summaryrefslogtreecommitdiffstats
path: root/doc/supplements/sparc/callconv.texi
diff options
context:
space:
mode:
Diffstat (limited to 'doc/supplements/sparc/callconv.texi')
-rw-r--r--doc/supplements/sparc/callconv.texi445
1 files changed, 445 insertions, 0 deletions
diff --git a/doc/supplements/sparc/callconv.texi b/doc/supplements/sparc/callconv.texi
new file mode 100644
index 0000000000..fd9b9a5846
--- /dev/null
+++ b/doc/supplements/sparc/callconv.texi
@@ -0,0 +1,445 @@
+@c
+@c COPYRIGHT (c) 1988-1996.
+@c On-Line Applications Research Corporation (OAR).
+@c All rights reserved.
+@c
+
+@ifinfo
+@node Calling Conventions, Calling Conventions Introduction, CPU Model Dependent Features CPU Model Implementation Notes, Top
+@end ifinfo
+@chapter Calling Conventions
+@ifinfo
+@menu
+* Calling Conventions Introduction::
+* Calling Conventions Programming Model::
+* Calling Conventions Register Windows::
+* Calling Conventions Call and Return Mechanism::
+* Calling Conventions Calling Mechanism::
+* Calling Conventions Register Usage::
+* Calling Conventions Parameter Passing::
+* Calling Conventions User-Provided Routines::
+@end menu
+@end ifinfo
+
+@ifinfo
+@node Calling Conventions Introduction, Calling Conventions Programming Model, Calling Conventions, Calling Conventions
+@end ifinfo
+@section Introduction
+
+Each high-level language compiler generates
+subroutine entry and exit code based upon a set of rules known
+as the compiler's calling convention. These rules address the
+following issues:
+
+@itemize @bullet
+@item register preservation and usage
+
+@item parameter passing
+
+@item call and return mechanism
+@end itemize
+
+A compiler's calling convention is of importance when
+interfacing to subroutines written in another language either
+assembly or high-level. Even when the high-level language and
+target processor are the same, different compilers may use
+different calling conventions. As a result, calling conventions
+are both processor and compiler dependent.
+
+@ifinfo
+@node Calling Conventions Programming Model, Non-Floating Point Registers, Calling Conventions Introduction, Calling Conventions
+@end ifinfo
+@section Programming Model
+@ifinfo
+@menu
+* Non-Floating Point Registers::
+* Floating Point Registers::
+* Special Registers::
+@end menu
+@end ifinfo
+
+This section discusses the programming model for the
+SPARC architecture.
+
+@ifinfo
+@node Non-Floating Point Registers, Floating Point Registers, Calling Conventions Programming Model, Calling Conventions Programming Model
+@end ifinfo
+@subsection Non-Floating Point Registers
+
+The SPARC architecture defines thirty-two
+non-floating point registers directly visible to the programmer.
+These are divided into four sets:
+
+@itemize @bullet
+@item input registers
+
+@item local registers
+
+@item output registers
+
+@item global registers
+@end itemize
+
+Each register is referred to by either two or three
+names in the SPARC reference manuals. First, the registers are
+referred to as r0 through r31 or with the alternate notation
+r[0] through r[31]. Second, each register is a member of one of
+the four sets listed above. Finally, some registers have an
+architecturally defined role in the programming model which
+provides an alternate name. The following table describes the
+mapping between the 32 registers and the register sets:
+
+@ifset use-ascii
+@example
+@group
+ +-----------------+----------------+------------------+
+ | Register Number | Register Names | Description |
+ +-----------------+----------------+------------------+
+ | 0 - 7 | g0 - g7 | Global Registers |
+ +-----------------+----------------+------------------+
+ | 8 - 15 | o0 - o7 | Output Registers |
+ +-----------------+----------------+------------------+
+ | 16 - 23 | l0 - l7 | Local Registers |
+ +-----------------+----------------+------------------+
+ | 24 - 31 | i0 - i7 | Input Registers |
+ +-----------------+----------------+------------------+
+@end group
+@end example
+@end ifset
+
+@ifset use-tex
+@sp 1
+@tex
+\centerline{\vbox{\offinterlineskip\halign{
