summaryrefslogtreecommitdiffstats
path: root/c/src/lib/libbsp/powerpc/motorola_powerpc/bootloader/mm.c
diff options
context:
space:
mode:
Diffstat (limited to 'c/src/lib/libbsp/powerpc/motorola_powerpc/bootloader/mm.c')
-rw-r--r--c/src/lib/libbsp/powerpc/motorola_powerpc/bootloader/mm.c975
1 files changed, 975 insertions, 0 deletions
diff --git a/c/src/lib/libbsp/powerpc/motorola_powerpc/bootloader/mm.c b/c/src/lib/libbsp/powerpc/motorola_powerpc/bootloader/mm.c
new file mode 100644
index 0000000000..b385b02136
--- /dev/null
+++ b/c/src/lib/libbsp/powerpc/motorola_powerpc/bootloader/mm.c
@@ -0,0 +1,975 @@
+/*
+ * arch/ppc/prepboot/mm.c -- Crude memory management for early boot.
+ *
+ * Copyright (C) 1998 Gabriel Paubert, paubert@iram.es
+ *
+ * This file is subject to the terms and conditions of the GNU General Public
+ * License. See the file COPYING in the main directory of this archive
+ * for more details.
+ */
+
+/* This code is a crude memory manager for early boot for LinuxPPC.
+ * As such, it does not try to perform many optimiztions depending
+ * on the processor, it only uses features which are common to
+ * all processors (no BATs...).
+ *
+ * On PreP platorms (the only ones on which it works for now),
+ * it maps 1:1 all RAM/ROM and I/O space as claimed by the
+ * residual data. The holes between these areas can be virtually
+ * remapped to any of these, since for some functions it is very handy
+ * to have virtually contiguous but physically discontiguous memory.
+ *
+ * Physical memory allocation is also very crude, since it's only
+ * designed to manage a small number of large chunks. For valloc/vfree
+ * and palloc/pfree, the unit of allocation is the 4kB page.
+ *
+ * The salloc/sfree has been added after tracing gunzip and seeing
+ * how it performed a very large number of small allocations.
+ * For these the unit of allocation is 8 bytes (the s stands for
+ * small or subpage). This memory is cleared when allocated.
+ *
+ */
+
+#include <sys/types.h>
+#include <libcpu/spr.h>
+#include "bootldr.h"
+#include <libcpu/mmu.h>
+#include <libcpu/page.h>
+#include <limits.h>
+
+/* We use our own kind of simple memory areas for the loader, but
+ * we want to avoid potential clashes with kernel includes.
+ * Here a map maps contiguous areas from base to end,
+ * the firstpte entry corresponds to physical address and has the low
+ * order bits set for caching and permission.
+ */
+
+typedef struct _map {
+ struct _map *next;
+ u_long base;
+ u_long end;
+ u_long firstpte;
+} map;
+
+/* The LSB of the firstpte entries on map lists other than mappings
+ * are constants which can be checked for debugging. All these constants
+ * have bit of weight 4 set, this bit is zero in the mappings list entries.
+ * Actually firstpte&7 value is:
+ * - 0 or 1 should not happen
+ * - 2 for RW actual virtual->physical mappings
+ * - 3 for RO actual virtual->physical mappings
+ * - 6 for free areas to be suballocated by salloc
+ * - 7 for salloc'ated areas
+ * - 4 or 5 for all others, in this case firtpte & 63 is
+ * - 4 for unused maps (on the free list)
+ * - 12 for free physical memory
+ * - 13 for physical memory in use
+ * - 20 for free virtual address space
+ * - 21 for allocated virtual address space
+ * - 28 for physical memory space suballocated by salloc
+ * - 29 for physical memory that can't be freed
+ */
+
+#define MAP_FREE_SUBS 6
+#define MAP_USED_SUBS 7
+
+#define MAP_FREE 4
+#define MAP_FREE_PHYS 12
+#define MAP_USED_PHYS 13
+#define MAP_FREE_VIRT 20
+#define MAP_USED_VIRT 21
+#define MAP_SUBS_PHYS 28
+#define MAP_PERM_PHYS 29
+
+SPR_RW(SDR1);
+SPR_RO(DSISR);
+SPR_RO(DAR);
+
+/* We need a few statically allocated free maps to bootstrap the
+ * memory managment */
+static map free_maps[4] = {{free_maps+1, 0, 0, MAP_FREE},
+ {free_maps+2, 0, 0, MAP_FREE},
+ {free_maps+3, 0, 0, MAP_FREE},
+ {NULL, 0, 0, MAP_FREE}};
+struct _mm_private {
+ void *sdr1;
+ u_long hashmask;
+ map *freemaps; /* Pool of unused map structs */
+ map *mappings; /* Sorted list of virtual->physical mappings */
+ map *physavail; /* Unallocated physical address space */
+ map *physused; /* Allocated physical address space */
+ map *physperm; /* Permanently allocated physical space */
+ map *virtavail; /* Unallocated virtual address space */
+ map *virtused; /* Allocated virtual address space */
+ map *sallocfree; /* Free maps for salloc */
+ map *sallocused; /* Used maps for salloc */
+ map *sallocphys; /* Physical areas used by salloc */
+ u_int hashcnt; /* Used to cycle in PTEG when they overflow */
+} mm_private = {hashmask: 0xffc0,
+ freemaps: free_maps+0};
+
+/* A simplified hash table entry declaration */
+typedef struct _hash_entry {
+ int key;
+ u_long rpn;
+} hash_entry;
+
+void print_maps(map *, const char *);
+
+/* The handler used for all exceptions although for now it is only
+ * designed to properly handle MMU interrupts to fill the hash table.
