summaryrefslogtreecommitdiffstats
path: root/c/src/exec/score/cpu/sparc/rtems/score/cpu.h
diff options
context:
space:
mode:
Diffstat (limited to 'c/src/exec/score/cpu/sparc/rtems/score/cpu.h')
-rw-r--r--c/src/exec/score/cpu/sparc/rtems/score/cpu.h1000
1 files changed, 0 insertions, 1000 deletions
diff --git a/c/src/exec/score/cpu/sparc/rtems/score/cpu.h b/c/src/exec/score/cpu/sparc/rtems/score/cpu.h
deleted file mode 100644
index 3194c07f3b..0000000000
--- a/c/src/exec/score/cpu/sparc/rtems/score/cpu.h
+++ /dev/null
@@ -1,1000 +0,0 @@
-/* cpu.h
- *
- * This include file contains information pertaining to the port of
- * the executive to the SPARC processor.
- *
- * COPYRIGHT (c) 1989-1999.
- * On-Line Applications Research Corporation (OAR).
- *
- * The license and distribution terms for this file may be
- * found in the file LICENSE in this distribution or at
- * http://www.OARcorp.com/rtems/license.html.
- *
- * $Id$
- */
-
-#ifndef __CPU_h
-#define __CPU_h
-
-#ifdef __cplusplus
-extern "C" {
-#endif
-
-#include <rtems/score/sparc.h> /* pick up machine definitions */
-#ifndef ASM
-#include <rtems/score/types.h>
-#endif
-
-/* conditional compilation parameters */
-
-/*
- * Should the calls to _Thread_Enable_dispatch be inlined?
- *
- * If TRUE, then they are inlined.
- * If FALSE, then a subroutine call is made.
- */
-
-#define CPU_INLINE_ENABLE_DISPATCH TRUE
-
-/*
- * Should the body of the search loops in _Thread_queue_Enqueue_priority
- * be unrolled one time? In unrolled each iteration of the loop examines
- * two "nodes" on the chain being searched. Otherwise, only one node
- * is examined per iteration.
- *
- * If TRUE, then the loops are unrolled.
- * If FALSE, then the loops are not unrolled.
- *
- * This parameter could go either way on the SPARC. The interrupt flash
- * code is relatively lengthy given the requirements for nops following
- * writes to the psr. But if the clock speed were high enough, this would
- * not represent a great deal of time.
- */
-
-#define CPU_UNROLL_ENQUEUE_PRIORITY TRUE
-
-/*
- * Does the executive manage a dedicated interrupt stack in software?
- *
- * If TRUE, then a stack is allocated in _ISR_Handler_initialization.
- * If FALSE, nothing is done.
- *
- * The SPARC does not have a dedicated HW interrupt stack and one has
- * been implemented in SW.
- */
-
-#define CPU_HAS_SOFTWARE_INTERRUPT_STACK TRUE
-
-/*
- * Does this CPU have hardware support for a dedicated interrupt stack?
- *
- * If TRUE, then it must be installed during initialization.
- * If FALSE, then no installation is performed.
- *
- * The SPARC does not have a dedicated HW interrupt stack.
- */
-
-#define CPU_HAS_HARDWARE_INTERRUPT_STACK FALSE
-
-/*
- * Do we allocate a dedicated interrupt stack in the Interrupt Manager?
- *
- * If TRUE, then the memory is allocated during initialization.
- * If FALSE, then the memory is allocated during initialization.
- */
-
-#define CPU_ALLOCATE_INTERRUPT_STACK TRUE
-
-/*
- * Does the RTEMS invoke the user's ISR with the vector number and
- * a pointer to the saved interrupt frame (1) or just the vector
- * number (0)?
- */
-
-#define CPU_ISR_PASSES_FRAME_POINTER 0
-
-/*
- * Does the CPU have hardware floating point?
- *
- * If TRUE, then the FLOATING_POINT task attribute is supported.
- * If FALSE, then the FLOATING_POINT task attribute is ignored.
- */
-
-#if ( SPARC_HAS_FPU == 1 )
-#define CPU_HARDWARE_FP TRUE
-#else
-#define CPU_HARDWARE_FP FALSE
-#endif
-#define CPU_SOFTWARE_FP FALSE
-
-/*
- * Are all tasks FLOATING_POINT tasks implicitly?
- *
- * If TRUE, then the FLOATING_POINT task attribute is assumed.
