summaryrefslogtreecommitdiffstats
path: root/c/src/exec/score/cpu/mips/rtems
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--c/src/exec/score/cpu/mips/rtems/.cvsignore2
-rw-r--r--c/src/exec/score/cpu/mips/rtems/score/.cvsignore2
-rw-r--r--c/src/exec/score/cpu/mips/rtems/score/cpu.h1202
-rw-r--r--c/src/exec/score/cpu/mips/rtems/score/mips.h272
-rw-r--r--c/src/exec/score/cpu/mips/rtems/score/types.h57
5 files changed, 0 insertions, 1535 deletions
diff --git a/c/src/exec/score/cpu/mips/rtems/.cvsignore b/c/src/exec/score/cpu/mips/rtems/.cvsignore
deleted file mode 100644
index 282522db03..0000000000
--- a/c/src/exec/score/cpu/mips/rtems/.cvsignore
+++ /dev/null
@@ -1,2 +0,0 @@
-Makefile
-Makefile.in
diff --git a/c/src/exec/score/cpu/mips/rtems/score/.cvsignore b/c/src/exec/score/cpu/mips/rtems/score/.cvsignore
deleted file mode 100644
index 282522db03..0000000000
--- a/c/src/exec/score/cpu/mips/rtems/score/.cvsignore
+++ /dev/null
@@ -1,2 +0,0 @@
-Makefile
-Makefile.in
diff --git a/c/src/exec/score/cpu/mips/rtems/score/cpu.h b/c/src/exec/score/cpu/mips/rtems/score/cpu.h
deleted file mode 100644
index 43c7c33975..0000000000
--- a/c/src/exec/score/cpu/mips/rtems/score/cpu.h
+++ /dev/null
@@ -1,1202 +0,0 @@
-/*
- * Mips CPU Dependent Header File
- *
- * Conversion to MIPS port by Alan Cudmore <alanc@linuxstart.com> and
- * Joel Sherrill <joel@OARcorp.com>.
- *
- * These changes made the code conditional on standard cpp predefines,
- * merged the mips1 and mips3 code sequences as much as possible,
- * and moved some of the assembly code to C. Alan did much of the
- * initial analysis and rework. Joel took over from there and
- * wrote the JMR3904 BSP so this could be tested. Joel also
- * added the new interrupt vectoring support in libcpu and
- * tried to better support the various interrupt controllers.
- *
- * Original MIP64ORION port by Craig Lebakken <craigl@transition.com>
- * COPYRIGHT (c) 1996 by Transition Networks Inc.
- *
- * To anyone who acknowledges that this file is provided "AS IS"
- * without any express or implied warranty:
- * permission to use, copy, modify, and distribute this file
- * for any purpose is hereby granted without fee, provided that
- * the above copyright notice and this notice appears in all
- * copies, and that the name of Transition Networks not be used in
- * advertising or publicity pertaining to distribution of the
- * software without specific, written prior permission.
- * Transition Networks makes no representations about the suitability
- * of this software for any purpose.
- *
- * COPYRIGHT (c) 1989-2001.
- * On-Line Applications Research Corporation (OAR).
- *
- * The license and distribution terms for this file may be
- * found in the file LICENSE in this distribution or at
- * http://www.OARcorp.com/rtems/license.html.
- *
- * $Id$
- */
-
-#ifndef __CPU_h
-#define __CPU_h
-
-#ifdef __cplusplus
-extern "C" {
-#endif
-
-#include <rtems/score/mips.h> /* pick up machine definitions */
-#ifndef ASM
-#include <rtems/score/types.h>
-#endif
-
-/* conditional compilation parameters */
-
-/*
- * Should the calls to _Thread_Enable_dispatch be inlined?
- *
- * If TRUE, then they are inlined.
- * If FALSE, then a subroutine call is made.
- *
- * Basically this is an example of the classic trade-off of size
- * versus speed. Inlining the call (TRUE) typically increases the
- * size of RTEMS while speeding up the enabling of dispatching.
- * [NOTE: In general, the _Thread_Dispatch_disable_level will
- * only be 0 or 1 unless you are in an interrupt handler and that
- * interrupt handler invokes the executive.] When not inlined
- * something calls _Thread_Enable_dispatch which in turns calls
- * _Thread_Dispatch. If the enable dispatch is inlined, then
- * one subroutine call is avoided entirely.]
- */
-
-#define CPU_INLINE_ENABLE_DISPATCH FALSE
-
-/*
- * Should the body of the search loops in _Thread_queue_Enqueue_priority
- * be unrolled one time? In unrolled each iteration of the loop examines
- * two "nodes" on the chain being searched. Otherwise, only one node
- * is examined per iteration.
- *
- * If TRUE, then the loops are unrolled.
- * If FALSE, then the loops are not unrolled.
- *
- * The primary factor in making this decision is the cost of disabling
- * and enabling interrupts (_ISR_Flash) versus the cost of rest of the
- * body of the loop. On some CPUs, the flash is more expensive than
- * one iteration of the loop body. In this case, it might be desirable
- * to unroll the loop. It is important to note that on some CPUs, this
- * code is the longest interrupt disable period in RTEMS. So it is
- * necessary to strike a balance when setting this parameter.
- */
-
-#define CPU_UNROLL_ENQUEUE_PRIORITY TRUE
-
-/*
- * Does RTEMS manage a dedicated interrupt stack in software?
- *
- * If TRUE, then a stack is allocated in _Interrupt_Manager_initialization.
- * If FALSE, nothing is done.
- *
- * If the CPU supports a dedicated interrupt stack in hardware,
- * then it is generally the responsibility of the BSP to allocate it
- * and set it up.
- *
- * If the CPU does not support a dedicated interrupt stack, then
- * the porter has two options: (1) execute interrupts on the
- * stack of the interrupted task, and (2) have RTEMS manage a dedicated
- * interrupt stack.
- *
- * If this is TRUE, CPU_ALLOCATE_INTERRUPT_STACK should also be TRUE.
- *
- * Only one of CPU_HAS_SOFTWARE_INTERRUPT_STACK and
- * CPU_HAS_HARDWARE_INTERRUPT_STACK should be set to TRUE. It is
- * possible that both are FALSE for a particular CPU. Although it
- * is unclear what that would imply about the interrupt processing
- * procedure on that CPU.
- */
-
-#define CPU_HAS_SOFTWARE_INTERRUPT_STACK FALSE
-
-/*
- * Does this CPU have hardware support for a dedicated interrupt stack?
