summaryrefslogtreecommitdiffstats
path: root/c/src/exec/score
diff options
context:
space:
mode:
Diffstat (limited to 'c/src/exec/score')
-rw-r--r--c/src/exec/score/cpu/h8300/.cvsignore13
-rw-r--r--c/src/exec/score/cpu/h8300/Makefile.am49
-rw-r--r--c/src/exec/score/cpu/h8300/README31
-rw-r--r--c/src/exec/score/cpu/h8300/asm.h123
-rw-r--r--c/src/exec/score/cpu/h8300/configure.in34
-rw-r--r--c/src/exec/score/cpu/h8300/cpu.c174
-rw-r--r--c/src/exec/score/cpu/h8300/cpu_asm.S226
-rw-r--r--c/src/exec/score/cpu/h8300/rtems.c44
-rw-r--r--c/src/exec/score/cpu/h8300/rtems/.cvsignore2
-rw-r--r--c/src/exec/score/cpu/h8300/rtems/Makefile.am10
-rw-r--r--c/src/exec/score/cpu/h8300/rtems/score/.cvsignore2
-rw-r--r--c/src/exec/score/cpu/h8300/rtems/score/Makefile.am25
-rw-r--r--c/src/exec/score/cpu/h8300/rtems/score/cpu.h1123
-rw-r--r--c/src/exec/score/cpu/h8300/rtems/score/h8300.h57
-rw-r--r--c/src/exec/score/cpu/h8300/rtems/score/h8300types.h56
-rw-r--r--c/src/exec/score/cpu/h8300/rtems/score/types.h56
16 files changed, 2025 insertions, 0 deletions
diff --git a/c/src/exec/score/cpu/h8300/.cvsignore b/c/src/exec/score/cpu/h8300/.cvsignore
new file mode 100644
index 0000000000..525275c115
--- /dev/null
+++ b/c/src/exec/score/cpu/h8300/.cvsignore
@@ -0,0 +1,13 @@
+Makefile
+Makefile.in
+aclocal.m4
+config.cache
+config.guess
+config.log
+config.status
+config.sub
+configure
+depcomp
+install-sh
+missing
+mkinstalldirs
diff --git a/c/src/exec/score/cpu/h8300/Makefile.am b/c/src/exec/score/cpu/h8300/Makefile.am
new file mode 100644
index 0000000000..06d3dd0cbf
--- /dev/null
+++ b/c/src/exec/score/cpu/h8300/Makefile.am
@@ -0,0 +1,49 @@
+##
+## $Id$
+##
+
+AUTOMAKE_OPTIONS = foreign 1.4
+ACLOCAL_AMFLAGS = -I $(RTEMS_TOPdir)/aclocal
+
+SUBDIRS = rtems
+
+C_FILES = cpu.c rtems.c
+C_O_FILES = $(C_FILES:%.c=$(ARCH)/%.o)
+
+H_FILES = asm.h
+
+S_FILES = cpu_asm.S
+S_O_FILES = $(S_FILES:%.S=$(ARCH)/%.o)
+
+REL = $(ARCH)/rtems-cpu.rel
+
+include $(RTEMS_ROOT)/make/custom/@RTEMS_BSP@.cfg
+include $(top_srcdir)/../../../../../../automake/lib.am
+
+rtems_cpu_rel_OBJECTS = $(C_O_FILES) $(S_O_FILES)
+
+$(PROJECT_INCLUDE):
+ $(mkinstalldirs) $@
+
+$(PROJECT_INCLUDE)/%.h: %.h
+ $(INSTALL_DATA) $< $@
+
+$(PROJECT_RELEASE)/lib/rtems$(LIB_VARIANT).o: $(ARCH)/rtems.o
+ $(INSTALL_DATA) $< $@
+
+$(REL): $(rtems_cpu_rel_OBJECTS)
+ $(make-rel)
+
+PREINSTALL_FILES += $(PROJECT_INCLUDE) $(H_FILES:%=$(PROJECT_INCLUDE)/%)
+
+TMPINSTALL_FILES += $(PROJECT_RELEASE)/lib/rtems$(LIB_VARIANT).o
+
+all-local: $(ARCH) $(PREINSTALL_FILES) $(rtems_cpu_rel_OBJECTS) $(REL) \
+ $(TMPINSTALL_FILES)
+
+.PRECIOUS: $(REL)
+
+EXTRA_DIST = asm.h cpu.c cpu_asm.S rtems.c
+
+include $(top_srcdir)/../../../../../../automake/subdirs.am
+include $(top_srcdir)/../../../../../../automake/local.am
diff --git a/c/src/exec/score/cpu/h8300/README b/c/src/exec/score/cpu/h8300/README
new file mode 100644
index 0000000000..a55c61c662
--- /dev/null
+++ b/c/src/exec/score/cpu/h8300/README
@@ -0,0 +1,31 @@
+#
+# $Id$
+#
+
+
+This port was done by Philip Quaife <philip@qs.co.nz> of Q Solutions
+using RTEMS 3.5.1 under DOS and Hiview. Philip used an H8300H
+to develop and test this port.
+
+It was updated to 4.5 and merged into the main development trunk
+by Joel Sherrill <joel@OARcorp.com>. As part of the merger, the
+port was made to conditionally compile for the H8, H8300H, and H8300S
+series.
+
+The status of each CPU subfamily is as follows.
+
+H8 - Although RTEMS compiles with for these CPUs, it does not
+ truly support them. All code that will not work on these
+ CPUs is conditionally disabled. These CPUs have a 16-bit
+ address space. Thus although a port is technically
+ feasible, some work will to be performed on RTEMS to
+ further minimize its footprint and address pointer
+ manipulation issues.
+
+H8H - Port was developed on this class of H8 so there should be
+ no problems.
+
+H8S - Port should work on this class of H8 but it is untested.
+
+--joel
+28 June 2000
diff --git a/c/src/exec/score/cpu/h8300/asm.h b/c/src/exec/score/cpu/h8300/asm.h
new file mode 100644
index 0000000000..ecd858f968
--- /dev/null
+++ b/c/src/exec/score/cpu/h8300/asm.h
@@ -0,0 +1,123 @@
+/* asm.h
+ *
+ * This include file attempts to address the problems
+ * caused by incompatible flavors of assemblers and
+ * toolsets. It primarily addresses variations in the
+ * use of leading underscores on symbols and the requirement
+ * that register names be preceded by a %.
+ *
+ *
+ * NOTE: The spacing in the use of these macros
+ * is critical to them working as advertised.
+ *
+ * COPYRIGHT:
+ *
+ * This file is based on similar code found in newlib available
+ * from ftp.cygnus.com. The file which was used had no copyright
+ * notice. This file is freely distributable as long as the source
+ * of the file is noted. This file is:
+ *
+ *
+ * COPYRIGHT (c) 1989-1999.
+ * On-Line Applications Research Corporation (OAR).
+ *
+ * The license and distribution terms for this file may be
+ * found in the file LICENSE in this distribution or at
+ * http://www.OARcorp.com/rtems/license.html.
+ *
+ * $Id$
+ */
+
+#ifndef __H8300_CPU_ASM_h
+#define __H8300_CPU_ASM_h
+
+/*
+ * Indicate we are in an assembly file and get the basic CPU definitions.
+ */
+
+#define ASM
+#include <rtems/score/h8300.h>
+
+/*
+ * Recent versions of GNU cpp define variables which indicate the
+ * need for underscores and percents. If not using GNU cpp or
+ * the version does not support this, then you will obviously
+ * have to define these as appropriate.
+ */
+
+#ifndef __USER_LABEL_PREFIX__
+#define __USER_LABEL_PREFIX__ _
+#endif
+
+#ifndef __REGISTER_PREFIX__
+#define __REGISTER_PREFIX__
+#endif
+
+/* ANSI concatenation macros. */
+
+#define CONCAT1(a, b) CONCAT2(a, b)
+#define CONCAT2(a, b) a ## b
+
+/* Use the right prefix for global labels. */
+
+#define SYM(x) CONCAT1 (__USER_LABEL_PREFIX__, x)
+
+/* Use the right prefix for registers. */
+
+#define REG(x) CONCAT1 (__REGISTER_PREFIX__, x)
+
+/*
+ * define macros for all of the registers on this CPU
+ *
+ * EXAMPLE: #define d0 REG (d0)
+ */
+#define r0 REG(r0)
+#define r1 REG(r1)
+#define r2 REG(r2)
+#define r3 REG(r3)
+#define r4 REG(r4)
+#define r5 REG(r5)
+#define r6 REG(r6)
+#define r7 REG(r7)
+
+#define er0 REG(er0)
+#define er1 REG(er1)
+#define er2 REG(er2)
+#define er3 REG(er3)
+#define er4 REG(er4)
+#define er5 REG(er5)
+#define er6 REG(er6)
+#define er7 REG(er7)
+
+#define sp REG(sp)
+
+/*
+ * Define macros to handle section beginning and ends.