- * If FALSE, then the FLOATING_POINT task attribute is followed.
- */
-
-#define CPU_ALL_TASKS_ARE_FP FALSE
-
-/*
- * Should the IDLE task have a floating point context?
- *
- * If TRUE, then the IDLE task is created as a FLOATING_POINT task
- * and it has a floating point context which is switched in and out.
- * If FALSE, then the IDLE task does not have a floating point context.
- */
-
-#define CPU_IDLE_TASK_IS_FP FALSE
-
-/*
- * Should the saving of the floating point registers be deferred
- * until a context switch is made to another different floating point
- * task?
- *
- * If TRUE, then the floating point context will not be stored until
- * necessary. It will remain in the floating point registers and not
- * disturned until another floating point task is switched to.
- *
- * If FALSE, then the floating point context is saved when a floating
- * point task is switched out and restored when the next floating point
- * task is restored. The state of the floating point registers between
- * those two operations is not specified.
- */
-
-#define CPU_USE_DEFERRED_FP_SWITCH TRUE
-
-/*
- * Does this port provide a CPU dependent IDLE task implementation?
- *
- * If TRUE, then the routine _CPU_Thread_Idle_body
- * must be provided and is the default IDLE thread body instead of
- * _CPU_Thread_Idle_body.
- *
- * If FALSE, then use the generic IDLE thread body if the BSP does
- * not provide one.
- */
-
-#define CPU_PROVIDES_IDLE_THREAD_BODY FALSE
-
-/*
- * Does the stack grow up (toward higher addresses) or down
- * (toward lower addresses)?
- *
- * If TRUE, then the grows upward.
- * If FALSE, then the grows toward smaller addresses.
- *
- * The stack grows to lower addresses on the SPARC.
- */
-
-#define CPU_STACK_GROWS_UP FALSE
-
-/*
- * The following is the variable attribute used to force alignment
- * of critical data structures. On some processors it may make
- * sense to have these aligned on tighter boundaries than
- * the minimum requirements of the compiler in order to have as
- * much of the critical data area as possible in a cache line.
- *
- * The SPARC does not appear to have particularly strict alignment
- * requirements. This value was chosen to take advantages of caches.
- */
-
-#define CPU_STRUCTURE_ALIGNMENT __attribute__ ((aligned (16)))
-
-/*
- * Define what is required to specify how the network to host conversion
- * routines are handled.
- */
-
-#define CPU_HAS_OWN_HOST_TO_NETWORK_ROUTINES FALSE
-#define CPU_BIG_ENDIAN TRUE
-#define CPU_LITTLE_ENDIAN FALSE
-
-/*
- * The following defines the number of bits actually used in the
- * interrupt field of the task mode. How those bits map to the
- * CPU interrupt levels is defined by the routine _CPU_ISR_Set_level().
- *
- * The SPARC has 16 interrupt levels in the PIL field of the PSR.
- */
-
-#define CPU_MODES_INTERRUPT_MASK 0x0000000F
-
-/*
- * This structure represents the organization of the minimum stack frame
- * for the SPARC. More framing information is required in certain situaions
- * such as when there are a large number of out parameters or when the callee
- * must save floating point registers.
- */
-
-#ifndef ASM
-
-typedef struct {
- unsigned32 l0;
- unsigned32 l1;
- unsigned32 l2;
- unsigned32 l3;
- unsigned32 l4;
- unsigned32 l5;
- unsigned32 l6;
- unsigned32 l7;
- unsigned32 i0;
- unsigned32 i1;
- unsigned32 i2;
- unsigned32 i3;
- unsigned32 i4;
- unsigned32 i5;
- unsigned32 i6_fp;
- unsigned32 i7;
- void *structure_return_address;
- /*
- * The following are for the callee to save the register arguments in
- * should this be necessary.