- *
- * If TRUE, then it must be installed during initialization.
- * If FALSE, then no installation is performed.
- *
- * If this is TRUE, CPU_ALLOCATE_INTERRUPT_STACK should also be TRUE.
- *
- * Only one of CPU_HAS_SOFTWARE_INTERRUPT_STACK and
- * CPU_HAS_HARDWARE_INTERRUPT_STACK should be set to TRUE. It is
- * possible that both are FALSE for a particular CPU. Although it
- * is unclear what that would imply about the interrupt processing
- * procedure on that CPU.
- */
-
-#define CPU_HAS_HARDWARE_INTERRUPT_STACK FALSE
-
-/*
- * Does RTEMS allocate a dedicated interrupt stack in the Interrupt Manager?
- *
- * If TRUE, then the memory is allocated during initialization.
- * If FALSE, then the memory is allocated during initialization.
- *
- * This should be TRUE is CPU_HAS_SOFTWARE_INTERRUPT_STACK is TRUE
- * or CPU_INSTALL_HARDWARE_INTERRUPT_STACK is TRUE.
- */
-
-#define CPU_ALLOCATE_INTERRUPT_STACK FALSE
-
-/*
- * Does the RTEMS invoke the user's ISR with the vector number and
- * a pointer to the saved interrupt frame (1) or just the vector
- * number (0)?
- *
- */
-
-#define CPU_ISR_PASSES_FRAME_POINTER 1
-
-
-
-/*
- * Does the CPU have hardware floating point?
- *
- * If TRUE, then the RTEMS_FLOATING_POINT task attribute is supported.
- * If FALSE, then the RTEMS_FLOATING_POINT task attribute is ignored.
- *
- * If there is a FP coprocessor such as the i387 or mc68881, then
- * the answer is TRUE.
- *
- * The macro name "MIPS_HAS_FPU" should be made CPU specific.
- * It indicates whether or not this CPU model has FP support. For
- * example, it would be possible to have an i386_nofp CPU model
- * which set this to false to indicate that you have an i386 without
- * an i387 and wish to leave floating point support out of RTEMS.
- */
-
-#if ( MIPS_HAS_FPU == 1 )
-#define CPU_HARDWARE_FP TRUE
-#else
-#define CPU_HARDWARE_FP FALSE
-#endif
-
-/*
- * Are all tasks RTEMS_FLOATING_POINT tasks implicitly?
- *
- * If TRUE, then the RTEMS_FLOATING_POINT task attribute is assumed.
- * If FALSE, then the RTEMS_FLOATING_POINT task attribute is followed.
- *
- * So far, the only CPU in which this option has been used is the
- * HP PA-RISC. The HP C compiler and gcc both implicitly use the
- * floating point registers to perform integer multiplies. If
- * a function which you would not think utilize the FP unit DOES,
- * then one can not easily predict which tasks will use the FP hardware.
- * In this case, this option should be TRUE.
- *
- * If CPU_HARDWARE_FP is FALSE, then this should be FALSE as well.
- */
-
-#define CPU_ALL_TASKS_ARE_FP FALSE
-
-/*
- * Should the IDLE task have a floating point context?
- *
- * If TRUE, then the IDLE task is created as a RTEMS_FLOATING_POINT task
- * and it has a floating point context which is switched in and out.
- * If FALSE, then the IDLE task does not have a floating point context.
- *
- * Setting this to TRUE negatively impacts the time required to preempt
- * the IDLE task from an interrupt because the floating point context
- * must be saved as part of the preemption.
- */
-
-#define CPU_IDLE_TASK_IS_FP FALSE
-
-/*
- * Should the saving of the floating point registers be deferred
- * until a context switch is made to another different floating point
- * task?
- *
- * If TRUE, then the floating point context will not be stored until
- * necessary. It will remain in the floating point registers and not
- * disturned until another floating point task is switched to.
- *
- * If FALSE, then the floating point context is saved when a floating
- * point task is switched out and restored when the next floating point
- * task is restored. The state of the floating point registers between
- * those two operations is not specified.
- *
- * If the floating point context does NOT have to be saved as part of
- * interrupt dispatching, then it should be safe to set this to TRUE.
- *
- * Setting this flag to TRUE results in using a different algorithm
- * for deciding when to save and restore the floating point context.
- * The deferred FP switch algorithm minimizes the number of times
- * the FP context is saved and restored. The FP context is not saved
- * until a context switch is made to another, different FP task.
- * Thus in a system with only one FP task, the FP context will never
- * be saved or restored.
- */
-
-#define CPU_USE_DEFERRED_FP_SWITCH TRUE
-
-/*
- * Does this port provide a CPU dependent IDLE task implementation?
- *
- * If TRUE, then the routine _CPU_Internal_threads_Idle_thread_body
- * must be provided and is the default IDLE thread body instead of
- * _Internal_threads_Idle_thread_body.
- *
- * If FALSE, then use the generic IDLE thread body if the BSP does
- * not provide one.
- *
- * This is intended to allow for supporting processors which have
- * a low power or idle mode. When the IDLE thread is executed, then
- * the CPU can be powered down.
- *
- * The order of precedence for selecting the IDLE thread body is:
- *
- * 1. BSP provided
- * 2. CPU dependent (if provided)
- * 3. generic (if no BSP and no CPU dependent)
- */
-
-/* we can use the low power wait instruction for the IDLE thread */
-#define CPU_PROVIDES_IDLE_THREAD_BODY TRUE
-
-/*
- * Does the stack grow up (toward higher addresses) or down
- * (toward lower addresses)?
- *
- * If TRUE, then the grows upward.
- * If FALSE, then the grows toward smaller addresses.
- */
-
-/* our stack grows down */
-#define CPU_STACK_GROWS_UP FALSE
-
-/*
- * The following is the variable attribute used to force alignment
- * of critical RTEMS structures. On some processors it may make
- * sense to have these aligned on tighter boundaries than
- * the minimum requirements of the compiler in order to have as
- * much of the critical data area as possible in a cache line.
- *
- * The placement of this macro in the declaration of the variables
- * is based on the syntactically requirements of the GNU C
- * "__attribute__" extension. For example with GNU C, use
- * the following to force a structures to a 32 byte boundary.
- *
- * __attribute__ ((aligned (32)))
- *
- * NOTE: Currently only the Priority Bit Map table uses this feature.
- * To benefit from using this, the data must be heavily
- * used so it will stay in the cache and used frequently enough
- * in the executive to justify turning this on.