+ */
+
+
+#define BEGIN_CODE_DCL .text
+#define END_CODE_DCL
+#define BEGIN_DATA_DCL .data
+#define END_DATA_DCL
+#define BEGIN_CODE asm ( ".text
+#define END_CODE ");
+#define BEGIN_DATA
+#define END_DATA
+#define BEGIN_BSS
+#define END_BSS
+#define END
+
+/*
+ * Following must be tailor for a particular flavor of the C compiler.
+ * They may need to put underscores in front of the symbols.
+ */
+
+#define PUBLIC(sym) .globl SYM (sym)
+#define EXTERN(sym) .globl SYM (sym)
+
+#endif
+/* end of include file */
+
+ asm( \".h8300h\" );
+
diff --git a/c/src/exec/score/cpu/h8300/configure.in b/c/src/exec/score/cpu/h8300/configure.in
new file mode 100644
index 0000000000..1d9b92d6ef
--- /dev/null
+++ b/c/src/exec/score/cpu/h8300/configure.in
@@ -0,0 +1,34 @@
+dnl Process this file with autoconf to produce a configure script.
+dnl
+dnl $Id$
+
+AC_PREREQ(2.13)
+AC_INIT(cpu_asm.S)
+RTEMS_TOP(../../../../../..)
+AC_CONFIG_AUX_DIR(../../../../../..)
+
+RTEMS_CANONICAL_TARGET_CPU
+
+AM_INIT_AUTOMAKE(rtems-c-src-exec-score-cpu-h8300,$RTEMS_VERSION,no)
+AM_MAINTAINER_MODE
+
+RTEMS_ENV_RTEMSBSP
+
+RTEMS_CHECK_CPU
+RTEMS_CANONICAL_HOST
+
+RTEMS_PROJECT_ROOT
+
+RTEMS_PROG_CC_FOR_TARGET
+RTEMS_CANONICALIZE_TOOLS
+
+RTEMS_CHECK_NEWLIB
+
+# Check if there is custom/*.cfg for this BSP
+RTEMS_CHECK_CUSTOM_BSP(RTEMS_BSP)
+
+# Explicitly list all Makefiles here
+AC_OUTPUT(
+Makefile
+rtems/Makefile
+rtems/score/Makefile)
diff --git a/c/src/exec/score/cpu/h8300/cpu.c b/c/src/exec/score/cpu/h8300/cpu.c
new file mode 100644
index 0000000000..f01c39d969
--- /dev/null
+++ b/c/src/exec/score/cpu/h8300/cpu.c
@@ -0,0 +1,174 @@
+/*
+ * Hitachi H8300 CPU Dependent Source
+ *
+ * COPYRIGHT (c) 1989-1999.
+ * On-Line Applications Research Corporation (OAR).
+ *
+ * The license and distribution terms for this file may be
+ * found in the file LICENSE in this distribution or at
+ * http://www.OARcorp.com/rtems/license.html.
+ *
+ * $Id$
+ */
+
+#include <rtems/system.h>
+#include <rtems/score/isr.h>
+#include <rtems/score/wkspace.h>
+
+/* _CPU_Initialize
+ *
+ * This routine performs processor dependent initialization.
+ *
+ * INPUT PARAMETERS:
+ * cpu_table - CPU table to initialize
+ * thread_dispatch - address of disptaching routine
+ */
+
+
+void _CPU_Initialize(
+ rtems_cpu_table *cpu_table,
+ void (*thread_dispatch) /* ignored on this CPU */
+)
+{
+ /*
+ * The thread_dispatch argument is the address of the entry point
+ * for the routine called at the end of an ISR once it has been
+ * decided a context switch is necessary. On some compilation
+ * systems it is difficult to call a high-level language routine
+ * from assembly. This allows us to trick these systems.
+ *
+ * If you encounter this problem save the entry point in a CPU
+ * dependent variable.
+ */
+
+ _CPU_Thread_dispatch_pointer = thread_dispatch;
+
+ /*
+ * If there is not an easy way to initialize the FP context
+ * during Context_Initialize, then it is usually easier to
+ * save an "uninitialized" FP context here and copy it to
+ * the task's during Context_Initialize.
+ */
+
+ /* FP context initialization support goes here */
+
+ _CPU_Table = *cpu_table;
+}
+
+/*PAGE
+ *
+ * _CPU_ISR_Get_level
+ *
+ * This routine returns the current interrupt level.
+ */
+
+unsigned32 _CPU_ISR_Get_level( void )
+{
+ unsigned int _ccr;
+
+#if defined(__H8300__)
+#warning "How do we get ccr on base CPU models"
+#else
+ asm volatile ( "stc ccr, %0" : "=m" (_ccr) : );
+#endif
+
+ if ( _ccr & 0x80 )
+ return 1;
+ return 0;
+}
+
+/*PAGE
+ *
+ * _CPU_ISR_install_raw_handler
+ */
+
+void _CPU_ISR_install_raw_handler(
+ unsigned32 vector,
+ proc_ptr new_handler,
+ proc_ptr *old_handler
+)
+{
+ /*
+ * This is where we install the interrupt handler into the "raw" interrupt
+ * table used by the CPU to dispatch interrupt handlers.
+ * Use Debug level IRQ Handlers
+ */
+ H8BD_Install_IRQ(vector,new_handler,old_handler);
+}
+
+/*PAGE
+ *
+ * _CPU_ISR_install_vector
+ *
+ * This kernel routine installs the RTEMS handler for the
+ * specified vector.
+ *
+ * Input parameters:
+ * vector - interrupt vector number
+ * old_handler - former ISR for this vector number
+ * new_handler - replacement ISR for this vector number
+ *
+ * Output parameters: NONE
+ *
+ */
+
+void _CPU_ISR_install_vector(
+ unsigned32 vector,
+ proc_ptr new_handler,
+ proc_ptr *old_handler
+)
+{
+ *old_handler = _ISR_Vector_table[ vector ];
+
+ /*
+ * If the interrupt vector table is a table of pointer to isr entry
+ * points, then we need to install the appropriate RTEMS interrupt
+ * handler for this vector number.
+ */
+
+ _CPU_ISR_install_raw_handler( vector, new_handler, old_handler );
+
+ /*
+ * We put the actual user ISR address in '_ISR_vector_table'. This will
+ * be used by the _ISR_Handler so the user gets control.
+ */
+
+ _ISR_Vector_table[ vector ] = new_handler;
+}
+
+/*PAGE
+ *
+ * _CPU_Install_interrupt_stack
+ */
+
+void _CPU_Install_interrupt_stack( void )
+{
+}
+
+/*PAGE
+ *
+ * _CPU_Thread_Idle_body
+ *
+ * NOTES:
+ *
+ * 1. This is the same as the regular CPU independent algorithm.
+ *
+ * 2. If you implement this using a "halt", "idle", or "shutdown"
+ * instruction, then don't forget to put it in an infinite loop.
+ *
+ * 3. Be warned. Some processors with onboard DMA have been known
+ * to stop the DMA if the CPU were put in IDLE mode. This might
+ * also be a problem with other on-chip peripherals. So use this
+ * hook with caution.
+ */
+
+#if 0
+void _CPU_Thread_Idle_body( void )
+{
+
+ for( ; ; )
+ IDLE_Monitor();
+ /*asm(" sleep \n"); */
+ /* insert your "halt" instruction here */ ;
+}
+#endif
diff --git a/c/src/exec/score/cpu/h8300/cpu_asm.S b/c/src/exec/score/cpu/h8300/cpu_asm.S
new file mode 100644
index 0000000000..6022f39798
--- /dev/null
+++ b/c/src/exec/score/cpu/h8300/cpu_asm.S
@@ -0,0 +1,226 @@
+/*
+ * Hitachi H8 Score CPU functions
+ * Copyright Comnet Technologies Ltd 1999
+ *
+ * Based on example code and other ports with this copyright:
+ *
+ * COPYRIGHT (c) 1989-1999.
+ * On-Line Applications Research Corporation (OAR).
+ *
+ * The license and distribution terms for this file may be
+ * found in the file LICENSE in this distribution or at
+ * http://www.OARcorp.com/rtems/license.html.
+ *
+ * $Id$
+ */
+
+
+;.equ RUNCONTEXT_ARG, er0
+;.equ HEIRCONTEXT_ARG, er1
+
+
+/*
+ * Make sure we tell the assembler what type of CPU model we are
+ * being compiled for.