- */
- unsigned32 saved_arg0;
- unsigned32 saved_arg1;
- unsigned32 saved_arg2;
- unsigned32 saved_arg3;
- unsigned32 saved_arg4;
- unsigned32 saved_arg5;
- unsigned32 pad0;
-} CPU_Minimum_stack_frame;
-
-#endif /* ASM */
-
-#define CPU_STACK_FRAME_L0_OFFSET 0x00
-#define CPU_STACK_FRAME_L1_OFFSET 0x04
-#define CPU_STACK_FRAME_L2_OFFSET 0x08
-#define CPU_STACK_FRAME_L3_OFFSET 0x0c
-#define CPU_STACK_FRAME_L4_OFFSET 0x10
-#define CPU_STACK_FRAME_L5_OFFSET 0x14
-#define CPU_STACK_FRAME_L6_OFFSET 0x18
-#define CPU_STACK_FRAME_L7_OFFSET 0x1c
-#define CPU_STACK_FRAME_I0_OFFSET 0x20
-#define CPU_STACK_FRAME_I1_OFFSET 0x24
-#define CPU_STACK_FRAME_I2_OFFSET 0x28
-#define CPU_STACK_FRAME_I3_OFFSET 0x2c
-#define CPU_STACK_FRAME_I4_OFFSET 0x30
-#define CPU_STACK_FRAME_I5_OFFSET 0x34
-#define CPU_STACK_FRAME_I6_FP_OFFSET 0x38
-#define CPU_STACK_FRAME_I7_OFFSET 0x3c
-#define CPU_STRUCTURE_RETURN_ADDRESS_OFFSET 0x40
-#define CPU_STACK_FRAME_SAVED_ARG0_OFFSET 0x44
-#define CPU_STACK_FRAME_SAVED_ARG1_OFFSET 0x48
-#define CPU_STACK_FRAME_SAVED_ARG2_OFFSET 0x4c
-#define CPU_STACK_FRAME_SAVED_ARG3_OFFSET 0x50
-#define CPU_STACK_FRAME_SAVED_ARG4_OFFSET 0x54
-#define CPU_STACK_FRAME_SAVED_ARG5_OFFSET 0x58
-#define CPU_STACK_FRAME_PAD0_OFFSET 0x5c
-
-#define CPU_MINIMUM_STACK_FRAME_SIZE 0x60
-
-/*
- * Contexts
- *
- * Generally there are 2 types of context to save.
- * 1. Interrupt registers to save
- * 2. Task level registers to save
- *
- * This means we have the following 3 context items:
- * 1. task level context stuff:: Context_Control
- * 2. floating point task stuff:: Context_Control_fp
- * 3. special interrupt level context :: Context_Control_interrupt
- *
- * On the SPARC, we are relatively conservative in that we save most
- * of the CPU state in the context area. The ET (enable trap) bit and
- * the CWP (current window pointer) fields of the PSR are considered
- * system wide resources and are not maintained on a per-thread basis.
- */
-
-#ifndef ASM
-
-typedef struct {
- /*
- * Using a double g0_g1 will put everything in this structure on a
- * double word boundary which allows us to use double word loads
- * and stores safely in the context switch.
- */
- double g0_g1;
- unsigned32 g2;
- unsigned32 g3;
- unsigned32 g4;
- unsigned32 g5;
- unsigned32 g6;
- unsigned32 g7;
-
- unsigned32 l0;
- unsigned32 l1;
- unsigned32 l2;
- unsigned32 l3;
- unsigned32 l4;
- unsigned32 l5;
- unsigned32 l6;
- unsigned32 l7;
-
- unsigned32 i0;
- unsigned32 i1;
- unsigned32 i2;
- unsigned32 i3;
- unsigned32 i4;
- unsigned32 i5;
- unsigned32 i6_fp;
- unsigned32 i7;
-
- unsigned32 o0;
- unsigned32 o1;
- unsigned32 o2;
- unsigned32 o3;
- unsigned32 o4;
- unsigned32 o5;
- unsigned32 o6_sp;
- unsigned32 o7;
-
- unsigned32 psr;
-} Context_Control;
-
-#endif /* ASM */
-
-/*
- * Offsets of fields with Context_Control for assembly routines.