- */
-
-/* our cache line size is 16 bytes */
-#if __GNUC__
-#define CPU_STRUCTURE_ALIGNMENT __attribute__ ((aligned (16)))
-#else
-#define CPU_STRUCTURE_ALIGNMENT
-#endif
-
-/*
- * Define what is required to specify how the network to host conversion
- * routines are handled.
- */
-
-#define CPU_HAS_OWN_HOST_TO_NETWORK_ROUTINES FALSE
-#define CPU_BIG_ENDIAN TRUE
-#define CPU_LITTLE_ENDIAN FALSE
-
-/*
- * The following defines the number of bits actually used in the
- * interrupt field of the task mode. How those bits map to the
- * CPU interrupt levels is defined by the routine _CPU_ISR_Set_level().
- */
-
-#define CPU_MODES_INTERRUPT_MASK 0x000000ff
-
-/*
- * Processor defined structures
- *
- * Examples structures include the descriptor tables from the i386
- * and the processor control structure on the i960ca.
- */
-
-/* may need to put some structures here. */
-
-/*
- * Contexts
- *
- * Generally there are 2 types of context to save.
- * 1. Interrupt registers to save
- * 2. Task level registers to save
- *
- * This means we have the following 3 context items:
- * 1. task level context stuff:: Context_Control
- * 2. floating point task stuff:: Context_Control_fp
- * 3. special interrupt level context :: Context_Control_interrupt
- *
- * On some processors, it is cost-effective to save only the callee
- * preserved registers during a task context switch. This means
- * that the ISR code needs to save those registers which do not
- * persist across function calls. It is not mandatory to make this
- * distinctions between the caller/callee saves registers for the
- * purpose of minimizing context saved during task switch and on interrupts.
- * If the cost of saving extra registers is minimal, simplicity is the
- * choice. Save the same context on interrupt entry as for tasks in
- * this case.
- *
- * Additionally, if gdb is to be made aware of RTEMS tasks for this CPU, then
- * care should be used in designing the context area.
- *
- * On some CPUs with hardware floating point support, the Context_Control_fp
- * structure will not be used or it simply consist of an array of a
- * fixed number of bytes. This is done when the floating point context
- * is dumped by a "FP save context" type instruction and the format
- * is not really defined by the CPU. In this case, there is no need
- * to figure out the exact format -- only the size. Of course, although
- * this is enough information for RTEMS, it is probably not enough for
- * a debugger such as gdb. But that is another problem.
- */
-
-#ifndef ASSEMBLY_ONLY
-
-/* WARNING: If this structure is modified, the constants in cpu.h must be updated. */
-#if __mips == 1
-#define __MIPS_REGISTER_TYPE unsigned32
-#define __MIPS_FPU_REGISTER_TYPE unsigned32
-#elif __mips == 3
-#define __MIPS_REGISTER_TYPE unsigned64
-#define __MIPS_FPU_REGISTER_TYPE unsigned64
-#else
-#error "mips register size: unknown architecture level!!"
-#endif
-typedef struct {
- __MIPS_REGISTER_TYPE s0;
- __MIPS_REGISTER_TYPE s1;
- __MIPS_REGISTER_TYPE s2;
- __MIPS_REGISTER_TYPE s3;
- __MIPS_REGISTER_TYPE s4;
- __MIPS_REGISTER_TYPE s5;
- __MIPS_REGISTER_TYPE s6;
- __MIPS_REGISTER_TYPE s7;
- __MIPS_REGISTER_TYPE sp;
- __MIPS_REGISTER_TYPE fp;
- __MIPS_REGISTER_TYPE ra;
- __MIPS_REGISTER_TYPE c0_sr;
- __MIPS_REGISTER_TYPE c0_epc;
-} Context_Control;
-
-/* WARNING: If this structure is modified, the constants in cpu.h
- * must also be updated.
- */
-
-typedef struct {
-#if ( CPU_HARDWARE_FP == TRUE )
- __MIPS_FPU_REGISTER_TYPE fp0;
- __MIPS_FPU_REGISTER_TYPE fp1;
- __MIPS_FPU_REGISTER_TYPE fp2;
- __MIPS_FPU_REGISTER_TYPE fp3;
- __MIPS_FPU_REGISTER_TYPE fp4;
- __MIPS_FPU_REGISTER_TYPE fp5;
- __MIPS_FPU_REGISTER_TYPE fp6;
- __MIPS_FPU_REGISTER_TYPE fp7;
- __MIPS_FPU_REGISTER_TYPE fp8;
- __MIPS_FPU_REGISTER_TYPE fp9;
- __MIPS_FPU_REGISTER_TYPE fp10;
- __MIPS_FPU_REGISTER_TYPE fp11;
- __MIPS_FPU_REGISTER_TYPE fp12;
- __MIPS_FPU_REGISTER_TYPE fp13;
- __MIPS_FPU_REGISTER_TYPE fp14;
- __MIPS_FPU_REGISTER_TYPE fp15;
- __MIPS_FPU_REGISTER_TYPE fp16;
- __MIPS_FPU_REGISTER_TYPE fp17;
- __MIPS_FPU_REGISTER_TYPE fp18;
- __MIPS_FPU_REGISTER_TYPE fp19;
- __MIPS_FPU_REGISTER_TYPE fp20;
- __MIPS_FPU_REGISTER_TYPE fp21;
- __MIPS_FPU_REGISTER_TYPE fp22;
- __MIPS_FPU_REGISTER_TYPE fp23;
- __MIPS_FPU_REGISTER_TYPE fp24;
- __MIPS_FPU_REGISTER_TYPE fp25;
- __MIPS_FPU_REGISTER_TYPE fp26;
- __MIPS_FPU_REGISTER_TYPE fp27;
- __MIPS_FPU_REGISTER_TYPE fp28;
- __MIPS_FPU_REGISTER_TYPE fp29;
- __MIPS_FPU_REGISTER_TYPE fp30;
- __MIPS_FPU_REGISTER_TYPE fp31;
-#endif
-} Context_Control_fp;
-
-/*
- * This struct reflects the stack frame employed in ISR_Handler. Note
- * that the ISR routine save some of the registers to this frame for
- * all interrupts and exceptions. Other registers are saved only on
- * exceptions, while others are not touched at all. The untouched
- * registers are not normally disturbed by high-level language
- * programs so they can be accessed when required.