+ */
+
+
+void _handler(int vec, ctxt *p) {
+ map *area;
+ struct _mm_private *mm = (struct _mm_private *) bd->mm_private;
+ u_long vaddr, cause;
+ if (vec==4 || vec==7) { /* ISI exceptions are different */
+ vaddr = p->nip;
+ cause = p->msr;
+ } else { /* Valid for DSI and alignment exceptions */
+ vaddr = _read_DAR();
+ cause = _read_DSISR();
+ }
+
+ if (vec==3 || vec==4) {
+ /* Panic if the fault is not PTE not found. */
+ if (!(cause & 0x40000000)) {
+ MMUon();
+ printk("\nPanic: vector=%x, cause=%lx\n", vec, cause);
+ hang("Memory protection violation at ", vaddr, p);
+ }
+
+ for(area=mm->mappings; area; area=area->next) {
+ if(area->base<=vaddr && vaddr<=area->end) break;
+ }
+
+ if (area) {
+ u_long hash, vsid, rpn;
+ hash_entry volatile *hte, *_hte1;
+ u_int i, alt=0, flushva;
+
+ vsid = _read_SR((void *)vaddr);
+ rpn = (vaddr&PAGE_MASK)-area->base+area->firstpte;
+ hash = vsid<<6;
+ hash ^= (vaddr>>(PAGE_SHIFT-6))&0x3fffc0;
+ hash &= mm->hashmask;
+ /* Find an empty entry in the PTEG, else
+ * replace a random one.
+ */
+ hte = (hash_entry *) ((u_long)(mm->sdr1)+hash);
+ for (i=0; i<8; i++) {
+ if (hte[i].key>=0) goto found;
+ }
+ hash ^= mm->hashmask;
+ alt = 0x40; _hte1 = hte;
+ hte = (hash_entry *) ((u_long)(mm->sdr1)+hash);
+
+ for (i=0; i<8; i++) {
+ if (hte[i].key>=0) goto found;
+ }
+ alt = 0;
+ hte = _hte1;
+ /* Chose a victim entry and replace it. There might be
+ * better policies to choose the victim, but in a boot
+ * loader we want simplicity as long as it works.
+ *
+ * We would not need to invalidate the TLB entry since
+ * the mapping is still valid. But this would be a mess
+ * when unmapping so we make sure that the TLB is a
+ * subset of the hash table under all circumstances.
+ */
+ i = mm->hashcnt;
+ mm->hashcnt = (mm->hashcnt+1)%8;
+ /* Note that the hash is already complemented here ! */
+ flushva = (~(hash<<9)^((hte[i].key)<<5)) &0x3ff000;
+ if (hte[i].key&0x40) flushva^=0x3ff000;
+ flushva |= ((hte[i].key<<21)&0xf0000000)
+ | ((hte[i].key<<22)&0x0fc00000);
+ hte[i].key=0;
+ asm volatile("sync; tlbie %0; sync" : : "r" (flushva));
+ found:
+ hte[i].rpn = rpn;
+ asm volatile("eieio": : );
+ hte[i].key = 0x80000000|(vsid<<7)|alt|
+ ((vaddr>>22)&0x3f);
+ return;
+ } else {
+ MMUon();
+ printk("\nPanic: vector=%x, cause=%lx\n", vec, cause);
+ hang("\nInvalid memory access attempt at ", vaddr, p);
+ }
+ } else {
+ MMUon();
+ printk("\nPanic: vector=%x, dsisr=%lx, faultaddr =%lx, msr=%lx opcode=%lx\n", vec,
+ cause, p->nip, p->msr, * ((unsigned int*) p->nip) );
+ if (vec == 7) {
+ unsigned int* ptr = ((unsigned int*) p->nip) - 4 * 10;
+ for (; ptr <= (((unsigned int*) p->nip) + 4 * 10); ptr ++)
+ printk("Hexdecimal code at address %x = %x\n", ptr, *ptr);
+ }
+ hang("Program or alignment exception at ", vaddr, p);
+ }
+}
+
+/* Generic routines for map handling.