- */
-
-#define G0_OFFSET 0x00
-#define G1_OFFSET 0x04
-#define G2_OFFSET 0x08
-#define G3_OFFSET 0x0C
-#define G4_OFFSET 0x10
-#define G5_OFFSET 0x14
-#define G6_OFFSET 0x18
-#define G7_OFFSET 0x1C
-
-#define L0_OFFSET 0x20
-#define L1_OFFSET 0x24
-#define L2_OFFSET 0x28
-#define L3_OFFSET 0x2C
-#define L4_OFFSET 0x30
-#define L5_OFFSET 0x34
-#define L6_OFFSET 0x38
-#define L7_OFFSET 0x3C
-
-#define I0_OFFSET 0x40
-#define I1_OFFSET 0x44
-#define I2_OFFSET 0x48
-#define I3_OFFSET 0x4C
-#define I4_OFFSET 0x50
-#define I5_OFFSET 0x54
-#define I6_FP_OFFSET 0x58
-#define I7_OFFSET 0x5C
-
-#define O0_OFFSET 0x60
-#define O1_OFFSET 0x64
-#define O2_OFFSET 0x68
-#define O3_OFFSET 0x6C
-#define O4_OFFSET 0x70
-#define O5_OFFSET 0x74
-#define O6_SP_OFFSET 0x78
-#define O7_OFFSET 0x7C
-
-#define PSR_OFFSET 0x80
-
-#define CONTEXT_CONTROL_SIZE 0x84
-
-/*
- * The floating point context area.
- */
-
-#ifndef ASM
-
-typedef struct {
- double f0_f1;
- double f2_f3;
- double f4_f5;
- double f6_f7;
- double f8_f9;
- double f10_f11;
- double f12_f13;
- double f14_f15;
- double f16_f17;
- double f18_f19;
- double f20_f21;
- double f22_f23;
- double f24_f25;
- double f26_f27;
- double f28_f29;
- double f30_f31;
- unsigned32 fsr;
-} Context_Control_fp;
-
-#endif /* ASM */
-
-/*
- * Offsets of fields with Context_Control_fp for assembly routines.
- */
-
-#define FO_F1_OFFSET 0x00
-#define F2_F3_OFFSET 0x08
-#define F4_F5_OFFSET 0x10
-#define F6_F7_OFFSET 0x18
-#define F8_F9_OFFSET 0x20
-#define F1O_F11_OFFSET 0x28
-#define F12_F13_OFFSET 0x30
-#define F14_F15_OFFSET 0x38
-#define F16_F17_OFFSET 0x40
-#define F18_F19_OFFSET 0x48
-#define F2O_F21_OFFSET 0x50
-#define F22_F23_OFFSET 0x58
-#define F24_F25_OFFSET 0x60
-#define F26_F27_OFFSET 0x68
-#define F28_F29_OFFSET 0x70
-#define F3O_F31_OFFSET 0x78
-#define FSR_OFFSET 0x80
-
-#define CONTEXT_CONTROL_FP_SIZE 0x84
-
-#ifndef ASM
-
-/*
- * Context saved on stack for an interrupt.
- *
- * NOTE: The PSR, PC, and NPC are only saved in this structure for the
- * benefit of the user's handler.
- */
-
-typedef struct {
- CPU_Minimum_stack_frame Stack_frame;
- unsigned32 psr;
- unsigned32 pc;
- unsigned32 npc;
- unsigned32 g1;
- unsigned32 g2;
- unsigned32 g3;
- unsigned32 g4;
- unsigned32 g5;
- unsigned32 g6;
- unsigned32 g7;
- unsigned32 i0;
- unsigned32 i1;
- unsigned32 i2;
- unsigned32 i3;
- unsigned32 i4;
- unsigned32 i5;
- unsigned32 i6_fp;
- unsigned32 i7;
- unsigned32 y;
- unsigned32 tpc;
-} CPU_Interrupt_frame;
-
-#endif /* ASM */
-
-/*
- * Offsets of fields with CPU_Interrupt_frame for assembly routines.