- *
- * The registers and their ordering in this struct must directly
- * correspond to the layout and ordering of * shown in iregdef.h,
- * as cpu_asm.S uses those definitions to fill the stack frame.
- * This struct provides access to the stack frame for C code.
- *
- * Similarly, this structure is used by debugger stubs and exception
- * processing routines so be careful when changing the format.
- *
- * NOTE: The comments with this structure and cpu_asm.S should be kept
- * in sync. When in doubt, look in the code to see if the
- * registers you're interested in are actually treated as expected.
- * The order of the first portion of this structure follows the
- * order of registers expected by gdb.
- */
-
-typedef struct
-{
- __MIPS_REGISTER_TYPE r0; /* 0 -- NOT FILLED IN */
- __MIPS_REGISTER_TYPE at; /* 1 -- saved always */
- __MIPS_REGISTER_TYPE v0; /* 2 -- saved always */
- __MIPS_REGISTER_TYPE v1; /* 3 -- saved always */
- __MIPS_REGISTER_TYPE a0; /* 4 -- saved always */
- __MIPS_REGISTER_TYPE a1; /* 5 -- saved always */
- __MIPS_REGISTER_TYPE a2; /* 6 -- saved always */
- __MIPS_REGISTER_TYPE a3; /* 7 -- saved always */
- __MIPS_REGISTER_TYPE t0; /* 8 -- saved always */
- __MIPS_REGISTER_TYPE t1; /* 9 -- saved always */
- __MIPS_REGISTER_TYPE t2; /* 10 -- saved always */
- __MIPS_REGISTER_TYPE t3; /* 11 -- saved always */
- __MIPS_REGISTER_TYPE t4; /* 12 -- saved always */
- __MIPS_REGISTER_TYPE t5; /* 13 -- saved always */
- __MIPS_REGISTER_TYPE t6; /* 14 -- saved always */
- __MIPS_REGISTER_TYPE t7; /* 15 -- saved always */
- __MIPS_REGISTER_TYPE s0; /* 16 -- saved on exceptions */
- __MIPS_REGISTER_TYPE s1; /* 17 -- saved on exceptions */
- __MIPS_REGISTER_TYPE s2; /* 18 -- saved on exceptions */
- __MIPS_REGISTER_TYPE s3; /* 19 -- saved on exceptions */
- __MIPS_REGISTER_TYPE s4; /* 20 -- saved on exceptions */
- __MIPS_REGISTER_TYPE s5; /* 21 -- saved on exceptions */
- __MIPS_REGISTER_TYPE s6; /* 22 -- saved on exceptions */
- __MIPS_REGISTER_TYPE s7; /* 23 -- saved on exceptions */
- __MIPS_REGISTER_TYPE t8; /* 24 -- saved always */
- __MIPS_REGISTER_TYPE t9; /* 25 -- saved always */
- __MIPS_REGISTER_TYPE k0; /* 26 -- NOT FILLED IN, kernel tmp reg */
- __MIPS_REGISTER_TYPE k1; /* 27 -- NOT FILLED IN, kernel tmp reg */
- __MIPS_REGISTER_TYPE gp; /* 28 -- saved always */
- __MIPS_REGISTER_TYPE sp; /* 29 -- saved on exceptions NOT RESTORED */
- __MIPS_REGISTER_TYPE fp; /* 30 -- saved always */
- __MIPS_REGISTER_TYPE ra; /* 31 -- saved always */
- __MIPS_REGISTER_TYPE c0_sr; /* 32 -- saved always, some bits are */
- /* manipulated per-thread */
- __MIPS_REGISTER_TYPE mdlo; /* 33 -- saved always */
- __MIPS_REGISTER_TYPE mdhi; /* 34 -- saved always */
- __MIPS_REGISTER_TYPE badvaddr; /* 35 -- saved on exceptions, read-only */
- __MIPS_REGISTER_TYPE cause; /* 36 -- saved on exceptions NOT restored */
- __MIPS_REGISTER_TYPE epc; /* 37 -- saved always, read-only register */
- /* but logically restored */
- __MIPS_FPU_REGISTER_TYPE f0; /* 38 -- saved if FP enabled */
- __MIPS_FPU_REGISTER_TYPE f1; /* 39 -- saved if FP enabled */
- __MIPS_FPU_REGISTER_TYPE f2; /* 40 -- saved if FP enabled */
- __MIPS_FPU_REGISTER_TYPE f3; /* 41 -- saved if FP enabled */
- __MIPS_FPU_REGISTER_TYPE f4; /* 42 -- saved if FP enabled */
- __MIPS_FPU_REGISTER_TYPE f5; /* 43 -- saved if FP enabled */
- __MIPS_FPU_REGISTER_TYPE f6; /* 44 -- saved if FP enabled */
- __MIPS_FPU_REGISTER_TYPE f7; /* 45 -- saved if FP enabled */
- __MIPS_FPU_REGISTER_TYPE f8; /* 46 -- saved if FP enabled */
- __MIPS_FPU_REGISTER_TYPE f9; /* 47 -- saved if FP enabled */
- __MIPS_FPU_REGISTER_TYPE f10; /* 48 -- saved if FP enabled */
- __MIPS_FPU_REGISTER_TYPE f11; /* 49 -- saved if FP enabled */
- __MIPS_FPU_REGISTER_TYPE f12; /* 50 -- saved if FP enabled */
- __MIPS_FPU_REGISTER_TYPE f13; /* 51 -- saved if FP enabled */
- __MIPS_FPU_REGISTER_TYPE f14; /* 52 -- saved if FP enabled */
- __MIPS_FPU_REGISTER_TYPE f15; /* 53 -- saved if FP enabled */
- __MIPS_FPU_REGISTER_TYPE f16; /* 54 -- saved if FP enabled */
- __MIPS_FPU_REGISTER_TYPE f17; /* 55 -- saved if FP enabled */
- __MIPS_FPU_REGISTER_TYPE f18; /* 56 -- saved if FP enabled */
- __MIPS_FPU_REGISTER_TYPE f19; /* 57 -- saved if FP enabled */
- __MIPS_FPU_REGISTER_TYPE f20; /* 58 -- saved if FP enabled */
- __MIPS_FPU_REGISTER_TYPE f21; /* 59 -- saved if FP enabled */
- __MIPS_FPU_REGISTER_TYPE f22; /* 60 -- saved if FP enabled */
- __MIPS_FPU_REGISTER_TYPE f23; /* 61 -- saved if FP enabled */
- __MIPS_FPU_REGISTER_TYPE f24; /* 62 -- saved if FP enabled */