+ */
+
+static inline
+void free_map(map *p) {
+ struct _mm_private *mm = (struct _mm_private *) bd->mm_private;
+ if (!p) return;
+ p->next=mm->freemaps;
+ mm->freemaps=p;
+ p->firstpte=MAP_FREE;
+}
+
+/* Sorted insertion in linked list */
+static
+int insert_map(map **head, map *p) {
+ map *q = *head;
+ if (!p) return 0;
+ if (q && (q->base < p->base)) {
+ for(;q->next && q->next->base<p->base; q = q->next);
+ if ((q->end >= p->base) ||
+ (q->next && p->end>=q->next->base)) {
+ free_map(p);
+ printk("Overlapping areas!\n");
+ return 1;
+ }
+ p->next = q->next;
+ q->next = p;
+ } else { /* Insert at head */
+ if (q && (p->end >= q->base)) {
+ free_map(p);
+ printk("Overlapping areas!\n");
+ return 1;
+ }
+ p->next = q;
+ *head = p;
+ }
+ return 0;
+}
+
+
+/* Removal from linked list */
+
+static
+map *remove_map(map **head, map *p) {
+ map *q = *head;
+
+ if (!p || !q) return NULL;
+ if (q==p) {
+ *head = q->next;
+ return p;
+ }
+ for(;q && q->next!=p; q=q->next);
+ if (q) {
+ q->next=p->next;
+ return p;
+ } else {
+ return NULL;
+ }
+}
+
+static
+map *remove_map_at(map **head, void * vaddr) {
+ map *p, *q = *head;
+
+ if (!vaddr || !q) return NULL;
+ if (q->base==(u_long)vaddr) {
+ *head = q->next;
+ return q;
+ }
+ while (q->next && q->next->base != (u_long)vaddr) q=q->next;
+ p=q->next;
+ if (p) q->next=p->next;
+ return p;
+}
+
+static inline
+map * alloc_map_page(void) {
+ map *from, *p;
+ struct _mm_private *mm = (struct _mm_private *) bd->mm_private;
+
+ /* printk("Allocating new map page !"); */
+ /* Get the highest page */
+ for (from=mm->physavail; from && from->next; from=from->next);
+ if (!from) return NULL;
+
+ from->end -= PAGE_SIZE;
+
+ mm->freemaps = (map *) (from->end+1);
+
+ for(p=mm->freemaps; p<mm->freemaps+PAGE_SIZE/sizeof(map)-1; p++) {
+ p->next = p+1;
+ p->firstpte = MAP_FREE;
+ }
+ (p-1)->next=0;
+
+ /* Take the last one as pointer to self and insert
+ * the map into the permanent map list.
+ */
+
+ p->firstpte = MAP_PERM_PHYS;
+ p->base=(u_long) mm->freemaps;
+ p->end = p->base+PAGE_SIZE-1;
+
+ insert_map(&mm->physperm, p);
+
+ if (from->end+1 == from->base)
+ free_map(remove_map(&mm->physavail, from));
+
+ return mm->freemaps;
+}
+
+static
+map * alloc_map(void) {
+ map *p;
+ struct _mm_private * mm = (struct _mm_private *) bd->mm_private;
+
+ p = mm->freemaps;
+ if (!p) {
+ p=alloc_map_page();
+ }
+
+ if(p) mm->freemaps=p->next;
+
+ return p;
+}
+
+static
+void coalesce_maps(map *p) {
+ while(p) {
+ if (p->next && (p->end+1 == p->next->base)) {
+ map *q=p->next;
+ p->end=q->end;
+ p->next=q->next;
+ free_map(q);
+ } else {
+ p = p->next;
+ }
+ }
+}
+
+/* These routines are used to find the free memory zones to avoid
+ * overlapping destructive copies when initializing.
+ * They work from the top because of the way we want to boot.
+ * In the following the term zone refers to the memory described
+ * by one or several contiguous so called segments in the
+ * residual data.