+ */
+
+#if defined(__H8300H__)
+ .h8300h
+#endif
+#if defined(__H8300S__)
+ .h8300s
+#endif
+ .text
+
+/*
+ GCC Compiled with optimisations and Wimplicit decs to ensure
+ that stack from doesn't change
+
+ Supposedly R2 and R3 do not need to be saved but who knows
+
+ Arg1 = er0 (not on stack)
+ Arg2 = er1 (not on stack)
+*/
+
+ .align 2
+ .global __CPU_Context_switch
+__CPU_Context_switch:
+#if defined(__H8300H__) || defined(__H8300S__)
+ /* Save Context */
+ stc ccr,@(0:16,er0)
+ mov.l er7,@(2:16,er0)
+ mov.l er6,@(6:16,er0)
+ mov.l er5,@(10:16,er0)
+ mov.l er4,@(14:16,er0)
+ mov.l er3,@(18:16,er0)
+ mov.l er2,@(22:16,er0)
+
+ /* Install New context */
+
+restore:
+ mov.l @(22:16,er1),er2
+ mov.l @(18:16,er1),er3
+ mov.l @(14:16,er1),er4
+ mov.l @(10:16,er1),er5
+ mov.l @(6:16,er1),er6
+ mov.l @(2:16,er1),er7
+ ldc @(0:16,er1),ccr
+#endif
+ rts
+
+ .align 2
+ .global __CPU_Context_restore
+__CPU_Context_restore:
+#if defined(__H8300H__) || defined(__H8300S__)
+ mov.l er0,er1
+ jmp @restore:24
+#else
+ rts
+#endif
+
+
+
+/*
+ VHandler for Vectored Interrupts
+
+ All IRQ's are vectored to routine _ISR_#vector_number
+ This routine stacks er0 and loads er0 with vector number
+ before transferring to here
+
+*/
+ .align 2
+ .global __ISR_Handler
+ .extern __ISR_Nest_level
+ .extern __Vector_table
+ .extern __Context_switch_necessary
+
+
+__ISR_Handler:
+#if defined(__H8300H__) || defined(__H8300S__)
+ mov.l er1,@-er7
+ mov.l er2,@-er7
+ mov.l er3,@-er7
+ mov.l er4,@-er7
+ mov.l er5,@-er7
+ mov.l er6,@-er7
+
+/* Set IRQ Stack */
+ orc #0x80,ccr
+ mov.l er7,er6 ; save stack pointer
+ mov.l @__ISR_Nest_level,er1
+ bne nested
+ mov.l @__CPU_Interrupt_stack_high,er7
+
+nested:
+ mov.l er6,@-er7 ; save sp so pop regardless of nest level
+
+;; Inc system counters
+ mov.l @__ISR_Nest_level,er1
+ inc.l #1,er1
+ mov.l er1,@__ISR_Nest_level
+ mov.l @__Thread_Dispatch_disable_level,er1
+ inc.l #1,er1
+ mov.l er1,@__Thread_Dispatch_disable_level
+
+/* Vector to ISR */
+
+ mov.l #__ISR_Vector_table,er1
+ mov er0,er2 ; copy vector
+ shll.l er2
+ shll.l er2 ; vector = vector * 4 (sizeof(int))
+ add.l er2,er1
+ mov.l @er1,er1
+ jsr @er1 ; er0 = arg1 =vector
+
+ orc #0x80,ccr
+ mov.l @__ISR_Nest_level,er1
+ dec.l #1,er1
+ mov.l er1,@__ISR_Nest_level
+ mov.l @__Thread_Dispatch_disable_level,er1
+ dec.l #1,er1
+ mov.l er1,@__Thread_Dispatch_disable_level
+ bne exit
+
+ mov.l @__Context_Switch_necessary,er1
+ bne bframe ; If yes then dispatch next task
+
+ mov.l @__ISR_Signals_to_thread_executing,er1
+ beq exit ; If no signals waiting
+
+ /* Context switch here through ISR_Dispatch */
+
+bframe:
+ orc #0x80,ccr
+/* Pop Stack */
+ mov @er7+,er6
+ mov er6,er7
+ mov.l #0,er2
+ mov.l er2,@__ISR_Signals_to_thread_executing
+
+ /* Set up IRQ stack frame and dispatch to _ISR_Dispatch */
+
+ stc ccr,@er2
+ and.l #0xff,er2
+ rotr.l er2
+ rotr.l er2
+ rotr.l er2
+ rotr.l er2
+ or.l #_ISR_Dispatch,er2
+ mov.l er2,@-er7
+ rte
+
+/* Inner IRQ Return, pop flags and return */
+exit:
+/* Pop Stack */
+ orc #0x80,ccr
+ mov @er7+,er6
+ mov er6,er7
+ andc #0x7f,ccr
+ mov @er7+,er6
+ mov @er7+,er5
+ mov @er7+,er4
+ mov @er7+,er3
+ mov @er7+,er2
+ mov @er7+,er1
+ mov @er7+,er0
+ andc #0x7f,ccr
+ rte
+#endif
+
+/*
+ Called from ISR_Handler as a way of ending IRQ
+ but allowing dispatch to another task.
+ Must use RTE as CCR is still on stack but IRQ has been serviced.
+ CCR and PC occupy same word so rte can be used.
+*/
+
+ .align 2
+ .global _ISR_Dispatch
+
+_ISR_Dispatch:
+#if defined(__H8300H__) || defined(__H8300S__)
+ jsr @__Thread_Dispatch
+ mov @er7+,er6
+ mov @er7+,er5
+ mov @er7+,er4
+ mov @er7+,er3
+ mov @er7+,er2
+ mov @er7+,er1
+ mov @er7+,er0
+ rte
+#endif
+
+
+ .align 2
+ .global __CPU_Context_save_fp
+
+__CPU_Context_save_fp:
+ rts
+
+
+ .align 2
+ .global __CPU_Context_restore_fp
+
+__CPU_Context_restore_fp:
+ rts
+
diff --git a/c/src/exec/score/cpu/h8300/rtems.c b/c/src/exec/score/cpu/h8300/rtems.c
new file mode 100644
index 0000000000..9e7e0b66d7
--- /dev/null
+++ b/c/src/exec/score/cpu/h8300/rtems.c
@@ -0,0 +1,44 @@
+/* rtems.c ===> rtems.S or rtems.s
+ *
+ * This file contains the single entry point code for
+ * the XXX implementation of RTEMS.
+ *
+ * NOTE: This is supposed to be a .S or .s file NOT a C file.
+ *
+ * COPYRIGHT (c) 1989-1999.
+ * On-Line Applications Research Corporation (OAR).
+ *
+ * The license and distribution terms for this file may be
+ * found in the file LICENSE in this distribution or at
+ * http://www.OARcorp.com/rtems/license.html.
+ *
+ * $Id$
+ */
+
+/*
+ * This is supposed to be an assembly file. This means that system.h
+ * and cpu.h should not be included in a "real" rtems file.
+ */
+
+#include <rtems/system.h>
+#include <rtems/score/cpu.h>
+/* #include "asm.h> */
+
+/*
+ * RTEMS
+ *
+ * This routine jumps to the directive indicated in the
+ * CPU defined register. This routine is used when RTEMS is
+ * linked by itself and placed in ROM. This routine is the
+ * first address in the ROM space for RTEMS. The user "calls"
+ * this address with the directive arguments in the normal place.
+ * This routine then jumps indirectly to the correct directive
+ * preserving the arguments. The directive should not realize
+ * it has been "wrapped" in this way. The table "_Entry_points"
+ * is used to look up the directive.
+ */
+
+void RTEMS()
+{
+}
+
diff --git a/c/src/exec/score/cpu/h8300/rtems/.cvsignore b/c/src/exec/score/cpu/h8300/rtems/.cvsignore
new file mode 100644
index 0000000000..282522db03
--- /dev/null
+++ b/c/src/exec/score/cpu/h8300/rtems/.cvsignore
@@ -0,0 +1,2 @@
+Makefile
+Makefile.in
diff --git a/c/src/exec/score/cpu/h8300/rtems/Makefile.am b/c/src/exec/score/cpu/h8300/rtems/Makefile.am
new file mode 100644
index 0000000000..ef7df82af7
--- /dev/null
+++ b/c/src/exec/score/cpu/h8300/rtems/Makefile.am
@@ -0,0 +1,10 @@
+##
+## $Id$
+##
+
+AUTOMAKE_OPTIONS = foreign 1.4
+
+SUBDIRS = score
+
+include $(top_srcdir)/../../../../../../automake/subdirs.am
+include $(top_srcdir)/../../../../../../automake/local.am
diff --git a/c/src/exec/score/cpu/h8300/rtems/score/.cvsignore b/c/src/exec/score/cpu/h8300/rtems/score/.cvsignore
new file mode 100644
index 0000000000..282522db03
--- /dev/null
+++ b/c/src/exec/score/cpu/h8300/rtems/score/.cvsignore
@@ -0,0 +1,2 @@
+Makefile
+Makefile.in
diff --git a/c/src/exec/score/cpu/h8300/rtems/score/Makefile.am b/c/src/exec/score/cpu/h8300/rtems/score/Makefile.am
new file mode 100644
index 0000000000..a21ad00f85
--- /dev/null
+++ b/c/src/exec/score/cpu/h8300/rtems/score/Makefile.am
@@ -0,0 +1,25 @@
+##
+## $Id$
+##
+
+AUTOMAKE_OPTIONS = foreign 1.4
+
+H_FILES = cpu.h h8300.h h8300types.h
+noinst_HEADERS = $(H_FILES)
+
+#
+# (OPTIONAL) Add local stuff here using +=
+#
+
+PREINSTALL_FILES += $(PROJECT_INCLUDE)/rtems/score \
+ $(H_FILES:%.h=$(PROJECT_INCLUDE)/rtems/score/%.h)
+
+$(PROJECT_INCLUDE)/rtems/score:
+ $(mkinstalldirs) $@
+
+$(PROJECT_INCLUDE)/rtems/score/%.h: %.h
+ $(INSTALL_DATA) $< $@
+
+all-local: $(PREINSTALL_FILES)
+
+include $(top_srcdir)/../../../../../../automake/local.am
diff --git a/c/src/exec/score/cpu/h8300/rtems/score/cpu.h b/c/src/exec/score/cpu/h8300/rtems/score/cpu.h
new file mode 100644
index 0000000000..43bdece6a6
--- /dev/null
+++ b/c/src/exec/score/cpu/h8300/rtems/score/cpu.h
@@ -0,0 +1,1123 @@
+/* cpu.h
+ *
+ * This include file contains information pertaining to the XXX
+ * processor.