- */
-
-#define ISF_STACK_FRAME_OFFSET 0x00
-#define ISF_PSR_OFFSET CPU_MINIMUM_STACK_FRAME_SIZE + 0x00
-#define ISF_PC_OFFSET CPU_MINIMUM_STACK_FRAME_SIZE + 0x04
-#define ISF_NPC_OFFSET CPU_MINIMUM_STACK_FRAME_SIZE + 0x08
-#define ISF_G1_OFFSET CPU_MINIMUM_STACK_FRAME_SIZE + 0x0c
-#define ISF_G2_OFFSET CPU_MINIMUM_STACK_FRAME_SIZE + 0x10
-#define ISF_G3_OFFSET CPU_MINIMUM_STACK_FRAME_SIZE + 0x14
-#define ISF_G4_OFFSET CPU_MINIMUM_STACK_FRAME_SIZE + 0x18
-#define ISF_G5_OFFSET CPU_MINIMUM_STACK_FRAME_SIZE + 0x1c
-#define ISF_G6_OFFSET CPU_MINIMUM_STACK_FRAME_SIZE + 0x20
-#define ISF_G7_OFFSET CPU_MINIMUM_STACK_FRAME_SIZE + 0x24
-#define ISF_I0_OFFSET CPU_MINIMUM_STACK_FRAME_SIZE + 0x28
-#define ISF_I1_OFFSET CPU_MINIMUM_STACK_FRAME_SIZE + 0x2c
-#define ISF_I2_OFFSET CPU_MINIMUM_STACK_FRAME_SIZE + 0x30
-#define ISF_I3_OFFSET CPU_MINIMUM_STACK_FRAME_SIZE + 0x34
-#define ISF_I4_OFFSET CPU_MINIMUM_STACK_FRAME_SIZE + 0x38
-#define ISF_I5_OFFSET CPU_MINIMUM_STACK_FRAME_SIZE + 0x3c
-#define ISF_I6_FP_OFFSET CPU_MINIMUM_STACK_FRAME_SIZE + 0x40
-#define ISF_I7_OFFSET CPU_MINIMUM_STACK_FRAME_SIZE + 0x44
-#define ISF_Y_OFFSET CPU_MINIMUM_STACK_FRAME_SIZE + 0x48
-#define ISF_TPC_OFFSET CPU_MINIMUM_STACK_FRAME_SIZE + 0x4c
-
-#define CONTEXT_CONTROL_INTERRUPT_FRAME_SIZE CPU_MINIMUM_STACK_FRAME_SIZE + 0x50
-#ifndef ASM
-
-/*
- * The following table contains the information required to configure
- * the processor specific parameters.
- */
-
-typedef struct {
- void (*pretasking_hook)( void );
- void (*predriver_hook)( void );
- void (*postdriver_hook)( void );
- void (*idle_task)( void );
- boolean do_zero_of_workspace;
- unsigned32 idle_task_stack_size;
- unsigned32 interrupt_stack_size;
- unsigned32 extra_mpci_receive_server_stack;
- void * (*stack_allocate_hook)( unsigned32 );
- void (*stack_free_hook)( void* );
- /* end of fields required on all CPUs */
-
-} rtems_cpu_table;
-
-/*
- * Macros to access required entires in the CPU Table are in
- * the file rtems/system.h.
- */
-
-/*
- * Macros to access SPARC specific additions to the CPU Table
- */
-
-/* There are no CPU specific additions to the CPU Table for this port. */
-
-/*
- * This variable is contains the initialize context for the FP unit.
- * It is filled in by _CPU_Initialize and copied into the task's FP
- * context area during _CPU_Context_Initialize.
- */
-
-SCORE_EXTERN Context_Control_fp _CPU_Null_fp_context CPU_STRUCTURE_ALIGNMENT;
-
-/*
- * This stack is allocated by the Interrupt Manager and the switch
- * is performed in _ISR_Handler. These variables contain pointers
- * to the lowest and highest addresses in the chunk of memory allocated
- * for the interrupt stack. Since it is unknown whether the stack
- * grows up or down (in general), this give the CPU dependent
- * code the option of picking the version it wants to use. Thus
- * both must be present if either is.
- *
- * The SPARC supports a software based interrupt stack and these
- * are required.
- */
-
-SCORE_EXTERN void *_CPU_Interrupt_stack_low;
-SCORE_EXTERN void *_CPU_Interrupt_stack_high;
-
-/*
- * The following type defines an entry in the SPARC's trap table.
- *
- * NOTE: The instructions chosen are RTEMS dependent although one is
- * obligated to use two of the four instructions to perform a
- * long jump. The other instructions load one register with the
- * trap type (a.k.a. vector) and another with the psr.
- */
-
-typedef struct {
- unsigned32 mov_psr_l0; /* mov %psr, %l0 */
- unsigned32 sethi_of_handler_to_l4; /* sethi %hi(_handler), %l4 */
- unsigned32 jmp_to_low_of_handler_plus_l4; /* jmp %l4 + %lo(_handler) */
- unsigned32 mov_vector_l3; /* mov _vector, %l3 */
-} CPU_Trap_table_entry;
-
-/*
- * This is the set of opcodes for the instructions loaded into a trap
- * table entry. The routine which installs a handler is responsible
- * for filling in the fields for the _handler address and the _vector
- * trap type.
