec/score/cpu/mips64orion/mipstypes.h deleted file mode 100644 index 50f28ccf9b..0000000000 --- a/c/src/exec/score/cpu/mips64orion/mipstypes.h +++ /dev/null @@ -1,73 +0,0 @@ -/* mipstypes.h - * - * This include file contains type definitions pertaining to the IDT 4650 - * processor family. - * - * Author: Craig Lebakken - * - * COPYRIGHT (c) 1996 by Transition Networks Inc. - * - * To anyone who acknowledges that this file is provided "AS IS" - * without any express or implied warranty: - * permission to use, copy, modify, and distribute this file - * for any purpose is hereby granted without fee, provided that - * the above copyright notice and this notice appears in all - * copies, and that the name of Transition Networks not be used in - * advertising or publicity pertaining to distribution of the - * software without specific, written prior permission. - * Transition Networks makes no representations about the suitability - * of this software for any purpose. - * - * COPYRIGHT (c) 1989-1998. - * On-Line Applications Research Corporation (OAR). - * Copyright assigned to U.S. Government, 1994. - * - * The license and distribution terms for this file may be - * found in the file LICENSE in this distribution or at - * http://www.OARcorp.com/rtems/license.html. - * - * $Id$ - */ -/* @(#)mipstypes.h 08/20/96 1.4 */ - -#ifndef __MIPS_TYPES_h -#define __MIPS_TYPES_h - -#ifndef ASM - -#ifdef __cplusplus -extern "C" { -#endif - -/* - * This section defines the basic types for this processor. - */ - -typedef unsigned char unsigned8; /* unsigned 8-bit integer */ -typedef unsigned short unsigned16; /* unsigned 16-bit integer */ -typedef unsigned int unsigned32; /* unsigned 32-bit integer */ -typedef unsigned long long unsigned64; /* unsigned 64-bit integer */ - -typedef unsigned16 Priority_Bit_map_control; - -typedef signed char signed8; /* 8-bit signed integer */ -typedef signed short signed16; /* 16-bit signed integer */ -typedef signed int signed32; /* 32-bit signed integer */ -typedef signed long long signed64; /* 64 bit signed integer */ - -typedef unsigned32 boolean; /* Boolean value */ - -typedef float single_precision; /* single precision float */ -typedef double double_precision; /* double precision float */ - -typedef void mips_isr; -typedef void ( *mips_isr_entry )( void ); - -#ifdef __cplusplus -} -#endif - -#endif /* !ASM */ - -#endif -/* end of include file */ -- cgit v1.2.3