+ *
+ * COPYRIGHT (c) 1989-1999.
+ * On-Line Applications Research Corporation (OAR).
+ *
+ * The license and distribution terms for this file may be
+ * found in the file LICENSE in this distribution or at
+ * http://www.OARcorp.com/rtems/license.html.
+ *
+ * $Id$
+ */
+
+#ifndef __CPU_h
+#define __CPU_h
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+#include <rtems/score/h8300.h> /* pick up machine definitions */
+#ifndef ASM
+#include <rtems/score/h8300types.h>
+#endif
+
+/* conditional compilation parameters */
+
+/*
+ * Should the calls to _Thread_Enable_dispatch be inlined?
+ *
+ * If TRUE, then they are inlined.
+ * If FALSE, then a subroutine call is made.
+ *
+ * Basically this is an example of the classic trade-off of size
+ * versus speed. Inlining the call (TRUE) typically increases the
+ * size of RTEMS while speeding up the enabling of dispatching.
+ * [NOTE: In general, the _Thread_Dispatch_disable_level will
+ * only be 0 or 1 unless you are in an interrupt handler and that
+ * interrupt handler invokes the executive.] When not inlined
+ * something calls _Thread_Enable_dispatch which in turns calls
+ * _Thread_Dispatch. If the enable dispatch is inlined, then
+ * one subroutine call is avoided entirely.]
+ *
+ * H8300 Specific Information:
+ *
+ * XXX
+ */
+
+#define CPU_INLINE_ENABLE_DISPATCH FALSE
+
+/*
+ * Should the body of the search loops in _Thread_queue_Enqueue_priority
+ * be unrolled one time? In unrolled each iteration of the loop examines
+ * two "nodes" on the chain being searched. Otherwise, only one node
+ * is examined per iteration.
+ *
+ * If TRUE, then the loops are unrolled.
+ * If FALSE, then the loops are not unrolled.
+ *
+ * The primary factor in making this decision is the cost of disabling
+ * and enabling interrupts (_ISR_Flash) versus the cost of rest of the
+ * body of the loop. On some CPUs, the flash is more expensive than
+ * one iteration of the loop body. In this case, it might be desirable
+ * to unroll the loop. It is important to note that on some CPUs, this
+ * code is the longest interrupt disable period in RTEMS. So it is
+ * necessary to strike a balance when setting this parameter.
+ *
+ * H8300 Specific Information:
+ *
+ * XXX
+ */
+
+#define CPU_UNROLL_ENQUEUE_PRIORITY TRUE
+
+/*
+ * Does RTEMS manage a dedicated interrupt stack in software?
+ *
+ * If TRUE, then a stack is allocated in _Interrupt_Manager_initialization.
+ * If FALSE, nothing is done.
+ *
+ * If the CPU supports a dedicated interrupt stack in hardware,
+ * then it is generally the responsibility of the BSP to allocate it
+ * and set it up.
+ *
+ * If the CPU does not support a dedicated interrupt stack, then
+ * the porter has two options: (1) execute interrupts on the
+ * stack of the interrupted task, and (2) have RTEMS manage a dedicated
+ * interrupt stack.
+ *
+ * If this is TRUE, CPU_ALLOCATE_INTERRUPT_STACK should also be TRUE.
+ *
+ * Only one of CPU_HAS_SOFTWARE_INTERRUPT_STACK and
+ * CPU_HAS_HARDWARE_INTERRUPT_STACK should be set to TRUE. It is
+ * possible that both are FALSE for a particular CPU. Although it
+ * is unclear what that would imply about the interrupt processing
+ * procedure on that CPU.
+ *
+ * H8300 Specific Information:
+ *
+ * XXX
+ */
+
+#define CPU_HAS_SOFTWARE_INTERRUPT_STACK TRUE
+
+/*
+ * Does this CPU have hardware support for a dedicated interrupt stack?
+ *
+ * If TRUE, then it must be installed during initialization.
+ * If FALSE, then no installation is performed.
+ *
+ * If this is TRUE, CPU_ALLOCATE_INTERRUPT_STACK should also be TRUE.
+ *
+ * Only one of CPU_HAS_SOFTWARE_INTERRUPT_STACK and
+ * CPU_HAS_HARDWARE_INTERRUPT_STACK should be set to TRUE. It is
+ * possible that both are FALSE for a particular CPU. Although it
+ * is unclear what that would imply about the interrupt processing
+ * procedure on that CPU.
+ *
+ * H8300 Specific Information:
+ *
+ * XXX
+ */
+
+#define CPU_HAS_HARDWARE_INTERRUPT_STACK FALSE
+
+/*
+ * Does RTEMS allocate a dedicated interrupt stack in the Interrupt Manager?
+ *
+ * If TRUE, then the memory is allocated during initialization.
+ * If FALSE, then the memory is allocated during initialization.
+ *
+ * This should be TRUE is CPU_HAS_SOFTWARE_INTERRUPT_STACK is TRUE
+ * or CPU_INSTALL_HARDWARE_INTERRUPT_STACK is TRUE.
+ *
+ * H8300 Specific Information:
+ *
+ * XXX
+ */
+
+#define CPU_ALLOCATE_INTERRUPT_STACK TRUE
+
+/*
+ * Does the CPU have hardware floating point?
+ *
+ * If TRUE, then the RTEMS_FLOATING_POINT task attribute is supported.
+ * If FALSE, then the RTEMS_FLOATING_POINT task attribute is ignored.
+ *
+ * If there is a FP coprocessor such as the i387 or mc68881, then
+ * the answer is TRUE.
+ *
+ * The macro name "NO_CPU_HAS_FPU" should be made CPU specific.
+ * It indicates whether or not this CPU model has FP support. For
+ * example, it would be possible to have an i386_nofp CPU model
+ * which set this to false to indicate that you have an i386 without
+ * an i387 and wish to leave floating point support out of RTEMS.
+ *
+ * H8300 Specific Information:
+ *
+ * XXX
+ */
+
+#define CPU_HARDWARE_FP FALSE
+
+/*
+ * Are all tasks RTEMS_FLOATING_POINT tasks implicitly?
+ *
+ * If TRUE, then the RTEMS_FLOATING_POINT task attribute is assumed.
+ * If FALSE, then the RTEMS_FLOATING_POINT task attribute is followed.
+ *
+ * So far, the only CPU in which this option has been used is the
+ * HP PA-RISC. The HP C compiler and gcc both implicitly use the
+ * floating point registers to perform integer multiplies. If
+ * a function which you would not think utilize the FP unit DOES,
+ * then one can not easily predict which tasks will use the FP hardware.
+ * In this case, this option should be TRUE.
+ *
+ * If CPU_HARDWARE_FP is FALSE, then this should be FALSE as well.
+ *
+ * H8300 Specific Information:
+ *
+ * XXX
+ */
+
+#define CPU_ALL_TASKS_ARE_FP FALSE
+
+/*
+ * Should the IDLE task have a floating point context?
+ *
+ * If TRUE, then the IDLE task is created as a RTEMS_FLOATING_POINT task
+ * and it has a floating point context which is switched in and out.
+ * If FALSE, then the IDLE task does not have a floating point context.
+ *
+ * Setting this to TRUE negatively impacts the time required to preempt
+ * the IDLE task from an interrupt because the floating point context
+ * must be saved as part of the preemption.