- *
- * The constants following this structure are masks for the fields which
- * must be filled in when the handler is installed.
- */
-
-extern const CPU_Trap_table_entry _CPU_Trap_slot_template;
-
-/*
- * The size of the floating point context area.
- */
-
-#define CPU_CONTEXT_FP_SIZE sizeof( Context_Control_fp )
-
-#endif
-
-/*
- * Amount of extra stack (above minimum stack size) required by
- * MPCI receive server thread. Remember that in a multiprocessor
- * system this thread must exist and be able to process all directives.
- */
-
-#define CPU_MPCI_RECEIVE_SERVER_EXTRA_STACK 1024
-
-/*
- * This defines the number of entries in the ISR_Vector_table managed
- * by the executive.
- *
- * On the SPARC, there are really only 256 vectors. However, the executive
- * has no easy, fast, reliable way to determine which traps are synchronous
- * and which are asynchronous. By default, synchronous traps return to the
- * instruction which caused the interrupt. So if you install a software
- * trap handler as an executive interrupt handler (which is desirable since
- * RTEMS takes care of window and register issues), then the executive needs
- * to know that the return address is to the trap rather than the instruction
- * following the trap.
- *
- * So vectors 0 through 255 are treated as regular asynchronous traps which
- * provide the "correct" return address. Vectors 256 through 512 are assumed
- * by the executive to be synchronous and to require that the return address
- * be fudged.
- *
- * If you use this mechanism to install a trap handler which must reexecute
- * the instruction which caused the trap, then it should be installed as
- * an asynchronous trap. This will avoid the executive changing the return
- * address.
- */
-
-#define CPU_INTERRUPT_NUMBER_OF_VECTORS 256
-#define CPU_INTERRUPT_MAXIMUM_VECTOR_NUMBER 511
-
-#define SPARC_SYNCHRONOUS_TRAP_BIT_MASK 0x100
-#define SPARC_ASYNCHRONOUS_TRAP( _trap ) (_trap)
-#define SPARC_SYNCHRONOUS_TRAP( _trap ) ((_trap) + 256 )
-
-#define SPARC_REAL_TRAP_NUMBER( _trap ) ((_trap) % 256)
-
-/*
- * This is defined if the port has a special way to report the ISR nesting
- * level. Most ports maintain the variable _ISR_Nest_level.
- */
-
-#define CPU_PROVIDES_ISR_IS_IN_PROGRESS FALSE
-
-/*
- * Should be large enough to run all tests. This insures
- * that a "reasonable" small application should not have any problems.
- *
- * This appears to be a fairly generous number for the SPARC since
- * represents a call depth of about 20 routines based on the minimum
- * stack frame.
- */
-
-#define CPU_STACK_MINIMUM_SIZE (1024*4)
-
-/*
- * CPU's worst alignment requirement for data types on a byte boundary. This
- * alignment does not take into account the requirements for the stack.
- *
- * On the SPARC, this is required for double word loads and stores.
- */
-
-#define CPU_ALIGNMENT 8
-
-/*
- * This number corresponds to the byte alignment requirement for the
- * heap handler. This alignment requirement may be stricter than that
- * for the data types alignment specified by CPU_ALIGNMENT. It is
- * common for the heap to follow the same alignment requirement as
- * CPU_ALIGNMENT. If the CPU_ALIGNMENT is strict enough for the heap,
- * then this should be set to CPU_ALIGNMENT.
- *
- * NOTE: This does not have to be a power of 2. It does have to
- * be greater or equal to than CPU_ALIGNMENT.
- */
-
-#define CPU_HEAP_ALIGNMENT CPU_ALIGNMENT
-
-/*
- * This number corresponds to the byte alignment requirement for memory
- * buffers allocated by the partition manager. This alignment requirement
- * may be stricter than that for the data types alignment specified by
- * CPU_ALIGNMENT. It is common for the partition to follow the same
- * alignment requirement as CPU_ALIGNMENT. If the CPU_ALIGNMENT is strict
- * enough for the partition, then this should be set to CPU_ALIGNMENT.
- *
- * NOTE: This does not have to be a power of 2. It does have to
- * be greater or equal to than CPU_ALIGNMENT.
