summaryrefslogtreecommitdiffstats
path: root/c/src/librpc/src/rpc/PSD.doc/rpcgen.ms
diff options
context:
space:
mode:
Diffstat (limited to 'c/src/librpc/src/rpc/PSD.doc/rpcgen.ms')
-rw-r--r--c/src/librpc/src/rpc/PSD.doc/rpcgen.ms1299
1 files changed, 1299 insertions, 0 deletions
diff --git a/c/src/librpc/src/rpc/PSD.doc/rpcgen.ms b/c/src/librpc/src/rpc/PSD.doc/rpcgen.ms
index e69de29bb2..b4e50e5d6f 100644
--- a/c/src/librpc/src/rpc/PSD.doc/rpcgen.ms
+++ b/c/src/librpc/src/rpc/PSD.doc/rpcgen.ms
@@ -0,0 +1,1299 @@
+.\"
+.\" Must use -- tbl -- for this one
+.\"
+.\" @(#)rpcgen.ms 2.2 88/08/04 4.0 RPCSRC
+.de BT
+.if \\n%=1 .tl ''- % -''
+..
+.ND
+.\" prevent excess underlining in nroff
+.if n .fp 2 R
+.OH '\fBrpcgen\fP Programming Guide''Page %'
+.EH 'Page %''\fBrpcgen\fP Programming Guide'
+.if \\n%=1 .bp
+.SH
+\&\fBrpcgen\fP Programming Guide
+.NH 0
+\&The \fBrpcgen\fP Protocol Compiler
+.IX rpcgen "" \fIrpcgen\fP "" PAGE MAJOR
+.LP
+.IX RPC "" "" \fIrpcgen\fP
+The details of programming applications to use Remote Procedure Calls
+can be overwhelming. Perhaps most daunting is the writing of the XDR
+routines necessary to convert procedure arguments and results into
+their network format and vice-versa.
+.LP
+Fortunately,
+.I rpcgen(1)
+exists to help programmers write RPC applications simply and directly.
+.I rpcgen
+does most of the dirty work, allowing programmers to debug
+the main features of their application, instead of requiring them to
+spend most of their time debugging their network interface code.
+.LP
+.I rpcgen
+is a compiler. It accepts a remote program interface definition written
+in a language, called RPC Language, which is similar to C. It produces a C
+language output which includes stub versions of the client routines, a
+server skeleton, XDR filter routines for both parameters and results, and a
+header file that contains common definitions. The client stubs interface
+with the RPC library and effectively hide the network from their callers.
+The server stub similarly hides the network from the server procedures that
+are to be invoked by remote clients.
+.I rpcgen 's
+output files can be compiled and linked in the usual way. The developer
+writes server procedures\(emin any language that observes Sun calling
+conventions\(emand links them with the server skeleton produced by
+.I rpcgen
+to get an executable server program. To use a remote program, a programmer
+writes an ordinary main program that makes local procedure calls to the
+client stubs produced by
+.I rpcgen .
+Linking this program with
+.I rpcgen 's
+stubs creates an executable program. (At present the main program must be
+written in C).
+.I rpcgen
+options can be used to suppress stub generation and to specify the transport
+to be used by the server stub.
+.LP
+Like all compilers,
+.I rpcgen
+reduces development time
+that would otherwise be spent coding and debugging low-level routines.
+All compilers, including
+.I rpcgen ,
+do this at a small cost in efficiency
+and flexibility. However, many compilers allow escape hatches for
+programmers to mix low-level code with high-level code.
+.I rpcgen
+is no exception. In speed-critical applications, hand-written routines
+can be linked with the
+.I rpcgen
+output without any difficulty. Also, one may proceed by using
+.I rpcgen
+output as a starting point, and then rewriting it as necessary.
+(If you need a discussion of RPC programming without
+.I rpcgen ,
+see the
+.I "Remote Procedure Call Programming Guide)\.
+.NH 1
+\&Converting Local Procedures into Remote Procedures
+.IX rpcgen "local procedures" \fIrpcgen\fP
+.IX rpcgen "remote procedures" \fIrpcgen\fP
+.LP
+Assume an application that runs on a single machine, one which we want
+to convert to run over the network. Here we will demonstrate such a
+conversion by way of a simple example\(ema program that prints a
+message to the console:
+.ie t .DS
+.el .DS L
+.ft I
+/*
+ * printmsg.c: print a message on the console
+ */
+.ft CW
+#include <stdio.h>
+
+main(argc, argv)
+ int argc;
+ char *argv[];
+{
+ char *message;
+
+ if (argc < 2) {
+ fprintf(stderr, "usage: %s <message>\en", argv[0]);
+ exit(1);
+ }
+ message = argv[1];
+
+ if (!printmessage(message)) {
+ fprintf(stderr, "%s: couldn't print your message\en",
+ argv[0]);
+ exit(1);
+ }
+ printf("Message Delivered!\en");
+ exit(0);
+}
+.ft I
+/*
+ * Print a message to the console.