+ */
+#define STACK_PAGES 2
+static inline u_long
+find_next_zone(RESIDUAL *res, u_long lowpage, u_long flags) {
+ u_long i, newmin=0, size=0;
+ for(i=0; i<res->ActualNumMemSegs; i++) {
+ if (res->Segs[i].Usage & flags
+ && res->Segs[i].BasePage<lowpage
+ && res->Segs[i].BasePage>newmin) {
+ newmin=res->Segs[i].BasePage;
+ size=res->Segs[i].PageCount;
+ }
+ }
+ return newmin+size;
+}
+
+static inline u_long
+find_zone_start(RESIDUAL *res, u_long highpage, u_long flags) {
+ u_long i;
+ int progress;
+ do {
+ progress=0;
+ for (i=0; i<res->ActualNumMemSegs; i++) {
+ if ( (res->Segs[i].BasePage+res->Segs[i].PageCount
+ == highpage)
+ && res->Segs[i].Usage & flags) {
+ highpage=res->Segs[i].BasePage;
+ progress=1;
+ }
+ }
+ } while(progress);
+ return highpage;
+}
+
+/* The Motorola NT firmware does not provide any setting in the residual
+ * data about memory segment usage. The following table provides enough
+ * info so that this bootloader can work.
+ */
+MEM_MAP seg_fix[] = {
+ { 0x2000, 0xFFF00, 0x00100 },
+ { 0x0020, 0x02000, 0x7E000 },
+ { 0x0008, 0x00800, 0x00168 },
+ { 0x0004, 0x00000, 0x00005 },
+ { 0x0001, 0x006F1, 0x0010F },
+ { 0x0002, 0x006AD, 0x00044 },
+ { 0x0010, 0x00005, 0x006A8 },
+ { 0x0010, 0x00968, 0x00698 },
+ { 0x0800, 0xC0000, 0x3F000 },
+ { 0x0600, 0xBF800, 0x00800 },
+ { 0x0500, 0x81000, 0x3E800 },
+ { 0x0480, 0x80800, 0x00800 },
+ { 0x0440, 0x80000, 0x00800 } };
+
+
+/* The Motorola NT firmware does not set up all required info in the residual
+ * data. This routine changes some things in a way that the bootloader and
+ * linux are happy.
+ */
+void
+fix_residual( RESIDUAL *res )
+{
+#if 0
+ PPC_DEVICE *hostbridge;
+#endif
+ int i;
+
+ /* Missing memory segment information */
+ res->ActualNumMemSegs = sizeof(seg_fix)/sizeof(MEM_MAP);
+ for (i=0; i<res->ActualNumMemSegs; i++) {
+ res->Segs[i].Usage = seg_fix[i].Usage;
+ res->Segs[i].BasePage = seg_fix[i].BasePage;
+ res->Segs[i].PageCount = seg_fix[i].PageCount;
+ }
+ /* The following should be fixed in the current version of the
+ * kernel and of the bootloader.
+ */
+#if 0
+ /* PPCBug has this zero */
+ res->VitalProductData.CacheLineSize = 0;
+ /* Motorola NT firmware sets TimeBaseDivisor to 0 */
+ if ( res->VitalProductData.TimeBaseDivisor == 0 ) {
+ res->VitalProductData.TimeBaseDivisor = 4000;
+ }
+
+ /* Motorola NT firmware records the PCIBridge as a "PCIDEVICE" and
+ * sets "PCIBridgeDirect". This bootloader and linux works better if
+ * BusId = "PROCESSORDEVICE" and Interface = "PCIBridgeIndirect".
+ */
+ hostbridge=residual_find_device(PCIDEVICE, NULL,
+ BridgeController,
+ PCIBridge, -1, 0);
+ if (hostbridge) {
+ hostbridge->DeviceId.BusId = PROCESSORDEVICE;
+ hostbridge->DeviceId.Interface = PCIBridgeIndirect;
+ }
+#endif
+}
+
+/* This routine is the first C code called with very little stack space!
+ * Its goal is to find where the boot image can be moved. This will
+ * be the highest address with enough room.
+ */
+int early_setup(u_long image_size) {
+ register RESIDUAL *res = bd->residual;
+ u_long minpages = PAGE_ALIGN(image_size)>>PAGE_SHIFT;
+
+ /* Fix residual if we are loaded by Motorola NT firmware */
+ if ( res && res->VitalProductData.FirmwareSupplier == 0x10000 )
+ fix_residual( res );
+
+ /* FIXME: if OF we should do something different */
+ if( !bd->of_entry && res &&
+ res->ResidualLength <= sizeof(RESIDUAL) && res->Version == 0 ) {
+ u_long lowpage=ULONG_MAX, highpage;
+ u_long imghigh=0, stkhigh=0;
+ /* Find the highest and large enough contiguous zone
+ consisting of free and BootImage sections. */
+ /* Find 3 free areas of memory, one for the main image, one
+ * for the stack (STACK_PAGES), and page one to put the map
+ * structures. They are allocated from the top of memory.
+ * In most cases the stack will be put just below the image.
