From 48f6a6c302a3e1a3f8915e2503d0fe618d1af285 Mon Sep 17 00:00:00 2001 From: Christian Mauderer Date: Mon, 12 Oct 2020 13:40:30 +0200 Subject: bsp/imxrt: Import files from MCUXpresso SDK V2.8.5 The following files have been imported: cp ${SDK}/boards/evkbimxrt1050/project_template/clock_config.c nxp/boards/evkbimxrt1050 cp ${SDK}/boards/evkbimxrt1050/project_template/clock_config.h include/fsl_clock_config.h cp ${SDK}/boards/evkbimxrt1050/project_template/dcd.c start/flash-dcd.c cp ${SDK}/boards/evkbimxrt1050/project_template/pin_mux.c nxp/boards/evkbimxrt1050 cp ${SDK}/boards/evkbimxrt1050/project_template/pin_mux.h include/fsl_pin_mux.h cp ${SDK}/boards/evkbimxrt1050/xip/evkbimxrt1050_flexspi_nor_config.h include/fsl_flexspi_nor_config.h cp ${SDK}/devices/MIMXRT1052/MIMXRT1052.h include cp ${SDK}/devices/MIMXRT1052/MIMXRT1052_features.h include cp ${SDK}/devices/MIMXRT1052/drivers/fsl_*.c nxp/devices/MIMXRT1052/drivers cp ${SDK}/devices/MIMXRT1052/drivers/fsl_*.h include cp ${SDK}/devices/MIMXRT1052/fsl_device_registers.h include cp ${SDK}/devices/MIMXRT1052/system_MIMXRT1052.h include/ cp ${SDK}/devices/MIMXRT1052/xip/fsl_flexspi_nor_boot.c nxp/devices/MIMXRT1052/xip/fsl_flexspi_nor_boot.c cp ${SDK}/devices/MIMXRT1052/xip/fsl_flexspi_nor_boot.h include Update #4180 --- .../nxp/devices/MIMXRT1052/drivers/fsl_flexcan.c | 3564 ++++++++++++++++++++ 1 file changed, 3564 insertions(+) create mode 100644 bsps/arm/imxrt/nxp/devices/MIMXRT1052/drivers/fsl_flexcan.c (limited to 'bsps/arm/imxrt/nxp/devices/MIMXRT1052/drivers/fsl_flexcan.c') diff --git a/bsps/arm/imxrt/nxp/devices/MIMXRT1052/drivers/fsl_flexcan.c b/bsps/arm/imxrt/nxp/devices/MIMXRT1052/drivers/fsl_flexcan.c new file mode 100644 index 0000000000..682dae7492 --- /dev/null +++ b/bsps/arm/imxrt/nxp/devices/MIMXRT1052/drivers/fsl_flexcan.c @@ -0,0 +1,3564 @@ +/* + * Copyright (c) 2015, Freescale Semiconductor, Inc. + * Copyright 2016-2020 NXP + * All rights reserved. + * + * SPDX-License-Identifier: BSD-3-Clause + */ + +#include "fsl_flexcan.h" + +/******************************************************************************* + * Definitions + ******************************************************************************/ + +/* Component ID definition, used by tools. */ +#ifndef FSL_COMPONENT_ID +#define FSL_COMPONENT_ID "platform.drivers.flexcan" +#endif + +#if (defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_6032) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_6032) +#define RXINTERMISSION (CAN_DBG1_CFSM(0x2f)) +#define TXINTERMISSION (CAN_DBG1_CFSM(0x14)) +#define BUSIDLE (CAN_DBG1_CFSM(0x02)) +#define CBN_VALUE3 (CAN_DBG1_CBN(0x03)) +#define DELAY_BUSIDLE (200) +#endif + +#define IDEAL_SP_LOW (750U) +#define IDEAL_SP_MID (800U) +#define IDEAL_SP_HIGH (875U) +#define IDEAL_SP_FACTOR (1000U) + +#define MAX_PROPSEG (CAN_CTRL1_PROPSEG_MASK >> CAN_CTRL1_PROPSEG_SHIFT) +#define MAX_PSEG1 (CAN_CTRL1_PSEG1_MASK >> CAN_CTRL1_PSEG1_SHIFT) +#define MAX_PSEG2 (CAN_CTRL1_PSEG2_MASK >> CAN_CTRL1_PSEG2_SHIFT) +#define MAX_RJW (CAN_CTRL1_RJW_MASK >> CAN_CTRL1_RJW_SHIFT) +#define MAX_PRESDIV (CAN_CTRL1_PRESDIV_MASK >> CAN_CTRL1_PRESDIV_SHIFT) +#define CTRL1_MAX_TIME_QUANTA (1U + MAX_PROPSEG + 1U + MAX_PSEG1 + 1U + MAX_PSEG2 + 1U) +#define CTRL1_MIN_TIME_QUANTA (8U) + +#define MAX_EPROPSEG (CAN_CBT_EPROPSEG_MASK >> CAN_CBT_EPROPSEG_SHIFT) +#define MAX_EPSEG1 (CAN_CBT_EPSEG1_MASK >> CAN_CBT_EPSEG1_SHIFT) +#define MAX_EPSEG2 (CAN_CBT_EPSEG2_MASK >> CAN_CBT_EPSEG2_SHIFT) +#define MAX_ERJW (CAN_CBT_ERJW_MASK >> CAN_CBT_ERJW_SHIFT) +#define MAX_EPRESDIV (CAN_CBT_EPRESDIV_MASK >> CAN_CBT_EPRESDIV_SHIFT) +#define CBT_MAX_TIME_QUANTA (1U + MAX_EPROPSEG + 1U + MAX_EPSEG1 + 1U + MAX_EPSEG2 + 1U) +#define CBT_MIN_TIME_QUANTA (8U) + +#define MAX_FPROPSEG (CAN_FDCBT_FPROPSEG_MASK >> CAN_FDCBT_FPROPSEG_SHIFT) +#define MAX_FPSEG1 (CAN_FDCBT_FPSEG1_MASK >> CAN_FDCBT_FPSEG1_SHIFT) +#define MAX_FPSEG2 (CAN_FDCBT_FPSEG2_MASK >> CAN_FDCBT_FPSEG2_SHIFT) +#define MAX_FRJW (CAN_FDCBT_FRJW_MASK >> CAN_FDCBT_FRJW_SHIFT) +#define MAX_FPRESDIV (CAN_FDCBT_FPRESDIV_MASK >> CAN_FDCBT_FPRESDIV_SHIFT) +#define FDCBT_MAX_TIME_QUANTA (1U + MAX_FPROPSEG + 0U + MAX_FPSEG1 + 1U + MAX_FPSEG2 + 1U) +#define FDCBT_MIN_TIME_QUANTA (5U) + +#define MAX_CANFD_BAUDRATE (8000000U) +#define MAX_CAN_BAUDRATE (1000000U) + +#if (defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_9595) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_9595) +#define CAN_ESR1_FLTCONF_BUSOFF CAN_ESR1_FLTCONF(2U) +#endif + +#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) +#ifndef CAN_CLOCK_CHECK_NO_AFFECTS +/* If no define such MACRO, it mean that the CAN in current device have no clock affect issue. */ +#define CAN_CLOCK_CHECK_NO_AFFECTS (true) +#endif /* CAN_CLOCK_CHECK_NO_AFFECTS */ +#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */ + +/*! @brief FlexCAN Internal State. */ +enum _flexcan_state +{ + kFLEXCAN_StateIdle = 0x0, /*!< MB/RxFIFO idle.*/ + kFLEXCAN_StateRxData = 0x1, /*!< MB receiving.*/ + kFLEXCAN_StateRxRemote = 0x2, /*!< MB receiving remote reply.*/ + kFLEXCAN_StateTxData = 0x3, /*!< MB transmitting.*/ + kFLEXCAN_StateTxRemote = 0x4, /*!< MB transmitting remote request.*/ + kFLEXCAN_StateRxFifo = 0x5, /*!< RxFIFO receiving.*/ +}; + +/*! @brief FlexCAN message buffer CODE for Rx buffers. */ +enum _flexcan_mb_code_rx +{ + kFLEXCAN_RxMbInactive = 0x0, /*!< MB is not active.*/ + kFLEXCAN_RxMbFull = 0x2, /*!< MB is full.*/ + kFLEXCAN_RxMbEmpty = 0x4, /*!< MB is active and empty.*/ + kFLEXCAN_RxMbOverrun = 0x6, /*!< MB is overwritten into a full buffer.*/ + kFLEXCAN_RxMbBusy = 0x8, /*!< FlexCAN is updating the contents of the MB.*/ + /*! The CPU must not access the MB.*/ + kFLEXCAN_RxMbRanswer = 0xA, /*!< A frame was configured to recognize a Remote Request Frame */ + /*! and transmit a Response Frame in return.*/ + kFLEXCAN_RxMbNotUsed = 0xF, /*!< Not used.*/ +}; + +/*! @brief FlexCAN message buffer CODE FOR Tx buffers. */ +enum _flexcan_mb_code_tx +{ + kFLEXCAN_TxMbInactive = 0x8, /*!< MB is not active.*/ + kFLEXCAN_TxMbAbort = 0x9, /*!< MB is aborted.*/ + kFLEXCAN_TxMbDataOrRemote = 0xC, /*!< MB is a TX Data Frame(when MB RTR = 0) or */ + /*!< MB is a TX Remote Request Frame (when MB RTR = 1).*/ + kFLEXCAN_TxMbTanswer = 0xE, /*!< MB is a TX Response Request Frame from */ + /*! an incoming Remote Request Frame.*/ + kFLEXCAN_TxMbNotUsed = 0xF, /*!< Not used.*/ +}; + +/* Typedef for interrupt handler. */ +typedef void (*flexcan_isr_t)(CAN_Type *base, flexcan_handle_t *handle); + +/******************************************************************************* + * Prototypes + ******************************************************************************/ + +#if !defined(NDEBUG) +/*! + * @brief Check if Message Buffer is occupied by Rx FIFO. + * + * This function check if Message Buffer is occupied by Rx FIFO. + * + * @param base FlexCAN peripheral base address. + * @param mbIdx The FlexCAN Message Buffer index. + */ +static bool FLEXCAN_IsMbOccupied(CAN_Type *base, uint8_t mbIdx); +#endif + +#if ((defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) || \ + (defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829)) +/*! + * @brief Get the first valid Message buffer ID of give FlexCAN instance. + * + * This function is a helper function for Errata 5641 workaround. + * + * @param base FlexCAN peripheral base address. + * @return The first valid Message Buffer Number. + */ +static uint8_t FLEXCAN_GetFirstValidMb(CAN_Type *base); +#endif + +/*! + * @brief Check if Message Buffer interrupt is enabled. + * + * This function check if Message Buffer interrupt is enabled. + * + * @param base FlexCAN peripheral base address. + * @param mbIdx The FlexCAN Message Buffer index. + * @return TRUE if the index MB interrupt mask enabled, FALSE if the index MB interrupt mask disabled. + * + */ +static bool FLEXCAN_IsMbIntEnabled(CAN_Type *base, uint8_t mbIdx); + +/*! + * @brief Reset the FlexCAN Instance. + * + * Restores the FlexCAN module to reset state, notice that this function + * will set all the registers to reset state so the FlexCAN module can not work + * after calling this API. + * + * @param base FlexCAN peripheral base address. + */ +static void FLEXCAN_Reset(CAN_Type *base); + +/*! + * @brief Set Baud Rate of FlexCAN. + * + * This function set the baud rate of FlexCAN. + * + * @param base FlexCAN peripheral base address. + * @param sourceClock_Hz Source Clock in Hz. + * @param baudRate_Bps Baud Rate in Bps. + * @param timingConfig FlexCAN timingConfig. + */ +static void FLEXCAN_SetBaudRate(CAN_Type *base, + uint32_t sourceClock_Hz, + uint32_t baudRate_Bps, + flexcan_timing_config_t timingConfig); +/*! + * @brief Calculates the segment values for a single bit time for classical CAN + * + * @param baudRate The data speed in bps + * @param tqNum Number of time quantas per bit + * @param pTimingConfig Pointer to the FlexCAN timing configuration structure. + * + * @return TRUE if Calculates the segment success, FALSE if Calculates the segment success + */ +static bool FLEXCAN_GetSegments(uint32_t baudRate, uint32_t tqNum, flexcan_timing_config_t *pTimingConfig); + +#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) +/*! + * @brief Set Baud Rate of FlexCAN FD frame. + * + * This function set the baud rate of FlexCAN FD frame. + * + * @param base FlexCAN peripheral base address. + * @param sourceClock_Hz Source Clock in Hz. + * @param baudRateFD_Bps FD frame Baud Rate in Bps. + * @param timingConfig FlexCAN timingConfig. + */ +static void FLEXCAN_SetFDBaudRate(CAN_Type *base, + uint32_t sourceClock_Hz, + uint32_t baudRateFD_Bps, + flexcan_timing_config_t timingConfig); + +/*! + * @brief Get Mailbox offset number by dword. + * + * This function gets the offset number of the specified mailbox. + * Mailbox is not consecutive between memory regions when payload is not 8 bytes + * so need to calculate the specified mailbox address. + * For example, in the first memory region, MB[0].CS address is 0x4002_4080. For 32 bytes + * payload frame, the second mailbox is ((1/12)*512 + 1%12*40)/4 = 10, meaning 10 dword + * after the 0x4002_4080, which is actually the address of mailbox MB[1].CS. + * + * @param base FlexCAN peripheral base address. + * @param mbIdx Mailbox index. + */ +static uint32_t FLEXCAN_GetFDMailboxOffset(CAN_Type *base, uint8_t mbIdx); + +/*! + * @brief Calculates the segment values for a single bit time for CANFD bus control baud Rate + * + * @param baudRate The canfd bus control speed in bps + * @param tqNum Number of time quanta per bit + * @param pTimingConfig Pointer to the FlexCAN timing configuration structure. + * + * @return TRUE if Calculates the segment success, FALSE if Calculates the segment success + */ +static bool FLEXCAN_FDGetSegments(uint32_t baudRate, uint32_t tqNum, flexcan_timing_config_t *pTimingConfig); + +/*! + * @brief Calculates the segment values for a single bit time for CANFD bus data baud Rate + * + * @param baudRatebrs The canfd bus data speed in bps + * @param tqNum Number of time quanta per bit + * @param pTimingConfig Pointer to the FlexCAN timing configuration structure. + * + * @return TRUE if Calculates the segment success, FALSE if Calculates the segment success + */ +static bool FLEXCAN_FDGetSegmentswithBRS(uint32_t baudRatebrs, uint32_t tqNum, flexcan_timing_config_t *pTimingConfig); + +/*! + * @brief Calculates the improved timing values by specific baudrates for CAN by CBT register + * + * @param baudRate The classical CAN speed in bps defined by user + * @param sourceClock_Hz The Source clock data speed in bps. Zero to disable baudrate switching + * @param pTimingConfig Pointer to the FlexCAN timing configuration structure. + * + * @return TRUE if timing configuration found, FALSE if failed to find configuration + */ +static bool FLEXCAN_CalculateImprovedTimingValuesByCBT(uint32_t baudRate, + uint32_t sourceClock_Hz, + flexcan_timing_config_t *pTimingConfig); +#endif + +/*! + * @brief Check unhandle interrupt events + * + * @param base FlexCAN peripheral base address. + * @return TRUE if unhandled interrupt action exist, FALSE if no unhandlered interrupt action exist. + */ +static bool FLEXCAN_CheckUnhandleInterruptEvents(CAN_Type *base); + +/*! + * @brief Sub Handler Data Trasfered Events + * + * @param base FlexCAN peripheral base address. + * @param handle FlexCAN handle pointer. + * @param pResult Pointer to the Handle result. + * @return the status after handle each data transfered event. + */ +static status_t FLEXCAN_SubHandlerForDataTransfered(CAN_Type *base, flexcan_handle_t *handle, uint32_t *pResult); + +/******************************************************************************* + * Variables + ******************************************************************************/ + +/* Array of FlexCAN peripheral base address. */ +static CAN_Type *const s_flexcanBases[] = CAN_BASE_PTRS; + +/* Array of FlexCAN IRQ number. */ +static const IRQn_Type s_flexcanRxWarningIRQ[] = CAN_Rx_Warning_IRQS; +static const IRQn_Type s_flexcanTxWarningIRQ[] = CAN_Tx_Warning_IRQS; +static const IRQn_Type s_flexcanWakeUpIRQ[] = CAN_Wake_Up_IRQS; +static const IRQn_Type s_flexcanErrorIRQ[] = CAN_Error_IRQS; +static const IRQn_Type s_flexcanBusOffIRQ[] = CAN_Bus_Off_IRQS; +static const IRQn_Type s_flexcanMbIRQ[] = CAN_ORed_Message_buffer_IRQS; + +/* Array of FlexCAN handle. */ +static flexcan_handle_t *s_flexcanHandle[ARRAY_SIZE(s_flexcanBases)]; + +#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) +/* Array of FlexCAN clock name. */ +static const clock_ip_name_t s_flexcanClock[] = FLEXCAN_CLOCKS; +#if defined(FLEXCAN_PERIPH_CLOCKS) +/* Array of FlexCAN serial clock name. */ +static const clock_ip_name_t s_flexcanPeriphClock[] = FLEXCAN_PERIPH_CLOCKS; +#endif /* FLEXCAN_PERIPH_CLOCKS */ +#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */ + +/* FlexCAN ISR for transactional APIs. */ +#if defined(__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050) +static flexcan_isr_t s_flexcanIsr = (flexcan_isr_t)DefaultISR; +#else +static flexcan_isr_t s_flexcanIsr; +#endif + +/******************************************************************************* + * Code + ******************************************************************************/ + +/*! + * brief Get the FlexCAN instance from peripheral base address. + * + * param base FlexCAN peripheral base address. + * return FlexCAN instance. + */ +uint32_t FLEXCAN_GetInstance(CAN_Type *base) +{ + uint32_t instance; + + /* Find the instance index from base address mappings. */ + for (instance = 0; instance < ARRAY_SIZE(s_flexcanBases); instance++) + { + if (s_flexcanBases[instance] == base) + { + break; + } + } + + assert(instance < ARRAY_SIZE(s_flexcanBases)); + + return instance; +} + +#if (defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_9595) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_9595) +void FLEXCAN_EnterFreezeMode(CAN_Type *base) +{ + uint32_t u32TimeoutCount = 0U; + uint32_t u32TempMCR = 0U; + uint32_t u32TempIMASK1 = 0U; +#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0) + uint32_t u32TempIMASK2 = 0U; +#endif + + /* Step1: set FRZ enable in MCR. */ + base->MCR |= CAN_MCR_FRZ_MASK; + + /* Step2: to check if MDIS bit set in MCR. if yes, clear it. */ + if (0U != (base->MCR & CAN_MCR_MDIS_MASK)) + { + base->MCR &= ~CAN_MCR_MDIS_MASK; + } + + /* Step3: polling LPMACK. */ + u32TimeoutCount = (uint32_t)FLEXCAN_WAIT_TIMEOUT; + while ((0U == (base->MCR & CAN_MCR_LPMACK_MASK)) && (u32TimeoutCount > 0U)) + { + u32TimeoutCount--; + } + + /* Step4: to check FLTCONF in ESR1 register */ + if (0U == (base->ESR1 & CAN_ESR1_FLTCONF_BUSOFF)) + { + /* Step5B: Set Halt bits. */ + base->MCR |= CAN_MCR_HALT_MASK; + + /* Step6B: Poll the MCR register until the Freeze Acknowledge (FRZACK) bit is set, timeout need more than 178 + * CAN bit length, so 20 multiply timeout is enough. */ + u32TimeoutCount = (uint32_t)FLEXCAN_WAIT_TIMEOUT * 20U; + while ((0U == (base->MCR & CAN_MCR_FRZACK_MASK)) && (u32TimeoutCount > 0U)) + { + u32TimeoutCount--; + } + } + else + { + /* backup MCR and IMASK register. Errata document not descript it, but we need backup for step 8A and 9A. */ + u32TempMCR = base->MCR; + u32TempIMASK1 = base->IMASK1; +#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0) + u32TempIMASK2 = base->IMASK2; +#endif + + /* Step5A: Set the Soft Reset bit ((SOFTRST) in the MCR.