+ * Return a boolean indicating whether the message was actually printed.
+ */
+.ft CW
+printmessage(msg)
+ char *msg;
+{
+ FILE *f;
+
+ f = fopen("/dev/console", "w");
+ if (f == NULL) {
+ return (0);
+ }
+ fprintf(f, "%s\en", msg);
+ fclose(f);
+ return(1);
+}
+.DE
+.LP
+And then, of course:
+.ie t .DS
+.el .DS L
+.ft CW
+example% \fBcc printmsg.c -o printmsg\fP
+example% \fBprintmsg "Hello, there."\fP
+Message delivered!
+example%
+.DE
+.LP
+If
+.I printmessage()
+was turned into a remote procedure,
+then it could be called from anywhere in the network.
+Ideally, one would just like to stick a keyword like
+.I remote
+in front of a
+procedure to turn it into a remote procedure. Unfortunately,
+we have to live within the constraints of the C language, since
+it existed long before RPC did. But even without language
+support, it's not very difficult to make a procedure remote.
+.LP
+In general, it's necessary to figure out what the types are for
+all procedure inputs and outputs. In this case, we have a
+procedure
+.I printmessage()
+which takes a string as input, and returns an integer
+as output. Knowing this, we can write a protocol specification in RPC
+language that describes the remote version of
+.I printmessage ().
+Here it is:
+.ie t .DS
+.el .DS L
+.ft I
+/*
+ * msg.x: Remote message printing protocol
+ */
+.ft CW
+
+program MESSAGEPROG {
+ version MESSAGEVERS {
+ int PRINTMESSAGE(string) = 1;
+ } = 1;
+} = 99;
+.DE
+.LP
+Remote procedures are part of remote programs, so we actually declared
+an entire remote program here which contains the single procedure
+.I PRINTMESSAGE .
+This procedure was declared to be in version 1 of the
+remote program. No null procedure (procedure 0) is necessary because
+.I rpcgen
+generates it automatically.
+.LP
+Notice that everything is declared with all capital letters. This is
+not required, but is a good convention to follow.
+.LP
+Notice also that the argument type is \*Qstring\*U and not \*Qchar *\*U. This
+is because a \*Qchar *\*U in C is ambiguous. Programmers usually intend it
+to mean a null-terminated string of characters, but it could also
+represent a pointer to a single character or a pointer to an array of
+characters. In RPC language, a null-terminated string is
+unambiguously called a \*Qstring\*U.
+.LP
+There are just two more things to write. First, there is the remote
+procedure itself. Here's the definition of a remote procedure
+to implement the
+.I PRINTMESSAGE
+procedure we declared above:
+.ie t .DS
+.el .DS L
+.vs 11
+.ft I
+/*
+ * msg_proc.c: implementation of the remote procedure "printmessage"
+ */
+.ft CW
+
+#include <stdio.h>
+#include <rpc/rpc.h> /* \fIalways needed\fP */
+#include "msg.h" /* \fIneed this too: msg.h will be generated by rpcgen\fP */
+
+.ft I
+/*
+ * Remote verson of "printmessage"
+ */
+.ft CW
+int *
+printmessage_1(msg)
+ char **msg;
+{
+ static int result; /* \fImust be static!\fP */
+ FILE *f;
+
+ f = fopen("/dev/console", "w");
+ if (f == NULL) {
+ result = 0;
+ return (&result);
+ }
+ fprintf(f, "%s\en", *msg);
+ fclose(f);
+ result = 1;
+ return (&result);
+}
+.vs
+.DE
+.LP
+Notice here that the declaration of the remote procedure
+.I printmessage_1()
+differs from that of the local procedure
+.I printmessage()
+in three ways:
+.IP 1.
+It takes a pointer to a string instead of a string itself. This
+is true of all remote procedures: they always take pointers to their
+arguments rather than the arguments themselves.
+.IP 2.
+It returns a pointer to an integer instead of an integer itself. This is
+also generally true of remote procedures: they always return a pointer
+to their results.
+.IP 3.
+It has an \*Q_1\*U appended to its name. In general, all remote
+procedures called by
+.I rpcgen
+are named by the following rule: the name in the program definition
+(here
+.I PRINTMESSAGE )
+is converted to all
+lower-case letters, an underbar (\*Q_\*U) is appended to it, and
+finally the version number (here 1) is appended.