+ */
+ while((highpage =
+ find_next_zone(res, lowpage, BootImage|Free))) {
+ lowpage=find_zone_start(res, highpage, BootImage|Free);
+ if ((highpage-lowpage)>minpages &&
+ highpage>imghigh) {
+ imghigh=highpage;
+ highpage -=minpages;
+ }
+ if ((highpage-lowpage)>STACK_PAGES &&
+ highpage>stkhigh) {
+ stkhigh=highpage;
+ highpage-=STACK_PAGES;
+ }
+ }
+
+ bd->image = (void *)((imghigh-minpages)<<PAGE_SHIFT);
+ bd->stack=(void *) (stkhigh<<PAGE_SHIFT);
+
+ /* The code mover is put at the lowest possible place
+ * of free memory. If this corresponds to the loaded boot
+ * partition image it does not matter because it overrides
+ * the unused part of it (x86 code).
+ */
+ bd->mover=(void *) (lowpage<<PAGE_SHIFT);
+
+ /* Let us flush the caches in all cases. After all it should
+ * not harm even on 601 and we don't care about performance.
+ * Right now it's easy since all processors have a line size
+ * of 32 bytes. Once again residual data has proved unreliable.
+ */
+ bd->cache_lsize = 32;
+ }
+ /* For now we always assume that it's succesful, we should
+ * handle better the case of insufficient memory.
+ */
+ return 0;
+}
+
+void * valloc(u_long size) {
+ map *p, *q;
+ struct _mm_private * mm = (struct _mm_private *) bd->mm_private;
+
+ if (size==0) return NULL;
+ size=PAGE_ALIGN(size)-1;
+ for (p=mm->virtavail; p; p=p->next) {
+ if (p->base+size <= p->end) break;
+ }
+ if(!p) return NULL;
+ q=alloc_map();
+ q->base=p->base;
+ q->end=q->base+size;
+ q->firstpte=MAP_USED_VIRT;
+ insert_map(&mm->virtused, q);
+ if (q->end==p->end) free_map(remove_map(&mm->virtavail, p));
+ else p->base += size+1;
+ return (void *)q->base;
+}
+
+static
+void vflush(map *virtmap) {
+ struct _mm_private * mm = (struct _mm_private *) bd->mm_private;
+ u_long i, limit=(mm->hashmask>>3)+8;
+ hash_entry volatile *p=(hash_entry *) mm->sdr1;
+
+ /* PTE handling is simple since the processor never update
+ * the entries. Writable pages always have the C bit set and
+ * all valid entries have the R bit set. From the processor
+ * point of view the hash table is read only.
+ */
+ for (i=0; i<limit; i++) {
+ if (p[i].key<0) {
+ u_long va;
+ va = ((i<<9)^((p[i].key)<<5)) &0x3ff000;
+ if (p[i].key&0x40) va^=0x3ff000;
+ va |= ((p[i].key<<21)&0xf0000000)
+ | ((p[i].key<<22)&0x0fc00000);
+ if (va>=virtmap->base && va<=virtmap->end) {
+ p[i].key=0;
+ asm volatile("sync; tlbie %0; sync" : :
+ "r" (va));
+ }
+ }
+ }
+}
+
+void vfree(void *vaddr) {
+ map *physmap, *virtmap; /* Actual mappings pertaining to this vm */
+ struct _mm_private * mm = (struct _mm_private *) bd->mm_private;
+
+ /* Flush memory queues */
+ asm volatile("sync": : : "memory");
+
+ virtmap = remove_map_at(&mm->virtused, vaddr);
+ if (!virtmap) return;
+
+ /* Remove mappings corresponding to virtmap */
+ for (physmap=mm->mappings; physmap; ) {
+ map *nextmap=physmap->next;
+ if (physmap->base>=virtmap->base
+ && physmap->base<virtmap->end) {
+ free_map(remove_map(&mm->mappings, physmap));
+ }
+ physmap=nextmap;
+ }
+
+ vflush(virtmap);
+
+ virtmap->firstpte= MAP_FREE_VIRT;
+ insert_map(&mm->virtavail, virtmap);
+ coalesce_maps(mm->virtavail);
+}
+
+void vunmap(void *vaddr) {
+ map *physmap, *virtmap; /* Actual mappings pertaining to this vm */
+ struct _mm_private *mm = (struct _mm_private *) bd->mm_private;
+
+ /* Flush memory queues */
+ asm volatile("sync": : : "memory");
+
+ /* vaddr must be within one of the vm areas in use and
+ * then must correspond to one of the physical areas
+ */
+ for (virtmap=mm->virtused; virtmap; virtmap=virtmap->next) {
+ if (virtmap->base<=(u_long)vaddr &&
+ virtmap->end>=(u_long)vaddr) break;
+ }
+ if (!virtmap) return;
+
+ physmap = remove_map_at(&mm->mappings, vaddr);
+ if(!physmap) return;
+ vflush(physmap);
+ free_map(physmap);