- __MIPS_FPU_REGISTER_TYPE f25; /* 63 -- saved if FP enabled */
- __MIPS_FPU_REGISTER_TYPE f26; /* 64 -- saved if FP enabled */
- __MIPS_FPU_REGISTER_TYPE f27; /* 65 -- saved if FP enabled */
- __MIPS_FPU_REGISTER_TYPE f28; /* 66 -- saved if FP enabled */
- __MIPS_FPU_REGISTER_TYPE f29; /* 67 -- saved if FP enabled */
- __MIPS_FPU_REGISTER_TYPE f30; /* 68 -- saved if FP enabled */
- __MIPS_FPU_REGISTER_TYPE f31; /* 69 -- saved if FP enabled */
- __MIPS_REGISTER_TYPE fcsr; /* 70 -- saved on exceptions */
- /* (oddly not documented on MGV) */
- __MIPS_REGISTER_TYPE feir; /* 71 -- saved on exceptions */
- /* (oddly not documented on MGV) */
-
- /* GDB does not seem to care about anything past this point */
-
- __MIPS_REGISTER_TYPE tlbhi; /* 72 - NOT FILLED IN, doesn't exist on */
- /* all MIPS CPUs (at least MGV) */
-#if __mips == 1
- __MIPS_REGISTER_TYPE tlblo; /* 73 - NOT FILLED IN, doesn't exist on */
- /* all MIPS CPUs (at least MGV) */
-#endif
-#if __mips == 3
- __MIPS_REGISTER_TYPE tlblo0; /* 73 - NOT FILLED IN, doesn't exist on */
- /* all MIPS CPUs (at least MGV) */
-#endif
-
- __MIPS_REGISTER_TYPE inx; /* 74 -- NOT FILLED IN, doesn't exist on */
- /* all MIPS CPUs (at least MGV) */
- __MIPS_REGISTER_TYPE rand; /* 75 -- NOT FILLED IN, doesn't exist on */
- /* all MIPS CPUs (at least MGV) */
- __MIPS_REGISTER_TYPE ctxt; /* 76 -- NOT FILLED IN, doesn't exist on */
- /* all MIPS CPUs (at least MGV) */
- __MIPS_REGISTER_TYPE exctype; /* 77 -- NOT FILLED IN (not enough info) */
- __MIPS_REGISTER_TYPE mode; /* 78 -- NOT FILLED IN (not enough info) */
- __MIPS_REGISTER_TYPE prid; /* 79 -- NOT FILLED IN (not need to do so) */
- __MIPS_REGISTER_TYPE tar ; /* 80 -- target address register, filled on exceptions */
- /* end of __mips == 1 so NREGS == 81 */
-#if __mips == 3
- __MIPS_REGISTER_TYPE tlblo1; /* 81 -- NOT FILLED IN */
- __MIPS_REGISTER_TYPE pagemask; /* 82 -- NOT FILLED IN */
- __MIPS_REGISTER_TYPE wired; /* 83 -- NOT FILLED IN */
- __MIPS_REGISTER_TYPE count; /* 84 -- NOT FILLED IN */
- __MIPS_REGISTER_TYPE compare; /* 85 -- NOT FILLED IN */
- __MIPS_REGISTER_TYPE config; /* 86 -- NOT FILLED IN */
- __MIPS_REGISTER_TYPE lladdr; /* 87 -- NOT FILLED IN */
- __MIPS_REGISTER_TYPE watchlo; /* 88 -- NOT FILLED IN */
- __MIPS_REGISTER_TYPE watchhi; /* 89 -- NOT FILLED IN */
- __MIPS_REGISTER_TYPE ecc; /* 90 -- NOT FILLED IN */
- __MIPS_REGISTER_TYPE cacheerr; /* 91 -- NOT FILLED IN */
- __MIPS_REGISTER_TYPE taglo; /* 92 -- NOT FILLED IN */
- __MIPS_REGISTER_TYPE taghi; /* 93 -- NOT FILLED IN */
- __MIPS_REGISTER_TYPE errpc; /* 94 -- NOT FILLED IN */
- __MIPS_REGISTER_TYPE xctxt; /* 95 -- NOT FILLED IN */
- /* end of __mips == 3 so NREGS == 96 */
-#endif
-
-} CPU_Interrupt_frame;
-
-
-/*
- * The following table contains the information required to configure
- * the mips processor specific parameters.
- */
-
-typedef struct {
- void (*pretasking_hook)( void );
- void (*predriver_hook)( void );
- void (*postdriver_hook)( void );
- void (*idle_task)( void );
- boolean do_zero_of_workspace;
- unsigned32 idle_task_stack_size;
- unsigned32 interrupt_stack_size;
- unsigned32 extra_mpci_receive_server_stack;
- void * (*stack_allocate_hook)( unsigned32 );
- void (*stack_free_hook)( void* );
- /* end of fields required on all CPUs */
-
- unsigned32 clicks_per_microsecond;
-} rtems_cpu_table;
-
-
-/*
- * Macros to access required entires in the CPU Table are in
- * the file rtems/system.h.
- */
-
-/*
- * Macros to access MIPS specific additions to the CPU Table
- */
-
-#define rtems_cpu_configuration_get_clicks_per_microsecond() \
- (_CPU_Table.clicks_per_microsecond)
-
-/*
- * This variable is optional. It is used on CPUs on which it is difficult
- * to generate an "uninitialized" FP context. It is filled in by
- * _CPU_Initialize and copied into the task's FP context area during
- * _CPU_Context_Initialize.
- */
-
-SCORE_EXTERN Context_Control_fp _CPU_Null_fp_context;
-
-/*
- * On some CPUs, RTEMS supports a software managed interrupt stack.
- * This stack is allocated by the Interrupt Manager and the switch
- * is performed in _ISR_Handler. These variables contain pointers
- * to the lowest and highest addresses in the chunk of memory allocated
- * for the interrupt stack. Since it is unknown whether the stack
- * grows up or down (in general), this give the CPU dependent
- * code the option of picking the version it wants to use.
- *
- * NOTE: These two variables are required if the macro
- * CPU_HAS_SOFTWARE_INTERRUPT_STACK is defined as TRUE.