+\vrule\strut#&
+\hbox to 1.75in{\enskip\hfil#\hfil}&
+\vrule#&
+\hbox to 1.75in{\enskip\hfil#\hfil}&
+\vrule#&
+\hbox to 1.75in{\enskip\hfil#\hfil}&
+\vrule#\cr
+\noalign{\hrule}
+&\bf Register Number &&\bf Register Names&&\bf Description&\cr\noalign{\hrule}
+&0 - 7&&g0 - g7&&Global Registers&\cr\noalign{\hrule}
+&8 - 15&&o0 - o7&&Output Registers&\cr\noalign{\hrule}
+&16 - 23&&l0 - l7&&Local Registers&\cr\noalign{\hrule}
+&24 - 31&&i0 - i7&&Input Registers&\cr\noalign{\hrule}
+}}\hfil}
+@end tex
+@end ifset
+
+@ifset use-html
+@html
+<CENTER>
+ <TABLE COLS=3 WIDTH="80%" BORDER=2>
+<TR><TD ALIGN=center><STRONG>Register Number</STRONG></TD>
+ <TD ALIGN=center><STRONG>Register Names</STRONG></TD>
+ <TD ALIGN=center><STRONG>Description</STRONG></TD>
+<TR><TD ALIGN=center>0 - 7</TD>
+ <TD ALIGN=center>g0 - g7</TD>
+ <TD ALIGN=center>Global Registers</TD></TR>
+<TR><TD ALIGN=center>8 - 15</TD>
+ <TD ALIGN=center>o0 - o7</TD>
+ <TD ALIGN=center>Output Registers</TD></TR>
+<TR><TD ALIGN=center>16 - 23</TD>
+ <TD ALIGN=center>l0 - l7</TD>
+ <TD ALIGN=center>Local Registers</TD></TR>
+<TR><TD ALIGN=center>24 - 31</TD>
+ <TD ALIGN=center>i0 - i7</TD>
+ <TD ALIGN=center>Input Registers</TD></TR>
+ </TABLE>
+</CENTER>
+@end html
+@end ifset
+
+As mentioned above, some of the registers serve
+defined roles in the programming model. The following table
+describes the role of each of these registers:
+
+@ifset use-ascii
+@example
+@group
+ +---------------+----------------+----------------------+
+ | Register Name | Alternate Name | Description |
+ +---------------+----------------+----------------------+
+ | g0 | na | reads return 0 |
+ | | | writes are ignored |
+ +---------------+----------------+----------------------+
+ | o6 | sp | stack pointer |
+ +---------------+----------------+----------------------+
+ | i6 | fp | frame pointer |
+ +---------------+----------------+----------------------+
+ | i7 | na | return address |
+ +---------------+----------------+----------------------+
+@end group
+@end example
+@end ifset
+
+@ifset use-tex
+@sp 1
+@tex
+\centerline{\vbox{\offinterlineskip\halign{
+\vrule\strut#&
+\hbox to 1.75in{\enskip\hfil#\hfil}&
+\vrule#&
+\hbox to 1.75in{\enskip\hfil#\hfil}&
+\vrule#&
+\hbox to 1.75in{\enskip\hfil#\hfil}&
+\vrule#\cr
+\noalign{\hrule}
+&\bf Register Name &&\bf Alternate Names&&\bf Description&\cr\noalign{\hrule}
+&g0&&NA&&reads return 0; &\cr
+&&&&&writes are ignored&\cr\noalign{\hrule}
+&o6&&sp&&stack pointer&\cr\noalign{\hrule}
+&i6&&fp&&frame pointer&\cr\noalign{\hrule}
+&i7&&NA&&return address&\cr\noalign{\hrule}
+}}\hfil}
+@end tex
+@end ifset
+
+@ifset use-html
+@html
+<CENTER>
+ <TABLE COLS=3 WIDTH="80%" BORDER=2>
+<TR><TD ALIGN=center><STRONG>Register Name</STRONG></TD>
+ <TD ALIGN=center><STRONG>Alternate Name</STRONG></TD>
+ <TD ALIGN=center><STRONG>Description</STRONG></TD></TR>
+<TR><TD ALIGN=center>g0</TD>
+ <TD ALIGN=center>NA</TD>
+ <TD ALIGN=center>reads return 0 ; writes are ignored</TD></TR>
+<TR><TD ALIGN=center>o6</TD>
+ <TD ALIGN=center>sp</TD>
+ <TD ALIGN=center>stack pointer</TD></TR>
+<TR><TD ALIGN=center>i6</TD>
+ <TD ALIGN=center>fp</TD>
+ <TD ALIGN=center>frame pointer</TD></TR>
+<TR><TD ALIGN=center>i7</TD>
+ <TD ALIGN=center>NA</TD>
+ <TD ALIGN=center>return address</TD></TR>
+ </TABLE>
+</CENTER>
+@end html
+@end ifset
+
+
+@ifinfo
+@node Floating Point Registers, Special Registers, Non-Floating Point Registers, Calling Conventions Programming Model
+@end ifinfo
+@subsection Floating Point Registers
+
+The SPARC V7 architecture includes thirty-two,
+thirty-two bit registers. These registers may be viewed as
+follows:
+
+@itemize @bullet
+@item 32 single precision floating point or integer registers
+(f0, f1, ... f31)
+
+@item 16 double precision floating point registers (f0, f2,
+f4, ... f30)
+
+@item 8 extended precision floating point registers (f0, f4,
+f8, ... f28)
+@end itemize
+
+The floating point status register (fpsr) specifies
+the behavior of the floating point unit for rounding, contains
+its condition codes, version specification, and trap information.