+}
+
+int vmap(void *vaddr, u_long p, u_long size) {
+ map *q;
+ struct _mm_private *mm = (struct _mm_private *) bd->mm_private;
+
+ size=PAGE_ALIGN(size);
+ if(!size) return 1;
+ /* Check that the requested area fits in one vm image */
+ for (q=mm->virtused; q; q=q->next) {
+ if ((q->base <= (u_long)vaddr) &&
+ (q->end>=(u_long)vaddr+size -1)) break;
+ }
+ if (!q) return 1;
+ q= alloc_map();
+ if (!q) return 1;
+ q->base = (u_long)vaddr;
+ q->end = (u_long)vaddr+size-1;
+ q->firstpte = p;
+ return insert_map(&mm->mappings, q);
+}
+
+static
+void create_identity_mappings(int type, int attr) {
+ u_long lowpage=ULONG_MAX, highpage;
+ struct _mm_private *mm = (struct _mm_private *) bd->mm_private;
+ RESIDUAL * res=bd->residual;
+
+ while((highpage = find_next_zone(res, lowpage, type))) {
+ map *p;
+ lowpage=find_zone_start(res, highpage, type);
+ p=alloc_map();
+ /* Do not map page 0 to catch null pointers */
+ lowpage = lowpage ? lowpage : 1;
+ p->base=lowpage<<PAGE_SHIFT;
+ p->end=(highpage<<PAGE_SHIFT)-1;
+ p->firstpte = (lowpage<<PAGE_SHIFT)|attr;
+ insert_map(&mm->mappings, p);
+ }
+}
+
+static inline
+void add_free_map(u_long base, u_long end) {
+ map *q=NULL;
+ struct _mm_private *mm = (struct _mm_private *) bd->mm_private;
+
+ if (base<end) q=alloc_map();
+ if (!q) return;
+ q->base=base;
+ q->end=end-1;
+ q->firstpte=MAP_FREE_VIRT;
+ insert_map(&mm->virtavail, q);
+}
+
+static inline
+void create_free_vm(void) {
+ map *p;
+ struct _mm_private *mm = (struct _mm_private *) bd->mm_private;
+
+ u_long vaddr=PAGE_SIZE; /* Never map vaddr 0 */
+ for(p=mm->mappings; p; p=p->next) {
+ add_free_map(vaddr, p->base);
+ vaddr=p->end+1;
+ }
+ /* Special end of memory case */
+ if (vaddr) add_free_map(vaddr,0);
+}
+
+/* Memory management initialization.
+ * Set up the mapping lists.
+ */
+
+static inline
+void add_perm_map(u_long start, u_long size) {
+ struct _mm_private *mm = (struct _mm_private *) bd->mm_private;
+ map *p=alloc_map();
+ p->base = start;
+ p->end = start + size - 1;
+ p->firstpte = MAP_PERM_PHYS;
+ insert_map(& mm->physperm , p);
+}
+
+void mm_init(u_long image_size)
+{
+ u_long lowpage=ULONG_MAX, highpage;
+ struct _mm_private *mm = (struct _mm_private *) bd->mm_private;
+ RESIDUAL * res=bd->residual;
+ extern void (tlb_handlers)(void);
+ extern void (_handler_glue)(void);
+ int i;
+ map *p;
+
+ /* The checks are simplified by the fact that the image
+ * and stack area are always allocated at the upper end
+ * of a free block.
+ */
+ while((highpage = find_next_zone(res, lowpage, BootImage|Free))) {
+ lowpage=find_zone_start(res, highpage, BootImage|Free);
+ if ( ( ((u_long)bd->image+PAGE_ALIGN(image_size))>>PAGE_SHIFT)
+ == highpage) {
+ highpage=(u_long)(bd->image)>>PAGE_SHIFT;
+ add_perm_map((u_long)bd->image, image_size);
+ }
+ if ( (( u_long)bd->stack>>PAGE_SHIFT) == highpage) {
+ highpage -= STACK_PAGES;
+ add_perm_map(highpage<<PAGE_SHIFT,
+ STACK_PAGES*PAGE_SIZE);
+ }
+ /* Protect the interrupt handlers that we need ! */
+ if (lowpage<2) lowpage=2;
+ /* Check for the special case of full area! */
+ if (highpage>lowpage) {
+ p = alloc_map();
+ p->base = lowpage<<PAGE_SHIFT;
+ p->end = (highpage<<PAGE_SHIFT)-1;
+ p->firstpte=MAP_FREE_PHYS;
+ insert_map(&mm->physavail, p);
+ }
+ }
+
+ /* Allocate the hash table */
+ mm->sdr1=__palloc(0x10000, PA_PERM|16);
+ _write_SDR1((u_long)mm->sdr1);
+ memset(mm->sdr1, 0, 0x10000);
+ mm->hashmask = 0xffc0;
+
+ /* Setup the segment registers as we want them */
+ for (i=0; i<16; i++) _write_SR(i, (void *)(i<<28));
+ /* Create the maps for the physical memory, firwmarecode does not
+ * seem to be necessary. ROM is mapped read-only to reduce the risk
+ * of reprogramming it because it's often Flash and some are
+ * amazingly easy to overwrite.