+ *
+ * H8300 Specific Information:
+ *
+ * XXX
+ */
+
+#define CPU_IDLE_TASK_IS_FP FALSE
+
+/*
+ * Should the saving of the floating point registers be deferred
+ * until a context switch is made to another different floating point
+ * task?
+ *
+ * If TRUE, then the floating point context will not be stored until
+ * necessary. It will remain in the floating point registers and not
+ * disturned until another floating point task is switched to.
+ *
+ * If FALSE, then the floating point context is saved when a floating
+ * point task is switched out and restored when the next floating point
+ * task is restored. The state of the floating point registers between
+ * those two operations is not specified.
+ *
+ * If the floating point context does NOT have to be saved as part of
+ * interrupt dispatching, then it should be safe to set this to TRUE.
+ *
+ * Setting this flag to TRUE results in using a different algorithm
+ * for deciding when to save and restore the floating point context.
+ * The deferred FP switch algorithm minimizes the number of times
+ * the FP context is saved and restored. The FP context is not saved
+ * until a context switch is made to another, different FP task.
+ * Thus in a system with only one FP task, the FP context will never
+ * be saved or restored.
+ *
+ * H8300 Specific Information:
+ *
+ * XXX
+ */
+
+#define CPU_USE_DEFERRED_FP_SWITCH TRUE
+
+/*
+ * Does this port provide a CPU dependent IDLE task implementation?
+ *
+ * If TRUE, then the routine _CPU_Internal_threads_Idle_thread_body
+ * must be provided and is the default IDLE thread body instead of
+ * _Internal_threads_Idle_thread_body.
+ *
+ * If FALSE, then use the generic IDLE thread body if the BSP does
+ * not provide one.
+ *
+ * This is intended to allow for supporting processors which have
+ * a low power or idle mode. When the IDLE thread is executed, then
+ * the CPU can be powered down.
+ *
+ * The order of precedence for selecting the IDLE thread body is:
+ *
+ * 1. BSP provided
+ * 2. CPU dependent (if provided)
+ * 3. generic (if no BSP and no CPU dependent)
+ *
+ * H8300 Specific Information:
+ *
+ * XXX
+ * The port initially called a BSP dependent routine called
+ * IDLE_Monitor. The idle task body can be overridden by
+ * the BSP in newer versions of RTEMS.
+ */
+
+#define CPU_PROVIDES_IDLE_THREAD_BODY FALSE
+
+/*
+ * Does the stack grow up (toward higher addresses) or down
+ * (toward lower addresses)?
+ *
+ * If TRUE, then the grows upward.
+ * If FALSE, then the grows toward smaller addresses.
+ *
+ * H8300 Specific Information:
+ *
+ * XXX
+ */
+
+#define CPU_STACK_GROWS_UP FALSE
+
+/*
+ * The following is the variable attribute used to force alignment
+ * of critical RTEMS structures. On some processors it may make
+ * sense to have these aligned on tighter boundaries than
+ * the minimum requirements of the compiler in order to have as
+ * much of the critical data area as possible in a cache line.
+ *
+ * The placement of this macro in the declaration of the variables
+ * is based on the syntactically requirements of the GNU C
+ * "__attribute__" extension. For example with GNU C, use
+ * the following to force a structures to a 32 byte boundary.
+ *
+ * __attribute__ ((aligned (32)))
+ *
+ * NOTE: Currently only the Priority Bit Map table uses this feature.
+ * To benefit from using this, the data must be heavily
+ * used so it will stay in the cache and used frequently enough
+ * in the executive to justify turning this on.
+ *
+ * H8300 Specific Information:
+ *
+ * XXX
+ */
+
+#define CPU_STRUCTURE_ALIGNMENT
+
+/*
+ * Define what is required to specify how the network to host conversion
+ * routines are handled.
+ */
+
+#define CPU_HAS_OWN_HOST_TO_NETWORK_ROUTINES FALSE
+#define CPU_BIG_ENDIAN TRUE
+#define CPU_LITTLE_ENDIAN FALSE
+
+/*
+ * The following defines the number of bits actually used in the
+ * interrupt field of the task mode. How those bits map to the
+ * CPU interrupt levels is defined by the routine _CPU_ISR_Set_level().
+ *
+ * H8300 Specific Information:
+ *
+ * XXX
+ */
+
+#define CPU_MODES_INTERRUPT_MASK 0x00000001
+
+/*
+ * Processor defined structures
+ *
+ * Examples structures include the descriptor tables from the i386
+ * and the processor control structure on the i960ca.
+ *
+ * H8300 Specific Information:
+ *
+ * XXX
+ */
+
+/* may need to put some structures here. */
+
+/*
+ * Contexts
+ *
+ * Generally there are 2 types of context to save.
+ * 1. Interrupt registers to save
+ * 2. Task level registers to save
+ *
+ * This means we have the following 3 context items:
+ * 1. task level context stuff:: Context_Control
+ * 2. floating point task stuff:: Context_Control_fp
+ * 3. special interrupt level context :: Context_Control_interrupt
+ *
+ * On some processors, it is cost-effective to save only the callee
+ * preserved registers during a task context switch. This means
+ * that the ISR code needs to save those registers which do not
+ * persist across function calls. It is not mandatory to make this
+ * distinctions between the caller/callee saves registers for the
+ * purpose of minimizing context saved during task switch and on interrupts.
+ * If the cost of saving extra registers is minimal, simplicity is the
+ * choice. Save the same context on interrupt entry as for tasks in
+ * this case.
+ *
+ * Additionally, if gdb is to be made aware of RTEMS tasks for this CPU, then
+ * care should be used in designing the context area.
+ *
+ * On some CPUs with hardware floating point support, the Context_Control_fp
+ * structure will not be used or it simply consist of an array of a
+ * fixed number of bytes. This is done when the floating point context
+ * is dumped by a "FP save context" type instruction and the format
+ * is not really defined by the CPU. In this case, there is no need
+ * to figure out the exact format -- only the size. Of course, although
+ * this is enough information for RTEMS, it is probably not enough for
+ * a debugger such as gdb. But that is another problem.
+ *
+ * H8300 Specific Information:
+ *
+ * XXX
+ */
+
+
+
+#define nogap __attribute__ ((packed))
+
+typedef struct {
+ unsigned16 ccr nogap;
+ void *er7 nogap;
+ void *er6 nogap;
+ unsigned32 er5 nogap;
+ unsigned32 er4 nogap;
+ unsigned32 er3 nogap;
+ unsigned32 er2 nogap;
+ unsigned32 er1 nogap;
+ unsigned32 er0 nogap;
+ unsigned32 xxx nogap;
+} Context_Control;
+
+typedef struct {
+ double some_float_register[2];
+} Context_Control_fp;
+
+typedef struct {
+ unsigned32 special_interrupt_register;
+} CPU_Interrupt_frame;
+
+
+/*
+ * The following table contains the information required to configure
+ * the XXX processor specific parameters.
+ *
+ * NOTE: The interrupt_stack_size field is required if
+ * CPU_ALLOCATE_INTERRUPT_STACK is defined as TRUE.
+ *
+ * The pretasking_hook, predriver_hook, and postdriver_hook,
+ * and the do_zero_of_workspace fields are required on ALL CPUs.
+ *
+ * H8300 Specific Information:
+ *
+ * XXX
+ */
+
+typedef struct {
+ void (*pretasking_hook)( void );
+ void (*predriver_hook)( void );
+ void (*postdriver_hook)( void );
+ void (*idle_task)( void );
+ boolean do_zero_of_workspace;
+ unsigned32 idle_task_stack_size;
+ unsigned32 interrupt_stack_size;
+ unsigned32 extra_system_initialization_stack;
+ void * (*stack_allocate_hook)( unsigned32 );
+ void (*stack_free_hook)( void* );
+} rtems_cpu_table;
+
+/*
+ * This variable is optional. It is used on CPUs on which it is difficult
+ * to generate an "uninitialized" FP context. It is filled in by
+ * _CPU_Initialize and copied into the task's FP context area during
+ * _CPU_Context_Initialize.
+ *
+ * H8300 Specific Information:
+ *
+ * XXX
+ */
+
+SCORE_EXTERN Context_Control_fp _CPU_Null_fp_context;
+
+/*
+ * On some CPUs, RTEMS supports a software managed interrupt stack.
+ * This stack is allocated by the Interrupt Manager and the switch
+ * is performed in _ISR_Handler. These variables contain pointers
+ * to the lowest and highest addresses in the chunk of memory allocated
+ * for the interrupt stack. Since it is unknown whether the stack
+ * grows up or down (in general), this give the CPU dependent
+ * code the option of picking the version it wants to use.
+ *
+ * NOTE: These two variables are required if the macro
+ * CPU_HAS_SOFTWARE_INTERRUPT_STACK is defined as TRUE.