- */
-
-SCORE_EXTERN void *_CPU_Interrupt_stack_low;
-SCORE_EXTERN void *_CPU_Interrupt_stack_high;
-
-/*
- * With some compilation systems, it is difficult if not impossible to
- * call a high-level language routine from assembly language. This
- * is especially true of commercial Ada compilers and name mangling
- * C++ ones. This variable can be optionally defined by the CPU porter
- * and contains the address of the routine _Thread_Dispatch. This
- * can make it easier to invoke that routine at the end of the interrupt
- * sequence (if a dispatch is necessary).
- *
-
-SCORE_EXTERN void (*_CPU_Thread_dispatch_pointer)();
- *
- * NOTE: Not needed on this port.
- */
-
-
-
-/*
- * Nothing prevents the porter from declaring more CPU specific variables.
- */
-
-/* XXX: if needed, put more variables here */
-
-/*
- * The size of the floating point context area. On some CPUs this
- * will not be a "sizeof" because the format of the floating point
- * area is not defined -- only the size is. This is usually on
- * CPUs with a "floating point save context" instruction.
- */
-
-#define CPU_CONTEXT_FP_SIZE sizeof( Context_Control_fp )
-
-/*
- * Amount of extra stack (above minimum stack size) required by
- * system initialization thread. Remember that in a multiprocessor
- * system the system intialization thread becomes the MP server thread.
- */
-
-#define CPU_MPCI_RECEIVE_SERVER_EXTRA_STACK 0
-
-/*
- * This defines the number of entries in the ISR_Vector_table managed
- * by RTEMS.
- */
-
-extern unsigned int mips_interrupt_number_of_vectors;
-#define CPU_INTERRUPT_NUMBER_OF_VECTORS (mips_interrupt_number_of_vectors)
-#define CPU_INTERRUPT_MAXIMUM_VECTOR_NUMBER (CPU_INTERRUPT_NUMBER_OF_VECTORS - 1)
-
-/*
- * Should be large enough to run all RTEMS tests. This insures
- * that a "reasonable" small application should not have any problems.
- */
-
-#define CPU_STACK_MINIMUM_SIZE (2048*sizeof(unsigned32))
-
-
-/*
- * CPU's worst alignment requirement for data types on a byte boundary. This
- * alignment does not take into account the requirements for the stack.
- */
-
-#define CPU_ALIGNMENT 8
-
-/*
- * This number corresponds to the byte alignment requirement for the
- * heap handler. This alignment requirement may be stricter than that
- * for the data types alignment specified by CPU_ALIGNMENT. It is
- * common for the heap to follow the same alignment requirement as
- * CPU_ALIGNMENT. If the CPU_ALIGNMENT is strict enough for the heap,
- * then this should be set to CPU_ALIGNMENT.
- *
- * NOTE: This does not have to be a power of 2. It does have to
- * be greater or equal to than CPU_ALIGNMENT.
- */
-
-#define CPU_HEAP_ALIGNMENT CPU_ALIGNMENT
-
-/*
- * This number corresponds to the byte alignment requirement for memory
- * buffers allocated by the partition manager. This alignment requirement
- * may be stricter than that for the data types alignment specified by
- * CPU_ALIGNMENT. It is common for the partition to follow the same
- * alignment requirement as CPU_ALIGNMENT. If the CPU_ALIGNMENT is strict
- * enough for the partition, then this should be set to CPU_ALIGNMENT.
- *
- * NOTE: This does not have to be a power of 2. It does have to
- * be greater or equal to than CPU_ALIGNMENT.
- */
-
-#define CPU_PARTITION_ALIGNMENT CPU_ALIGNMENT
-
-/*
- * This number corresponds to the byte alignment requirement for the
- * stack. This alignment requirement may be stricter than that for the
- * data types alignment specified by CPU_ALIGNMENT. If the CPU_ALIGNMENT
- * is strict enough for the stack, then this should be set to 0.
- *
- * NOTE: This must be a power of 2 either 0 or greater than CPU_ALIGNMENT.
- */
-
-#define CPU_STACK_ALIGNMENT CPU_ALIGNMENT
-
-/*
- * ISR handler macros
- */
-
-/*
- * Support routine to initialize the RTEMS vector table after it is allocated.
- */
-
-#define _CPU_Initialize_vectors()
-
-/*
- * Disable all interrupts for an RTEMS critical section. The previous
- * level is returned in _level.
- */
-
-#define _CPU_ISR_Disable( _level ) \
- do { \
- unsigned int _scratch; \
- mips_get_sr( _scratch ); \
- mips_set_sr( _scratch & ~SR_INTERRUPT_ENABLE_BITS ); \
- _level = _scratch & SR_INTERRUPT_ENABLE_BITS; \
- } while(0)
-
-/*
- * Enable interrupts to the previous level (returned by _CPU_ISR_Disable).
- * This indicates the end of an RTEMS critical section. The parameter
- * _level is not modified.
- */
-
-#define _CPU_ISR_Enable( _level ) \
- do { \
- unsigned int _scratch; \
- mips_get_sr( _scratch ); \
- mips_set_sr( (_scratch & ~SR_INTERRUPT_ENABLE_BITS) | (_level & SR_INTERRUPT_ENABLE_BITS) ); \
- } while(0)
-
-/*
- * This temporarily restores the interrupt to _level before immediately
- * disabling them again. This is used to divide long RTEMS critical
- * sections into two or more parts. The parameter _level is not
- * modified.
- */
-
-#define _CPU_ISR_Flash( _xlevel ) \
- do { \
- unsigned int _scratch2 = _xlevel; \
- _CPU_ISR_Enable( _scratch2 ); \
- _CPU_ISR_Disable( _scratch2 ); \
- _xlevel = _scratch2; \
- } while(0)
-
-/*
- * Map interrupt level in task mode onto the hardware that the CPU
- * actually provides. Currently, interrupt levels which do not
- * map onto the CPU in a generic fashion are undefined. Someday,
- * it would be nice if these were "mapped" by the application
- * via a callout. For example, m68k has 8 levels 0 - 7, levels
- * 8 - 255 would be available for bsp/application specific meaning.
- * This could be used to manage a programmable interrupt controller
- * via the rtems_task_mode directive.
- *
- * On the MIPS, 0 is all on. Non-zero is all off. This only
- * manipulates the IEC.
- */
-
-unsigned32 _CPU_ISR_Get_level( void ); /* in cpu.c */
-
-void _CPU_ISR_Set_level( unsigned32 ); /* in cpu.c */
-
-/* end of ISR handler macros */
-
-/* Context handler macros */
-
-/*
- * Initialize the context to a state suitable for starting a
- * task after a context restore operation. Generally, this
- * involves:
- *
- * - setting a starting address
- * - preparing the stack
- * - preparing the stack and frame pointers
- * - setting the proper interrupt level in the context
- * - initializing the floating point context
- *
- * This routine generally does not set any unnecessary register
- * in the context. The state of the "general data" registers is
- * undefined at task start time.