+.LP
+The last thing to do is declare the main client program that will call
+the remote procedure. Here it is:
+.ie t .DS
+.el .DS L
+.ft I
+/*
+ * rprintmsg.c: remote version of "printmsg.c"
+ */
+.ft CW
+#include <stdio.h>
+#include <rpc/rpc.h> /* \fIalways needed\fP */
+#include "msg.h" /* \fIneed this too: msg.h will be generated by rpcgen\fP */
+
+main(argc, argv)
+ int argc;
+ char *argv[];
+{
+ CLIENT *cl;
+ int *result;
+ char *server;
+ char *message;
+
+ if (argc < 3) {
+ fprintf(stderr, "usage: %s host message\en", argv[0]);
+ exit(1);
+ }
+
+.ft I
+ /*
+ * Save values of command line arguments
+ */
+.ft CW
+ server = argv[1];
+ message = argv[2];
+
+.ft I
+ /*
+ * Create client "handle" used for calling \fIMESSAGEPROG\fP on the
+ * server designated on the command line. We tell the RPC package
+ * to use the "tcp" protocol when contacting the server.
+ */
+.ft CW
+ cl = clnt_create(server, MESSAGEPROG, MESSAGEVERS, "tcp");
+ if (cl == NULL) {
+.ft I
+ /*
+ * Couldn't establish connection with server.
+ * Print error message and die.
+ */
+.ft CW
+ clnt_pcreateerror(server);
+ exit(1);
+ }
+
+.ft I
+ /*
+ * Call the remote procedure "printmessage" on the server
+ */
+.ft CW
+ result = printmessage_1(&message, cl);
+ if (result == NULL) {
+.ft I
+ /*
+ * An error occurred while calling the server.
+ * Print error message and die.
+ */
+.ft CW
+ clnt_perror(cl, server);
+ exit(1);
+ }
+
+.ft I
+ /*
+ * Okay, we successfully called the remote procedure.
+ */
+.ft CW
+ if (*result == 0) {
+.ft I
+ /*
+ * Server was unable to print our message.
+ * Print error message and die.
+ */
+.ft CW
+ fprintf(stderr, "%s: %s couldn't print your message\en",
+ argv[0], server);
+ exit(1);
+ }
+
+.ft I
+ /*
+ * The message got printed on the server's console
+ */
+.ft CW
+ printf("Message delivered to %s!\en", server);
+}
+.DE
+There are two things to note here:
+.IP 1.
+.IX "client handle, used by rpcgen" "" "client handle, used by \fIrpcgen\fP"
+First a client \*Qhandle\*U is created using the RPC library routine
+.I clnt_create ().
+This client handle will be passed to the stub routines
+which call the remote procedure.
+.IP 2.
+The remote procedure
+.I printmessage_1()
+is called exactly the same way as it is declared in
+.I msg_proc.c
+except for the inserted client handle as the first argument.
+.LP
+Here's how to put all of the pieces together:
+.ie t .DS
+.el .DS L
+.ft CW
+example% \fBrpcgen msg.x\fP
+example% \fBcc rprintmsg.c msg_clnt.c -o rprintmsg\fP
+example% \fBcc msg_proc.c msg_svc.c -o msg_server\fP
+.DE
+Two programs were compiled here: the client program
+.I rprintmsg
+and the server program
+.I msg_server .
+Before doing this though,
+.I rpcgen
+was used to fill in the missing pieces.
+.LP
+Here is what
+.I rpcgen
+did with the input file
+.I msg.x :
+.IP 1.
+It created a header file called
+.I msg.h
+that contained
+.I #define 's
+for
+.I MESSAGEPROG ,
+.I MESSAGEVERS
+and
+.I PRINTMESSAGE
+for use in the other modules.
+.IP 2.
+It created client \*Qstub\*U routines in the
+.I msg_clnt.c
+file. In this case there is only one, the
+.I printmessage_1()
+that was referred to from the
+.I printmsg
+client program. The name of the output file for
+client stub routines is always formed in this way: if the name of the
+input file is
+.I FOO.x ,
+the client stubs output file is called
+.I FOO_clnt.c .
+.IP 3.
+It created the server program which calls
+.I printmessage_1()
+in
+.I msg_proc.c .
+This server program is named
+.I msg_svc.c .
+The rule for naming the server output file is similar to the
+previous one: for an input file called
+.I FOO.x ,
+the output server file is named
+.I FOO_svc.c .
+.LP
+Now we're ready to have some fun. First, copy the server to a
+remote machine and run it. For this example, the
+machine is called \*Qmoon\*U. Server processes are run in the
+background, because they never exit.
+.ie t .DS
+.el .DS L
+.ft CW
+moon% \fBmsg_server &\fP
+.DE
+Then on our local machine (\*Qsun\*U) we can print a message on \*Qmoon\*Us
+console.