+ */
+ create_identity_mappings(BootImage|Free|FirmwareCode|FirmwareHeap|
+ FirmwareStack, PTE_RAM);
+ create_identity_mappings(SystemROM, PTE_ROM);
+ create_identity_mappings(IOMemory|SystemIO|SystemRegs|
+ PCIAddr|PCIConfig|ISAAddr, PTE_IO);
+
+ create_free_vm();
+
+ /* Install our own MMU and trap handlers. */
+ codemove((void *) 0x300, _handler_glue, 0x100, bd->cache_lsize);
+ codemove((void *) 0x400, _handler_glue, 0x100, bd->cache_lsize);
+ codemove((void *) 0x600, _handler_glue, 0x100, bd->cache_lsize);
+ codemove((void *) 0x700, _handler_glue, 0x100, bd->cache_lsize);
+}
+
+void * salloc(u_long size) {
+ map *p, *q;
+ struct _mm_private *mm = (struct _mm_private *) bd->mm_private;
+
+ if (size==0) return NULL;
+
+ size = (size+7)&~7;
+
+ for (p=mm->sallocfree; p; p=p->next) {
+ if (p->base+size <= p->end) break;
+ }
+ if(!p) {
+ void *m;
+ m = __palloc(size, PA_SUBALLOC);
+ p = alloc_map();
+ if (!m && !p) return NULL;
+ p->base = (u_long) m;
+ p->firstpte = MAP_FREE_SUBS;
+ p->end = (u_long)m+PAGE_ALIGN(size)-1;
+ insert_map(&mm->sallocfree, p);
+ coalesce_maps(mm->sallocfree);
+ coalesce_maps(mm->sallocphys);
+ };
+ q=alloc_map();
+ q->base=p->base;
+ q->end=q->base+size-1;
+ q->firstpte=MAP_USED_SUBS;
+ insert_map(&mm->sallocused, q);
+ if (q->end==p->end) free_map(remove_map(&mm->sallocfree, p));
+ else p->base += size;
+ memset((void *)q->base, 0, size);
+ return (void *)q->base;
+}
+
+void sfree(void *p) {
+ map *q;
+ struct _mm_private *mm = (struct _mm_private *) bd->mm_private;
+
+ q=remove_map_at(&mm->sallocused, p);
+ if (!q) return;
+ q->firstpte=MAP_FREE_SUBS;
+ insert_map(&mm->sallocfree, q);
+ coalesce_maps(mm->sallocfree);
+}
+
+/* first/last area fit, flags is a power of 2 indicating the required
+ * alignment. The algorithms are stupid because we expect very little
+ * fragmentation of the areas, if any. The unit of allocation is the page.
+ * The allocation is by default performed from higher addresses down,
+ * unless flags&PA_LOW is true.
+ */
+
+void * __palloc(u_long size, int flags)
+{
+ u_long mask = ((1<<(flags&PA_ALIGN_MASK))-1);
+ map *newmap, *frommap, *p, *splitmap=0;
+ map **queue;
+ u_long qflags;
+ struct _mm_private *mm = (struct _mm_private *) bd->mm_private;
+
+ /* Asking for a size which is not a multiple of the alignment
+ is likely to be an error. */
+
+ if (size & mask) return NULL;
+ size = PAGE_ALIGN(size);
+ if(!size) return NULL;
+
+ if (flags&PA_SUBALLOC) {
+ queue = &mm->sallocphys;
+ qflags = MAP_SUBS_PHYS;
+ } else if (flags&PA_PERM) {
+ queue = &mm->physperm;
+ qflags = MAP_PERM_PHYS;
+ } else {
+ queue = &mm->physused;
+ qflags = MAP_USED_PHYS;
+ }
+ /* We need to allocate that one now so no two allocations may attempt
+ * to take the same memory simultaneously. Alloc_map_page does
+ * not call back here to avoid infinite recursion in alloc_map.