- *
- * NOTE: This is_fp parameter is TRUE if the thread is to be a floating
- * point thread. This is typically only used on CPUs where the
- * FPU may be easily disabled by software such as on the SPARC
- * where the PSR contains an enable FPU bit.
- *
- * The per-thread status register holds the interrupt enable, FP enable
- * and global interrupt enable for that thread. It means each thread can
- * enable its own set of interrupts. If interrupts are disabled, RTEMS
- * can still dispatch via blocking calls. This is the function of the
- * "Interrupt Level", and on the MIPS, it controls the IEC bit and all
- * the hardware interrupts as defined in the SR. Software ints
- * are automatically enabled for all threads, as they will only occur under
- * program control anyhow. Besides, the interrupt level parm is only 8 bits,
- * and controlling the software ints plus the others would require 9.
- *
- * If the Interrupt Level is 0, all ints are on. Otherwise, the
- * Interrupt Level should supply a bit pattern to impose on the SR
- * interrupt bits; bit 0 applies to the mips1 IEC bit/mips3 EXL&IE, bits 1 thru 6
- * apply to the SR register Intr bits from bit 10 thru bit 15. Bit 7 of
- * the Interrupt Level parameter is unused at this time.
- *
- * These are the only per-thread SR bits, the others are maintained
- * globally & explicitly preserved by the Context Switch code in cpu_asm.s
- */
-
-
-#if __mips == 3
-#define _INTON (SR_EXL | SR_IE)
-#define _EXTRABITS 0
-#endif
-#if __mips == 1
-#define _INTON SR_IEC
-#define _EXTRABITS 0 /* make sure we're in user mode on MIPS1 processors */
-#endif
-
-#define _CPU_Context_Initialize( _the_context, _stack_base, _size, _isr, _entry_point, _is_fp ) \
- { \
- unsigned32 _stack_tmp = \
- (unsigned32)(_stack_base) + (_size) - CPU_STACK_ALIGNMENT; \
- unsigned32 _intlvl = _isr & 0xff; \
- _stack_tmp &= ~(CPU_STACK_ALIGNMENT - 1); \
- (_the_context)->sp = _stack_tmp; \
- (_the_context)->fp = _stack_tmp; \
- (_the_context)->ra = (unsigned64)_entry_point; \
- (_the_context)->c0_sr = ((_intlvl==0)?(0xFF00 | _INTON):( ((_intlvl<<9) & 0xfc00) | \
- 0x300 | \
- ((_intlvl & 1)?_INTON:0)) ) | \
- SR_CU0 | ((_is_fp)?SR_CU1:0) | _EXTRABITS; \
- }
-
-
-
-/*
- * This routine is responsible for somehow restarting the currently
- * executing task. If you are lucky, then all that is necessary
- * is restoring the context. Otherwise, there will need to be
- * a special assembly routine which does something special in this
- * case. Context_Restore should work most of the time. It will
- * not work if restarting self conflicts with the stack frame
- * assumptions of restoring a context.
- */
-
-#define _CPU_Context_Restart_self( _the_context ) \
- _CPU_Context_restore( (_the_context) );
-
-/*
- * The purpose of this macro is to allow the initial pointer into
- * A floating point context area (used to save the floating point
- * context) to be at an arbitrary place in the floating point
- * context area.
- *
- * This is necessary because some FP units are designed to have
- * their context saved as a stack which grows into lower addresses.
- * Other FP units can be saved by simply moving registers into offsets
- * from the base of the context area. Finally some FP units provide
- * a "dump context" instruction which could fill in from high to low
- * or low to high based on the whim of the CPU designers.
- */
-
-#define _CPU_Context_Fp_start( _base, _offset ) \
- ( (void *) _Addresses_Add_offset( (_base), (_offset) ) )
-
-/*
- * This routine initializes the FP context area passed to it to.
- * There are a few standard ways in which to initialize the
- * floating point context. The code included for this macro assumes
- * that this is a CPU in which a "initial" FP context was saved into
- * _CPU_Null_fp_context and it simply copies it to the destination
- * context passed to it.
- *
- * Other models include (1) not doing anything, and (2) putting
- * a "null FP status word" in the correct place in the FP context.
- */
-
-#if ( CPU_HARDWARE_FP == TRUE )
-#define _CPU_Context_Initialize_fp( _destination ) \
- { \
- *((Context_Control_fp *) *((void **) _destination)) = _CPU_Null_fp_context; \
- }
-#endif
-
-/* end of Context handler macros */
-
-/* Fatal Error manager macros */
-
-/*
- * This routine copies _error into a known place -- typically a stack
- * location or a register, optionally disables interrupts, and
- * halts/stops the CPU.
- */
-
-#define _CPU_Fatal_halt( _error ) \
- do { \
- unsigned int _level; \
- _CPU_ISR_Disable(_level); \
- loop: goto loop; \
- } while (0)
-
-
-extern void mips_break( int error );
-
-/* Bitfield handler macros */
-
-/*
- * This routine sets _output to the bit number of the first bit
- * set in _value. _value is of CPU dependent type Priority_Bit_map_control.
- * This type may be either 16 or 32 bits wide although only the 16
- * least significant bits will be used.
- *
- * There are a number of variables in using a "find first bit" type
- * instruction.
- *
- * (1) What happens when run on a value of zero?
- * (2) Bits may be numbered from MSB to LSB or vice-versa.
- * (3) The numbering may be zero or one based.
- * (4) The "find first bit" instruction may search from MSB or LSB.
- *
- * RTEMS guarantees that (1) will never happen so it is not a concern.
- * (2),(3), (4) are handled by the macros _CPU_Priority_mask() and
- * _CPU_Priority_bits_index(). These three form a set of routines
- * which must logically operate together. Bits in the _value are
- * set and cleared based on masks built by _CPU_Priority_mask().
- * The basic major and minor values calculated by _Priority_Major()
- * and _Priority_Minor() are "massaged" by _CPU_Priority_bits_index()
- * to properly range between the values returned by the "find first bit"
- * instruction. This makes it possible for _Priority_Get_highest() to
- * calculate the major and directly index into the minor table.