+.ie t .DS
+.el .DS L
+.ft CW
+sun% \fBprintmsg moon "Hello, moon."\fP
+.DE
+The message will get printed to \*Qmoon\*Us console. You can print a
+message on anybody's console (including your own) with this program if
+you are able to copy the server to their machine and run it.
+.NH 1
+\&Generating XDR Routines
+.IX RPC "generating XDR routines"
+.LP
+The previous example only demonstrated the automatic generation of
+client and server RPC code.
+.I rpcgen
+may also be used to generate XDR routines, that is, the routines
+necessary to convert local data
+structures into network format and vice-versa. This example presents
+a complete RPC service\(ema remote directory listing service, which uses
+.I rpcgen
+not only to generate stub routines, but also to generate the XDR
+routines. Here is the protocol description file:
+.ie t .DS
+.el .DS L
+.ft I
+/*
+ * dir.x: Remote directory listing protocol
+ */
+.ft CW
+const MAXNAMELEN = 255; /* \fImaximum length of a directory entry\fP */
+
+typedef string nametype<MAXNAMELEN>; /* \fIa directory entry\fP */
+
+typedef struct namenode *namelist; /* \fIa link in the listing\fP */
+
+.ft I
+/*
+ * A node in the directory listing
+ */
+.ft CW
+struct namenode {
+ nametype name; /* \fIname of directory entry\fP */
+ namelist next; /* \fInext entry\fP */
+};
+
+.ft I
+/*
+ * The result of a READDIR operation.
+ */
+.ft CW
+union readdir_res switch (int errno) {
+case 0:
+ namelist list; /* \fIno error: return directory listing\fP */
+default:
+ void; /* \fIerror occurred: nothing else to return\fP */
+};
+
+.ft I
+/*
+ * The directory program definition
+ */
+.ft CW
+program DIRPROG {
+ version DIRVERS {
+ readdir_res
+ READDIR(nametype) = 1;
+ } = 1;
+} = 76;
+.DE
+.SH
+Note:
+.I
+Types (like
+.I readdir_res
+in the example above) can be defined using
+the \*Qstruct\*U, \*Qunion\*U and \*Qenum\*U keywords, but those keywords
+should not be used in subsequent declarations of variables of those types.
+For example, if you define a union \*Qfoo\*U, you should declare using
+only \*Qfoo\*U and not \*Qunion foo\*U. In fact,
+.I rpcgen
+compiles
+RPC unions into C structures and it is an error to declare them using the
+\*Qunion\*U keyword.
+.LP
+Running
+.I rpcgen
+on
+.I dir.x
+creates four output files. Three are the same as before: header file,
+client stub routines and server skeleton. The fourth are the XDR routines
+necessary for converting the data types we declared into XDR format and
+vice-versa. These are output in the file
+.I dir_xdr.c .
+.LP
+Here is the implementation of the
+.I READDIR
+procedure.
+.ie t .DS
+.el .DS L
+.vs 11
+.ft I
+/*
+ * dir_proc.c: remote readdir implementation
+ */
+.ft CW
+#include <rpc/rpc.h>
+#include <sys/dir.h>
+#include "dir.h"
+
+extern int errno;
+extern char *malloc();
+extern char *strdup();
+
+readdir_res *
+readdir_1(dirname)
+ nametype *dirname;
+{
+ DIR *dirp;
+ struct direct *d;
+ namelist nl;
+ namelist *nlp;
+ static readdir_res res; /* \fImust be static\fP! */
+
+.ft I
+ /*
+ * Open directory
+ */
+.ft CW
+ dirp = opendir(*dirname);
+ if (dirp == NULL) {
+ res.errno = errno;
+ return (&res);
+ }
+
+.ft I
+ /*
+ * Free previous result
+ */
+.ft CW
+ xdr_free(xdr_readdir_res, &res);
+
+.ft I
+ /*
+ * Collect directory entries.
+ * Memory allocated here will be freed by \fIxdr_free\fP
+ * next time \fIreaddir_1\fP is called
+ */
+.ft CW
+ nlp = &res.readdir_res_u.list;
+ while (d = readdir(dirp)) {
+ nl = *nlp = (namenode *) malloc(sizeof(namenode));
+ nl->name = strdup(d->d_name);
+ nlp = &nl->next;
+ }
+ *nlp = NULL;
+
+.ft I
+ /*
+ * Return the result
+ */
+.ft CW
+ res.errno = 0;
+ closedir(dirp);
+ return (&res);
+}
+.vs
+.DE
+Finally, there is the client side program to call the server:
+.ie t .DS
+.el .DS L
+.ft I
+/*
+ * rls.c: Remote directory listing client
+ */
+.ft CW
+#include <stdio.h>
+#include <rpc/rpc.h> /* \fIalways need this\fP */
+#include "dir.h" /* \fIwill be generated by rpcgen\fI */
+
+extern int errno;
+
+main(argc, argv)
+ int argc;
+ char *argv[];
+{
+ CLIENT *cl;
+ char *server;
+ char *dir;
+ readdir_res *result;
+ namelist nl;
+
+
+ if (argc != 3) {
+ fprintf(stderr, "usage: %s host directory\en",
+ argv[0]);
+ exit(1);
+ }
+
+.ft I
+ /*
+ * Remember what our command line arguments refer to
+ */
+.ft CW
+ server = argv[1];
+ dir = argv[2];
+
+.ft I
+ /*
+ * Create client "handle" used for calling \fIMESSAGEPROG\fP on the
+ * server designated on the command line. We tell the RPC package
+ * to use the "tcp" protocol when contacting the server.