+
+A queue of the floating point instructions which have
+started execution but not yet completed is maintained. This
+queue is needed to support the multiple cycle nature of floating
+point operations and to aid floating point exception trap
+handlers. Once a floating point exception has been encountered,
+the queue is frozen until it is emptied by the trap handler.
+The floating point queue is loaded by launching instructions.
+It is emptied normally when the floating point completes all
+outstanding instructions and by floating point exception
+handlers with the store double floating point queue (stdfq)
+instruction.
+
+@ifinfo
+@node Special Registers, Calling Conventions Register Windows, Floating Point Registers, Calling Conventions Programming Model
+@end ifinfo
+@subsection Special Registers
+
+The SPARC architecture includes two special registers
+which are critical to the programming model: the Processor State
+Register (psr) and the Window Invalid Mask (wim). The psr
+contains the condition codes, processor interrupt level, trap
+enable bit, supervisor mode and previous supervisor mode bits,
+version information, floating point unit and coprocessor enable
+bits, and the current window pointer (cwp). The cwp field of
+the psr and wim register are used to manage the register windows
+in the SPARC architecture. The register windows are discussed
+in more detail below.
+
+@ifinfo
+@node Calling Conventions Register Windows, Calling Conventions Call and Return Mechanism, Special Registers, Calling Conventions
+@end ifinfo
+@section Register Windows
+
+The SPARC architecture includes the concept of
+register windows. An overly simplistic way to think of these
+windows is to imagine them as being an infinite supply of
+"fresh" register sets available for each subroutine to use. In
+reality, they are much more complicated.
+
+The save instruction is used to obtain a new register
+window. This instruction decrements the current window pointer,
+thus providing a new set of registers for use. This register
+set includes eight fresh local registers for use exclusively by
+this subroutine. When done with a register set, the restore
+instruction increments the current window pointer and the
+previous register set is once again available.
+
+The two primary issues complicating the use of
+register windows are that (1) the set of register windows is
+finite, and (2) some registers are shared between adjacent
+registers windows.
+
+Because the set of register windows is finite, it is
+possible to execute enough save instructions without
+corresponding restore's to consume all of the register windows.
+This is easily accomplished in a high level language because
+each subroutine typically performs a save instruction upon
+entry. Thus having a subroutine call depth greater than the
+number of register windows will result in a window overflow
+condition. The window overflow condition generates a trap which
+must be handled in software. The window overflow trap handler
+is responsible for saving the contents of the oldest register
+window on the program stack.
+
+Similarly, the subroutines will eventually complete
+and begin to perform restore's. If the restore results in the
+need for a register window which has previously been written to
+memory as part of an overflow, then a window underflow condition
+results. Just like the window overflow, the window underflow
+condition must be handled in software by a trap handler. The
+window underflow trap handler is responsible for reloading the
+contents of the register window requested by the restore
+instruction from the program stack.
+
+The Window Invalid Mask (wim) and the Current Window
+Pointer (cwp) field in the psr are used in conjunction to manage
+the finite set of register windows and detect the window
+overflow and underflow conditions. The cwp contains the index
+of the register window currently in use. The save instruction
+decrements the cwp modulo the number of register windows.
+Similarly, the restore instruction increments the cwp modulo the
+number of register windows. Each bit in the wim represents
+represents whether a register window contains valid information.
