summaryrefslogtreecommitdiffstats
path: root/c/src/lib/libcpu/powerpc/shared/pgtable.h
diff options
context:
space:
mode:
Diffstat (limited to 'c/src/lib/libcpu/powerpc/shared/pgtable.h')
-rw-r--r--c/src/lib/libcpu/powerpc/shared/pgtable.h129
1 files changed, 129 insertions, 0 deletions
diff --git a/c/src/lib/libcpu/powerpc/shared/pgtable.h b/c/src/lib/libcpu/powerpc/shared/pgtable.h
new file mode 100644
index 0000000000..0c1934a376
--- /dev/null
+++ b/c/src/lib/libcpu/powerpc/shared/pgtable.h
@@ -0,0 +1,129 @@
+#ifndef _PPC_PGTABLE_H
+#define _PPC_PGTABLE_H
+
+/*
+ * The PowerPC MMU uses a hash table containing PTEs, together with
+ * a set of 16 segment registers (on 32-bit implementations), to define
+ * the virtual to physical address mapping.
+ *
+ * We use the hash table as an extended TLB, i.e. a cache of currently
+ * active mappings. We maintain a two-level page table tree, much like
+ * that used by the i386, for the sake of the Linux memory management code.
+ * Low-level assembler code in head.S (procedure hash_page) is responsible
+ * for extracting ptes from the tree and putting them into the hash table
+ * when necessary, and updating the accessed and modified bits in the
+ * page table tree.
+ *
+ * The PowerPC MPC8xx uses a TLB with hardware assisted, software tablewalk.
+ * We also use the two level tables, but we can put the real bits in them
+ * needed for the TLB and tablewalk. These definitions require Mx_CTR.PPM = 0,
+ * Mx_CTR.PPCS = 0, and MD_CTR.TWAM = 1. The level 2 descriptor has
+ * additional page protection (when Mx_CTR.PPCS = 1) that allows TLB hit
+ * based upon user/super access. The TLB does not have accessed nor write
+ * protect. We assume that if the TLB get loaded with an entry it is
+ * accessed, and overload the changed bit for write protect. We use
+ * two bits in the software pte that are supposed to be set to zero in
+ * the TLB entry (24 and 25) for these indicators. Although the level 1
+ * descriptor contains the guarded and writethrough/copyback bits, we can
+ * set these at the page level since they get copied from the Mx_TWC
+ * register when the TLB entry is loaded. We will use bit 27 for guard, since
+ * that is where it exists in the MD_TWC, and bit 26 for writethrough.
+ * These will get masked from the level 2 descriptor at TLB load time, and
+ * copied to the MD_TWC before it gets loaded.
+ */
+
+/* PMD_SHIFT determines the size of the area mapped by the second-level page tables */
+#define PMD_SHIFT 22
+#define PMD_SIZE (1UL << PMD_SHIFT)
+#define PMD_MASK (~(PMD_SIZE-1))
+
+/* PGDIR_SHIFT determines what a third-level page table entry can map */
+#define PGDIR_SHIFT 22
+#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
+#define PGDIR_MASK (~(PGDIR_SIZE-1))
+
+/*
+ * entries per page directory level: our page-table tree is two-level, so
+ * we don't really have any PMD directory.
+ */
+#define PTRS_PER_PTE 1024
+#define PTRS_PER_PMD 1
+#define PTRS_PER_PGD 1024
+#define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE)
+
+/* Just any arbitrary offset to the start of the vmalloc VM area: the
+ * current 64MB value just means that there will be a 64MB "hole" after the
+ * physical memory until the kernel virtual memory starts. That means that
+ * any out-of-bounds memory accesses will hopefully be caught.
+ * The vmalloc() routines leaves a hole of 4kB between each vmalloced
+ * area for the same reason. ;)
+ *
+ * We no longer map larger than phys RAM with the BATs so we don't have
+ * to worry about the VMALLOC_OFFSET causing problems. We do have to worry
+ * about clashes between our early calls to ioremap() that start growing down
+ * from ioremap_base being run into the VM area allocations (growing upwards
+ * from VMALLOC_START). For this reason we have ioremap_bot to check when
+ * we actually run into our mappings setup in the early boot with the VM
+ * system. This really does become a problem for machines with good amounts
+ * of RAM. -- Cort
+ */
+#define VMALLOC_OFFSET (0x4000000) /* 64M */
+#define VMALLOC_START ((((long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)))
+#define VMALLOC_VMADDR(x) ((unsigned long)(x))
+#define VMALLOC_END ioremap_bot
+
+/*
+ * Bits in a linux-style PTE. These match the bits in the
+ * (hardware-defined) PowerPC PTE as closely as possible.
+ */
+#define _PAGE_PRESENT 0x001 /* software: pte contains a translation */
+#define _PAGE_USER 0x002 /* matches one of the PP bits */
+#define _PAGE_RW 0x004 /* software: user write access allowed */
+#define _PAGE_GUARDED 0x008
+#define _PAGE_COHERENT 0x010 /* M: enforce memory coherence (SMP systems) */
+#define _PAGE_NO_CACHE 0x020 /* I: cache inhibit */
+#define _PAGE_WRITETHRU 0x040 /* W: cache write-through */
+#define _PAGE_DIRTY 0x080 /* C: page changed */
+#define _PAGE_ACCESSED 0x100 /* R: page referenced */
+#define _PAGE_HWWRITE 0x200 /* software: _PAGE_RW & _PAGE_DIRTY */
+#define _PAGE_SHARED 0
+
+#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
+
+#define _PAGE_BASE _PAGE_PRESENT | _PAGE_ACCESSED
+#define _PAGE_WRENABLE _PAGE_RW | _PAGE_DIRTY | _PAGE_HWWRITE
+
+#define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED)
+
+#define PAGE_SHARED __pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_USER | \
+ _PAGE_SHARED)
+#define PAGE_COPY __pgprot(_PAGE_BASE | _PAGE_USER)
+#define PAGE_READONLY __pgprot(_PAGE_BASE | _PAGE_USER)
+#define PAGE_KERNEL __pgprot(_PAGE_BASE | _PAGE_WRENABLE | _PAGE_SHARED)
+#define PAGE_KERNEL_CI __pgprot(_PAGE_BASE | _PAGE_WRENABLE | _PAGE_SHARED | \
+ _PAGE_NO_CACHE )
+
+/*
+ * The PowerPC can only do execute protection on a segment (256MB) basis,
+ * not on a page basis. So we consider execute permission the same as read.
+ * Also, write permissions imply read permissions.
+ * This is the closest we can get..
+ */
+#define __P000 PAGE_NONE
+#define __P001 PAGE_READONLY
+#define __P010 PAGE_COPY
+#define __P011 PAGE_COPY
+#define __P100 PAGE_READONLY
+#define __P101 PAGE_READONLY
+#define __P110 PAGE_COPY
+#define __P111 PAGE_COPY
+
+#define __S000 PAGE_NONE
+#define __S001 PAGE_READONLY
+#define __S010 PAGE_SHARED
+#define __S011 PAGE_SHARED
+#define __S100 PAGE_READONLY
+#define __S101 PAGE_READONLY
+#define __S110 PAGE_SHARED
+#define __S111 PAGE_SHARED
+#endif /* _PPC_PGTABLE_H */