+ */
+.ft CW
+ cl = clnt_create(server, DIRPROG, DIRVERS, "tcp");
+ if (cl == NULL) {
+.ft I
+ /*
+ * Couldn't establish connection with server.
+ * Print error message and die.
+ */
+.ft CW
+ clnt_pcreateerror(server);
+ exit(1);
+ }
+
+.ft I
+ /*
+ * Call the remote procedure \fIreaddir\fP on the server
+ */
+.ft CW
+ result = readdir_1(&dir, cl);
+ if (result == NULL) {
+.ft I
+ /*
+ * An error occurred while calling the server.
+ * Print error message and die.
+ */
+.ft CW
+ clnt_perror(cl, server);
+ exit(1);
+ }
+
+.ft I
+ /*
+ * Okay, we successfully called the remote procedure.
+ */
+.ft CW
+ if (result->errno != 0) {
+.ft I
+ /*
+ * A remote system error occurred.
+ * Print error message and die.
+ */
+.ft CW
+ errno = result->errno;
+ perror(dir);
+ exit(1);
+ }
+
+.ft I
+ /*
+ * Successfully got a directory listing.
+ * Print it out.
+ */
+.ft CW
+ for (nl = result->readdir_res_u.list; nl != NULL;
+ nl = nl->next) {
+ printf("%s\en", nl->name);
+ }
+ exit(0);
+}
+.DE
+Compile everything, and run.
+.DS
+.ft CW
+sun% \fBrpcgen dir.x\fP
+sun% \fBcc rls.c dir_clnt.c dir_xdr.c -o rls\fP
+sun% \fBcc dir_svc.c dir_proc.c dir_xdr.c -o dir_svc\fP
+
+sun% \fBdir_svc &\fP
+
+moon% \fBrls sun /usr/pub\fP
+\&.
+\&..
+ascii
+eqnchar
+greek
+kbd
+marg8
+tabclr
+tabs
+tabs4
+moon%
+.DE
+.LP
+.IX "debugging with rpcgen" "" "debugging with \fIrpcgen\fP"
+A final note about
+.I rpcgen :
+The client program and the server procedure can be tested together
+as a single program by simply linking them with each other rather
+than with the client and server stubs. The procedure calls will be
+executed as ordinary local procedure calls and the program can be
+debugged with a local debugger such as
+.I dbx .
+When the program is working, the client program can be linked to
+the client stub produced by
+.I rpcgen
+and the server procedures can be linked to the server stub produced
+by
+.I rpcgen .
+.SH
+.I NOTE :
+\fIIf you do this, you may want to comment out calls to RPC library
+routines, and have client-side routines call server routines
+directly.\fP
+.LP
+.NH 1
+\&The C-Preprocessor
+.IX rpcgen "C-preprocessor" \fIrpcgen\fP
+.LP
+The C-preprocessor is run on all input files before they are
+compiled, so all the preprocessor directives are legal within a \*Q.x\*U
+file. Four symbols may be defined, depending upon which output file is
+getting generated. The symbols are:
+.TS
+box tab (&);
+lfI lfI
+lfL l .
+Symbol&Usage
+_
+RPC_HDR&for header-file output
+RPC_XDR&for XDR routine output
+RPC_SVC&for server-skeleton output
+RPC_CLNT&for client stub output
+.TE
+.LP
+Also,
+.I rpcgen
+does a little preprocessing of its own. Any line that
+begins with a percent sign is passed directly into the output file,
+without any interpretation of the line. Here is a simple example that
+demonstrates the preprocessing features.
+.ie t .DS
+.el .DS L
+.ft I
+/*
+ * time.x: Remote time protocol
+ */
+.ft CW
+program TIMEPROG {
+ version TIMEVERS {
+ unsigned int TIMEGET(void) = 1;
+ } = 1;
+} = 44;
+
+#ifdef RPC_SVC
+%int *
+%timeget_1()
+%{
+% static int thetime;
+%
+% thetime = time(0);
+% return (&thetime);
+%}
+#endif
+.DE
+The '%' feature is not generally recommended, as there is no guarantee
+that the compiler will stick the output where you intended.