+ *
+ * H8300 Specific Information:
+ *
+ * XXX
+ */
+
+SCORE_EXTERN void *_CPU_Interrupt_stack_low;
+SCORE_EXTERN void *_CPU_Interrupt_stack_high;
+
+/*
+ * With some compilation systems, it is difficult if not impossible to
+ * call a high-level language routine from assembly language. This
+ * is especially true of commercial Ada compilers and name mangling
+ * C++ ones. This variable can be optionally defined by the CPU porter
+ * and contains the address of the routine _Thread_Dispatch. This
+ * can make it easier to invoke that routine at the end of the interrupt
+ * sequence (if a dispatch is necessary).
+ *
+ * H8300 Specific Information:
+ *
+ * XXX
+ */
+
+SCORE_EXTERN void (*_CPU_Thread_dispatch_pointer)();
+
+/*
+ * Nothing prevents the porter from declaring more CPU specific variables.
+ *
+ * H8300 Specific Information:
+ *
+ * XXX
+ */
+
+/* XXX: if needed, put more variables here */
+
+/*
+ * The size of the floating point context area. On some CPUs this
+ * will not be a "sizeof" because the format of the floating point
+ * area is not defined -- only the size is. This is usually on
+ * CPUs with a "floating point save context" instruction.
+ *
+ * H8300 Specific Information:
+ *
+ * XXX
+ */
+
+#define CPU_CONTEXT_FP_SIZE sizeof( Context_Control_fp )
+
+/*
+ * Amount of extra stack (above minimum stack size) required by
+ * system initialization thread. Remember that in a multiprocessor
+ * system the system intialization thread becomes the MP server thread.
+ *
+ * H8300 Specific Information:
+ *
+ * XXX
+ */
+
+#define CPU_SYSTEM_INITIALIZATION_THREAD_EXTRA_STACK 0
+
+/*
+ * This defines the number of entries in the ISR_Vector_table managed
+ * by RTEMS.
+ *
+ * H8300 Specific Information:
+ *
+ * XXX
+ */
+
+#define CPU_INTERRUPT_NUMBER_OF_VECTORS 64
+#define CPU_INTERRUPT_MAXIMUM_VECTOR_NUMBER (CPU_INTERRUPT_NUMBER_OF_VECTORS - 1)
+
+/*
+ * Should be large enough to run all RTEMS tests. This insures
+ * that a "reasonable" small application should not have any problems.
+ *
+ * H8300 Specific Information:
+ *
+ * XXX
+ */
+
+#define CPU_STACK_MINIMUM_SIZE (1536)
+
+/*
+ * CPU's worst alignment requirement for data types on a byte boundary. This
+ * alignment does not take into account the requirements for the stack.
+ *
+ * H8300 Specific Information:
+ *
+ * XXX
+ */
+
+#define CPU_ALIGNMENT 8
+
+/*
+ * This number corresponds to the byte alignment requirement for the
+ * heap handler. This alignment requirement may be stricter than that
+ * for the data types alignment specified by CPU_ALIGNMENT. It is
+ * common for the heap to follow the same alignment requirement as
+ * CPU_ALIGNMENT. If the CPU_ALIGNMENT is strict enough for the heap,
+ * then this should be set to CPU_ALIGNMENT.
+ *
+ * NOTE: This does not have to be a power of 2. It does have to
+ * be greater or equal to than CPU_ALIGNMENT.
+ *
+ * H8300 Specific Information:
+ *
+ * XXX
+ */
+
+#define CPU_HEAP_ALIGNMENT CPU_ALIGNMENT
+
+/*
+ * This number corresponds to the byte alignment requirement for memory
+ * buffers allocated by the partition manager. This alignment requirement
+ * may be stricter than that for the data types alignment specified by
+ * CPU_ALIGNMENT. It is common for the partition to follow the same
+ * alignment requirement as CPU_ALIGNMENT. If the CPU_ALIGNMENT is strict
+ * enough for the partition, then this should be set to CPU_ALIGNMENT.
+ *
+ * NOTE: This does not have to be a power of 2. It does have to
+ * be greater or equal to than CPU_ALIGNMENT.
+ *
+ * H8300 Specific Information:
+ *
+ * XXX
+ */
+
+#define CPU_PARTITION_ALIGNMENT CPU_ALIGNMENT
+
+/*
+ * This number corresponds to the byte alignment requirement for the
+ * stack. This alignment requirement may be stricter than that for the
+ * data types alignment specified by CPU_ALIGNMENT. If the CPU_ALIGNMENT
+ * is strict enough for the stack, then this should be set to 0.
+ *
+ * NOTE: This must be a power of 2 either 0 or greater than CPU_ALIGNMENT.
+ *
+ * H8300 Specific Information:
+ *
+ * XXX
+ */
+
+#define CPU_STACK_ALIGNMENT 2
+
+/* ISR handler macros */
+
+/*
+ * Disable all interrupts for an RTEMS critical section. The previous
+ * level is returned in _level.
+ *
+ * H8300 Specific Information:
+ *
+ * XXX FIXME this does not nest properly for the H8300.
+ */
+
+#if defined(__H8300__)
+#define _CPU_ISR_Disable( _isr_cookie )
+ asm volatile( "orc #0x80,ccr " );
+#else
+#define _CPU_ISR_Disable( _isr_cookie ) \
+ do { \
+ unsigned char __ccr; \
+ asm volatile( "stc ccr, %0 ; orc #0x80,ccr " \
+ : "=m" (__ccr) : "0" (__ccr) ); \
+ (_isr_cookie) = __ccr; \
+ } while (0)
+#endif
+
+
+/*
+ * Enable interrupts to the previois level (returned by _CPU_ISR_Disable).
+ * This indicates the end of an RTEMS critical section. The parameter
+ * _level is not modified.
+ *
+ * H8300 Specific Information:
+ *
+ * XXX
+ */
+
+#if defined(__H8300__)
+#define _CPU_ISR_Enable( _isr_cookie ) \
+ asm(" andc #0x7f,ccr \n")
+#else
+#define _CPU_ISR_Enable( _isr_cookie ) \
+ do { \
+ unsigned char __ccr = (unsigned char) (_isr_cookie); \
+ asm volatile( "ldc %0, ccr" : : "m" (__ccr) ); \
+ } while (0)
+#endif
+
+/*
+ * This temporarily restores the interrupt to _level before immediately
+ * disabling them again. This is used to divide long RTEMS critical
+ * sections into two or more parts. The parameter _level is not
+ * modified.
+ *
+ * H8300 Specific Information:
+ *
+ * XXX
+ */
+
+#if defined(__H8300__)
+#define _CPU_ISR_Enable( _isr_cookie ) \
+ asm( "andc #0x7f,ccr \n orc #0x80,ccr\n" )
+#else
+#define _CPU_ISR_Flash( _isr_cookie ) \
+ do { \
+ unsigned char __ccr = (unsigned char) (_isr_cookie); \
+ asm volatile( "ldc %0, ccr ; orc #0x80,ccr " : : "m" (__ccr) ); \
+ } while (0)
+#endif
+
+
+/*
+ * Map interrupt level in task mode onto the hardware that the CPU
+ * actually provides. Currently, interrupt levels which do not
+ * map onto the CPU in a generic fashion are undefined. Someday,
+ * it would be nice if these were "mapped" by the application
+ * via a callout. For example, m68k has 8 levels 0 - 7, levels
+ * 8 - 255 would be available for bsp/application specific meaning.
+ * This could be used to manage a programmable interrupt controller
+ * via the rtems_task_mode directive.
+ *
+ * H8300 Specific Information:
+ *
+ * XXX
+ */
+
+#define _CPU_ISR_Set_level( _new_level ) \
+ { \
+ if ( _new_level ) asm volatile ( "orc #0x80,ccr\n" ); \
+ else asm volatile ( "andc #0x7f,ccr\n" ); \
+ }
+
+unsigned32 _CPU_ISR_Get_level( void );
+
+/* end of ISR handler macros */
+
+/* Context handler macros */
+
+/*
+ * Initialize the context to a state suitable for starting a
+ * task after a context restore operation. Generally, this
+ * involves:
+ *
+ * - setting a starting address
+ * - preparing the stack
+ * - preparing the stack and frame pointers
+ * - setting the proper interrupt level in the context
+ * - initializing the floating point context
+ *
+ * This routine generally does not set any unnecessary register
+ * in the context. The state of the "general data" registers is
+ * undefined at task start time.
+ *
+ * NOTE: This is_fp parameter is TRUE if the thread is to be a floating
+ * point thread. This is typically only used on CPUs where the
+ * FPU may be easily disabled by software such as on the SPARC
+ * where the PSR contains an enable FPU bit.