+The value of 0 indicates the register window is valid and 1
+indicates it is invalid. When a save instruction causes the cwp
+to point to a register window which is marked as invalid, a
+window overflow condition results. Conversely, the restore
+instruction may result in a window underflow condition.
+
+Other than the assumption that a register window is
+always available for trap (i.e. interrupt) handlers, the SPARC
+architecture places no limits on the number of register windows
+simultaneously marked as invalid (i.e. number of bits set in the
+wim). However, RTEMS assumes that only one register window is
+marked invalid at a time (i.e. only one bit set in the wim).
+This makes the maximum possible number of register windows
+available to the user while still meeting the requirement that
+window overflow and underflow conditions can be detected.
+
+The window overflow and window underflow trap
+handlers are a critical part of the run-time environment for a
+SPARC application. The SPARC architectural specification allows
+for the number of register windows to be any power of two less
+than or equal to 32. The most common choice for SPARC
+implementations appears to be 8 register windows. This results
+in the cwp ranging in value from 0 to 7 on most implementations.
+
+
+The second complicating factor is the sharing of
+registers between adjacent register windows. While each
+register window has its own set of local registers, the input
+and output registers are shared between adjacent windows. The
+output registers for register window N are the same as the input
+registers for register window ((N - 1) modulo RW) where RW is
+the number of register windows. An alternative way to think of
+this is to remember how parameters are passed to a subroutine on
+the SPARC. The caller loads values into what are its output
+registers. Then after the callee executes a save instruction,
+those parameters are available in its input registers. This is
+a very efficient way to pass parameters as no data is actually
+moved by the save or restore instructions.
+
+@ifinfo
+@node Calling Conventions Call and Return Mechanism, Calling Conventions Calling Mechanism, Calling Conventions Register Windows, Calling Conventions
+@end ifinfo
+@section Call and Return Mechanism
+
+The SPARC architecture supports a simple yet
+effective call and return mechanism. A subroutine is invoked
+via the call (call) instruction. This instruction places the
+return address in the caller's output register 7 (o7). After
+the callee executes a save instruction, this value is available
+in input register 7 (i7) until the corresponding restore
+instruction is executed.
+
+The callee returns to the caller via a jmp to the
+return address. There is a delay slot following this
+instruction which is commonly used to execute a restore
+instruction -- if a register window was allocated by this
+subroutine.
+
+It is important to note that the SPARC subroutine
+call and return mechanism does not automatically save and
+restore any registers. This is accomplished via the save and
+restore instructions which manage the set of registers windows.
+
+@ifinfo
+@node Calling Conventions Calling Mechanism, Calling Conventions Register Usage, Calling Conventions Call and Return Mechanism, Calling Conventions
+@end ifinfo
+@section Calling Mechanism
+
+All RTEMS directives are invoked using the regular
+SPARC calling convention via the call instruction.
+
+@ifinfo
+@node Calling Conventions Register Usage, Calling Conventions Parameter Passing, Calling Conventions Calling Mechanism, Calling Conventions
+@end ifinfo
+@section Register Usage
+
+As discussed above, the call instruction does not
+automatically save any registers. The save and restore
+instructions are used to allocate and deallocate register
+windows. When a register window is allocated, the new set of
+local registers are available for the exclusive use of the
+subroutine which allocated this register set.
+
+@ifinfo
+@node Calling Conventions Parameter Passing, Calling Conventions User-Provided Routines, Calling Conventions Register Usage, Calling Conventions
+@end ifinfo
+@section Parameter Passing
+
+RTEMS assumes that arguments are placed in the
+caller's output registers with the first argument in output
+register 0 (o0), the second argument in output register 1 (o1),
+and so forth. Until the callee executes a save instruction, the
+parameters are still visible in the output registers. After the
+callee executes a save instruction, the parameters are visible
+in the corresponding input registers. The following pseudo-code
+illustrates the typical sequence used to call a RTEMS directive
+with three (3) arguments:
+
+@example
+load third argument into o2
+load second argument into o1
+load first argument into o0
+invoke directive
+@end example
+
+@ifinfo
+@node Calling Conventions User-Provided Routines, Memory Model, Calling Conventions Parameter Passing, Calling Conventions
+@end ifinfo
+@section User-Provided Routines
+
+All user-provided routines invoked by RTEMS, such as
+user extensions, device drivers, and MPCI routines, must also
+adhere to these calling conventions.
+