summaryrefslogtreecommitdiffstats
path: root/tools/schedsim/rtems/sched_cpu/cpu_asm.c
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--tools/schedsim/rtems/sched_cpu/cpu_asm.c188
1 files changed, 0 insertions, 188 deletions
diff --git a/tools/schedsim/rtems/sched_cpu/cpu_asm.c b/tools/schedsim/rtems/sched_cpu/cpu_asm.c
deleted file mode 100644
index e31c980a25..0000000000
--- a/tools/schedsim/rtems/sched_cpu/cpu_asm.c
+++ /dev/null
@@ -1,188 +0,0 @@
-/* cpu_asm.c ===> cpu_asm.S or cpu_asm.s
- * BASED UPON SOURCE IN RTEMS, MODIFIED FOR SIMULATOR
- *
- *
- * This file contains the basic algorithms for all assembly code used
- * in an specific CPU port of RTEMS. These algorithms must be implemented
- * in assembly language
- *
- * NOTE: This is supposed to be a .S or .s file NOT a C file.
- *
- * COPYRIGHT (c) 1989-2010.
- * On-Line Applications Research Corporation (OAR).
- *
- * The license and distribution terms for this file may be
- * found in the file LICENSE in this distribution or at
- * http://www.rtems.com/license/LICENSE.
- *
- * $Id$
- */
-
-/*
- * This is supposed to be an assembly file. This means that system.h
- * and cpu.h should not be included in a "real" cpu_asm file. An
- * implementation in assembly should include "cpu_asm.h>
- */
-
-#ifdef HAVE_CONFIG_H
-#include "config.h"
-#endif
-
-#include <rtems/system.h>
-#include <rtems/score/cpu.h>
-/* #include "cpu_asm.h> */
-
-/*
- * _CPU_Context_save_fp_context
- *
- * This routine is responsible for saving the FP context
- * at *fp_context_ptr. If the point to load the FP context
- * from is changed then the pointer is modified by this routine.
- *
- * Sometimes a macro implementation of this is in cpu.h which dereferences
- * the ** and a similarly named routine in this file is passed something
- * like a (Context_Control_fp *). The general rule on making this decision
- * is to avoid writing assembly language.
- *
- * NO_CPU Specific Information:
- *
- * XXX document implementation including references if appropriate
- */
-
-void _CPU_Context_save_fp(
- Context_Control_fp **fp_context_ptr
-)
-{
-}
-
-/*
- * _CPU_Context_restore_fp_context
- *
- * This routine is responsible for restoring the FP context
- * at *fp_context_ptr. If the point to load the FP context
- * from is changed then the pointer is modified by this routine.
- *
- * Sometimes a macro implementation of this is in cpu.h which dereferences
- * the ** and a similarly named routine in this file is passed something
- * like a (Context_Control_fp *). The general rule on making this decision
- * is to avoid writing assembly language.
- *
- * NO_CPU Specific Information:
- *
- * XXX document implementation including references if appropriate
- */
-
-void _CPU_Context_restore_fp(
- Context_Control_fp **fp_context_ptr
-)
-{
-}
-
-/* _CPU_Context_switch
- *
- * This routine performs a normal non-FP context switch.
- *
- * NO_CPU Specific Information:
- *
- * XXX document implementation including references if appropriate
- */
-
-void _CPU_Context_switch(
- Context_Control *run,
- Context_Control *heir
-)
-{
-}
-
-/*
- * _CPU_Context_restore
- *
- * This routine is generally used only to restart self in an
- * efficient manner. It may simply be a label in _CPU_Context_switch.
- *
- * NOTE: May be unnecessary to reload some registers.
- *
- * NO_CPU Specific Information:
- *
- * XXX document implementation including references if appropriate
- */
-
-void _CPU_Context_restore(
- Context_Control *new_context
-)
-{
-}
-
-/* void __ISR_Handler()
- *
- * This routine provides the RTEMS interrupt management.
- *
- * NO_CPU Specific Information:
- *
- * XXX document implementation including references if appropriate
- */
-
-void _ISR_Handler(void)
-{
- /*
- * This discussion ignores a lot of the ugly details in a real
- * implementation such as saving enough registers/state to be
- * able to do something real. Keep in mind that the goal is
- * to invoke a user's ISR handler which is written in C and
- * uses a certain set of registers.
- *
- * Also note that the exact order is to a large extent flexible.
- * Hardware will dictate a sequence for a certain subset of
- * _ISR_Handler while requirements for setting
- */
-
- /*
- * At entry to "common" _ISR_Handler, the vector number must be
- * available. On some CPUs the hardware puts either the vector
- * number or the offset into the vector table for this ISR in a
- * known place. If the hardware does not give us this information,
- * then the assembly portion of RTEMS for this port will contain
- * a set of distinct interrupt entry points which somehow place
- * the vector number in a known place (which is safe if another
- * interrupt nests this one) and branches to _ISR_Handler.
- *
- * save some or all context on stack
- * may need to save some special interrupt information for exit
- *
- * #if ( CPU_HAS_SOFTWARE_INTERRUPT_STACK == TRUE )
- * if ( _ISR_Nest_level == 0 )
- * switch to software interrupt stack
- * #endif
- *
- * _ISR_Nest_level++;
- *
- * _Thread_Dispatch_disable_level++;
- *
- * (*_ISR_Vector_table[ vector ])( vector );
- *
- * _Thread_Dispatch_disable_level--;
- *
- * --_ISR_Nest_level;
- *
- * if ( _ISR_Nest_level )
- * goto the label "exit interrupt (simple case)"
- *
- * if ( _Thread_Dispatch_disable_level )
- * _ISR_Signals_to_thread_executing = FALSE;
- * goto the label "exit interrupt (simple case)"
- *
- * if ( _Context_Switch_necessary || _ISR_Signals_to_thread_executing ) {
- * _ISR_Signals_to_thread_executing = FALSE;
- * call _Thread_Dispatch() or prepare to return to _ISR_Dispatch
- * prepare to get out of interrupt
- * return from interrupt (maybe to _ISR_Dispatch)
- *
- * LABEL "exit interrupt (simple case):
- * #if ( CPU_HAS_SOFTWARE_INTERRUPT_STACK == TRUE )
- * if outermost interrupt
- * restore stack
- * #endif
- * prepare to get out of interrupt
- * return from interrupt
- */
-}