+ *
+ * H8300 Specific Information:
+ *
+ * XXX
+ */
+
+
+#define CPU_CCR_INTERRUPTS_ON 0x80
+#define CPU_CCR_INTERRUPTS_OFF 0x00
+
+#define _CPU_Context_Initialize( _the_context, _stack_base, _size, \
+ _isr, _entry_point, _is_fp ) \
+ /* Locate Me */ \
+ do { \
+ unsigned32 _stack; \
+ \
+ if ( (_isr) ) (_the_context)->ccr = CPU_CCR_INTERRUPTS_OFF; \
+ else (_the_context)->ccr = CPU_CCR_INTERRUPTS_ON; \
+ \
+ _stack = ((unsigned32)(_stack_base)) + (_size) - 4; \
+ *((proc_ptr *)(_stack)) = (_entry_point); \
+ (_the_context)->er7 = (void *) _stack; \
+ (_the_context)->er6 = (void *) _stack; \
+ (_the_context)->er5 = 0; \
+ (_the_context)->er4 = 1; \
+ (_the_context)->er3 = 2; \
+ } while (0)
+
+
+/*
+ * This routine is responsible for somehow restarting the currently
+ * executing task. If you are lucky, then all that is necessary
+ * is restoring the context. Otherwise, there will need to be
+ * a special assembly routine which does something special in this
+ * case. Context_Restore should work most of the time. It will
+ * not work if restarting self conflicts with the stack frame
+ * assumptions of restoring a context.
+ *
+ * H8300 Specific Information:
+ *
+ * XXX
+ */
+
+#define _CPU_Context_Restart_self( _the_context ) \
+ _CPU_Context_restore( (_the_context) );
+
+/*
+ * The purpose of this macro is to allow the initial pointer into
+ * a floating point context area (used to save the floating point
+ * context) to be at an arbitrary place in the floating point
+ * context area.
+ *
+ * This is necessary because some FP units are designed to have
+ * their context saved as a stack which grows into lower addresses.
+ * Other FP units can be saved by simply moving registers into offsets
+ * from the base of the context area. Finally some FP units provide
+ * a "dump context" instruction which could fill in from high to low
+ * or low to high based on the whim of the CPU designers.
+ *
+ * H8300 Specific Information:
+ *
+ * XXX
+ */
+
+#define _CPU_Context_Fp_start( _base, _offset ) \
+ ( (void *) (_base) + (_offset) )
+
+/*
+ * This routine initializes the FP context area passed to it to.
+ * There are a few standard ways in which to initialize the
+ * floating point context. The code included for this macro assumes
+ * that this is a CPU in which a "initial" FP context was saved into
+ * _CPU_Null_fp_context and it simply copies it to the destination
+ * context passed to it.
+ *
+ * Other models include (1) not doing anything, and (2) putting
+ * a "null FP status word" in the correct place in the FP context.
+ *
+ * H8300 Specific Information:
+ *
+ * XXX
+ */
+
+#define _CPU_Context_Initialize_fp( _destination ) \
+ { \
+ *((Context_Control_fp *) *((void **) _destination)) = _CPU_Null_fp_context; \
+ }
+
+/* end of Context handler macros */
+
+/* Fatal Error manager macros */
+
+/*
+ * This routine copies _error into a known place -- typically a stack
+ * location or a register, optionally disables interrupts, and
+ * halts/stops the CPU.
+ *
+ * H8300 Specific Information:
+ *
+ * XXX
+ */
+
+#define _CPU_Fatal_halt( _error ) \
+ printk("Fatal Error %d Halted\n",_error); \
+ for(;;)
+
+
+/* end of Fatal Error manager macros */
+
+/* Bitfield handler macros */
+
+/*
+ * This routine sets _output to the bit number of the first bit
+ * set in _value. _value is of CPU dependent type Priority_Bit_map_control.
+ * This type may be either 16 or 32 bits wide although only the 16
+ * least significant bits will be used.
+ *
+ * There are a number of variables in using a "find first bit" type
+ * instruction.
+ *
+ * (1) What happens when run on a value of zero?
+ * (2) Bits may be numbered from MSB to LSB or vice-versa.
+ * (3) The numbering may be zero or one based.
+ * (4) The "find first bit" instruction may search from MSB or LSB.
+ *
+ * RTEMS guarantees that (1) will never happen so it is not a concern.
+ * (2),(3), (4) are handled by the macros _CPU_Priority_mask() and
+ * _CPU_Priority_bits_index(). These three form a set of routines
+ * which must logically operate together. Bits in the _value are
+ * set and cleared based on masks built by _CPU_Priority_mask().
+ * The basic major and minor values calculated by _Priority_Major()
+ * and _Priority_Minor() are "massaged" by _CPU_Priority_bits_index()
+ * to properly range between the values returned by the "find first bit"
+ * instruction. This makes it possible for _Priority_Get_highest() to
+ * calculate the major and directly index into the minor table.
+ * This mapping is necessary to ensure that 0 (a high priority major/minor)
+ * is the first bit found.
+ *
+ * This entire "find first bit" and mapping process depends heavily
+ * on the manner in which a priority is broken into a major and minor
+ * components with the major being the 4 MSB of a priority and minor
+ * the 4 LSB. Thus (0 << 4) + 0 corresponds to priority 0 -- the highest
+ * priority. And (15 << 4) + 14 corresponds to priority 254 -- the next
+ * to the lowest priority.
+ *
+ * If your CPU does not have a "find first bit" instruction, then
+ * there are ways to make do without it. Here are a handful of ways
+ * to implement this in software:
+ *
+ * - a series of 16 bit test instructions
+ * - a "binary search using if's"
+ * - _number = 0
+ * if _value > 0x00ff
+ * _value >>=8
+ * _number = 8;
+ *
+ * if _value > 0x0000f
+ * _value >=8
+ * _number += 4
+ *
+ * _number += bit_set_table[ _value ]
+ *
+ * where bit_set_table[ 16 ] has values which indicate the first
+ * bit set
+ *
+ * H8300 Specific Information:
+ *
+ * XXX
+ */
+
+#define CPU_USE_GENERIC_BITFIELD_CODE TRUE
+#define CPU_USE_GENERIC_BITFIELD_DATA TRUE
+
+#if (CPU_USE_GENERIC_BITFIELD_CODE == FALSE)
+
+#define _CPU_Bitfield_Find_first_bit( _value, _output ) \
+ { \
+ (_output) = 0; /* do something to prevent warnings */ \
+ }
+
+#endif
+
+/* end of Bitfield handler macros */
+
+/*
+ * This routine builds the mask which corresponds to the bit fields
+ * as searched by _CPU_Bitfield_Find_first_bit(). See the discussion
+ * for that routine.
+ *
+ * H8300 Specific Information:
+ *
+ * XXX
+ */
+
+#if (CPU_USE_GENERIC_BITFIELD_CODE == FALSE)
+
+#define _CPU_Priority_Mask( _bit_number ) \
+ ( 1 << (_bit_number) )
+
+#endif
+
+/*
+ * This routine translates the bit numbers returned by
+ * _CPU_Bitfield_Find_first_bit() into something suitable for use as
+ * a major or minor component of a priority. See the discussion
+ * for that routine.
+ *
+ * H8300 Specific Information:
+ *
+ * XXX
+ */
+
+#if (CPU_USE_GENERIC_BITFIELD_CODE == FALSE)
+
+#define _CPU_Priority_bits_index( _priority ) \
+ (_priority)
+
+#endif
+
+/* end of Priority handler macros */
+
+/* functions */
+
+/*
+ * _CPU_Initialize
+ *
+ * This routine performs CPU dependent initialization.
+ *
+ * H8300 Specific Information:
+ *
+ * XXX
+ */
+
+void _CPU_Initialize(
+ rtems_cpu_table *cpu_table,
+ void (*thread_dispatch)
+);
+
+/*
+ * _CPU_ISR_install_raw_handler
+ *
+ * This routine installs a "raw" interrupt handler directly into the
+ * processor's vector table.
+ *
+ * H8300 Specific Information:
+ *
+ * XXX
+ */
+
+void _CPU_ISR_install_raw_handler(
+ unsigned32 vector,
+ proc_ptr new_handler,
+ proc_ptr *old_handler
+);
+
+/*
+ * _CPU_ISR_install_vector
+ *
+ * This routine installs an interrupt vector.
+ *
+ * H8300 Specific Information:
+ *
+ * XXX
+ */
+
+void _CPU_ISR_install_vector(
+ unsigned32 vector,
+ proc_ptr new_handler,
+ proc_ptr *old_handler
+);
+
+/*
+ * _CPU_Install_interrupt_stack
+ *
+ * This routine installs the hardware interrupt stack pointer.
+ *
+ * NOTE: It need only be provided if CPU_HAS_HARDWARE_INTERRUPT_STACK
+ * is TRUE.