*/ + base->MCR |= CAN_MCR_SOFTRST_MASK; + + /* Step6A: Poll the MCR register until the Soft Reset (SOFTRST) bit is cleared. */ + u32TimeoutCount = (uint32_t)FLEXCAN_WAIT_TIMEOUT; + while ((CAN_MCR_SOFTRST_MASK == (base->MCR & CAN_MCR_SOFTRST_MASK)) && (u32TimeoutCount > 0U)) + { + u32TimeoutCount--; + } + + /* Step7A: Poll the MCR register until the Freeze Acknowledge (FRZACK) bit is set. */ + u32TimeoutCount = (uint32_t)FLEXCAN_WAIT_TIMEOUT; + while ((0U == (base->MCR & CAN_MCR_FRZACK_MASK)) && (u32TimeoutCount > 0U)) + { + u32TimeoutCount--; + } + + /* Step8A: reconfig MCR. */ + base->MCR = u32TempMCR; + + /* Step9A: reconfig IMASK. */ + base->IMASK1 = u32TempIMASK1; +#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0) + base->IMASK2 = u32TempIMASK2; +#endif + } +} +#elif (defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_8341) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_8341) +void FLEXCAN_EnterFreezeMode(CAN_Type *base) +{ + uint32_t u32TimeoutCount = 0U; + uint32_t u32TempMCR = 0U; + uint32_t u32TempIMASK1 = 0U; +#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0) + uint32_t u32TempIMASK2 = 0U; +#endif + + /* Step1: set FRZ and HALT bit enable in MCR. */ + base->MCR |= CAN_MCR_FRZ_MASK; + base->MCR |= CAN_MCR_HALT_MASK; + + /* Step2: to check if MDIS bit set in MCR. if yes, clear it. */ + if (0U != (base->MCR & CAN_MCR_MDIS_MASK)) + { + base->MCR &= ~CAN_MCR_MDIS_MASK; + } + + /* Step3: Poll the MCR register until the Freeze Acknowledge (FRZACK) bit is set. */ + u32TimeoutCount = (uint32_t)FLEXCAN_WAIT_TIMEOUT * 100U; + while ((0U == (base->MCR & CAN_MCR_FRZACK_MASK)) && (u32TimeoutCount > 0U)) + { + u32TimeoutCount--; + } + + /* Step4: check whether the timeout reached. if no skip step5 to step8. */ + if (0U == u32TimeoutCount) + { + /* backup MCR and IMASK register. Errata document not descript it, but we need backup for step 8A and 9A. */ + u32TempMCR = base->MCR; + u32TempIMASK1 = base->IMASK1; +#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0) + u32TempIMASK2 = base->IMASK2; +#endif + /* Step5: Set the Soft Reset bit ((SOFTRST) in the MCR.*/ + base->MCR |= CAN_MCR_SOFTRST_MASK; + + /* Step6: Poll the MCR register until the Soft Reset (SOFTRST) bit is cleared. */ + while (CAN_MCR_SOFTRST_MASK == (base->MCR & CAN_MCR_SOFTRST_MASK)) + { + } + + /* Step7: reconfig MCR. */ + base->MCR = u32TempMCR; + + /* Step8: reconfig IMASK. */ + base->IMASK1 = u32TempIMASK1; +#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0) + base->IMASK2 = u32TempIMASK2; +#endif + } +} +#else +void FLEXCAN_EnterFreezeMode(CAN_Type *base) +{ + /* Set Freeze, Halt bits. */ + base->MCR |= CAN_MCR_FRZ_MASK; + base->MCR |= CAN_MCR_HALT_MASK; + while (0U == (base->MCR & CAN_MCR_FRZACK_MASK)) + { + } +} +#endif + +void FLEXCAN_ExitFreezeMode(CAN_Type *base) +{ +#if (defined(FSL_FEATURE_FLEXCAN_HAS_MEMORY_ERROR_CONTROL) && FSL_FEATURE_FLEXCAN_HAS_MEMORY_ERROR_CONTROL) + /* Enable to update in MCER. */ + base->CTRL2 |= CAN_CTRL2_ECRWRE_MASK; + base->MECR &= ~CAN_MECR_ECRWRDIS_MASK; +#endif + + /* Clear Freeze, Halt bits. */ + base->MCR &= ~CAN_MCR_HALT_MASK; + base->MCR &= ~CAN_MCR_FRZ_MASK; + + /* Wait until the FlexCAN Module exit freeze mode. */ + while (0U != (base->MCR & CAN_MCR_FRZACK_MASK)) + { + } +} + +#if !defined(NDEBUG) +static bool FLEXCAN_IsMbOccupied(CAN_Type *base, uint8_t mbIdx) +{ + uint8_t lastOccupiedMb; + bool fgRet; + + /* Is Rx FIFO enabled? */ + if (0U != (base->MCR & CAN_MCR_RFEN_MASK)) + { + /* Get RFFN value. */ + lastOccupiedMb = (uint8_t)((base->CTRL2 & CAN_CTRL2_RFFN_MASK) >> CAN_CTRL2_RFFN_SHIFT); + /* Calculate the number of last Message Buffer occupied by Rx FIFO. */ + lastOccupiedMb = ((lastOccupiedMb + 1U) * 2U) + 5U; + +#if ((defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) || \ + (defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829)) + /* the first valid MB should be occupied by ERRATA 5461 or 5829. */ + lastOccupiedMb += 1U; +#endif + fgRet = (mbIdx <= lastOccupiedMb); + } + else + { +#if ((defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) || \ + (defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829)) + if (0U == mbIdx) + { + fgRet = true; + } + else +#endif + { + fgRet = false; + } + } + + return fgRet; +} +#endif + +#if ((defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) || \ + (defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829)) +static uint8_t FLEXCAN_GetFirstValidMb(CAN_Type *base) +{ + uint8_t firstValidMbNum; + + if (0U != (base->MCR & CAN_MCR_RFEN_MASK)) + { + firstValidMbNum = (uint8_t)((base->CTRL2 & CAN_CTRL2_RFFN_MASK) >> CAN_CTRL2_RFFN_SHIFT); + firstValidMbNum = ((firstValidMbNum + 1U) * 2U) + 6U; + } + else + { + firstValidMbNum = 0U; + } + + return firstValidMbNum; +} +#endif + +static bool FLEXCAN_IsMbIntEnabled(CAN_Type *base, uint8_t mbIdx) +{ + /* Assertion. */ + assert(mbIdx < (uint8_t)FSL_FEATURE_FLEXCAN_HAS_MESSAGE_BUFFER_MAX_NUMBERn(base)); + + uint32_t flag = 1U; + bool fgRet = false; + +#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0) + if (mbIdx >= 32U) + { + fgRet = (0U != (base->IMASK2 & (flag << (mbIdx - 32U)))); + } + else +#endif + { + fgRet = (0U != (base->IMASK1 & (flag << mbIdx))); + } + + return fgRet; +} + +static void FLEXCAN_Reset(CAN_Type *base) +{ + /* The module must should be first exit from low power + * mode, and then soft reset can be applied. + */ + assert(0U == (base->MCR & CAN_MCR_MDIS_MASK)); + + uint8_t i; + +#if (defined(FSL_FEATURE_FLEXCAN_HAS_DOZE_MODE_SUPPORT) && FSL_FEATURE_FLEXCAN_HAS_DOZE_MODE_SUPPORT) + if (0 != (FSL_FEATURE_FLEXCAN_INSTANCE_HAS_DOZE_MODE_SUPPORTn(base))) + { + /* De-assert DOZE Enable Bit. */ + base->MCR &= ~CAN_MCR_DOZE_MASK; + } +#endif + + /* Wait until FlexCAN exit from any Low Power Mode. */ + while (0U != (base->MCR & CAN_MCR_LPMACK_MASK)) + { + } + + /* Assert Soft Reset Signal. */ + base->MCR |= CAN_MCR_SOFTRST_MASK; + /* Wait until FlexCAN reset completes. */ + while (0U != (base->MCR & CAN_MCR_SOFTRST_MASK)) + { + } + +/* Reset MCR register. */ +#if (defined(FSL_FEATURE_FLEXCAN_HAS_GLITCH_FILTER) && FSL_FEATURE_FLEXCAN_HAS_GLITCH_FILTER) + base->MCR |= CAN_MCR_WRNEN_MASK | CAN_MCR_WAKSRC_MASK | + CAN_MCR_MAXMB((uint32_t)FSL_FEATURE_FLEXCAN_HAS_MESSAGE_BUFFER_MAX_NUMBERn(base) - 1U); +#else + base->MCR |= + CAN_MCR_WRNEN_MASK | CAN_MCR_MAXMB((uint32_t)FSL_FEATURE_FLEXCAN_HAS_MESSAGE_BUFFER_MAX_NUMBERn(base) - 1U); +#endif + +/* Reset CTRL1 and CTRL2 register. */ +#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) + /* SMP bit cannot be asserted when CAN FD is enabled */ + if (0 != FSL_FEATURE_FLEXCAN_INSTANCE_HAS_FLEXIBLE_DATA_RATEn(base)) + { + base->CTRL1 = 0x0; + } + else + { + base->CTRL1 = CAN_CTRL1_SMP_MASK; + } +#else + base->CTRL1 = CAN_CTRL1_SMP_MASK; +#endif + base->CTRL2 = CAN_CTRL2_TASD(0x16) | CAN_CTRL2_RRS_MASK | CAN_CTRL2_EACEN_MASK; + + /* Clean all individual Rx Mask of Message Buffers. */ + for (i = 0; i < (uint32_t)FSL_FEATURE_FLEXCAN_HAS_MESSAGE_BUFFER_MAX_NUMBERn(base); i++) + { + base->RXIMR[i] = 0x3FFFFFFF; + } + + /* Clean Global Mask of Message Buffers. */ + base->RXMGMASK = 0x3FFFFFFF; + /* Clean Global Mask of Message Buffer 14. */ + base->RX14MASK = 0x3FFFFFFF; + /* Clean Global Mask of Message Buffer 15. */ + base->RX15MASK = 0x3FFFFFFF; + /* Clean Global Mask of Rx FIFO. */ + base->RXFGMASK = 0x3FFFFFFF; + + /* Clean all Message Buffer CS fields. */ + for (i = 0; i < (uint32_t)FSL_FEATURE_FLEXCAN_HAS_MESSAGE_BUFFER_MAX_NUMBERn(base); i++) + { + base->MB[i].CS = 0x0; + } +} + +static void FLEXCAN_SetBaudRate(CAN_Type *base, + uint32_t sourceClock_Hz, + uint32_t baudRate_Bps, + flexcan_timing_config_t timingConfig) +{ + /* FlexCAN timing setting formula: + * quantum = 1 + (PSEG1 + 1) + (PSEG2 + 1) + (PROPSEG + 1); + */ + uint32_t quantum = (1U + ((uint32_t)timingConfig.phaseSeg1 + 1U) + ((uint32_t)timingConfig.phaseSeg2 + 1U) + + ((uint32_t)timingConfig.propSeg + 1U)); + uint32_t priDiv = baudRate_Bps * quantum; + + /* Assertion: Desired baud rate is too high. */ + assert(baudRate_Bps <= 1000000U); + /* Assertion: Source clock should greater than baud rate * quantum. */ + assert(priDiv <= sourceClock_Hz); + + if (0U == priDiv) + { + priDiv = 1; + } + + priDiv = (sourceClock_Hz / priDiv) - 1U; + + /* Desired baud rate is too low. */ + if (priDiv > 0xFFU) + { + priDiv = 0xFF; + } + + timingConfig.preDivider = (uint16_t)priDiv; + + /* Update actual timing characteristic. */ + FLEXCAN_SetTimingConfig(base, (const flexcan_timing_config_t *)(uint32_t)&timingConfig); +} + +#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) +static void FLEXCAN_SetFDBaudRate(CAN_Type *base, + uint32_t sourceClock_Hz, + uint32_t baudRateFD_Bps, + flexcan_timing_config_t timingConfig) +{ + /* FlexCAN FD timing setting formula: + * quantum = 1 + (FPSEG1 + 1) + (FPSEG2 + 1) + FPROPSEG; + */ + uint32_t quantum = (1U + ((uint32_t)timingConfig.fphaseSeg1 + 1U) + ((uint32_t)timingConfig.fphaseSeg2 + 1U) + + (uint32_t)timingConfig.fpropSeg); + uint32_t priDiv = baudRateFD_Bps * quantum; + + /* Assertion: Desired baud rate is too high. */ + assert(baudRateFD_Bps <= 8000000U); + /* Assertion: Source clock should greater than baud rate * FLEXCAN_TIME_QUANTA_NUM. */ + assert(priDiv <= sourceClock_Hz); + + if (0U == priDiv) + { + priDiv = 1; + } + + priDiv = (sourceClock_Hz / priDiv) - 1U; + + /* Desired baud rate is too low. */ + if (priDiv > 0xFFU) + { + priDiv = 0xFF; + } + + timingConfig.fpreDivider = (uint16_t)priDiv; + + /* Update actual timing characteristic. */ + FLEXCAN_SetFDTimingConfig(base, (const flexcan_timing_config_t *)(uint32_t)&timingConfig); +} +#endif + +/*! + * brief Initializes a FlexCAN instance. + * + * This function initializes the FlexCAN module with user-defined settings. + * This example shows how to set up the flexcan_config_t parameters and how + * to call the FLEXCAN_Init function by passing in these parameters. + * code + * flexcan_config_t flexcanConfig; + * flexcanConfig.clkSrc = kFLEXCAN_ClkSrc0; + * flexcanConfig.baudRate = 1000000U; + * flexcanConfig.maxMbNum = 16; + * flexcanConfig.enableLoopBack = false; + * flexcanConfig.enableSelfWakeup = false; + * flexcanConfig.enableIndividMask = false; + * flexcanConfig.disableSelfReception = false; + * flexcanConfig.enableListenOnlyMode = false; + * flexcanConfig.enableDoze = false; + * flexcanConfig.timingConfig = timingConfig; + * FLEXCAN_Init(CAN0, &flexcanConfig, 8000000UL); + * endcode + * + * param base FlexCAN peripheral base address. + * param pConfig Pointer to the user-defined configuration structure. + * param sourceClock_Hz FlexCAN Protocol Engine clock source frequency in Hz. + */ +void FLEXCAN_Init(CAN_Type *base, const flexcan_config_t *pConfig, uint32_t sourceClock_Hz) +{ + /* Assertion. */ + assert(NULL != pConfig); + assert((pConfig->maxMbNum > 0U) && + (pConfig->maxMbNum <= (uint8_t)FSL_FEATURE_FLEXCAN_HAS_MESSAGE_BUFFER_MAX_NUMBERn(base))); + + uint32_t mcrTemp; + uint32_t ctrl1Temp; +#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) + uint32_t instance; +#endif + +#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) + instance = FLEXCAN_GetInstance(base); + /* Enable FlexCAN clock. */ + (void)CLOCK_EnableClock(s_flexcanClock[instance]); + /* + * Check the CAN clock in this device whether affected by Other clock gate + * If it affected, we'd better to change other clock source, + * If user insist on using that clock source, user need open these gate at same time, + * In this scene, User need to care the power consumption. + */ + assert(CAN_CLOCK_CHECK_NO_AFFECTS); +#if defined(FLEXCAN_PERIPH_CLOCKS) + /* Enable FlexCAN serial clock. */ + (void)CLOCK_EnableClock(s_flexcanPeriphClock[instance]); +#endif /* FLEXCAN_PERIPH_CLOCKS */ +#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */ + +#if defined(CAN_CTRL1_CLKSRC_MASK) +#if (defined(FSL_FEATURE_FLEXCAN_SUPPORT_ENGINE_CLK_SEL_REMOVE) && FSL_FEATURE_FLEXCAN_SUPPORT_ENGINE_CLK_SEL_REMOVE) + if (0 == FSL_FEATURE_FLEXCAN_INSTANCE_SUPPORT_ENGINE_CLK_SEL_REMOVEn(base)) +#endif /* FSL_FEATURE_FLEXCAN_SUPPORT_ENGINE_CLK_SEL_REMOVE */ + { + /* Disable FlexCAN Module. */ + FLEXCAN_Enable(base, false); + + /* Protocol-Engine clock source selection, This bit must be set + * when FlexCAN Module in Disable Mode. + */ + base->CTRL1 = (kFLEXCAN_ClkSrc0 == pConfig->clkSrc) ? (base->CTRL1 & ~CAN_CTRL1_CLKSRC_MASK) : + (base->CTRL1 | CAN_CTRL1_CLKSRC_MASK); + } +#endif /* CAN_CTRL1_CLKSRC_MASK */ + + /* Enable FlexCAN Module for configuration. */ + FLEXCAN_Enable(base, true); + + /* Reset to known status. */ + FLEXCAN_Reset(base); + + /* Save current CTRL1 value and enable to enter Freeze mode(enabled by default). */ + ctrl1Temp = base->CTRL1; + + /* Save current MCR value and enable to enter Freeze mode(enabled by default). */ + mcrTemp = base->MCR; + + /* Enable Loop Back Mode? */ + ctrl1Temp = (pConfig->enableLoopBack) ? (ctrl1Temp | CAN_CTRL1_LPB_MASK) : (ctrl1Temp & ~CAN_CTRL1_LPB_MASK); + + /* Enable Timer Sync? */ + ctrl1Temp = (pConfig->enableTimerSync) ? (ctrl1Temp | CAN_CTRL1_TSYN_MASK) : (ctrl1Temp & ~CAN_CTRL1_TSYN_MASK); + + /* Enable Listen Only Mode? */ + ctrl1Temp = (pConfig->enableListenOnlyMode) ? ctrl1Temp | CAN_CTRL1_LOM_MASK : ctrl1Temp & ~CAN_CTRL1_LOM_MASK; + + /* Set the maximum number of Message Buffers */ + mcrTemp = (mcrTemp & ~CAN_MCR_MAXMB_MASK) | CAN_MCR_MAXMB((uint32_t)pConfig->maxMbNum - 1U); + + /* Enable Self Wake Up Mode and configure the wake up source. */ + mcrTemp = (pConfig->enableSelfWakeup) ? (mcrTemp | CAN_MCR_SLFWAK_MASK) : (mcrTemp & ~CAN_MCR_SLFWAK_MASK); + mcrTemp = (kFLEXCAN_WakeupSrcFiltered == pConfig->wakeupSrc) ? (mcrTemp | CAN_MCR_WAKSRC_MASK) : + (mcrTemp & ~CAN_MCR_WAKSRC_MASK); + + /* Enable Individual Rx Masking? */ + mcrTemp = (pConfig->enableIndividMask) ? (mcrTemp | CAN_MCR_IRMQ_MASK) : (mcrTemp & ~CAN_MCR_IRMQ_MASK); + + /* Disable Self Reception? */ + mcrTemp = (pConfig->disableSelfReception) ? mcrTemp | CAN_MCR_SRXDIS_MASK : mcrTemp & ~CAN_MCR_SRXDIS_MASK; + +#if (defined(FSL_FEATURE_FLEXCAN_HAS_DOZE_MODE_SUPPORT) && FSL_FEATURE_FLEXCAN_HAS_DOZE_MODE_SUPPORT) + if (0 != FSL_FEATURE_FLEXCAN_INSTANCE_HAS_DOZE_MODE_SUPPORTn(base)) + { + /* Enable Doze Mode? */ + mcrTemp = (pConfig->enableDoze) ? (mcrTemp | CAN_MCR_DOZE_MASK) : (mcrTemp & ~CAN_MCR_DOZE_MASK); + } +#endif + + /* Write back CTRL1 Configuration to register. */ + base->CTRL1 = ctrl1Temp; + +#if (defined(FSL_FEATURE_FLEXCAN_HAS_MEMORY_ERROR_CONTROL) && FSL_FEATURE_FLEXCAN_HAS_MEMORY_ERROR_CONTROL) + /* Enable to update in MCER. */ + base->CTRL2 |= CAN_CTRL2_ECRWRE_MASK; + base->MECR &= ~CAN_MECR_ECRWRDIS_MASK; +#endif + + /* Write back MCR Configuration to register. */ + base->MCR = mcrTemp; + + /* Baud Rate Configuration.*/ + FLEXCAN_SetBaudRate(base, sourceClock_Hz, pConfig->baudRate, pConfig->timingConfig); +} + +#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) +/*! + * brief Initializes a FlexCAN instance. + * + * This function initializes the FlexCAN module with user-defined settings. + * This example shows how to set up the flexcan_config_t parameters and how + * to call the FLEXCAN_FDInit function by passing in these parameters. + * code + * flexcan_config_t flexcanConfig; + * flexcanConfig.clkSrc = kFLEXCAN_ClkSrc0; + * flexcanConfig.baudRate = 1000000U; + * flexcanConfig.baudRateFD = 2000000U; + * flexcanConfig.maxMbNum = 16; + * flexcanConfig.enableLoopBack = false; + * flexcanConfig.enableSelfWakeup = false; + * flexcanConfig.enableIndividMask = false; + * flexcanConfig.disableSelfReception = false; + * flexcanConfig.enableListenOnlyMode = false; + * flexcanConfig.enableDoze = false; + * flexcanConfig.timingConfig = timingConfig; + * FLEXCAN_FDInit(CAN0, &flexcanConfig, 8000000UL, kFLEXCAN_16BperMB, false); + * endcode + * + * param base FlexCAN peripheral base address. + * param pConfig Pointer to the user-defined configuration structure. + * param sourceClock_Hz FlexCAN Protocol Engine clock source frequency in Hz. + * param dataSize FlexCAN FD frame payload size. + * param brs If bitrate switch is enabled in FD mode. + */ +void FLEXCAN_FDInit( + CAN_Type *base, const flexcan_config_t *pConfig, uint32_t sourceClock_Hz, flexcan_mb_size_t dataSize, bool brs) +{ + assert((uint32_t)dataSize <= 3U); + + uint32_t fdctrl = 0U; + + /* Initialization of classical CAN. */ + FLEXCAN_Init(base, pConfig, sourceClock_Hz); + + /* Extra bitrate setting for CANFD. */ + FLEXCAN_SetFDBaudRate(base, sourceClock_Hz, pConfig->baudRateFD, pConfig->timingConfig); + + /* read FDCTRL register. */ + fdctrl = base->FDCTRL; + + /* Enable FD operation and set bitrate switch. */ + if (brs) + { + fdctrl |= CAN_FDCTRL_FDRATE_MASK; + } + else + { + fdctrl &= ~CAN_FDCTRL_FDRATE_MASK; + } + + if (brs && !(pConfig->enableLoopBack)) + { + /* Before use "|=" operation for multi-bits field, CPU should Clean previous Setting. */ + fdctrl = (fdctrl & ~CAN_FDCTRL_TDCOFF_MASK) | CAN_FDCTRL_TDCOFF(0x2U); + } + + /* Before use "|=" operation for multi-bits field, CPU should clean previous Setting. */ + fdctrl = (fdctrl & ~CAN_FDCTRL_MBDSR0_MASK) | CAN_FDCTRL_MBDSR0(dataSize); +#if defined(CAN_FDCTRL_MBDSR1_MASK) + fdctrl = (fdctrl & ~CAN_FDCTRL_MBDSR1_MASK) | CAN_FDCTRL_MBDSR1(dataSize); +#endif +#if defined(CAN_FDCTRL_MBDSR2_MASK) + fdctrl = (fdctrl & ~CAN_FDCTRL_MBDSR2_MASK) | CAN_FDCTRL_MBDSR2(dataSize); +#endif +#if defined(CAN_FDCTRL_MBDSR3_MASK) + fdctrl = (fdctrl & ~CAN_FDCTRL_MBDSR3_MASK) | CAN_FDCTRL_MBDSR3(dataSize); +#endif + + /* Enter Freeze Mode. */ + FLEXCAN_EnterFreezeMode(base); + + base->MCR |= CAN_MCR_FDEN_MASK; + + /* update the FDCTL register. */ + base->FDCTRL = fdctrl; + + /* Exit Freeze Mode. */ + FLEXCAN_ExitFreezeMode(base); +} +#endif + +/*! + * brief De-initializes a FlexCAN instance. + * + * This function disables the FlexCAN module clock and sets all register values + * to the reset value. + * + * param base FlexCAN peripheral base address. + */ +void FLEXCAN_Deinit(CAN_Type *base) +{ +#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) + uint32_t instance; +#endif + /* Reset all Register Contents. */ + FLEXCAN_Reset(base); + + /* Disable FlexCAN module. */ + FLEXCAN_Enable(base, false); + +#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) + instance = FLEXCAN_GetInstance(base); +#if defined(FLEXCAN_PERIPH_CLOCKS) + /* Disable FlexCAN serial clock. */ + (void)CLOCK_DisableClock(s_flexcanPeriphClock[instance]); +#endif /* FLEXCAN_PERIPH_CLOCKS */ + /* Disable FlexCAN clock. */ + (void)CLOCK_DisableClock(s_flexcanClock[instance]); +#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */ +} + +/*! + * brief Gets the default configuration structure. + * + * This function initializes the FlexCAN configuration structure to default values. The default + * values are as follows. + * flexcanConfig->clkSrc = kFLEXCAN_ClkSrc0; + * flexcanConfig->baudRate = 1000000U; + * flexcanConfig->baudRateFD = 2000000U; + * flexcanConfig->maxMbNum = 16; + * flexcanConfig->enableLoopBack = false; + * flexcanConfig->enableSelfWakeup = false; + * flexcanConfig->enableIndividMask = false; + * flexcanConfig->disableSelfReception = false; + * flexcanConfig->enableListenOnlyMode = false; + * flexcanConfig->enableDoze = false; + * flexcanConfig.timingConfig = timingConfig; + * + * param pConfig Pointer to the FlexCAN configuration structure. + */ +void FLEXCAN_GetDefaultConfig(flexcan_config_t *pConfig) +{ + /* Assertion. */ + assert(NULL != pConfig); + + /* Initializes the configure structure to zero. */ + (void)memset(pConfig, 0, sizeof(*pConfig)); + + /* Initialize FlexCAN Module config struct with default value. */ + pConfig->clkSrc = kFLEXCAN_ClkSrc0; + pConfig->baudRate = 1000000U; +#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) + pConfig->baudRateFD = 2000000U; +#endif + pConfig->maxMbNum = 16; + pConfig->enableLoopBack = false; + pConfig->enableTimerSync = true; + pConfig->enableSelfWakeup = false; + pConfig->wakeupSrc = kFLEXCAN_WakeupSrcUnfiltered; + pConfig->enableIndividMask = false; + pConfig->disableSelfReception = false; + pConfig->enableListenOnlyMode = false; +#if (defined(FSL_FEATURE_FLEXCAN_HAS_DOZE_MODE_SUPPORT) && FSL_FEATURE_FLEXCAN_HAS_DOZE_MODE_SUPPORT) + pConfig->enableDoze = false; +#endif + /* Default protocol timing configuration, time quantum is 10. */ + pConfig->timingConfig.phaseSeg1 = 3; + pConfig->timingConfig.phaseSeg2 = 2; + pConfig->timingConfig.propSeg = 1; + pConfig->timingConfig.rJumpwidth = 1; +#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) + pConfig->timingConfig.fphaseSeg1 = 3; + pConfig->timingConfig.fphaseSeg2 = 3; + pConfig->timingConfig.fpropSeg = 1; + pConfig->timingConfig.frJumpwidth = 1; +#endif +} + +/*! + * brief Sets the FlexCAN protocol timing characteristic. + * + * This function gives user settings to CAN bus timing characteristic. + * The function is for an experienced user. For less experienced users, call + * the FLEXCAN_Init() and fill the baud rate field with a desired value. + * This provides the default timing characteristics to the module. + * + * Note that calling FLEXCAN_SetTimingConfig() overrides the baud rate set + * in FLEXCAN_Init(). + * + * param base FlexCAN peripheral base address. + * param pConfig Pointer to the timing configuration structure. + */ +void FLEXCAN_SetTimingConfig(CAN_Type *base, const flexcan_timing_config_t *pConfig) +{ + /* Assertion. */ + assert(NULL != pConfig); + + /* Enter Freeze Mode. */ + FLEXCAN_EnterFreezeMode(base); + +#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) + if (0 != FSL_FEATURE_FLEXCAN_INSTANCE_HAS_FLEXIBLE_DATA_RATEn(base)) + { + /* Cleaning previous Timing Setting. */ + base->CBT &= ~(CAN_CBT_EPRESDIV_MASK | CAN_CBT_ERJW_MASK | CAN_CBT_EPSEG1_MASK | CAN_CBT_EPSEG2_MASK | + CAN_CBT_EPROPSEG_MASK); + + /* Updating Timing Setting according to configuration structure. */ + base->CBT |= (CAN_CBT_EPRESDIV(pConfig->preDivider) | CAN_CBT_ERJW(pConfig->rJumpwidth) | + CAN_CBT_EPSEG1(pConfig->phaseSeg1) | CAN_CBT_EPSEG2(pConfig->phaseSeg2) | + CAN_CBT_EPROPSEG(pConfig->propSeg)); + } + else + { + /* Cleaning previous Timing Setting. */ + base->CTRL1 &= ~(CAN_CTRL1_PRESDIV_MASK | CAN_CTRL1_RJW_MASK | CAN_CTRL1_PSEG1_MASK | CAN_CTRL1_PSEG2_MASK | + CAN_CTRL1_PROPSEG_MASK); + + /* Updating Timing Setting according to configuration structure. */ + base->CTRL1 |= (CAN_CTRL1_PRESDIV(pConfig->preDivider) | CAN_CTRL1_RJW(pConfig->rJumpwidth) | + CAN_CTRL1_PSEG1(pConfig->phaseSeg1) | CAN_CTRL1_PSEG2(pConfig->phaseSeg2) | + CAN_CTRL1_PROPSEG(pConfig->propSeg)); + } +#else + /* Cleaning previous Timing Setting. */ + base->CTRL1 &= ~(CAN_CTRL1_PRESDIV_MASK | CAN_CTRL1_RJW_MASK | CAN_CTRL1_PSEG1_MASK | CAN_CTRL1_PSEG2_MASK | + CAN_CTRL1_PROPSEG_MASK); + + /* Updating Timing Setting according to configuration structure. */ + base->CTRL1 |= (CAN_CTRL1_PRESDIV(pConfig->preDivider) | CAN_CTRL1_RJW(pConfig->rJumpwidth) | + CAN_CTRL1_PSEG1(pConfig->phaseSeg1) | CAN_CTRL1_PSEG2(pConfig->phaseSeg2) | + CAN_CTRL1_PROPSEG(pConfig->propSeg)); +#endif + + /* Exit Freeze Mode. */ + FLEXCAN_ExitFreezeMode(base); +} + +#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) +/*! + * brief Sets the FlexCAN FD protocol timing characteristic. + * + * This function gives user settings to CAN bus timing characteristic. + * The function is for an experienced user. For less experienced users, call + * the FLEXCAN_Init() and fill the baud rate field with a desired value. + * This provides the default timing characteristics to the module. + * + * Note that calling FLEXCAN_SetFDTimingConfig() overrides the baud rate set + * in FLEXCAN_Init(). + * + * param base FlexCAN peripheral base address. + * param pConfig Pointer to the timing configuration structure. + */ +void FLEXCAN_SetFDTimingConfig(CAN_Type *base, const flexcan_timing_config_t *pConfig) +{ + /* Assertion. */ + assert(NULL != pConfig); + + /* Enter Freeze Mode. */ + FLEXCAN_EnterFreezeMode(base); + + base->CBT |= CAN_CBT_BTF(1); + /* Cleaning previous Timing Setting. */ + base->FDCBT &= ~(CAN_FDCBT_FPRESDIV_MASK | CAN_FDCBT_FRJW_MASK | CAN_FDCBT_FPSEG1_MASK | CAN_FDCBT_FPSEG2_MASK | + CAN_FDCBT_FPROPSEG_MASK); + + /* Updating Timing Setting according to configuration structure. */ + base->FDCBT |= (CAN_FDCBT_FPRESDIV(pConfig->fpreDivider) | CAN_FDCBT_FRJW(pConfig->frJumpwidth) | + CAN_FDCBT_FPSEG1(pConfig->fphaseSeg1) | CAN_FDCBT_FPSEG2(pConfig->fphaseSeg2) | + CAN_FDCBT_FPROPSEG(pConfig->fpropSeg)); + + /* Exit Freeze Mode. */ + FLEXCAN_ExitFreezeMode(base); +} +#endif + +/*! + * brief Sets the FlexCAN receive message buffer global mask. + * + * This function sets the global mask for the FlexCAN message buffer in a matching process. + * The configuration is only effective when the Rx individual mask is disabled in the FLEXCAN_Init(). + * + * param base FlexCAN peripheral base address. + * param mask Rx Message Buffer Global Mask value. + */ +void FLEXCAN_SetRxMbGlobalMask(CAN_Type *base, uint32_t mask) +{ + /* Enter Freeze Mode. */ + FLEXCAN_EnterFreezeMode(base); + + /* Setting Rx Message Buffer Global Mask value. */ + base->RXMGMASK = mask; + base->RX14MASK = mask; + base->RX15MASK = mask; + + /* Exit Freeze Mode. */ + FLEXCAN_ExitFreezeMode(base); +} + +/*! + * brief Sets the FlexCAN receive FIFO global mask. + * + * This function sets the global mask for FlexCAN FIFO in a matching process. + * + * param base FlexCAN peripheral base address. + * param mask Rx Fifo Global Mask value. + */ +void FLEXCAN_SetRxFifoGlobalMask(CAN_Type *base, uint32_t mask) +{ + /* Enter Freeze Mode. */ + FLEXCAN_EnterFreezeMode(base); + + /* Setting Rx FIFO Global Mask value. */ + base->RXFGMASK = mask; + + /* Exit Freeze Mode. */ + FLEXCAN_ExitFreezeMode(base); +} + +/*! + * brief Sets the FlexCAN receive individual mask. + * + * This function sets the individual mask for the FlexCAN matching process. + * The configuration is only effective when the Rx individual mask is enabled in the FLEXCAN_Init(). + * If the Rx FIFO is disabled, the individual mask is applied to the corresponding Message Buffer. + * If the Rx FIFO is enabled, the individual mask for Rx FIFO occupied Message Buffer is applied to + * the Rx Filter with the same index. Note that only the first 32 + * individual masks can be used as the Rx FIFO filter mask. + * + * param base FlexCAN peripheral base address. + * param maskIdx The Index of individual Mask. + * param mask Rx Individual Mask value. + */ +void FLEXCAN_SetRxIndividualMask(CAN_Type *base, uint8_t maskIdx, uint32_t mask) +{ + assert(maskIdx <= (base->MCR & CAN_MCR_MAXMB_MASK)); + + /* Enter Freeze Mode. */ + FLEXCAN_EnterFreezeMode(base); + + /* Setting Rx Individual Mask value. */ + base->RXIMR[maskIdx] = mask; + + /* Exit Freeze Mode. */ + FLEXCAN_ExitFreezeMode(base); +} + +/*! + * brief Configures a FlexCAN transmit message buffer. + * + * This function aborts the previous transmission, cleans the Message Buffer, and + * configures it as a Transmit Message Buffer. + * + * param base FlexCAN peripheral base address. + * param mbIdx The Message Buffer index. + * param enable Enable/disable Tx Message Buffer. + * - true: Enable Tx Message Buffer. + * - false: Disable Tx Message Buffer. + */ +void FLEXCAN_SetTxMbConfig(CAN_Type *base, uint8_t mbIdx, bool enable) +{ + /* Assertion. */ + assert(mbIdx <= (base->MCR & CAN_MCR_MAXMB_MASK)); +#if !defined(NDEBUG) + assert(!FLEXCAN_IsMbOccupied(base, mbIdx)); +#endif + + /* Inactivate Message Buffer. */ + if (enable) + { + base->MB[mbIdx].CS = CAN_CS_CODE(kFLEXCAN_TxMbInactive); + } + else + { + base->MB[mbIdx].CS = 0; + } + + /* Clean Message Buffer content. */ + base->MB[mbIdx].ID = 0x0; + base->MB[mbIdx].WORD0 = 0x0; + base->MB[mbIdx].WORD1 = 0x0; +} + +/*! + * @brief Calculates the segment values for a single bit time for classical CAN + * + * @param baudRate The data speed in bps + * @param tqNum Number of time quantas per bit + * @param pTimingConfig Pointer to the FlexCAN timing configuration structure. + * + * @return TRUE if Calculates the segment success, FALSE if Calculates the segment success + */ +static bool FLEXCAN_GetSegments(uint32_t baudRate, uint32_t tqNum, flexcan_timing_config_t *pTimingConfig) +{ + uint32_t ideal_sp; + uint32_t p1; + bool fgRet = false; + + /* Get ideal sample point. For the Bit field in CTRL1 register can't calculate higher ideal SP, we set it as the + * lowest one(75%).