+.NH 1
+\&\fBrpcgen\fP Programming Notes
+.IX rpcgen "other operations" \fIrpcgen\fP
+.sp
+.NH 2
+\&Timeout Changes
+.IX rpcgen "timeout changes" \fIrpcgen\fP
+.LP
+RPC sets a default timeout of 25 seconds for RPC calls when
+.I clnt_create()
+is used. This timeout may be changed using
+.I clnt_control()
+Here is a small code fragment to demonstrate use of
+.I clnt_control ():
+.ID
+struct timeval tv;
+CLIENT *cl;
+.sp .5
+cl = clnt_create("somehost", SOMEPROG, SOMEVERS, "tcp");
+if (cl == NULL) {
+ exit(1);
+}
+tv.tv_sec = 60; /* \fIchange timeout to 1 minute\fP */
+tv.tv_usec = 0;
+clnt_control(cl, CLSET_TIMEOUT, &tv);
+.DE
+.NH 2
+\&Handling Broadcast on the Server Side
+.IX "broadcast RPC"
+.IX rpcgen "broadcast RPC" \fIrpcgen\fP
+.LP
+When a procedure is known to be called via broadcast RPC,
+it is usually wise for the server to not reply unless it can provide
+some useful information to the client. This prevents the network
+from getting flooded by useless replies.
+.LP
+To prevent the server from replying, a remote procedure can
+return NULL as its result, and the server code generated by
+.I rpcgen
+will detect this and not send out a reply.
+.LP
+Here is an example of a procedure that replies only if it
+thinks it is an NFS server:
+.ID
+void *
+reply_if_nfsserver()
+{
+ char notnull; /* \fIjust here so we can use its address\fP */
+.sp .5
+ if (access("/etc/exports", F_OK) < 0) {
+ return (NULL); /* \fIprevent RPC from replying\fP */
+ }
+.ft I
+ /*
+ * return non-null pointer so RPC will send out a reply
+ */
+.ft L
+ return ((void *)&notnull);
+}
+.DE
+Note that if procedure returns type \*Qvoid *\*U, they must return a non-NULL
+pointer if they want RPC to reply for them.
+.NH 2
+\&Other Information Passed to Server Procedures
+.LP
+Server procedures will often want to know more about an RPC call
+than just its arguments. For example, getting authentication information
+is important to procedures that want to implement some level of security.
+This extra information is actually supplied to the server procedure as a
+second argument. Here is an example to demonstrate its use. What we've
+done here is rewrite the previous
+.I printmessage_1()
+procedure to only allow root users to print a message to the console.
+.ID
+int *
+printmessage_1(msg, rq)
+ char **msg;
+ struct svc_req *rq;
+{
+ static in result; /* \fIMust be static\fP */
+ FILE *f;
+ struct suthunix_parms *aup;
+.sp .5
+ aup = (struct authunix_parms *)rq->rq_clntcred;
+ if (aup->aup_uid != 0) {
+ result = 0;
+ return (&result);
+ }
+.sp
+.ft I
+ /*
+ * Same code as before.
+ */
+.ft L
+}
+.DE
+.NH 1
+\&RPC Language
+.IX RPCL
+.IX rpcgen "RPC Language" \fIrpcgen\fP
+.LP
+RPC language is an extension of XDR language. The sole extension is
+the addition of the
+.I program
+type. For a complete description of the XDR language syntax, see the
+.I "External Data Representation Standard: Protocol Specification"
+chapter. For a description of the RPC extensions to the XDR language,
+see the
+.I "Remote Procedure Calls: Protocol Specification"
+chapter.
+.LP
+However, XDR language is so close to C that if you know C, you know most
+of it already. We describe here the syntax of the RPC language,
+showing a few examples along the way. We also show how the various
+RPC and XDR type definitions get compiled into C type definitions in
+the output header file.
+.KS
+.NH 2
+Definitions
+\&
+.IX rpcgen definitions \fIrpcgen\fP
+.LP
+An RPC language file consists of a series of definitions.
+.DS L
+.ft CW
+ definition-list:
+ definition ";"
+ definition ";" definition-list
+.DE
+.KE
+It recognizes five types of definitions.