- */
-
-#define CPU_PARTITION_ALIGNMENT CPU_ALIGNMENT
-
-/*
- * This number corresponds to the byte alignment requirement for the
- * stack. This alignment requirement may be stricter than that for the
- * data types alignment specified by CPU_ALIGNMENT. If the CPU_ALIGNMENT
- * is strict enough for the stack, then this should be set to 0.
- *
- * NOTE: This must be a power of 2 either 0 or greater than CPU_ALIGNMENT.
- *
- * The alignment restrictions for the SPARC are not that strict but this
- * should unsure that the stack is always sufficiently alignment that the
- * window overflow, underflow, and flush routines can use double word loads
- * and stores.
- */
-
-#define CPU_STACK_ALIGNMENT 16
-
-#ifndef ASM
-
-extern unsigned int sparc_disable_interrupts();
-extern void sparc_enable_interrupts();
-
-/*
- * ISR handler macros
- */
-
-/*
- * Support routine to initialize the RTEMS vector table after it is allocated.
- */
-
-#define _CPU_Initialize_vectors()
-
-/*
- * Disable all interrupts for a critical section. The previous
- * level is returned in _level.
- */
-
-#define _CPU_ISR_Disable( _level ) \
- (_level) = sparc_disable_interrupts()
-
-/*
- * Enable interrupts to the previous level (returned by _CPU_ISR_Disable).
- * This indicates the end of a critical section. The parameter
- * _level is not modified.
- */
-
-#define _CPU_ISR_Enable( _level ) \
- sparc_enable_interrupts( _level )
-/*
- * This temporarily restores the interrupt to _level before immediately
- * disabling them again. This is used to divide long critical
- * sections into two or more parts. The parameter _level is not
- * modified.
- */
-
-#define _CPU_ISR_Flash( _level ) \
- sparc_flash_interrupts( _level )
-
-/*
- * Map interrupt level in task mode onto the hardware that the CPU
- * actually provides. Currently, interrupt levels which do not
- * map onto the CPU in a straight fashion are undefined.
- */
-
-#define _CPU_ISR_Set_level( _newlevel ) \
- sparc_enable_interrupts( _newlevel << 8)
-
-unsigned32 _CPU_ISR_Get_level( void );
-
-/* end of ISR handler macros */
-
-/* Context handler macros */
-
-/*
- * Initialize the context to a state suitable for starting a
- * task after a context restore operation. Generally, this
- * involves:
- *
- * - setting a starting address
- * - preparing the stack
- * - preparing the stack and frame pointers
- * - setting the proper interrupt level in the context
- * - initializing the floating point context
- *
- * NOTE: Implemented as a subroutine for the SPARC port.
- */
-
-void _CPU_Context_Initialize(
- Context_Control *the_context,
- unsigned32 *stack_base,
- unsigned32 size,
- unsigned32 new_level,
- void *entry_point,
- boolean is_fp
-);
-
-/*
- * This routine is responsible for somehow restarting the currently
- * executing task.
- *
- * On the SPARC, this is is relatively painless but requires a small
- * amount of wrapper code before using the regular restore code in
- * of the context switch.
- */
-
-#define _CPU_Context_Restart_self( _the_context ) \
- _CPU_Context_restore( (_the_context) );
-
-/*
- * The FP context area for the SPARC is a simple structure and nothing
- * special is required to find the "starting load point"
- */
-
-#define _CPU_Context_Fp_start( _base, _offset ) \
- ( (void *) _Addresses_Add_offset( (_base), (_offset) ) )
-
-/*
- * This routine initializes the FP context area passed to it to.
- *
- * The SPARC allows us to use the simple initialization model
- * in which an "initial" FP context was saved into _CPU_Null_fp_context
- * at CPU initialization and it is simply copied into the destination
- * context.
- */
-
-#define _CPU_Context_Initialize_fp( _destination ) \
- do { \
- *((Context_Control_fp *) *((void **) _destination)) = _CPU_Null_fp_context; \
- } while (0)
-
-/* end of Context handler macros */
-
-/* Fatal Error manager macros */
-
-/*
- * This routine copies _error into a known place -- typically a stack
- * location or a register, optionally disables interrupts, and
- * halts/stops the CPU.
- */
-
-#define _CPU_Fatal_halt( _error ) \
- do { \
- unsigned32 level; \
- \
- level = sparc_disable_interrupts(); \
- asm volatile ( "mov %0, %%g1 " : "=r" (level) : "0" (level) ); \
- while (1); /* loop forever */ \
- } while (0)
-
-/* end of Fatal Error manager macros */
-
-/* Bitfield handler macros */
-
-/*
- * The SPARC port uses the generic C algorithm for bitfield scan if the
- * CPU model does not have a scan instruction.