*/ + ideal_sp = IDEAL_SP_LOW; + + /* distribute time quanta. */ + p1 = tqNum * (uint32_t)ideal_sp; + pTimingConfig->propSeg = (uint8_t)(p1 / (uint32_t)IDEAL_SP_FACTOR - 2U); + if (pTimingConfig->propSeg <= (MAX_PSEG1 + MAX_PROPSEG)) + { + if (pTimingConfig->propSeg > MAX_PROPSEG) + { + pTimingConfig->phaseSeg1 = pTimingConfig->propSeg - MAX_PROPSEG; + pTimingConfig->propSeg = MAX_PROPSEG; + } + else + { + pTimingConfig->phaseSeg1 = 0; + } + + /* The value of prog Seg should be not larger than tqNum -4U. */ + if ((pTimingConfig->propSeg + pTimingConfig->phaseSeg1) < ((uint8_t)tqNum - 4U)) + { + pTimingConfig->phaseSeg2 = (uint8_t)tqNum - (pTimingConfig->phaseSeg1 + pTimingConfig->propSeg + 4U); + + if (pTimingConfig->phaseSeg2 <= MAX_PSEG1) + { + if ((pTimingConfig->phaseSeg1 < pTimingConfig->phaseSeg2) && + (pTimingConfig->propSeg > (pTimingConfig->phaseSeg2 - pTimingConfig->phaseSeg1))) + { + pTimingConfig->propSeg -= (pTimingConfig->phaseSeg2 - pTimingConfig->phaseSeg1); + pTimingConfig->phaseSeg1 = pTimingConfig->phaseSeg2; + } + + /* subtract one TQ for sync seg. */ + /* sjw is 20% of total TQ, rounded to nearest int. */ + pTimingConfig->rJumpwidth = ((uint8_t)tqNum + 4U) / 5U - 1U; + /* The max tqNum for CBT will reach to 129, ERJW would not be larger than 26. */ + /* Considering that max ERJW is 31, rJumpwidth will always be smaller than MAX_ERJW. */ + if (pTimingConfig->rJumpwidth > MAX_RJW) + { + pTimingConfig->rJumpwidth = MAX_RJW; + } + + fgRet = true; + } + } + } + + return fgRet; +} + +/*! + * @brief Calculates the improved timing values by specific baudrates for classical CAN + * + * @param baudRate The classical CAN speed in bps defined by user + * @param sourceClock_Hz The Source clock data speed in bps. Zero to disable baudrate switching + * @param pTimingConfig Pointer to the FlexCAN timing configuration structure. + * + * @return TRUE if timing configuration found, FALSE if failed to find configuration + */ +bool FLEXCAN_CalculateImprovedTimingValues(uint32_t baudRate, + uint32_t sourceClock_Hz, + flexcan_timing_config_t *pTimingConfig) +{ + /* observe baud rate maximums. */ + assert(baudRate <= MAX_CAN_BAUDRATE); + + uint32_t clk; /* the clock is tqNumb x baudRateFD. */ + uint32_t tqNum; /* Numbers of TQ. */ + bool fgRet = false; + + /* Auto Improved Protocal timing for CTRL1. */ + tqNum = CTRL1_MAX_TIME_QUANTA; + do + { + clk = baudRate * tqNum; + if (clk > sourceClock_Hz) + { + continue; /* tqNum too large, clk has been exceed sourceClock_Hz. */ + } + + if ((sourceClock_Hz / clk * clk) != sourceClock_Hz) + { + continue; /* Non-supporting: the frequency of clock source is not divisible by target baud rate, the user + should change a divisible baud rate. */ + } + + pTimingConfig->preDivider = (uint16_t)(sourceClock_Hz / clk) - 1U; + if (pTimingConfig->preDivider > MAX_PRESDIV) + { + break; /* The frequency of source clock is too large or the baud rate is too small, the pre-divider could + not handle it. */ + } + + /* Try to get the best timing configuration. */ + if (FLEXCAN_GetSegments(baudRate, tqNum, pTimingConfig)) + { + fgRet = true; + break; + } + } while (--tqNum >= CTRL1_MIN_TIME_QUANTA); + + return fgRet; +} + +#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) +static uint32_t FLEXCAN_GetFDMailboxOffset(CAN_Type *base, uint8_t mbIdx) +{ + uint32_t offset = 0; + uint32_t dataSize = (base->FDCTRL & CAN_FDCTRL_MBDSR0_MASK) >> CAN_FDCTRL_MBDSR0_SHIFT; + switch (dataSize) + { + case (uint32_t)kFLEXCAN_8BperMB: + offset = (((uint32_t)mbIdx / 32U) * 512U + ((uint32_t)mbIdx % 32U) * 16U); + break; + case (uint32_t)kFLEXCAN_16BperMB: + offset = (((uint32_t)mbIdx / 21U) * 512U + ((uint32_t)mbIdx % 21U) * 24U); + break; + case (uint32_t)kFLEXCAN_32BperMB: + offset = (((uint32_t)mbIdx / 12U) * 512U + ((uint32_t)mbIdx % 12U) * 40U); + break; + case (uint32_t)kFLEXCAN_64BperMB: + offset = (((uint32_t)mbIdx / 7U) * 512U + ((uint32_t)mbIdx % 7U) * 72U); + break; + default: + /* All the cases have been listed above, the default clause should not be reached. */ + assert(false); + break; + } + /* To get the dword aligned offset, need to divide by 4. */ + offset = offset / 4U; + return offset; +} + +/*! + * @brief Calculates the segment values for a single bit time for CANFD bus control baud Rate + * + * @param baudRate The canfd bus control speed in bps + * @param tqNum Number of time quanta per bit + * @param pTimingConfig Pointer to the FlexCAN timing configuration structure. + * + * @return TRUE if Calculates the segment success, FALSE if Calculates the segment success + */ +static bool FLEXCAN_FDGetSegments(uint32_t baudRate, uint32_t tqNum, flexcan_timing_config_t *pTimingConfig) +{ + uint32_t ideal_sp; + uint32_t p1; + bool fgRet = false; + + /* Get ideal sample point. */ + if (baudRate >= 1000000U) + { + ideal_sp = IDEAL_SP_LOW; + } + else if (baudRate >= 800000U) + { + ideal_sp = IDEAL_SP_MID; + } + else + { + ideal_sp = IDEAL_SP_HIGH; + } + + /* distribute time quanta. */ + p1 = tqNum * (uint32_t)ideal_sp; + pTimingConfig->propSeg = (uint8_t)(p1 / (uint32_t)IDEAL_SP_FACTOR - 2U); + if (pTimingConfig->propSeg <= (MAX_EPSEG1 + MAX_EPROPSEG)) + { + if (pTimingConfig->propSeg > MAX_EPROPSEG) + { + pTimingConfig->phaseSeg1 = pTimingConfig->propSeg - MAX_EPROPSEG; + pTimingConfig->propSeg = MAX_EPROPSEG; + } + else + { + pTimingConfig->phaseSeg1 = 0; + } + + /* The value of prog Seg should be not larger than tqNum -4U. */ + if ((pTimingConfig->propSeg + pTimingConfig->phaseSeg1) < ((uint8_t)tqNum - 4U)) + { + pTimingConfig->phaseSeg2 = (uint8_t)tqNum - (pTimingConfig->phaseSeg1 + pTimingConfig->propSeg + 4U); + + if (pTimingConfig->phaseSeg2 <= MAX_EPSEG2) + { + if ((pTimingConfig->phaseSeg1 < pTimingConfig->phaseSeg2) && + (pTimingConfig->propSeg > (pTimingConfig->phaseSeg2 - pTimingConfig->phaseSeg1))) + { + pTimingConfig->propSeg -= (pTimingConfig->phaseSeg2 - pTimingConfig->phaseSeg1); + pTimingConfig->phaseSeg1 = pTimingConfig->phaseSeg2; + } + + /* subtract one TQ for sync seg. */ + /* sjw is 20% of total TQ, rounded to nearest int. */ + pTimingConfig->rJumpwidth = ((uint8_t)tqNum + 4U) / 5U - 1U; + /* The max tqNum for CBT will reach to 129, ERJW would not be larger than 26. */ + /* Considering that max ERJW is 31, rJumpwidth will always be smaller than MAX_ERJW. */ + if (pTimingConfig->rJumpwidth > MAX_ERJW) + { + pTimingConfig->rJumpwidth = MAX_ERJW; + } + + fgRet = true; + } + } + } + + return fgRet; +} + +/*! + * @brief Calculates the segment values for a single bit time for CANFD bus data baud Rate + * + * @param baudRatebrs The canfd bus data speed in bps + * @param tqNum Number of time quanta per bit + * @param pTimingConfig Pointer to the FlexCAN timing configuration structure. + * + * @return TRUE if Calculates the segment success, FALSE if Calculates the segment success + */ +static bool FLEXCAN_FDGetSegmentswithBRS(uint32_t baudRatebrs, uint32_t tqNum, flexcan_timing_config_t *pTimingConfig) +{ + uint32_t ideal_sp; + uint32_t p1; + bool fgRet = false; + + /* get ideal sample point. */ + if (baudRatebrs >= 1000000U) + { + ideal_sp = IDEAL_SP_LOW; + } + else if (baudRatebrs >= 800000U) + { + ideal_sp = IDEAL_SP_MID; + } + else + { + ideal_sp = IDEAL_SP_HIGH; + } + + /* distribute time quanta. */ + p1 = tqNum * (uint32_t)ideal_sp; + pTimingConfig->fpropSeg = (uint8_t)(p1 / (uint32_t)IDEAL_SP_FACTOR - 1U); + if (pTimingConfig->fpropSeg <= (MAX_FPSEG1 + MAX_FPROPSEG)) + { + if (pTimingConfig->fpropSeg > MAX_FPROPSEG) + { + pTimingConfig->fphaseSeg1 = pTimingConfig->fpropSeg - MAX_FPROPSEG; + pTimingConfig->fpropSeg = MAX_FPROPSEG; + } + else + { + pTimingConfig->fphaseSeg1 = 0; + } + + /* The value of prog Seg should be not larger than tqNum -3U. */ + if ((pTimingConfig->fpropSeg + pTimingConfig->fphaseSeg1) < ((uint8_t)tqNum - 3U)) + { + pTimingConfig->fphaseSeg2 = (uint8_t)tqNum - (pTimingConfig->fphaseSeg1 + pTimingConfig->fpropSeg + 3U); + + if ((pTimingConfig->fphaseSeg1 < pTimingConfig->fphaseSeg2) && + (pTimingConfig->fpropSeg > (pTimingConfig->fphaseSeg2 - pTimingConfig->fphaseSeg1))) + { + pTimingConfig->fpropSeg -= (pTimingConfig->fphaseSeg2 - pTimingConfig->fphaseSeg1); + pTimingConfig->fphaseSeg1 = pTimingConfig->fphaseSeg2; + } + + /* subtract one TQ for sync seg. */ + /* sjw is 20% of total TQ, rounded to nearest int. */ + pTimingConfig->frJumpwidth = ((uint8_t)tqNum + 4U) / 5U - 1U; + + if (pTimingConfig->frJumpwidth > MAX_FRJW) + { + pTimingConfig->frJumpwidth = MAX_FRJW; + } + fgRet = true; + } + } + + return fgRet; +} + +/*! + * @brief Calculates the improved timing values by specific baudrates for CAN by CBT register + * + * @param baudRate The classical CAN speed in bps defined by user + * @param sourceClock_Hz The Source clock data speed in bps. Zero to disable baudrate switching + * @param pTimingConfig Pointer to the FlexCAN timing configuration structure. + * + * @return TRUE if timing configuration found, FALSE if failed to find configuration + */ +static bool FLEXCAN_CalculateImprovedTimingValuesByCBT(uint32_t baudRate, + uint32_t sourceClock_Hz, + flexcan_timing_config_t *pTimingConfig) +{ + /* observe baud rate maximums. */ + assert(baudRate <= MAX_CAN_BAUDRATE); + + uint32_t clk; /* the clock is tqNumb x baudRateFD. */ + uint32_t tqNum; /* Numbers of TQ. */ + bool fgRet = false; + + tqNum = CBT_MAX_TIME_QUANTA; + /* Auto Improved Protocal timing. */ + do + { + clk = baudRate * tqNum; + if (clk > sourceClock_Hz) + { + continue; /* tqNum too large, clk has been exceed sourceClock_Hz. */ + } + + if ((sourceClock_Hz / clk * clk) != sourceClock_Hz) + { + continue; /* Non-supporting: the frequency of clock source is not divisible by target baud rate, the user + should change a divisible baud rate. */ + } + + pTimingConfig->preDivider = (uint16_t)(sourceClock_Hz / clk) - 1U; + if (pTimingConfig->preDivider > MAX_EPRESDIV) + { + break; /* The frequency of source clock is too large or the baud rate is too small, the pre-divider could + not handle it. */ + } + + /* Try to get the best timing configuration. */ + if (FLEXCAN_FDGetSegments(baudRate, tqNum, pTimingConfig)) + { + fgRet = true; + break; + } + } while (--tqNum >= CBT_MIN_TIME_QUANTA); + + return fgRet; +} + +/*! + * @brief Calculates the improved timing values by specific baudrates for CANFD + * + * @param baudRate The CANFD bus control speed in bps defined by user + * @param baudRateFD The CANFD bus data speed in bps defined by user + * @param sourceClock_Hz The Source clock data speed in bps. Zero to disable baudrate switching + * @param pTimingConfig Pointer to the FlexCAN timing configuration structure. + * + * @return TRUE if timing configuration found, FALSE if failed to find configuration + */ +bool FLEXCAN_FDCalculateImprovedTimingValues(uint32_t baudRate, + uint32_t baudRateFD, + uint32_t sourceClock_Hz, + flexcan_timing_config_t *pTimingConfig) +{ + /* observe baud rate maximums */ + assert(baudRate <= MAX_CAN_BAUDRATE); + assert(baudRateFD <= MAX_CANFD_BAUDRATE); + + uint32_t clk; + uint32_t tqNum; /* Numbers of TQ. */ + bool fgRet = false; + + if (FLEXCAN_CalculateImprovedTimingValuesByCBT(baudRate, sourceClock_Hz, pTimingConfig)) + { + if (0U != baudRateFD) + { + /* Auto Improved Protocal timing for CBT. */ + tqNum = FDCBT_MAX_TIME_QUANTA; + do + { + clk = baudRateFD * tqNum; + if (clk > sourceClock_Hz) + { + continue; /* tqNum too large, clk x tqNum has been exceed sourceClock_Hz. */ + } + + if ((sourceClock_Hz / clk * clk) != sourceClock_Hz) + { + continue; /* Non-supporting: the frequency of clock source is not divisible by target baud rate, + the user should change a divisible baud rate. */ + } + + pTimingConfig->fpreDivider = (uint16_t)(sourceClock_Hz / clk - 1U); + if (pTimingConfig->fpreDivider > MAX_FPRESDIV) + { + break; /* The frequency of source clock is too large or the baud rate is too small, the pre-divider + could not handle it. */ + } + + /* Get the best CANFD data bus timing configuration. */ + if (FLEXCAN_FDGetSegmentswithBRS(baudRateFD, tqNum, pTimingConfig)) + { + fgRet = true; + break; + } + } while (--tqNum >= FDCBT_MIN_TIME_QUANTA); + } + else + { + fgRet = true; /* User don't use Brs feature. */ + } + } + return fgRet; +} + +/*! + * brief Configures a FlexCAN transmit message buffer. + * + * This function aborts the previous transmission, cleans the Message Buffer, and + * configures it as a Transmit Message Buffer. + * + * param base FlexCAN peripheral base address. + * param mbIdx The Message Buffer index. + * param enable Enable/disable Tx Message Buffer. + * - true: Enable Tx Message Buffer. + * - false: Disable Tx Message Buffer. + */ +void FLEXCAN_SetFDTxMbConfig(CAN_Type *base, uint8_t mbIdx, bool enable) +{ + /* Assertion. */ + assert(mbIdx <= (base->MCR & CAN_MCR_MAXMB_MASK)); +#if !defined(NDEBUG) + assert(!FLEXCAN_IsMbOccupied(base, mbIdx)); +#endif + + uint8_t cnt = 0; + uint8_t payload_dword = 1; + uint32_t dataSize; + dataSize = (base->FDCTRL & CAN_FDCTRL_MBDSR0_MASK) >> CAN_FDCTRL_MBDSR0_SHIFT; + volatile uint32_t *mbAddr = &(base->MB[0].CS); + uint32_t offset = FLEXCAN_GetFDMailboxOffset(base, mbIdx); +#if ((defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) || \ + (defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829)) + uint32_t availoffset = FLEXCAN_GetFDMailboxOffset(base, FLEXCAN_GetFirstValidMb(base)); +#endif + + /* Inactivate Message Buffer. */ + if (enable) + { + /* Inactivate by writing CS. */ + mbAddr[offset] = CAN_CS_CODE(kFLEXCAN_TxMbInactive); + } + else + { + mbAddr[offset] = 0x0; + } + + /* Calculate the DWORD number, dataSize 0/1/2/3 corresponds to 8/16/32/64 + Bytes payload. */ + for (cnt = 0; cnt < (dataSize + 1U); cnt++) + { + payload_dword *= 2U; + } + + /* Clean ID. */ + mbAddr[offset + 1U] = 0x0U; + /* Clean Message Buffer content, DWORD by DWORD. */ + for (cnt = 0; cnt < payload_dword; cnt++) + { + mbAddr[offset + 2U + cnt] = 0x0U; + } + +#if ((defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) || \ + (defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829)) + mbAddr[availoffset] = CAN_CS_CODE(kFLEXCAN_TxMbInactive); +#endif +} +#endif /* FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE */ + +/*! + * brief Configures a FlexCAN Receive Message Buffer. + * + * This function cleans a FlexCAN build-in Message Buffer and configures it + * as a Receive Message Buffer. + * + * param base FlexCAN peripheral base address. + * param mbIdx The Message Buffer index. + * param pRxMbConfig Pointer to the FlexCAN Message Buffer configuration structure. + * param enable Enable/disable Rx Message Buffer. + * - true: Enable Rx Message Buffer. + * - false: Disable Rx Message Buffer. + */ +void FLEXCAN_SetRxMbConfig(CAN_Type *base, uint8_t mbIdx, const flexcan_rx_mb_config_t *pRxMbConfig, bool enable) +{ + /* Assertion. */ + assert(mbIdx <= (base->MCR & CAN_MCR_MAXMB_MASK)); + assert(((NULL != pRxMbConfig) || (false == enable))); +#if !defined(NDEBUG) + assert(!FLEXCAN_IsMbOccupied(base, mbIdx)); +#endif + + uint32_t cs_temp = 0; + + /* Inactivate Message Buffer. */ + base->MB[mbIdx].CS = 0; + + /* Clean Message Buffer content. */ + base->MB[mbIdx].ID = 0x0; + base->MB[mbIdx].WORD0 = 0x0; + base->MB[mbIdx].WORD1 = 0x0; + + if (enable) + { + /* Setup Message Buffer ID. */ + base->MB[mbIdx].ID = pRxMbConfig->id; + + /* Setup Message Buffer format. */ + if (kFLEXCAN_FrameFormatExtend == pRxMbConfig->format) + { + cs_temp |= CAN_CS_IDE_MASK; + } + + /* Setup Message Buffer type. */ + if (kFLEXCAN_FrameTypeRemote == pRxMbConfig->type) + { + cs_temp |= CAN_CS_RTR_MASK; + } + + /* Activate Rx Message Buffer. */ + cs_temp |= CAN_CS_CODE(kFLEXCAN_RxMbEmpty); + base->MB[mbIdx].CS = cs_temp; + } +} + +#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) +/*! + * brief Configures a FlexCAN Receive Message Buffer. + * + * This function cleans a FlexCAN build-in Message Buffer and configures it + * as a Receive Message Buffer. + * + * param base FlexCAN peripheral base address. + * param mbIdx The Message Buffer index. + * param pRxMbConfig Pointer to the FlexCAN Message Buffer configuration structure. + * param enable Enable/disable Rx Message Buffer. + * - true: Enable Rx Message Buffer. + * - false: Disable Rx Message Buffer. + */ +void FLEXCAN_SetFDRxMbConfig(CAN_Type *base, uint8_t mbIdx, const flexcan_rx_mb_config_t *pRxMbConfig, bool enable) +{ + /* Assertion. */ + assert(mbIdx <= (base->MCR & CAN_MCR_MAXMB_MASK)); + assert(((NULL != pRxMbConfig) || (false == enable))); +#if !defined(NDEBUG) + assert(!FLEXCAN_IsMbOccupied(base, mbIdx)); +#endif + + uint32_t cs_temp = 0; + uint8_t cnt = 0; + volatile uint32_t *mbAddr = &(base->MB[0].CS); + uint32_t offset = FLEXCAN_GetFDMailboxOffset(base, mbIdx); + uint8_t payload_dword; + uint32_t dataSize = (base->FDCTRL & CAN_FDCTRL_MBDSR0_MASK) >> CAN_FDCTRL_MBDSR0_SHIFT; + + /* Inactivate Message Buffer. */ + mbAddr[offset] = 0U; + + /* Clean Message Buffer content. */ + mbAddr[offset + 1U] = 0U; + /* Calculate the DWORD number, dataSize 0/1/2/3 corresponds to 8/16/32/64 + Bytes payload. */ + payload_dword = (2U << dataSize); + for (cnt = 0; cnt < payload_dword; cnt++) + { + mbAddr[offset + 2U + cnt] = 0x0; + } + + if (enable) + { + /* Setup Message Buffer ID. */ + mbAddr[offset + 1U] = pRxMbConfig->id; + + /* Setup Message Buffer format. */ + if (kFLEXCAN_FrameFormatExtend == pRxMbConfig->format) + { + cs_temp |= CAN_CS_IDE_MASK; + } + + /* Setup Message Buffer type. */ + if (kFLEXCAN_FrameTypeRemote == pRxMbConfig->type) + { + cs_temp |= CAN_CS_RTR_MASK; + } + + /* Activate Rx Message Buffer. */ + cs_temp |= CAN_CS_CODE(kFLEXCAN_RxMbEmpty); + mbAddr[offset] = cs_temp; + } +} +#endif + +/*! + * brief Configures the FlexCAN Rx FIFO. + * + * This function configures the Rx FIFO with given Rx FIFO configuration. + * + * param base FlexCAN peripheral base address. + * param pRxFifoConfig Pointer to the FlexCAN Rx FIFO configuration structure. + * param enable Enable/disable Rx FIFO. + * - true: Enable Rx FIFO. + * - false: Disable Rx FIFO. + */ +void FLEXCAN_SetRxFifoConfig(CAN_Type *base, const flexcan_rx_fifo_config_t *pRxFifoConfig, bool enable) +{ + /* Assertion. */ + assert((NULL != pRxFifoConfig) || (false == enable)); + + volatile uint32_t *mbAddr; + uint8_t i, j, k, rffn = 0, numMbOccupy; + uint32_t setup_mb = 0; + + /* Enter Freeze Mode. */ + FLEXCAN_EnterFreezeMode(base); + + if (enable) + { + assert(pRxFifoConfig->idFilterNum <= 128U); + + /* Get the setup_mb value. */ + setup_mb = (uint8_t)((base->MCR & CAN_MCR_MAXMB_MASK) >> CAN_MCR_MAXMB_SHIFT); + setup_mb = (setup_mb < (uint32_t)FSL_FEATURE_FLEXCAN_HAS_MESSAGE_BUFFER_MAX_NUMBERn(base)) ? + setup_mb : + (uint32_t)FSL_FEATURE_FLEXCAN_HAS_MESSAGE_BUFFER_MAX_NUMBERn(base); + + /* Determine RFFN value. */ + for (i = 0; i <= 0xFU; i++) + { + if ((8U * (i + 1U)) >= pRxFifoConfig->idFilterNum) + { + rffn = i; + assert(((setup_mb - 8U) - (2U * rffn)) > 0U); + + base->CTRL2 = (base->CTRL2 & ~CAN_CTRL2_RFFN_MASK) | CAN_CTRL2_RFFN(rffn); + break; + } + } + + /* caculate the Number of Mailboxes occupied by RX Legacy FIFO and the filter. */ + numMbOccupy = 6U + (rffn + 1U) * 2U; + + /* Copy ID filter table to Message Buffer Region (Fix MISRA_C-2012 Rule 18.1). */ + j = 0U; + for (i = 6U; i < numMbOccupy; i++) + { + /* Get address for current mail box. */ + mbAddr = &(base->MB[i].CS); + + /* One Mail box contain 4U DWORD registers. */ + for (k = 0; k < 4U; k++) + { + /* Fill all valid filter in the mail box occupied by filter. + * Disable unused Rx FIFO Filter, the other rest of register in the last Mail box occupied by fiter set + * as 0xffffffff. + */ + mbAddr[k] = (j < pRxFifoConfig->idFilterNum) ? (pRxFifoConfig->idFilterTable[j]) : 0xFFFFFFFFU; + + /* Try to fill next filter in current Mail Box. */ + j++; + } + } + + /* Setup ID Fitlter Type. */ + switch (pRxFifoConfig->idFilterType) + { + case kFLEXCAN_RxFifoFilterTypeA: + base->MCR = (base->MCR & ~CAN_MCR_IDAM_MASK) | CAN_MCR_IDAM(0x0); + break; + case kFLEXCAN_RxFifoFilterTypeB: + base->MCR = (base->MCR & ~CAN_MCR_IDAM_MASK) | CAN_MCR_IDAM(0x1); + break; + case kFLEXCAN_RxFifoFilterTypeC: + base->MCR = (base->MCR & ~CAN_MCR_IDAM_MASK) | CAN_MCR_IDAM(0x2); + break; + case kFLEXCAN_RxFifoFilterTypeD: + /* All frames rejected. */ + base->MCR = (base->MCR & ~CAN_MCR_IDAM_MASK) | CAN_MCR_IDAM(0x3); + break; + default: + /* All the cases have been listed above, the default clause should not be reached. */ + assert(false); + break; + } + + /* Setting Message Reception Priority. */ + base->CTRL2 = (pRxFifoConfig->priority == kFLEXCAN_RxFifoPrioHigh) ? (base->CTRL2 & ~CAN_CTRL2_MRP_MASK) : + (base->CTRL2 | CAN_CTRL2_MRP_MASK); + + /* Enable Rx Message FIFO. */ + base->MCR |= CAN_MCR_RFEN_MASK; + } + else + { + rffn = (uint8_t)((base->CTRL2 & CAN_CTRL2_RFFN_MASK) >> CAN_CTRL2_RFFN_SHIFT); + /* caculate the Number of Mailboxes occupied by RX Legacy FIFO and the filter. */ + numMbOccupy = 6U + (rffn + 1U) * 2U; + + /* Disable Rx Message FIFO. */ + base->MCR &= ~CAN_MCR_RFEN_MASK; + + /* Clean MB0 ~ MB5 and all MB occupied by ID filters (Fix MISRA_C-2012 Rule 18.1). */ + + for (i = 0; i < numMbOccupy; i++) + { + FLEXCAN_SetRxMbConfig(base, i, NULL, false); + } + } + + /* Exit Freeze Mode. */ + FLEXCAN_ExitFreezeMode(base); +} + +#if (defined(FSL_FEATURE_FLEXCAN_HAS_RX_FIFO_DMA) && FSL_FEATURE_FLEXCAN_HAS_RX_FIFO_DMA) +/*! + * brief Enables or disables the FlexCAN Rx FIFO DMA request. + * + * This function enables or disables the DMA feature of FlexCAN build-in Rx FIFO. + * + * param base FlexCAN peripheral base address. + * param enable true to enable, false to disable. + */ +void FLEXCAN_EnableRxFifoDMA(CAN_Type *base, bool enable) +{ + if (enable) + { + /* Enter Freeze Mode. */ + FLEXCAN_EnterFreezeMode(base); + + /* Enable FlexCAN DMA. */ + base->MCR |= CAN_MCR_DMA_MASK; + + /* Exit Freeze Mode. */ + FLEXCAN_ExitFreezeMode(base); + } + else + { + /* Enter Freeze Mode. */ + FLEXCAN_EnterFreezeMode(base); + + /* Disable FlexCAN DMA. */ + base->MCR &= ~CAN_MCR_DMA_MASK; + + /* Exit Freeze Mode. */ + FLEXCAN_ExitFreezeMode(base); + } +} +#endif /* FSL_FEATURE_FLEXCAN_HAS_RX_FIFO_DMA */ + +#if (defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_6032) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_6032) +/*! + * FlexCAN: A frame with wrong ID or payload is transmitted into + * the CAN bus when the Message Buffer under transmission is + * either aborted or deactivated while the CAN bus is in the Bus Idle state + * + * This function to do workaround for ERR006032 + * + * param base FlexCAN peripheral base address. + * param mbIdx The FlexCAN Message Buffer index. + */ +static void FLEXCAN_ERRATA_6032(CAN_Type *base, volatile uint32_t *mbCSAddr) +{ + uint32_t dbg_temp = 0U; + uint32_t u32TempCS = 0U; + uint32_t u32Timeout = DELAY_BUSIDLE; + uint32_t u32TempIMASK1 = base->IMASK1; +/*after backup all interruption, disable ALL interruption*/ +#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0) + uint32_t u32TempIMASK2 = base->IMASK2; + base->IMASK2 = 0; +#endif + base->IMASK1 = 0; + dbg_temp = (uint32_t)(base->DBG1); + switch (dbg_temp & CAN_DBG1_CFSM_MASK) + { + case RXINTERMISSION: + if (CBN_VALUE3 == (dbg_temp & CAN_DBG1_CBN_MASK)) + { + /*wait until CFSM is different from RXINTERMISSION */ + while (RXINTERMISSION == (base->DBG1 & CAN_DBG1_CFSM_MASK)) + { + __NOP(); + } + } + break; + case TXINTERMISSION: + if (CBN_VALUE3 == (dbg_temp & CAN_DBG1_CBN_MASK)) + { + /*wait until CFSM is different from TXINTERMISSION*/ + while (TXINTERMISSION == (base->DBG1 & CAN_DBG1_CFSM_MASK)) + { + __NOP(); + } + } + break; + default: + /* To avoid MISRA-C 2012 rule 16.4 issue. */ + break; + } + /*Anyway, BUSIDLE need to delay*/ + if (BUSIDLE == (base->DBG1 & CAN_DBG1_CFSM_MASK)) + { + while (u32Timeout-- > 0U) + { + __NOP(); + } + + /*Write 0x0 into Code field of CS word.*/ + u32TempCS = (uint32_t)(*mbCSAddr); + u32TempCS &= ~CAN_CS_CODE_MASK; + *mbCSAddr = u32TempCS; + } + /*restore interruption*/ + base->IMASK1 = u32TempIMASK1; +#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0) + base->IMASK2 = u32TempIMASK2; +#endif +} +#endif + +/*! + * brief Writes a FlexCAN Message to the Transmit Message Buffer. + * + * This function writes a CAN Message to the specified Transmit Message Buffer + * and changes the Message Buffer state to start CAN Message transmit. After + * that the function returns immediately. + * + * param base FlexCAN peripheral base address. + * param mbIdx The FlexCAN Message Buffer index. + * param pTxFrame Pointer to CAN message frame to be sent. + * retval kStatus_Success - Write Tx Message Buffer Successfully. + * retval kStatus_Fail - Tx Message Buffer is currently in use. + */ +status_t FLEXCAN_WriteTxMb(CAN_Type *base, uint8_t mbIdx, const flexcan_frame_t *pTxFrame) +{ + /* Assertion. */ + assert(mbIdx <= (base->MCR & CAN_MCR_MAXMB_MASK)); + assert(NULL != pTxFrame); + assert(pTxFrame->length <= 8U); +#if !defined(NDEBUG) + assert(!FLEXCAN_IsMbOccupied(base, mbIdx)); +#endif + + uint32_t cs_temp = 0; + status_t status; + +#if (defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_6032) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_6032) + FLEXCAN_ERRATA_6032(base, &(base->MB[mbIdx].CS)); +#endif + /* Check if Message Buffer is available. */ + if (CAN_CS_CODE(kFLEXCAN_TxMbDataOrRemote) != (base->MB[mbIdx].CS & CAN_CS_CODE_MASK)) + { + /* Inactive Tx Message Buffer. */ + base->MB[mbIdx].CS = (base->MB[mbIdx].CS & ~CAN_CS_CODE_MASK) | CAN_CS_CODE(kFLEXCAN_TxMbInactive); + + /* Fill Message ID field. */ + base->MB[mbIdx].ID = pTxFrame->id; + + /* Fill Message Format field. */ + if ((uint32_t)kFLEXCAN_FrameFormatExtend == pTxFrame->format) + { + cs_temp |= CAN_CS_SRR_MASK | CAN_CS_IDE_MASK; + } + + /* Fill Message Type field. */ + if ((uint32_t)kFLEXCAN_FrameTypeRemote == pTxFrame->type) + { + cs_temp |= CAN_CS_RTR_MASK; + } + + cs_temp |= CAN_CS_CODE(kFLEXCAN_TxMbDataOrRemote) | CAN_CS_DLC(pTxFrame->length); + + /* Load Message Payload. */ + base->MB[mbIdx].WORD0 = pTxFrame->dataWord0; + base->MB[mbIdx].WORD1 = pTxFrame->dataWord1; + + /* Activate Tx Message Buffer. */ + base->MB[mbIdx].CS = cs_temp; + +#if ((defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) || \ + (defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829)) + base->MB[FLEXCAN_GetFirstValidMb(base)].CS = CAN_CS_CODE(kFLEXCAN_TxMbInactive); + base->MB[FLEXCAN_GetFirstValidMb(base)].CS = CAN_CS_CODE(kFLEXCAN_TxMbInactive); +#endif + + status = kStatus_Success; + } + else + { + /* Tx Message Buffer is activated, return immediately. */ + status = kStatus_Fail; + } + + return status; +} + +#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) +/*! + * brief Writes a FlexCAN FD Message to the Transmit Message Buffer. + * + * This function writes a CAN FD Message to the specified Transmit Message Buffer + * and changes the Message Buffer state to start CAN FD Message transmit. After + * that the function returns immediately. + * + * param base FlexCAN peripheral base address. + * param mbIdx The FlexCAN FD Message Buffer index. + * param pTxFrame Pointer to CAN FD message frame to be sent. + * retval kStatus_Success - Write Tx Message Buffer Successfully. + * retval kStatus_Fail - Tx Message Buffer is currently in use. + */ +status_t FLEXCAN_WriteFDTxMb(CAN_Type *base, uint8_t mbIdx, const flexcan_fd_frame_t *pTxFrame) +{ + /* Assertion. */ + assert(mbIdx <= (base->MCR & CAN_MCR_MAXMB_MASK)); + assert(NULL != pTxFrame); +#if !defined(NDEBUG) + assert(!FLEXCAN_IsMbOccupied(base, mbIdx)); +#endif + + status_t status; + uint32_t cs_temp = 0; + uint8_t cnt = 0; + uint32_t can_cs = 0; + uint8_t payload_dword = 1; + uint32_t dataSize = (base->FDCTRL & CAN_FDCTRL_MBDSR0_MASK) >> CAN_FDCTRL_MBDSR0_SHIFT; +#if ((defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) || \ + (defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829)) + uint32_t availoffset = FLEXCAN_GetFDMailboxOffset(base, FLEXCAN_GetFirstValidMb(base)); +#endif + volatile uint32_t *mbAddr = &(base->MB[0].CS); + uint32_t offset = FLEXCAN_GetFDMailboxOffset(base, mbIdx); + +#if (defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_6032) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_6032) + FLEXCAN_ERRATA_6032(base, &(mbAddr[offset])); +#endif + + can_cs = mbAddr[offset]; + /* Check if Message Buffer is available. */ + if (CAN_CS_CODE(kFLEXCAN_TxMbDataOrRemote) != (can_cs & CAN_CS_CODE_MASK)) + { + /* Inactive Tx Message Buffer and Fill Message ID field. */ + mbAddr[offset] = (can_cs & ~CAN_CS_CODE_MASK) | CAN_CS_CODE(kFLEXCAN_TxMbInactive); + mbAddr[offset + 1U] = pTxFrame->id; + + /* Fill Message Format field. */ + if ((uint32_t)kFLEXCAN_FrameFormatExtend == pTxFrame->format) + { + cs_temp |= CAN_CS_SRR_MASK | CAN_CS_IDE_MASK; + } + + /* Fill Message Type field. */ + if ((uint32_t)kFLEXCAN_FrameTypeRemote == pTxFrame->type) + { + cs_temp |= CAN_CS_RTR_MASK; + } + + cs_temp |= CAN_CS_CODE(kFLEXCAN_TxMbDataOrRemote) | CAN_CS_DLC(pTxFrame->length) | CAN_CS_EDL(1) | + CAN_CS_BRS(pTxFrame->brs); + + /* Calculate the DWORD number, dataSize 0/1/2/3 corresponds to 8/16/32/64 + Bytes payload. */ + for (cnt = 0; cnt < (dataSize + 1U); cnt++) + { + payload_dword *= 2U; + } + + /* Load Message Payload and Activate Tx Message Buffer. */ + for (cnt = 0; cnt < payload_dword; cnt++) + { + mbAddr[offset + 2U + cnt] = pTxFrame->dataWord[cnt]; + } + mbAddr[offset] = cs_temp; + +#if ((defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) || \ + (defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829)) + mbAddr[availoffset] = CAN_CS_CODE(kFLEXCAN_TxMbInactive); + mbAddr[availoffset] = CAN_CS_CODE(kFLEXCAN_TxMbInactive); +#endif + + status = kStatus_Success; + } + else + { + /* Tx Message Buffer is activated, return immediately. */ + status = kStatus_Fail; + } + + return status; +} +#endif + +/*! + * brief Reads a FlexCAN Message from Receive Message Buffer. + * + * This function reads a CAN message from a specified Receive Message Buffer. + * The function fills a receive CAN message frame structure with + * just received data and activates the Message Buffer again. + * The function returns immediately. + * + * param base FlexCAN peripheral base address. + * param mbIdx The FlexCAN Message Buffer index. + * param pRxFrame Pointer to CAN message frame structure for reception. + * retval kStatus_Success - Rx Message Buffer is full and has been read successfully. + * retval kStatus_FLEXCAN_RxOverflow - Rx Message Buffer is already overflowed and has been read successfully. + * retval kStatus_Fail - Rx Message Buffer is empty. + */ +status_t FLEXCAN_ReadRxMb(CAN_Type *base, uint8_t mbIdx, flexcan_frame_t *pRxFrame) +{ + /* Assertion. */ + assert(mbIdx <= (base->MCR & CAN_MCR_MAXMB_MASK)); + assert(NULL != pRxFrame); +#if !defined(NDEBUG) + assert(!FLEXCAN_IsMbOccupied(base, mbIdx)); +#endif + + uint32_t cs_temp; + uint32_t rx_code; + status_t status; + + /* Read CS field of Rx Message Buffer to lock Message Buffer. */ + cs_temp = base->MB[mbIdx].CS; + /* Get Rx Message Buffer Code field. */ + rx_code = (cs_temp & CAN_CS_CODE_MASK) >> CAN_CS_CODE_SHIFT; + + /* Check to see if Rx Message Buffer is full. */ + if (((uint32_t)kFLEXCAN_RxMbFull == rx_code) || ((uint32_t)kFLEXCAN_RxMbOverrun == rx_code)) + { + /* Store Message ID. */ + pRxFrame->id = base->MB[mbIdx].ID & (CAN_ID_EXT_MASK | CAN_ID_STD_MASK); + + /* Get the message ID and format. */ + pRxFrame->format = (cs_temp & CAN_CS_IDE_MASK) != 0U ? (uint8_t)kFLEXCAN_FrameFormatExtend : + (uint8_t)kFLEXCAN_FrameFormatStandard; + + /* Get the message type. */ + pRxFrame->type = + (cs_temp & CAN_CS_RTR_MASK) != 0U ? (uint8_t)kFLEXCAN_FrameTypeRemote : (uint8_t)kFLEXCAN_FrameTypeData; + + /* Get the message length. */ + pRxFrame->length = (uint8_t)((cs_temp & CAN_CS_DLC_MASK) >> CAN_CS_DLC_SHIFT); + + /* Get the time stamp. */ + pRxFrame->timestamp = (uint16_t)((cs_temp & CAN_CS_TIME_STAMP_MASK) >> CAN_CS_TIME_STAMP_SHIFT); + + /* Store Message Payload. */ + pRxFrame->dataWord0 = base->MB[mbIdx].WORD0; + pRxFrame->dataWord1 = base->MB[mbIdx].WORD1; + + /* Read free-running timer to unlock Rx Message Buffer. */ + (void)base->TIMER; + + if ((uint32_t)kFLEXCAN_RxMbFull == rx_code) + { + status = kStatus_Success; + } + else + { + status = kStatus_FLEXCAN_RxOverflow; + } + } + else + { + /* Read free-running timer to unlock Rx Message Buffer. */ + (void)base->TIMER; + + status = kStatus_Fail; + } + + return status; +} + +#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) +/*! + * brief Reads a FlexCAN FD Message from Receive Message Buffer. + * + * This function reads a CAN FD message from a specified Receive Message Buffer. + * The function fills a receive CAN FD message frame structure with + * just received data and activates the Message Buffer again. + * The function returns immediately. + * + * param base FlexCAN peripheral base address. + * param mbIdx The FlexCAN FD Message Buffer index. + * param pRxFrame Pointer to CAN FD message frame structure for reception. + * retval kStatus_Success - Rx Message Buffer is full and has been read successfully. + * retval kStatus_FLEXCAN_RxOverflow - Rx Message Buffer is already overflowed and has been read successfully. + * retval kStatus_Fail - Rx Message Buffer is empty. + */ +status_t FLEXCAN_ReadFDRxMb(CAN_Type *base, uint8_t mbIdx, flexcan_fd_frame_t *pRxFrame) +{ + /* Assertion. */ + assert(mbIdx <= (base->MCR & CAN_MCR_MAXMB_MASK)); + assert(NULL != pRxFrame); +#if !defined(NDEBUG) + assert(!FLEXCAN_IsMbOccupied(base, mbIdx)); +#endif + + status_t status; + uint32_t cs_temp; + uint8_t rx_code; + uint8_t cnt = 0; + uint32_t can_id = 0; + uint32_t dataSize; + dataSize = (base->FDCTRL & CAN_FDCTRL_MBDSR0_MASK) >> CAN_FDCTRL_MBDSR0_SHIFT; + uint8_t payload_dword = 1; + volatile uint32_t *mbAddr = &(base->MB[0].CS); + uint32_t offset = FLEXCAN_GetFDMailboxOffset(base, mbIdx); + + /* Read CS field of Rx Message Buffer to lock Message Buffer. */ + cs_temp = mbAddr[offset]; + can_id = mbAddr[offset + 1U]; + + /* Get Rx Message Buffer Code field. */ + rx_code = (uint8_t)((cs_temp & CAN_CS_CODE_MASK) >> CAN_CS_CODE_SHIFT); + + /* Check to see if Rx Message Buffer is full. */ + if (((uint8_t)kFLEXCAN_RxMbFull == rx_code) || ((uint8_t)kFLEXCAN_RxMbOverrun == rx_code)) + { + /* Store Message ID. */ + pRxFrame->id = can_id & (CAN_ID_EXT_MASK | CAN_ID_STD_MASK); + + /* Get the message ID and format. */ + pRxFrame->format = (cs_temp & CAN_CS_IDE_MASK) != 0U ? (uint8_t)kFLEXCAN_FrameFormatExtend : + (uint8_t)kFLEXCAN_FrameFormatStandard; + + /* Get the message type. */ + pRxFrame->type = + (cs_temp & CAN_CS_RTR_MASK) != 0U ? (uint8_t)kFLEXCAN_FrameTypeRemote : (uint8_t)kFLEXCAN_FrameTypeData; + + /* Get the message length. */ + pRxFrame->length = (uint8_t)((cs_temp & CAN_CS_DLC_MASK) >> CAN_CS_DLC_SHIFT); + + /* Get the time stamp. */ + pRxFrame->timestamp = (uint16_t)((cs_temp & CAN_CS_TIME_STAMP_MASK) >> CAN_CS_TIME_STAMP_SHIFT); + + /* Calculate the DWORD number, dataSize 0/1/2/3 corresponds to 8/16/32/64 + Bytes payload. */ + for (cnt = 0; cnt < (dataSize + 1U); cnt++) + { + payload_dword *= 2U; + } + + /* Store Message Payload. */ + for (cnt = 0; cnt < payload_dword; cnt++) + { + pRxFrame->dataWord[cnt] = mbAddr[offset + 2U + cnt]; + } + + /* Read free-running timer to unlock Rx Message Buffer. */ + (void)base->TIMER; + + if ((uint32_t)kFLEXCAN_RxMbFull == rx_code) + { + status = kStatus_Success; + } + else + { + status = kStatus_FLEXCAN_RxOverflow; + } + } + else + { + /* Read free-running timer to unlock Rx Message Buffer. */ + (void)base->TIMER; + + status = kStatus_Fail; + } + + return status; +} +#endif + +/*! + * brief Reads a FlexCAN Message from Rx FIFO. + * + * This function reads a CAN message from the FlexCAN build-in Rx FIFO. + * + * param base FlexCAN peripheral base address. + * param pRxFrame Pointer to CAN message frame structure for reception. + * retval kStatus_Success - Read Message from Rx FIFO successfully. + * retval kStatus_Fail - Rx FIFO is not enabled. + */ +status_t FLEXCAN_ReadRxFifo(CAN_Type *base, flexcan_frame_t *pRxFrame) +{ + /* Assertion. */ + assert(NULL != pRxFrame); + + uint32_t cs_temp; + status_t status; + + /* Check if Rx FIFO is Enabled. */ + if (0U != (base->MCR & CAN_MCR_RFEN_MASK)) + { + /* Read CS field of Rx Message Buffer to lock Message Buffer. */ + cs_temp = base->MB[0].CS; + + /* Read data from Rx FIFO output port. */ + /* Store Message ID. */ + pRxFrame->id = base->MB[0].ID & (CAN_ID_EXT_MASK | CAN_ID_STD_MASK); + + /* Get the message ID and format. */ + pRxFrame->format = (cs_temp & CAN_CS_IDE_MASK) != 0U ? (uint8_t)kFLEXCAN_FrameFormatExtend : + (uint8_t)kFLEXCAN_FrameFormatStandard; + + /* Get the message type. */ + pRxFrame->type = + (cs_temp & CAN_CS_RTR_MASK) != 0U ? (uint8_t)kFLEXCAN_FrameTypeRemote : (uint8_t)kFLEXCAN_FrameTypeData; + + /* Get the message length. */ + pRxFrame->length = (uint8_t)((cs_temp & CAN_CS_DLC_MASK) >> CAN_CS_DLC_SHIFT); + + /* Get the time stamp. */ + pRxFrame->timestamp = (uint16_t)((cs_temp & CAN_CS_TIME_STAMP_MASK) >> CAN_CS_TIME_STAMP_SHIFT); + + /* Store Message Payload. */ + pRxFrame->dataWord0 = base->MB[0].WORD0; + pRxFrame->dataWord1 = base->MB[0].WORD1; + + /* Store ID Filter Hit Index. */ + pRxFrame->idhit = (uint16_t)(base->RXFIR & CAN_RXFIR_IDHIT_MASK); + + /* Read free-running timer to unlock Rx Message Buffer. */ + (void)base->TIMER; + + status = kStatus_Success; + } + else + { + status = kStatus_Fail; + } + + return status; +} + +/*! + * brief Performs a polling send transaction on the CAN bus. + * + * Note that a transfer handle does not need to be created before calling this API. + * + * param base FlexCAN peripheral base pointer. + * param mbIdx The FlexCAN Message Buffer index. + * param pTxFrame Pointer to CAN message frame to be sent. + * retval kStatus_Success - Write Tx Message Buffer Successfully. + * retval kStatus_Fail - Tx Message Buffer is currently in use. + */ +status_t FLEXCAN_TransferSendBlocking(CAN_Type *base, uint8_t mbIdx, flexcan_frame_t *pTxFrame) +{ + status_t status; + + /* Write Tx Message Buffer to initiate a data sending. */ + if (kStatus_Success == FLEXCAN_WriteTxMb(base, mbIdx, (const flexcan_frame_t *)(uint32_t)pTxFrame)) + { +/* Wait until CAN Message send out. */ +#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0) + uint64_t u64flag = 1; + while (0U == FLEXCAN_GetMbStatusFlags(base, u64flag << mbIdx)) +#else + uint32_t u32flag = 1; + while (0U == FLEXCAN_GetMbStatusFlags(base, u32flag << mbIdx)) +#endif + { + } + +/* Clean Tx Message Buffer Flag. */ +#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0) + FLEXCAN_ClearMbStatusFlags(base, u64flag << mbIdx); +#else + FLEXCAN_ClearMbStatusFlags(base, u32flag << mbIdx); +#endif + /*After TX MB tranfered success, update the Timestamp from MB[mbIdx].CS register*/ + pTxFrame->timestamp = (uint16_t)((base->MB[mbIdx].CS & CAN_CS_TIME_STAMP_MASK) >> CAN_CS_TIME_STAMP_SHIFT); + + status = kStatus_Success; + } + else + { + status = kStatus_Fail; + } + + return status; +} + +/*! + * brief Performs a polling receive transaction on the CAN bus. + * + * Note that a transfer handle does not need to be created before calling this API. + * + * param base FlexCAN peripheral base pointer. + * param mbIdx The FlexCAN Message Buffer index. + * param pRxFrame Pointer to CAN message frame structure for reception. + * retval kStatus_Success - Rx Message Buffer is full and has been read successfully. + * retval kStatus_FLEXCAN_RxOverflow - Rx Message Buffer is already overflowed and has been read successfully. + * retval kStatus_Fail - Rx Message Buffer is empty. + */ +status_t FLEXCAN_TransferReceiveBlocking(CAN_Type *base, uint8_t mbIdx, flexcan_frame_t *pRxFrame) +{ +/* Wait until Rx Message Buffer non-empty. */ +#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0) + uint64_t u64flag = 1; + while (0U == FLEXCAN_GetMbStatusFlags(base, u64flag << mbIdx)) +#else + uint32_t u32flag = 1; + while (0U == FLEXCAN_GetMbStatusFlags(base, u32flag << mbIdx)) +#endif + { + } + +/* Clean Rx Message Buffer Flag. */ +#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0) + FLEXCAN_ClearMbStatusFlags(base, u64flag << mbIdx); +#else + FLEXCAN_ClearMbStatusFlags(base, u32flag << mbIdx); +#endif + + /* Read Received CAN Message. */ + return FLEXCAN_ReadRxMb(base, mbIdx, pRxFrame); +} + +#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) +/*! + * brief Performs a polling send transaction on the CAN bus. + * + * Note that a transfer handle does not need to be created before calling this API. + * + * param base FlexCAN peripheral base pointer. + * param mbIdx The FlexCAN FD Message Buffer index. + * param pTxFrame Pointer to CAN FD message frame to be sent. + * retval kStatus_Success - Write Tx Message Buffer Successfully. + * retval kStatus_Fail - Tx Message Buffer is currently in use. + */ +status_t FLEXCAN_TransferFDSendBlocking(CAN_Type *base, uint8_t mbIdx, flexcan_fd_frame_t *pTxFrame) +{ + status_t status; + + /* Write Tx Message Buffer to initiate a data sending. */ + if (kStatus_Success == FLEXCAN_WriteFDTxMb(base, mbIdx, (const flexcan_fd_frame_t *)(uint32_t)pTxFrame)) + { +/* Wait until CAN Message send out. */ +#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0) + uint64_t u64flag = 1; + while (0U == FLEXCAN_GetMbStatusFlags(base, u64flag << mbIdx)) +#else + uint32_t u32flag = 1; + while (0U == FLEXCAN_GetMbStatusFlags(base, u32flag << mbIdx)) +#endif + { + } + +/* Clean Tx Message Buffer Flag. */ +#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0) + FLEXCAN_ClearMbStatusFlags(base, u64flag << mbIdx); +#else + FLEXCAN_ClearMbStatusFlags(base, u32flag << mbIdx); +#endif + /*After TX MB tranfered success, update the Timestamp from base->MB[offset for CANFD].CS register*/ + volatile uint32_t *mbAddr = &(base->MB[0].CS); + uint32_t offset = FLEXCAN_GetFDMailboxOffset(base, mbIdx); + pTxFrame->timestamp = (uint16_t)((mbAddr[offset] & CAN_CS_TIME_STAMP_MASK) >> CAN_CS_TIME_STAMP_SHIFT); + + status = kStatus_Success; + } + else + { + status = kStatus_Fail; + } + + return status; +} + +/*! + * brief Performs a polling receive transaction on the CAN bus. + * + * Note that a transfer handle does not need to be created before calling this API. + * + * param base FlexCAN peripheral base pointer. + * param mbIdx The FlexCAN FD Message Buffer index. + * param pRxFrame Pointer to CAN FD message frame structure for reception. + * retval kStatus_Success - Rx Message Buffer is full and has been read successfully. + * retval kStatus_FLEXCAN_RxOverflow - Rx Message Buffer is already overflowed and has been read successfully. + * retval kStatus_Fail - Rx Message Buffer is empty. + */ +status_t FLEXCAN_TransferFDReceiveBlocking(CAN_Type *base, uint8_t mbIdx, flexcan_fd_frame_t *pRxFrame) +{ +/* Wait until Rx Message Buffer non-empty. */ +#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0) + uint64_t u64flag = 1; + while (0U == FLEXCAN_GetMbStatusFlags(base, u64flag << mbIdx)) +#else + uint32_t u32flag = 1; + while (0U == FLEXCAN_GetMbStatusFlags(base, u32flag << mbIdx)) +#endif + { + } + +/* Clean Rx Message Buffer Flag. */ +#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0) + FLEXCAN_ClearMbStatusFlags(base, u64flag << mbIdx); +#else + FLEXCAN_ClearMbStatusFlags(base, u32flag << mbIdx); +#endif + + /* Read Received CAN Message. */ + return FLEXCAN_ReadFDRxMb(base, mbIdx, pRxFrame); +} +#endif + +/*! + * brief Performs a polling receive transaction from Rx FIFO on the CAN bus. + * + * Note that a transfer handle does not need to be created before calling this API. + * + * param base FlexCAN peripheral base pointer. + * param pRxFrame Pointer to CAN message frame structure for reception. + * retval kStatus_Success - Read Message from Rx FIFO successfully. + * retval kStatus_Fail - Rx FIFO is not enabled. + */ +status_t FLEXCAN_TransferReceiveFifoBlocking(CAN_Type *base, flexcan_frame_t *pRxFrame) +{ + status_t rxFifoStatus; + + /* Wait until Rx FIFO non-empty. */ + while (0U == FLEXCAN_GetMbStatusFlags(base, (uint32_t)kFLEXCAN_RxFifoFrameAvlFlag)) + { + } + + /* */ + rxFifoStatus = FLEXCAN_ReadRxFifo(base, pRxFrame); + + /* Clean Rx Fifo available flag. */ + FLEXCAN_ClearMbStatusFlags(base, (uint32_t)kFLEXCAN_RxFifoFrameAvlFlag); + + return rxFifoStatus; +} + +/*! + * brief Initializes the FlexCAN handle. + * + * This function initializes the FlexCAN handle, which can be used for other FlexCAN + * transactional APIs. Usually, for a specified FlexCAN instance, + * call this API once to get the initialized handle. + * + * param base FlexCAN peripheral base address. + * param handle FlexCAN handle pointer. + * param callback The callback function. + * param userData The parameter of the callback function. + */ +void FLEXCAN_TransferCreateHandle(CAN_Type *base, + flexcan_handle_t *handle, + flexcan_transfer_callback_t callback, + void *userData) +{ + assert(NULL != handle); + + uint8_t instance; + + /* Clean FlexCAN transfer handle. */ + (void)memset(handle, 0, sizeof(*handle)); + + /* Get instance from peripheral base address. */ + instance = (uint8_t)FLEXCAN_GetInstance(base); + + /* Save the context in global variables to support the double weak mechanism. */ + s_flexcanHandle[instance] = handle; + + /* Register Callback function. */ + handle->callback = callback; + handle->userData = userData; + + s_flexcanIsr = FLEXCAN_TransferHandleIRQ; + + /* We Enable Error & Status interrupt here, because this interrupt just + * report current status of FlexCAN module through Callback function. + * It is insignificance without a available callback function. + */ + if (handle->callback != NULL) + { + FLEXCAN_EnableInterrupts( + base, (uint32_t)kFLEXCAN_BusOffInterruptEnable | (uint32_t)kFLEXCAN_ErrorInterruptEnable | + (uint32_t)kFLEXCAN_RxWarningInterruptEnable | (uint32_t)kFLEXCAN_TxWarningInterruptEnable | + (uint32_t)kFLEXCAN_WakeUpInterruptEnable); + } + else + { + FLEXCAN_DisableInterrupts( + base, (uint32_t)kFLEXCAN_BusOffInterruptEnable | (uint32_t)kFLEXCAN_ErrorInterruptEnable | + (uint32_t)kFLEXCAN_RxWarningInterruptEnable | (uint32_t)kFLEXCAN_TxWarningInterruptEnable | + (uint32_t)kFLEXCAN_WakeUpInterruptEnable); + } + + /* Enable interrupts in NVIC. */ + (void)EnableIRQ((IRQn_Type)(s_flexcanRxWarningIRQ[instance])); + (void)EnableIRQ((IRQn_Type)(s_flexcanTxWarningIRQ[instance])); + (void)EnableIRQ((IRQn_Type)(s_flexcanWakeUpIRQ[instance])); + (void)EnableIRQ((IRQn_Type)(s_flexcanErrorIRQ[instance])); + (void)EnableIRQ((IRQn_Type)(s_flexcanBusOffIRQ[instance])); + (void)EnableIRQ((IRQn_Type)(s_flexcanMbIRQ[instance])); +} + +/*! + * brief Sends a message using IRQ. + * + * This function sends a message using IRQ. This is a non-blocking function, which returns + * right away. When messages have been sent out, the send callback function is called. + * + * param base FlexCAN peripheral base address. + * param handle FlexCAN handle pointer. + * param pMbXfer FlexCAN Message Buffer transfer structure. See the #flexcan_mb_transfer_t. + * retval kStatus_Success Start Tx Message Buffer sending process successfully. + * retval kStatus_Fail Write Tx Message Buffer failed. + * retval kStatus_FLEXCAN_TxBusy Tx Message Buffer is in use. + */ +status_t FLEXCAN_TransferSendNonBlocking(CAN_Type *base, flexcan_handle_t *handle, flexcan_mb_transfer_t *pMbXfer) +{ + /* Assertion. */ + assert(NULL != handle); + assert(NULL != pMbXfer); + assert(pMbXfer->mbIdx <= (base->MCR & CAN_MCR_MAXMB_MASK)); +#if !defined(NDEBUG) + assert(!FLEXCAN_IsMbOccupied(base, pMbXfer->mbIdx)); +#endif + + status_t status; + + /* Check if Message Buffer is idle. */ + if ((uint8_t)kFLEXCAN_StateIdle == handle->mbState[pMbXfer->mbIdx]) + { + /* Distinguish transmit type. */ + if ((uint32_t)kFLEXCAN_FrameTypeRemote == pMbXfer->frame->type) + { + handle->mbState[pMbXfer->mbIdx] = (uint8_t)kFLEXCAN_StateTxRemote; + } + else + { + handle->mbState[pMbXfer->mbIdx] = (uint8_t)kFLEXCAN_StateTxData; + } + + if (kStatus_Success == + FLEXCAN_WriteTxMb(base, pMbXfer->mbIdx, (const flexcan_frame_t *)(uint32_t)pMbXfer->frame)) + { +/* Enable Message Buffer Interrupt. */ +#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0) + uint64_t u64mask = 1; + FLEXCAN_EnableMbInterrupts(base, u64mask << pMbXfer->mbIdx); +#else + uint32_t u32mask = 1; + FLEXCAN_EnableMbInterrupts(base, u32mask << pMbXfer->mbIdx); +#endif + status = kStatus_Success; + } + else + { + handle->mbState[pMbXfer->mbIdx] = (uint8_t)kFLEXCAN_StateIdle; + status = kStatus_Fail; + } + } + else + { + status = kStatus_FLEXCAN_TxBusy; + } + + return status; +} + +/*! + * brief Receives a message using IRQ. + * + * This function receives a message using IRQ. This is non-blocking function, which returns + * right away. When the message has been received, the receive callback function is called. + * + * param base FlexCAN peripheral base address. + * param handle FlexCAN handle pointer. + * param pMbXfer FlexCAN Message Buffer transfer structure. See the #flexcan_mb_transfer_t. + * retval kStatus_Success - Start Rx Message Buffer receiving process successfully. + * retval kStatus_FLEXCAN_RxBusy - Rx Message Buffer is in use. + */ +status_t FLEXCAN_TransferReceiveNonBlocking(CAN_Type *base, flexcan_handle_t *handle, flexcan_mb_transfer_t *pMbXfer) +{ + status_t status; + + /* Assertion. */ + assert(NULL != handle); + assert(NULL != pMbXfer); + assert(pMbXfer->mbIdx <= (base->MCR & CAN_MCR_MAXMB_MASK)); +#if !defined(NDEBUG) + assert(!FLEXCAN_IsMbOccupied(base, pMbXfer->mbIdx)); +#endif + + /* Check if Message Buffer is idle. */ + if ((uint8_t)kFLEXCAN_StateIdle == handle->mbState[pMbXfer->mbIdx]) + { + handle->mbState[pMbXfer->mbIdx] = (uint8_t)kFLEXCAN_StateRxData; + + /* Register Message Buffer. */ + handle->mbFrameBuf[pMbXfer->mbIdx] = pMbXfer->frame; + +/* Enable Message Buffer Interrupt. */ +#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0) + uint64_t u64mask = 1; + FLEXCAN_EnableMbInterrupts(base, u64mask << pMbXfer->mbIdx); +#else + uint32_t u32mask = 1; + FLEXCAN_EnableMbInterrupts(base, u32mask << pMbXfer->mbIdx); +#endif + + status = kStatus_Success; + } + else + { + status = kStatus_FLEXCAN_RxBusy; + } + + return status; +} + +#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) +/*! + * brief Sends a message using IRQ. + * + * This function sends a message using IRQ. This is a non-blocking function, which returns + * right away. When messages have been sent out, the send callback function is called. + * + * param base FlexCAN peripheral base address. + * param handle FlexCAN handle pointer. + * param pMbXfer FlexCAN FD Message Buffer transfer structure. See the #flexcan_mb_transfer_t. + * retval kStatus_Success Start Tx Message Buffer sending process successfully. + * retval kStatus_Fail Write Tx Message Buffer failed. + * retval kStatus_FLEXCAN_TxBusy Tx Message Buffer is in use. + */ +status_t FLEXCAN_TransferFDSendNonBlocking(CAN_Type *base, flexcan_handle_t *handle, flexcan_mb_transfer_t *pMbXfer) +{ + /* Assertion. */ + assert(NULL != handle); + assert(NULL != pMbXfer); + assert(pMbXfer->mbIdx <= (base->MCR & CAN_MCR_MAXMB_MASK)); +#if !defined(NDEBUG) + assert(!FLEXCAN_IsMbOccupied(base, pMbXfer->mbIdx)); +#endif + + status_t status; + + /* Check if Message Buffer is idle. */ + if ((uint8_t)kFLEXCAN_StateIdle == handle->mbState[pMbXfer->mbIdx]) + { + /* Distinguish transmit type. */ + if ((uint32_t)kFLEXCAN_FrameTypeRemote == pMbXfer->framefd->type) + { + handle->mbState[pMbXfer->mbIdx] = (uint8_t)kFLEXCAN_StateTxRemote; + } + else + { + handle->mbState[pMbXfer->mbIdx] = (uint8_t)kFLEXCAN_StateTxData; + } + + if (kStatus_Success == + FLEXCAN_WriteFDTxMb(base, pMbXfer->mbIdx, (const flexcan_fd_frame_t *)(uint32_t)pMbXfer->framefd)) + { +/* Enable Message Buffer Interrupt. */ +#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0) + uint64_t u64mask = 1; + FLEXCAN_EnableMbInterrupts(base, u64mask << pMbXfer->mbIdx); +#else + uint32_t u32mask = 1; + FLEXCAN_EnableMbInterrupts(base, u32mask << pMbXfer->mbIdx); +#endif + + status = kStatus_Success; + } + else + { + handle->mbState[pMbXfer->mbIdx] = (uint8_t)kFLEXCAN_StateIdle; + status = kStatus_Fail; + } + } + else + { + status = kStatus_FLEXCAN_TxBusy; + } + + return status; +} + +/*! + * brief Receives a message using IRQ. + * + * This function receives a message using IRQ. This is non-blocking function, which returns + * right away. When the message has been received, the receive callback function is called. + * + * param base FlexCAN peripheral base address. + * param handle FlexCAN handle pointer. + * param pMbXfer FlexCAN FD Message Buffer transfer structure. See the #flexcan_mb_transfer_t. + * retval kStatus_Success - Start Rx Message Buffer receiving process successfully. + * retval kStatus_FLEXCAN_RxBusy - Rx Message Buffer is in use. + */ +status_t FLEXCAN_TransferFDReceiveNonBlocking(CAN_Type *base, flexcan_handle_t *handle, flexcan_mb_transfer_t *pMbXfer) +{ + /* Assertion. */ + assert(NULL != handle); + assert(NULL != pMbXfer); + assert(pMbXfer->mbIdx <= (base->MCR & CAN_MCR_MAXMB_MASK)); +#if !defined(NDEBUG) + assert(!FLEXCAN_IsMbOccupied(base, pMbXfer->mbIdx)); +#endif + + status_t status; + + /* Check if Message Buffer is idle. */ + if ((uint8_t)kFLEXCAN_StateIdle == handle->mbState[pMbXfer->mbIdx]) + { + handle->mbState[pMbXfer->mbIdx] = (uint8_t)kFLEXCAN_StateRxData; + + /* Register Message Buffer. */ + handle->mbFDFrameBuf[pMbXfer->mbIdx] = pMbXfer->framefd; + +/* Enable Message Buffer Interrupt. */ +#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0) + uint64_t u64mask = 1; + FLEXCAN_EnableMbInterrupts(base, u64mask << pMbXfer->mbIdx); +#else + uint32_t u32mask = 1; + FLEXCAN_EnableMbInterrupts(base, u32mask << pMbXfer->mbIdx); +#endif + + status = kStatus_Success; + } + else + { + status = kStatus_FLEXCAN_RxBusy; + } + + return status; +} +#endif + +/*! + * brief Receives a message from Rx FIFO using IRQ. + * + * This function receives a message using IRQ. This is a non-blocking function, which returns + * right away. When all messages have been received, the receive callback function is called. + * + * param base FlexCAN peripheral base address. + * param handle FlexCAN handle pointer. + * param pFifoXfer FlexCAN Rx FIFO transfer structure. See the ref flexcan_fifo_transfer_t. + * retval kStatus_Success - Start Rx FIFO receiving process successfully. + * retval kStatus_FLEXCAN_RxFifoBusy - Rx FIFO is currently in use. + */ +status_t FLEXCAN_TransferReceiveFifoNonBlocking(CAN_Type *base, + flexcan_handle_t *handle, + flexcan_fifo_transfer_t *pFifoXfer) +{ + /* Assertion. */ + assert(NULL != handle); + assert(NULL != pFifoXfer); + + status_t status; + + /* Check if Message Buffer is idle. */ + if ((uint8_t)kFLEXCAN_StateIdle == handle->rxFifoState) + { + handle->rxFifoState = (uint8_t)kFLEXCAN_StateRxFifo; + + /* Register Message Buffer. */ + handle->rxFifoFrameBuf = pFifoXfer->frame; + + /* Enable Message Buffer Interrupt. */ + FLEXCAN_EnableMbInterrupts(base, (uint32_t)kFLEXCAN_RxFifoOverflowFlag | (uint32_t)kFLEXCAN_RxFifoWarningFlag | + (uint32_t)kFLEXCAN_RxFifoFrameAvlFlag); + + status = kStatus_Success; + } + else + { + status = kStatus_FLEXCAN_RxFifoBusy; + } + + return status; +} + +/*! + * brief Aborts the interrupt driven message send process. + * + * This function aborts the interrupt driven message send process. + * + * param base FlexCAN peripheral base address. + * param handle FlexCAN handle pointer. + * param mbIdx The FlexCAN Message Buffer index. + */ +void FLEXCAN_TransferAbortSend(CAN_Type *base, flexcan_handle_t *handle, uint8_t mbIdx) +{ + uint16_t timestamp; + + /* Assertion. */ + assert(NULL != handle); + assert(mbIdx <= (base->MCR & CAN_MCR_MAXMB_MASK)); +#if !defined(NDEBUG) + assert(!FLEXCAN_IsMbOccupied(base, mbIdx)); +#endif + +/* Disable Message Buffer Interrupt. */ +#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0) + uint64_t u64mask = 1; + FLEXCAN_DisableMbInterrupts(base, u64mask << mbIdx); +#else + uint32_t u32mask = 1; + FLEXCAN_DisableMbInterrupts(base, u32mask << mbIdx); +#endif + + /* Update the TX frame 's time stamp by MB[mbIdx].cs. */ + timestamp = (uint16_t)((base->MB[mbIdx].CS & CAN_CS_TIME_STAMP_MASK) >> CAN_CS_TIME_STAMP_SHIFT); + handle->timestamp[mbIdx] = timestamp; + + /* Clean Message Buffer. */ + FLEXCAN_SetTxMbConfig(base, mbIdx, true); + + handle->mbState[mbIdx] = (uint8_t)kFLEXCAN_StateIdle; +} + +#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) +/*! + * brief Aborts the interrupt driven message send process. + * + * This function aborts the interrupt driven message send process. + * + * param base FlexCAN peripheral base address. + * param handle FlexCAN handle pointer. + * param mbIdx The FlexCAN FD Message Buffer index. + */ +void FLEXCAN_TransferFDAbortSend(CAN_Type *base, flexcan_handle_t *handle, uint8_t mbIdx) +{ + volatile uint32_t *mbAddr; + uint32_t offset; + uint16_t timestamp; + + /* Assertion. */ + assert(NULL != handle); + assert(mbIdx <= (base->MCR & CAN_MCR_MAXMB_MASK)); +#if !defined(NDEBUG) + assert(!FLEXCAN_IsMbOccupied(base, mbIdx)); +#endif + +/* Disable Message Buffer Interrupt. */ +#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0) + uint64_t u64mask = 1; + FLEXCAN_DisableMbInterrupts(base, u64mask << mbIdx); +#else + uint32_t u32mask = 1; + FLEXCAN_DisableMbInterrupts(base, u32mask << mbIdx); +#endif + + /* Update the TX frame 's time stamp by base->MB[offset for CANFD].CS. */ + mbAddr = &(base->MB[0].CS); + offset = FLEXCAN_GetFDMailboxOffset(base, mbIdx); + timestamp = (uint16_t)((mbAddr[offset] & CAN_CS_TIME_STAMP_MASK) >> CAN_CS_TIME_STAMP_SHIFT); + handle->timestamp[mbIdx] = timestamp; + + /* Clean Message Buffer. */ + FLEXCAN_SetFDTxMbConfig(base, mbIdx, true); + + handle->mbState[mbIdx] = (uint8_t)kFLEXCAN_StateIdle; +} + +/*! + * brief Aborts the interrupt driven message receive process. + * + * This function aborts the interrupt driven message receive process. + * + * param base FlexCAN peripheral base address. + * param handle FlexCAN handle pointer. + * param mbIdx The FlexCAN FD Message Buffer index. + */ +void FLEXCAN_TransferFDAbortReceive(CAN_Type *base, flexcan_handle_t *handle, uint8_t mbIdx) +{ + /* Assertion. */ + assert(NULL != handle); + assert(mbIdx <= (base->MCR & CAN_MCR_MAXMB_MASK)); +#if !defined(NDEBUG) + assert(!FLEXCAN_IsMbOccupied(base, mbIdx)); +#endif + +/* Disable Message Buffer Interrupt. */ +#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0) + uint64_t u64mask = 1; + FLEXCAN_DisableMbInterrupts(base, u64mask << mbIdx); +#else + uint32_t u32mask = 1; + FLEXCAN_DisableMbInterrupts(base, u32mask << mbIdx); +#endif + + /* Un-register handle. */ + handle->mbFDFrameBuf[mbIdx] = NULL; + handle->mbState[mbIdx] = (uint8_t)kFLEXCAN_StateIdle; +} +#endif + +/*! + * brief Aborts the interrupt driven message receive process. + * + * This function aborts the interrupt driven message receive process. + * + * param base FlexCAN peripheral base address. + * param handle FlexCAN handle pointer. + * param mbIdx The FlexCAN Message Buffer index. + */ +void FLEXCAN_TransferAbortReceive(CAN_Type *base, flexcan_handle_t *handle, uint8_t mbIdx) +{ + /* Assertion. */ + assert(NULL != handle); + assert(mbIdx <= (base->MCR & CAN_MCR_MAXMB_MASK)); +#if !defined(NDEBUG) + assert(!FLEXCAN_IsMbOccupied(base, mbIdx)); +#endif + +/* Disable Message Buffer Interrupt. */ +#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0) + uint64_t u64mask = 1; + FLEXCAN_DisableMbInterrupts(base, (u64mask << mbIdx)); +#else + uint32_t u32mask = 1; + FLEXCAN_DisableMbInterrupts(base, (u32mask << mbIdx)); +#endif + + /* Un-register handle. */ + handle->mbFrameBuf[mbIdx] = NULL; + handle->mbState[mbIdx] = (uint8_t)kFLEXCAN_StateIdle; +} + +/*! + * brief Aborts the interrupt driven message receive from Rx FIFO process. + * + * This function aborts the interrupt driven message receive from Rx FIFO process. + * + * param base FlexCAN peripheral base address. + * param handle FlexCAN handle pointer. + */ +void FLEXCAN_TransferAbortReceiveFifo(CAN_Type *base, flexcan_handle_t *handle) +{ + /* Assertion. */ + assert(NULL != handle); + + /* Check if Rx FIFO is enabled. */ + if (0U != (base->MCR & CAN_MCR_RFEN_MASK)) + { + /* Disable Rx Message FIFO Interrupts. */ + FLEXCAN_DisableMbInterrupts(base, (uint32_t)kFLEXCAN_RxFifoOverflowFlag | (uint32_t)kFLEXCAN_RxFifoWarningFlag | + (uint32_t)kFLEXCAN_RxFifoFrameAvlFlag); + + /* Un-register handle. */ + handle->rxFifoFrameBuf = NULL; + } + + handle->rxFifoState = (uint8_t)kFLEXCAN_StateIdle; +} + +/*! + * brief Gets the detail index of Mailbox's Timestamp by handle. + * + * Then function can only be used when calling non-blocking Data transfer (TX/RX) API, + * After TX/RX data transfer done (User can get the status by handler's callback function), + * we can get the detail index of Mailbox's timestamp by handle, + * Detail non-blocking data transfer API (TX/RX) contain. + * -FLEXCAN_TransferSendNonBlocking + * -FLEXCAN_TransferFDSendNonBlocking + * -FLEXCAN_TransferReceiveNonBlocking + * -FLEXCAN_TransferFDReceiveNonBlocking + * -FLEXCAN_TransferReceiveFifoNonBlocking + * + * param handle FlexCAN handle pointer. + * param mbIdx The FlexCAN FD Message Buffer index. + * return the index of mailbox 's timestamp stored in the handle. + * + */ +uint32_t FLEXCAN_GetTimeStamp(flexcan_handle_t *handle, uint8_t mbIdx) +{ + /* Assertion. */ + assert(NULL != handle); + + return (uint32_t)(handle->timestamp[mbIdx]); +} + +static bool FLEXCAN_CheckUnhandleInterruptEvents(CAN_Type *base) +{ + uint64_t tempmask; + uint64_t tempflag; + bool fgRet = false; + + /* Checking exist error flag. */ + if (0U == (FLEXCAN_GetStatusFlags(base) & + ((uint32_t)kFLEXCAN_TxWarningIntFlag | (uint32_t)kFLEXCAN_RxWarningIntFlag | + (uint32_t)kFLEXCAN_BusOffIntFlag | (uint32_t)kFLEXCAN_ErrorIntFlag | (uint32_t)kFLEXCAN_WakeUpIntFlag))) + { + tempmask = (uint64_t)base->IMASK1; + tempflag = (uint64_t)base->IFLAG1; + +#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0) + /* Checking whether exist MB interrupt status and legacy RX FIFO interrupt status. */ + tempmask |= ((uint64_t)base->IMASK2) << 32; + tempflag |= ((uint64_t)base->IFLAG2) << 32; +#endif + fgRet = (0U != (tempmask & tempflag)); + } + else + { + fgRet = true; + } + + return fgRet; +} + +static status_t FLEXCAN_SubHandlerForDataTransfered(CAN_Type *base, flexcan_handle_t *handle, uint32_t *pResult) +{ + status_t status = kStatus_FLEXCAN_UnHandled; + uint32_t result = 0xFFU; + + /* For this implementation, we solve the Message with lowest MB index first. */ + for (result = 0U; result < (uint32_t)FSL_FEATURE_FLEXCAN_HAS_MESSAGE_BUFFER_MAX_NUMBERn(base); result++) + { + /* Get the lowest unhandled Message Buffer */ +#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0) + uint64_t u64flag = 1; + if (0U != FLEXCAN_GetMbStatusFlags(base, u64flag << result)) +#else + uint32_t u32flag = 1; + if (0U != FLEXCAN_GetMbStatusFlags(base, u32flag << result)) +#endif + { + if (FLEXCAN_IsMbIntEnabled(base, (uint8_t)result)) + { + break; + } + } + } + + /* find Message to deal with. */ + if (result < (uint32_t)FSL_FEATURE_FLEXCAN_HAS_MESSAGE_BUFFER_MAX_NUMBERn(base)) + { + /* Solve Legacy Rx FIFO interrupt. */ + if (((uint8_t)kFLEXCAN_StateIdle != handle->rxFifoState) && (result <= (uint32_t)CAN_IFLAG1_BUF7I_SHIFT)) + { + uint32_t u32mask = 1; + switch (u32mask << result) + { + case kFLEXCAN_RxFifoOverflowFlag: + status = kStatus_FLEXCAN_RxFifoOverflow; + break; + + case kFLEXCAN_RxFifoWarningFlag: + status = kStatus_FLEXCAN_RxFifoWarning; + break; + + case kFLEXCAN_RxFifoFrameAvlFlag: + status = FLEXCAN_ReadRxFifo(base, handle->rxFifoFrameBuf); + if (kStatus_Success == status) + { + /* Align the current (index 0) rxfifo timestamp to the timestamp array by handle. */ + handle->timestamp[0] = handle->rxFifoFrameBuf->timestamp; + status = kStatus_FLEXCAN_RxFifoIdle; + } + FLEXCAN_TransferAbortReceiveFifo(base, handle); + break; + + default: + status = kStatus_FLEXCAN_UnHandled; + break; + } + } + else + { + /* Get current State of Message Buffer. */ + switch (handle->mbState[result]) + { + /* Solve Rx Data Frame. */ + case (uint8_t)kFLEXCAN_StateRxData: +#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) + if (0U != (base->MCR & CAN_MCR_FDEN_MASK)) + { + status = FLEXCAN_ReadFDRxMb(base, (uint8_t)result, handle->mbFDFrameBuf[result]); + if (kStatus_Success == status) + { + /* Align the current index of RX MB timestamp to the timestamp array by handle. */ + handle->timestamp[result] = handle->mbFDFrameBuf[result]->timestamp; + status = kStatus_FLEXCAN_RxIdle; + } + } + else +#endif + { + status = FLEXCAN_ReadRxMb(base, (uint8_t)result, handle->mbFrameBuf[result]); + if (kStatus_Success == status) + { + /* Align the current index of RX MB timestamp to the timestamp array by handle. */ + handle->timestamp[result] = handle->mbFrameBuf[result]->timestamp; + status = kStatus_FLEXCAN_RxIdle; + } + } +#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) + if (0U != (base->MCR & CAN_MCR_FDEN_MASK)) + { + FLEXCAN_TransferFDAbortReceive(base, handle, (uint8_t)result); + } + else +#endif + { + FLEXCAN_TransferAbortReceive(base, handle, (uint8_t)result); + } + break; + + /* Sove Rx Remote Frame. User need to Read the frame in Mail box in time by Read from MB API. */ + case (uint8_t)kFLEXCAN_StateRxRemote: + status = kStatus_FLEXCAN_RxRemote; +#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) + if (0U != (base->MCR & CAN_MCR_FDEN_MASK)) + { + FLEXCAN_TransferFDAbortReceive(base, handle, (uint8_t)result); + } + else +#endif + { + FLEXCAN_TransferAbortReceive(base, handle, (uint8_t)result); + } + break; + + /* Solve Tx Data Frame. */ + case (uint8_t)kFLEXCAN_StateTxData: + status = kStatus_FLEXCAN_TxIdle; +#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) + if (0U != (base->MCR & CAN_MCR_FDEN_MASK)) + { + FLEXCAN_TransferFDAbortSend(base, handle, (uint8_t)result); + } + else +#endif + { + FLEXCAN_TransferAbortSend(base, handle, (uint8_t)result); + } + break; + + /* Solve Tx Remote Frame. */ + case (uint8_t)kFLEXCAN_StateTxRemote: + handle->mbState[result] = (uint8_t)kFLEXCAN_StateRxRemote; + status = kStatus_FLEXCAN_TxSwitchToRx; + break; + + default: + status = kStatus_FLEXCAN_UnHandled; + break; + } + } + + /* Clear resolved Message Buffer IRQ. */ +#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0) + uint64_t u64flag = 1; + FLEXCAN_ClearMbStatusFlags(base, u64flag << result); +#else + uint32_t u32flag = 1; + FLEXCAN_ClearMbStatusFlags(base, u32flag << result); +#endif + } + + *pResult = result; + + return status; +} + +/*! + * brief FlexCAN IRQ handle function. + * + * This function handles the FlexCAN Error, the Message Buffer, and the Rx FIFO IRQ request. + * + * param base FlexCAN peripheral base address. + * param handle FlexCAN handle pointer. + */ +void FLEXCAN_TransferHandleIRQ(CAN_Type *base, flexcan_handle_t *handle) +{ + /* Assertion. */ + assert(NULL != handle); + + status_t status; + uint32_t result = 0xFFU; + uint32_t EsrStatus = 0U; + + do + { + /* Get Current FlexCAN Module Error and Status. */ + EsrStatus = FLEXCAN_GetStatusFlags(base); + + /* To handle FlexCAN Error and Status Interrupt first. */ + if (0U != (EsrStatus & ((uint32_t)kFLEXCAN_TxWarningIntFlag | (uint32_t)kFLEXCAN_RxWarningIntFlag | + (uint32_t)kFLEXCAN_BusOffIntFlag | (uint32_t)kFLEXCAN_ErrorIntFlag))) + { + status = kStatus_FLEXCAN_ErrorStatus; + /* Clear FlexCAN Error and Status Interrupt. */ + FLEXCAN_ClearStatusFlags(base, (uint32_t)kFLEXCAN_TxWarningIntFlag | (uint32_t)kFLEXCAN_RxWarningIntFlag | + (uint32_t)kFLEXCAN_BusOffIntFlag | (uint32_t)kFLEXCAN_ErrorIntFlag); + result = EsrStatus; + } + else if (0U != (EsrStatus & (uint32_t)kFLEXCAN_WakeUpIntFlag)) + { + status = kStatus_FLEXCAN_WakeUp; + FLEXCAN_ClearStatusFlags(base, (uint32_t)kFLEXCAN_WakeUpIntFlag); + } + else + { + /* to handle real data transfer. */ + status = FLEXCAN_SubHandlerForDataTransfered(base, handle, &result); + } + + /* Calling Callback Function if has one. */ + if (handle->callback != NULL) + { + handle->callback(base, handle, status, result, handle->userData); + } + } while (FLEXCAN_CheckUnhandleInterruptEvents(base)); +} + +#if defined(CAN0) +void CAN0_DriverIRQHandler(void) +{ + assert(NULL != s_flexcanHandle[0]); + + s_flexcanIsr(CAN0, s_flexcanHandle[0]); + SDK_ISR_EXIT_BARRIER; +} +#endif + +#if defined(CAN1) +void CAN1_DriverIRQHandler(void) +{ + assert(NULL != s_flexcanHandle[1]); + + s_flexcanIsr(CAN1, s_flexcanHandle[1]); + SDK_ISR_EXIT_BARRIER; +} +#endif + +#if defined(CAN2) +void CAN2_DriverIRQHandler(void) +{ + assert(NULL != s_flexcanHandle[2]); + + s_flexcanIsr(CAN2, s_flexcanHandle[2]); + SDK_ISR_EXIT_BARRIER; +} +#endif + +#if defined(CAN3) +void CAN3_DriverIRQHandler(void) +{ + assert(NULL != s_flexcanHandle[3]); + + s_flexcanIsr(CAN3, s_flexcanHandle[3]); + SDK_ISR_EXIT_BARRIER; +} +#endif + +#if defined(CAN4) +void CAN4_DriverIRQHandler(void) +{ + assert(NULL != s_flexcanHandle[4]); + + s_flexcanIsr(CAN4, s_flexcanHandle[4]); + SDK_ISR_EXIT_BARRIER; +} +#endif + +#if defined(DMA__CAN0) +void DMA_FLEXCAN0_INT_DriverIRQHandler(void) +{ + assert(NULL != s_flexcanHandle[FLEXCAN_GetInstance(DMA__CAN0)]); + + s_flexcanIsr(DMA__CAN0, s_flexcanHandle[FLEXCAN_GetInstance(DMA__CAN0)]); + SDK_ISR_EXIT_BARRIER; +} +#endif + +#if defined(DMA__CAN1) +void DMA_FLEXCAN1_INT_DriverIRQHandler(void) +{ + assert(NULL != s_flexcanHandle[FLEXCAN_GetInstance(DMA__CAN1)]); + + s_flexcanIsr(DMA__CAN1, s_flexcanHandle[FLEXCAN_GetInstance(DMA__CAN1)]); + SDK_ISR_EXIT_BARRIER; +} +#endif + +#if defined(DMA__CAN2) +void DMA_FLEXCAN2_INT_DriverIRQHandler(void) +{ + assert(NULL != s_flexcanHandle[FLEXCAN_GetInstance(DMA__CAN2)]); + + s_flexcanIsr(DMA__CAN2, s_flexcanHandle[FLEXCAN_GetInstance(DMA__CAN2)]); + SDK_ISR_EXIT_BARRIER; +} +#endif + +#if defined(ADMA__CAN0) +void ADMA_FLEXCAN0_INT_DriverIRQHandler(void) +{ + assert(NULL != s_flexcanHandle[FLEXCAN_GetInstance(ADMA__CAN0)]); + + s_flexcanIsr(ADMA__CAN0, s_flexcanHandle[FLEXCAN_GetInstance(ADMA__CAN0)]); + SDK_ISR_EXIT_BARRIER; +} +#endif + +#if defined(ADMA__CAN1) +void ADMA_FLEXCAN1_INT_DriverIRQHandler(void) +{ + assert(NULL != s_flexcanHandle[FLEXCAN_GetInstance(ADMA__CAN1)]); + + s_flexcanIsr(ADMA__CAN1, s_flexcanHandle[FLEXCAN_GetInstance(ADMA__CAN1)]); + SDK_ISR_EXIT_BARRIER; +} +#endif + +#if defined(ADMA__CAN2) +void ADMA_FLEXCAN2_INT_DriverIRQHandler(void) +{ + assert(NULL != s_flexcanHandle[FLEXCAN_GetInstance(ADMA__CAN2)]); + + s_flexcanIsr(ADMA__CAN2, s_flexcanHandle[FLEXCAN_GetInstance(ADMA__CAN2)]); + SDK_ISR_EXIT_BARRIER; +} +#endif -- cgit v1.2.3