+.DS L
+.ft CW
+ definition:
+ enum-definition
+ struct-definition
+ union-definition
+ typedef-definition
+ const-definition
+ program-definition
+.DE
+.NH 2
+Structures
+\&
+.IX rpcgen structures \fIrpcgen\fP
+.LP
+An XDR struct is declared almost exactly like its C counterpart. It
+looks like the following:
+.DS L
+.ft CW
+ struct-definition:
+ "struct" struct-ident "{"
+ declaration-list
+ "}"
+
+ declaration-list:
+ declaration ";"
+ declaration ";" declaration-list
+.DE
+As an example, here is an XDR structure to a two-dimensional
+coordinate, and the C structure that it gets compiled into in the
+output header file.
+.DS
+.ft CW
+ struct coord { struct coord {
+ int x; --> int x;
+ int y; int y;
+ }; };
+ typedef struct coord coord;
+.DE
+The output is identical to the input, except for the added
+.I typedef
+at the end of the output. This allows one to use \*Qcoord\*U instead of
+\*Qstruct coord\*U when declaring items.
+.NH 2
+Unions
+\&
+.IX rpcgen unions \fIrpcgen\fP
+.LP
+XDR unions are discriminated unions, and look quite different from C
+unions. They are more analogous to Pascal variant records than they
+are to C unions.
+.DS L
+.ft CW
+ union-definition:
+ "union" union-ident "switch" "(" declaration ")" "{"
+ case-list
+ "}"
+
+ case-list:
+ "case" value ":" declaration ";"
+ "default" ":" declaration ";"
+ "case" value ":" declaration ";" case-list
+.DE
+Here is an example of a type that might be returned as the result of a
+\*Qread data\*U operation. If there is no error, return a block of data.
+Otherwise, don't return anything.
+.DS L
+.ft CW
+ union read_result switch (int errno) {
+ case 0:
+ opaque data[1024];
+ default:
+ void;
+ };
+.DE
+It gets compiled into the following:
+.DS L
+.ft CW
+ struct read_result {
+ int errno;
+ union {
+ char data[1024];
+ } read_result_u;
+ };
+ typedef struct read_result read_result;
+.DE
+Notice that the union component of the output struct has the name as
+the type name, except for the trailing \*Q_u\*U.
+.NH 2
+Enumerations
+\&
+.IX rpcgen enumerations \fIrpcgen\fP
+.LP
+XDR enumerations have the same syntax as C enumerations.
+.DS L
+.ft CW
+ enum-definition:
+ "enum" enum-ident "{"
+ enum-value-list
+ "}"
+
+ enum-value-list:
+ enum-value
+ enum-value "," enum-value-list
+
+ enum-value:
+ enum-value-ident
+ enum-value-ident "=" value
+.DE
+Here is a short example of an XDR enum, and the C enum that it gets
+compiled into.
+.DS L
+.ft CW
+ enum colortype { enum colortype {
+ RED = 0, RED = 0,
+ GREEN = 1, --> GREEN = 1,
+ BLUE = 2 BLUE = 2,
+ }; };
+ typedef enum colortype colortype;
+.DE
+.NH 2
+Typedef
+\&
+.IX rpcgen typedef \fIrpcgen\fP
+.LP
+XDR typedefs have the same syntax as C typedefs.
+.DS L
+.ft CW
+ typedef-definition:
+ "typedef" declaration
+.DE
+Here is an example that defines a
+.I fname_type
+used for declaring
+file name strings that have a maximum length of 255 characters.
+.DS L
+.ft CW
+typedef string fname_type<255>; --> typedef char *fname_type;
+.DE
+.NH 2
+Constants
+\&
+.IX rpcgen constants \fIrpcgen\fP
+.LP
+XDR constants symbolic constants that may be used wherever a
+integer constant is used, for example, in array size specifications.
+.DS L
+.ft CW
+ const-definition:
+ "const" const-ident "=" integer
+.DE
+For example, the following defines a constant
+.I DOZEN
+equal to 12.
+.DS L
+.ft CW
+ const DOZEN = 12; --> #define DOZEN 12
+.DE
+.NH 2
+Programs
+\&
+.IX rpcgen programs \fIrpcgen\fP
+.LP
+RPC programs are declared using the following syntax:
+.DS L
+.ft CW
+ program-definition:
+ "program" program-ident "{"
+ version-list
+ "}" "=" value
+
+ version-list:
+ version ";"
+ version ";" version-list
+
+ version:
+ "version" version-ident "{"
+ procedure-list
+ "}" "=" value
+
+ procedure-list:
+ procedure ";"
+ procedure ";" procedure-list
+
+ procedure:
+ type-ident procedure-ident "(" type-ident ")" "=" value
+.DE
+For example, here is the time protocol, revisited:
+.ie t .DS
+.el .DS L
+.ft I
+/*
+ * time.x: Get or set the time. Time is represented as number of seconds
+ * since 0:00, January 1, 1970.