- */
-
-#if ( SPARC_HAS_BITSCAN == 0 )
-#define CPU_USE_GENERIC_BITFIELD_CODE TRUE
-#define CPU_USE_GENERIC_BITFIELD_DATA TRUE
-#else
-#error "scan instruction not currently supported by RTEMS!!"
-#endif
-
-/* end of Bitfield handler macros */
-
-/* Priority handler handler macros */
-
-/*
- * The SPARC port uses the generic C algorithm for bitfield scan if the
- * CPU model does not have a scan instruction.
- */
-
-#if ( SPARC_HAS_BITSCAN == 1 )
-#error "scan instruction not currently supported by RTEMS!!"
-#endif
-
-/* end of Priority handler macros */
-
-/* functions */
-
-/*
- * _CPU_Initialize
- *
- * This routine performs CPU dependent initialization.
- */
-
-void _CPU_Initialize(
- rtems_cpu_table *cpu_table,
- void (*thread_dispatch)
-);
-
-/*
- * _CPU_ISR_install_raw_handler
- *
- * This routine installs new_handler to be directly called from the trap
- * table.
- */
-
-void _CPU_ISR_install_raw_handler(
- unsigned32 vector,
- proc_ptr new_handler,
- proc_ptr *old_handler
-);
-
-/*
- * _CPU_ISR_install_vector
- *
- * This routine installs an interrupt vector.
- */
-
-void _CPU_ISR_install_vector(
- unsigned32 vector,
- proc_ptr new_handler,
- proc_ptr *old_handler
-);
-
-#if (CPU_PROVIDES_IDLE_THREAD_BODY == TRUE)
-
-/*
- * _CPU_Thread_Idle_body
- *
- * Some SPARC implementations have low power, sleep, or idle modes. This
- * tries to take advantage of those models.
- */
-
-void _CPU_Thread_Idle_body( void );
-
-#endif /* CPU_PROVIDES_IDLE_THREAD_BODY */
-
-/*
- * _CPU_Context_switch
- *
- * This routine switches from the run context to the heir context.
- */
-
-void _CPU_Context_switch(
- Context_Control *run,
- Context_Control *heir
-);
-
-/*
- * _CPU_Context_restore
- *
- * This routine is generally used only to restart self in an
- * efficient manner.
- */
-
-void _CPU_Context_restore(
- Context_Control *new_context
-);
-
-/*
- * _CPU_Context_save_fp
- *
- * This routine saves the floating point context passed to it.
- */
-
-void _CPU_Context_save_fp(
- void **fp_context_ptr
-);
-
-/*
- * _CPU_Context_restore_fp
- *
- * This routine restores the floating point context passed to it.
- */
-
-void _CPU_Context_restore_fp(
- void **fp_context_ptr
-);
-
-/*
- * CPU_swap_u32
- *
- * The following routine swaps the endian format of an unsigned int.
- * It must be static because it is referenced indirectly.
- *
- * This version will work on any processor, but if you come across a better
- * way for the SPARC PLEASE use it. The most common way to swap a 32-bit
- * entity as shown below is not any more efficient on the SPARC.
- *
- * swap least significant two bytes with 16-bit rotate
- * swap upper and lower 16-bits
- * swap most significant two bytes with 16-bit rotate
- *
- * It is not obvious how the SPARC can do significantly better than the
- * generic code. gcc 2.7.0 only generates about 12 instructions for the
- * following code at optimization level four (i.e. -O4).
- */
-
-static inline unsigned int CPU_swap_u32(
- unsigned int value
-)
-{
- unsigned32 byte1, byte2, byte3, byte4, swapped;
-
- byte4 = (value >> 24) & 0xff;
- byte3 = (value >> 16) & 0xff;
- byte2 = (value >> 8) & 0xff;
- byte1 = value & 0xff;
-
- swapped = (byte1 << 24) | (byte2 << 16) | (byte3 << 8) | byte4;
- return( swapped );
-}
-
-#define CPU_swap_u16( value ) \
- (((value&0xff) << 8) | ((value >> 8)&0xff))
-
-#endif ASM
-
-#ifdef __cplusplus
-}
-#endif
-
-#endif