+ *
+ * H8300 Specific Information:
+ *
+ * XXX
+ */
+
+void _CPU_Install_interrupt_stack( void );
+
+/*
+ * _CPU_Internal_threads_Idle_thread_body
+ *
+ * This routine is the CPU dependent IDLE thread body.
+ *
+ * NOTE: It need only be provided if CPU_PROVIDES_IDLE_THREAD_BODY
+ * is TRUE.
+ *
+ * H8300 Specific Information:
+ *
+ * XXX
+ */
+
+void _CPU_Thread_Idle_body( void );
+
+/*
+ * _CPU_Context_switch
+ *
+ * This routine switches from the run context to the heir context.
+ *
+ * H8300 Specific Information:
+ *
+ * XXX
+ */
+
+void _CPU_Context_switch(
+ Context_Control *run,
+ Context_Control *heir
+);
+
+/*
+ * _CPU_Context_restore
+ *
+ * This routine is generallu used only to restart self in an
+ * efficient manner. It may simply be a label in _CPU_Context_switch.
+ *
+ * NOTE: May be unnecessary to reload some registers.
+ *
+ * H8300 Specific Information:
+ *
+ * XXX
+ */
+
+void _CPU_Context_restore(
+ Context_Control *new_context
+);
+
+/*
+ * _CPU_Context_save_fp
+ *
+ * This routine saves the floating point context passed to it.
+ *
+ * H8300 Specific Information:
+ *
+ * XXX
+ */
+
+void _CPU_Context_save_fp(
+ void **fp_context_ptr
+);
+
+/*
+ * _CPU_Context_restore_fp
+ *
+ * This routine restores the floating point context passed to it.
+ *
+ * H8300 Specific Information:
+ *
+ * XXX
+ */
+
+void _CPU_Context_restore_fp(
+ void **fp_context_ptr
+);
+
+/* The following routine swaps the endian format of an unsigned int.
+ * It must be static because it is referenced indirectly.
+ *
+ * This version will work on any processor, but if there is a better
+ * way for your CPU PLEASE use it. The most common way to do this is to:
+ *
+ * swap least significant two bytes with 16-bit rotate
+ * swap upper and lower 16-bits
+ * swap most significant two bytes with 16-bit rotate
+ *
+ * Some CPUs have special instructions which swap a 32-bit quantity in
+ * a single instruction (e.g. i486). It is probably best to avoid
+ * an "endian swapping control bit" in the CPU. One good reason is
+ * that interrupts would probably have to be disabled to insure that
+ * an interrupt does not try to access the same "chunk" with the wrong
+ * endian. Another good reason is that on some CPUs, the endian bit
+ * endianness for ALL fetches -- both code and data -- so the code
+ * will be fetched incorrectly.
+ *
+ * H8300 Specific Information:
+ *
+ * XXX
+ */
+
+static inline unsigned int CPU_swap_u32(
+ unsigned int value
+)
+{
+ unsigned32 byte1, byte2, byte3, byte4, swapped;
+
+ byte4 = (value >> 24) & 0xff;
+ byte3 = (value >> 16) & 0xff;
+ byte2 = (value >> 8) & 0xff;
+ byte1 = value & 0xff;
+
+ swapped = (byte1 << 24) | (byte2 << 16) | (byte3 << 8) | byte4;
+ return( swapped );
+}
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif
diff --git a/c/src/exec/score/cpu/h8300/rtems/score/h8300.h b/c/src/exec/score/cpu/h8300/rtems/score/h8300.h
new file mode 100644
index 0000000000..becaed362f
--- /dev/null
+++ b/c/src/exec/score/cpu/h8300/rtems/score/h8300.h
@@ -0,0 +1,57 @@
+/* h8300.h
+ *
+ * This file contains information pertaining to the Hitachi H8/300
+ * processor family.
+ *
+ * COPYRIGHT (c) 1989-1999.
+ * On-Line Applications Research Corporation (OAR).
+ *
+ * The license and distribution terms for this file may be
+ * found in the file LICENSE in this distribution or at
+ * http://www.OARcorp.com/rtems/license.html.
+ *
+ * $Id$
+ */
+
+#ifndef _INCLUDE_H8300_h
+#define _INCLUDE_H8300_h
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/*
+ * This file contains the information required to build
+ * RTEMS for a particular member of the "h8300"
+ * family when executing in protected mode. It does
+ * this by setting variables to indicate which implementation
+ * dependent features are present in a particular member
+ * of the family.
+ */
+
+/*
+ * RTEMS compiles for the base H8 with numerous warnings but has never
+ * been tested on a CPU with 16 bit address space.
+ *
+ * FIXME:
+ * This macro is defined to handle a couple of places where
+ * addresses are cast to pointers. There really should be
+ * a "int-pointer" type that pointers are cast to before being
+ * mathematcically manipulated. When that is added, search
+ * for all references to this macro and remove them.
+ */
+
+#if defined(__H8300__)
+#define RTEMS_CPU_HAS_16_BIT_ADDRESSES 1
+#endif
+
+#define CPU_NAME "Hitachi H8300"
+#define CPU_MODEL_NAME "h8300"
+#define H8300_HAS_FPU 0
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif
+/* end of include file */
diff --git a/c/src/exec/score/cpu/h8300/rtems/score/h8300types.h b/c/src/exec/score/cpu/h8300/rtems/score/h8300types.h
new file mode 100644
index 0000000000..d1fec2699e
--- /dev/null
+++ b/c/src/exec/score/cpu/h8300/rtems/score/h8300types.h
@@ -0,0 +1,56 @@
+/* h8300types.h
+ *
+ * This include file contains type definitions pertaining to the Hitachi
+ * h8300 processor family.
+ *
+ * COPYRIGHT (c) 1989-1999.
+ * On-Line Applications Research Corporation (OAR).
+ *
+ * The license and distribution terms for this file may be
+ * found in the file LICENSE in this distribution or at
+ * http://www.OARcorp.com/rtems/license.html.
+ *
+ * $Id$
+ */
+
+#ifndef __H8300_TYPES_h
+#define __H8300_TYPES_h
+
+#ifndef ASM
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/*
+ * This section defines the basic types for this processor.
+ */
+
+typedef unsigned char unsigned8; /* unsigned 8-bit integer */
+typedef unsigned short unsigned16; /* unsigned 16-bit integer */
+typedef unsigned long unsigned32; /* unsigned 32-bit integer */
+typedef unsigned long long unsigned64; /* unsigned 64-bit integer */
+
+typedef unsigned16 Priority_Bit_map_control;
+
+typedef signed char signed8; /* 8-bit signed integer */
+typedef signed short signed16; /* 16-bit signed integer */
+typedef signed long signed32; /* 32-bit signed integer */
+typedef signed long long signed64; /* 64 bit signed integer */
+
+typedef unsigned32 boolean; /* Boolean value */
+
+typedef float single_precision; /* single precision float */
+typedef double double_precision; /* double precision float */
+
+typedef void h8300_isr;
+typedef void ( *h8300_isr_entry )( void );
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* !ASM */
+
+#endif
+/* end of include file */
diff --git a/c/src/exec/score/cpu/h8300/rtems/score/types.h b/c/src/exec/score/cpu/h8300/rtems/score/types.h
new file mode 100644
index 0000000000..d1fec2699e
--- /dev/null
+++ b/c/src/exec/score/cpu/h8300/rtems/score/types.h
@@ -0,0 +1,56 @@
+/* h8300types.h
+ *
+ * This include file contains type definitions pertaining to the Hitachi
+ * h8300 processor family.
+ *
+ * COPYRIGHT (c) 1989-1999.
+ * On-Line Applications Research Corporation (OAR).
+ *
+ * The license and distribution terms for this file may be
+ * found in the file LICENSE in this distribution or at
+ * http://www.OARcorp.com/rtems/license.html.
+ *
+ * $Id$
+ */
+
+#ifndef __H8300_TYPES_h
+#define __H8300_TYPES_h
+
+#ifndef ASM
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/*
+ * This section defines the basic types for this processor.
+ */
+
+typedef unsigned char unsigned8; /* unsigned 8-bit integer */
+typedef unsigned short unsigned16; /* unsigned 16-bit integer */
+typedef unsigned long unsigned32; /* unsigned 32-bit integer */
+typedef unsigned long long unsigned64; /* unsigned 64-bit integer */
+
+typedef unsigned16 Priority_Bit_map_control;
+
+typedef signed char signed8; /* 8-bit signed integer */
+typedef signed short signed16; /* 16-bit signed integer */
+typedef signed long signed32; /* 32-bit signed integer */
+typedef signed long long signed64; /* 64 bit signed integer */
+
+typedef unsigned32 boolean; /* Boolean value */
+
+typedef float single_precision; /* single precision float */
+typedef double double_precision; /* double precision float */
+
+typedef void h8300_isr;
+typedef void ( *h8300_isr_entry )( void );
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* !ASM */
+
+#endif
+/* end of include file */