+ */
+.ft CW
+program TIMEPROG {
+ version TIMEVERS {
+ unsigned int TIMEGET(void) = 1;
+ void TIMESET(unsigned) = 2;
+ } = 1;
+} = 44;
+.DE
+This file compiles into #defines in the output header file:
+.ie t .DS
+.el .DS L
+.ft CW
+#define TIMEPROG 44
+#define TIMEVERS 1
+#define TIMEGET 1
+#define TIMESET 2
+.DE
+.NH 2
+Declarations
+\&
+.IX rpcgen declarations \fIrpcgen\fP
+.LP
+In XDR, there are only four kinds of declarations.
+.DS L
+.ft CW
+ declaration:
+ simple-declaration
+ fixed-array-declaration
+ variable-array-declaration
+ pointer-declaration
+.DE
+\fB1) Simple declarations\fP are just like simple C declarations.
+.DS L
+.ft CW
+ simple-declaration:
+ type-ident variable-ident
+.DE
+Example:
+.DS L
+.ft CW
+ colortype color; --> colortype color;
+.DE
+\fB2) Fixed-length Array Declarations\fP are just like C array declarations:
+.DS L
+.ft CW
+ fixed-array-declaration:
+ type-ident variable-ident "[" value "]"
+.DE
+Example:
+.DS L
+.ft CW
+ colortype palette[8]; --> colortype palette[8];
+.DE
+\fB3) Variable-Length Array Declarations\fP have no explicit syntax
+in C, so XDR invents its own using angle-brackets.
+.DS L
+.ft CW
+variable-array-declaration:
+ type-ident variable-ident "<" value ">"
+ type-ident variable-ident "<" ">"
+.DE
+The maximum size is specified between the angle brackets. The size may
+be omitted, indicating that the array may be of any size.
+.DS L
+.ft CW
+ int heights<12>; /* \fIat most 12 items\fP */
+ int widths<>; /* \fIany number of items\fP */
+.DE
+Since variable-length arrays have no explicit syntax in C, these
+declarations are actually compiled into \*Qstruct\*Us. For example, the
+\*Qheights\*U declaration gets compiled into the following struct:
+.DS L
+.ft CW
+ struct {
+ u_int heights_len; /* \fI# of items in array\fP */
+ int *heights_val; /* \fIpointer to array\fP */
+ } heights;
+.DE
+Note that the number of items in the array is stored in the \*Q_len\*U
+component and the pointer to the array is stored in the \*Q_val\*U
+component. The first part of each of these component's names is the
+same as the name of the declared XDR variable.
+.LP
+\fB4) Pointer Declarations\fP are made in
+XDR exactly as they are in C. You can't
+really send pointers over the network, but you can use XDR pointers
+for sending recursive data types such as lists and trees. The type is
+actually called \*Qoptional-data\*U, not \*Qpointer\*U, in XDR language.
+.DS L
+.ft CW
+ pointer-declaration:
+ type-ident "*" variable-ident
+.DE
+Example:
+.DS L
+.ft CW
+ listitem *next; --> listitem *next;
+.DE
+.NH 2
+\&Special Cases
+.IX rpcgen "special cases" \fIrpcgen\fP
+.LP
+There are a few exceptions to the rules described above.
+.LP
+.B Booleans:
+C has no built-in boolean type. However, the RPC library does a
+boolean type called
+.I bool_t
+that is either
+.I TRUE
+or
+.I FALSE .
+Things declared as type
+.I bool
+in XDR language are compiled into
+.I bool_t
+in the output header file.
+.LP
+Example:
+.DS L
+.ft CW
+ bool married; --> bool_t married;
+.DE
+.B Strings:
+C has no built-in string type, but instead uses the null-terminated
+\*Qchar *\*U convention. In XDR language, strings are declared using the
+\*Qstring\*U keyword, and compiled into \*Qchar *\*Us in the output header
+file. The maximum size contained in the angle brackets specifies the
+maximum number of characters allowed in the strings (not counting the
+.I NULL
+character). The maximum size may be left off, indicating a string
+of arbitrary length.
+.LP
+Examples:
+.DS L
+.ft CW
+ string name<32>; --> char *name;
+ string longname<>; --> char *longname;
+.DE
+.B "Opaque Data:"
+Opaque data is used in RPC and XDR to describe untyped data, that is,
+just sequences of arbitrary bytes. It may be declared either as a
+fixed or variable length array.
+.DS L
+Examples:
+.ft CW
+ opaque diskblock[512]; --> char diskblock[512];
+
+ opaque filedata<1024>; --> struct {
+ u_int filedata_len;
+ char *filedata_val;
+ } filedata;
+.DE
+.B Voids:
+In a void declaration, the variable is not named. The declaration is
+just \*Qvoid\*U and nothing else. Void declarations can only occur in two
+places: union definitions and program definitions (as the argument or
+result of a remote procedure).