+ */
+
+ if (mask&PAGE_MASK) {
+ splitmap=alloc_map();
+ if (!splitmap) return NULL;
+ }
+
+ for (p=mm->physavail, frommap=NULL; p; p=p->next) {
+ u_long high = p->end;
+ u_long limit = ((p->base+mask)&~mask) + size-1;
+ if (high>=limit && ((p->base+mask)&~mask)+size>p->base) {
+ frommap = p;
+ if (flags&PA_LOW) break;
+ }
+ }
+
+ if (!frommap) {
+ if (splitmap) free_map(splitmap);
+ return NULL;
+ }
+
+ newmap=alloc_map();
+
+ if (flags&PA_LOW) {
+ newmap->base = (frommap->base+mask)&~mask;
+ } else {
+ newmap->base = (frommap->end +1 - size) & ~mask;
+ }
+
+ newmap->end = newmap->base+size-1;
+ newmap->firstpte = qflags;
+
+ /* Add a fragment if we don't allocate until the end. */
+
+ if (splitmap) {
+ splitmap->base=newmap->base+size;
+ splitmap->end=frommap->end;
+ splitmap->firstpte= MAP_FREE_PHYS;
+ frommap->end=newmap->base-1;
+ } else if (flags & PA_LOW) {
+ frommap->base=newmap->base+size;
+ } else {
+ frommap->end=newmap->base-1;
+ }
+
+ /* Remove a fragment if it becomes empty. */
+ if (frommap->base == frommap->end+1) {
+ free_map(remove_map(&mm->physavail, frommap));
+ }
+
+ if (splitmap) {
+ if (splitmap->base == splitmap->end+1) {
+ free_map(remove_map(&mm->physavail, splitmap));
+ } else {
+ insert_map(&mm->physavail, splitmap);
+ }
+ }
+
+ insert_map(queue, newmap);
+ return (void *) newmap->base;
+
+}
+
+void pfree(void * p) {
+ map *q;
+ struct _mm_private *mm = (struct _mm_private *) bd->mm_private;
+ q=remove_map_at(&mm->physused, p);
+ if (!q) return;
+ q->firstpte=MAP_FREE_PHYS;
+ insert_map(&mm->physavail, q);
+ coalesce_maps(mm->physavail);
+}
+
+#ifdef DEBUG
+/* Debugging functions */
+void print_maps(map *chain, const char *s) {
+ map *p;
+ printk("%s",s);
+ for(p=chain; p; p=p->next) {
+ printk(" %08lx-%08lx: %08lx\n",
+ p->base, p->end, p->firstpte);
+ }
+}
+
+void print_all_maps(const char * s) {
+ u_long freemaps;
+ struct _mm_private *mm = (struct _mm_private *) bd->mm_private;
+ map *free;
+ printk("%s",s);
+ print_maps(mm->mappings, " Currently defined mappings:\n");
+ print_maps(mm->physavail, " Currently available physical areas:\n");
+ print_maps(mm->physused, " Currently used physical areas:\n");
+ print_maps(mm->virtavail, " Currently available virtual areas:\n");
+ print_maps(mm->virtused, " Currently used virtual areas:\n");
+ print_maps(mm->physperm, " Permanently used physical areas:\n");
+ print_maps(mm->sallocphys, " Physical memory used for salloc:\n");
+ print_maps(mm->sallocfree, " Memory available for salloc:\n");
+ print_maps(mm->sallocused, " Memory allocated through salloc:\n");
+ for (freemaps=0, free=mm->freemaps; free; freemaps++, free=free->next);
+ printk(" %ld free maps.\n", freemaps);
+}
+
+void print_hash_table(void) {
+ struct _mm_private *mm = (struct _mm_private *) bd->mm_private;
+ hash_entry *p=(hash_entry *) mm->sdr1;
+ u_int i, valid=0;
+ for (i=0; i<((mm->hashmask)>>3)+8; i++) {
+ if (p[i].key<0) valid++;
+ }
+ printk("%u valid hash entries on pass 1.\n", valid);
+ valid = 0;
+ for (i=0; i<((mm->hashmask)>>3)+8; i++) {
+ if (p[i].key<0) valid++;
+ }
+ printk("%u valid hash entries on pass 2.\n"
+ " vpn:rpn_attr, p/s, pteg.i\n", valid);
+ for (i=0; i<((mm->hashmask)>>3)+8; i++) {
+ if (p[i].key<0) {
+ u_int pteg=(i>>3);
+ u_long vpn;
+ vpn = (pteg^((p[i].key)>>7)) &0x3ff;
+ if (p[i].key&0x40) vpn^=0x3ff;
+ vpn |= ((p[i].key<<9)&0xffff0000)
+ | ((p[i].key<<10)&0xfc00);
+ printk("%08lx:%08lx, %s, %5d.%d\n",
+ vpn, p[i].rpn, p[i].key&0x40 ? "sec" : "pri",
+ pteg, i%8);
+ }
+ }
+}
+
+#endif