- * This mapping is necessary to ensure that 0 (a high priority major/minor)
- * is the first bit found.
- *
- * This entire "find first bit" and mapping process depends heavily
- * on the manner in which a priority is broken into a major and minor
- * components with the major being the 4 MSB of a priority and minor
- * the 4 LSB. Thus (0 << 4) + 0 corresponds to priority 0 -- the highest
- * priority. And (15 << 4) + 14 corresponds to priority 254 -- the next
- * to the lowest priority.
- *
- * If your CPU does not have a "find first bit" instruction, then
- * there are ways to make do without it. Here are a handful of ways
- * to implement this in software:
- *
- * - a series of 16 bit test instructions
- * - a "binary search using if's"
- * - _number = 0
- * if _value > 0x00ff
- * _value >>=8
- * _number = 8;
- *
- * if _value > 0x0000f
- * _value >=8
- * _number += 4
- *
- * _number += bit_set_table[ _value ]
- *
- * where bit_set_table[ 16 ] has values which indicate the first
- * bit set
- */
-
-#define CPU_USE_GENERIC_BITFIELD_CODE TRUE
-#define CPU_USE_GENERIC_BITFIELD_DATA TRUE
-
-#if (CPU_USE_GENERIC_BITFIELD_CODE == FALSE)
-
-#define _CPU_Bitfield_Find_first_bit( _value, _output ) \
- { \
- (_output) = 0; /* do something to prevent warnings */ \
- }
-
-#endif
-
-/* end of Bitfield handler macros */
-
-/*
- * This routine builds the mask which corresponds to the bit fields
- * as searched by _CPU_Bitfield_Find_first_bit(). See the discussion
- * for that routine.
- */
-
-#if (CPU_USE_GENERIC_BITFIELD_CODE == FALSE)
-
-#define _CPU_Priority_Mask( _bit_number ) \
- ( 1 << (_bit_number) )
-
-#endif
-
-/*
- * This routine translates the bit numbers returned by
- * _CPU_Bitfield_Find_first_bit() into something suitable for use as
- * a major or minor component of a priority. See the discussion
- * for that routine.
- */
-
-#if (CPU_USE_GENERIC_BITFIELD_CODE == FALSE)
-
-#define _CPU_Priority_bits_index( _priority ) \
- (_priority)
-
-#endif
-
-/* end of Priority handler macros */
-
-/* functions */
-
-/*
- * _CPU_Initialize
- *
- * This routine performs CPU dependent initialization.
- */
-
-void _CPU_Initialize(
- rtems_cpu_table *cpu_table,
- void (*thread_dispatch)
-);
-
-/*
- * _CPU_ISR_install_raw_handler
- *
- * This routine installs a "raw" interrupt handler directly into the
- * processor's vector table.
- */
-
-void _CPU_ISR_install_raw_handler(
- unsigned32 vector,
- proc_ptr new_handler,
- proc_ptr *old_handler
-);
-
-/*
- * _CPU_ISR_install_vector
- *
- * This routine installs an interrupt vector.
- */
-
-void _CPU_ISR_install_vector(
- unsigned32 vector,
- proc_ptr new_handler,
- proc_ptr *old_handler
-);
-
-/*
- * _CPU_Install_interrupt_stack
- *
- * This routine installs the hardware interrupt stack pointer.
- *
- * NOTE: It need only be provided if CPU_HAS_HARDWARE_INTERRUPT_STACK
- * is TRUE.
- */
-
-void _CPU_Install_interrupt_stack( void );
-
-/*
- * _CPU_Internal_threads_Idle_thread_body
- *
- * This routine is the CPU dependent IDLE thread body.
- *
- * NOTE: It need only be provided if CPU_PROVIDES_IDLE_THREAD_BODY
- * is TRUE.
- */
-
-void _CPU_Thread_Idle_body( void );
-
-/*
- * _CPU_Context_switch
- *
- * This routine switches from the run context to the heir context.
- */
-
-void _CPU_Context_switch(
- Context_Control *run,
- Context_Control *heir
-);
-
-/*
- * _CPU_Context_restore
- *
- * This routine is generally used only to restart self in an
- * efficient manner. It may simply be a label in _CPU_Context_switch.
- *
- * NOTE: May be unnecessary to reload some registers.
- */
-
-void _CPU_Context_restore(
- Context_Control *new_context
-);
-
-/*
- * _CPU_Context_save_fp
- *
- * This routine saves the floating point context passed to it.
- */
-
-void _CPU_Context_save_fp(
- void **fp_context_ptr
-);
-
-/*
- * _CPU_Context_restore_fp
- *
- * This routine restores the floating point context passed to it.
- */
-
-void _CPU_Context_restore_fp(
- void **fp_context_ptr
-);
-
-/* The following routine swaps the endian format of an unsigned int.
- * It must be static because it is referenced indirectly.
- *
- * This version will work on any processor, but if there is a better
- * way for your CPU PLEASE use it. The most common way to do this is to:
- *
- * swap least significant two bytes with 16-bit rotate
- * swap upper and lower 16-bits
- * swap most significant two bytes with 16-bit rotate
- *
- * Some CPUs have special instructions which swap a 32-bit quantity in
- * a single instruction (e.g. i486). It is probably best to avoid
- * an "endian swapping control bit" in the CPU. One good reason is
- * that interrupts would probably have to be disabled to insure that
- * an interrupt does not try to access the same "chunk" with the wrong
- * endian. Another good reason is that on some CPUs, the endian bit
- * endianness for ALL fetches -- both code and data -- so the code
- * will be fetched incorrectly.
- */
-
-static inline unsigned int CPU_swap_u32(
- unsigned int value
-)
-{
- unsigned32 byte1, byte2, byte3, byte4, swapped;
-
- byte4 = (value >> 24) & 0xff;
- byte3 = (value >> 16) & 0xff;
- byte2 = (value >> 8) & 0xff;
- byte1 = value & 0xff;
-
- swapped = (byte1 << 24) | (byte2 << 16) | (byte3 << 8) | byte4;
- return( swapped );
-}
-
-#define CPU_swap_u16( value ) \
- (((value&0xff) << 8) | ((value >> 8)&0xff))
-
-
-#endif
-
-
-
-#ifdef __cplusplus
-}
-#endif
-
-#endif
diff --git a/c/src/exec/score/cpu/mips/rtems/score/mips.h b/c/src/exec/score/cpu/mips/rtems/score/mips.h
deleted file mode 100644
index ea5a4b545d..0000000000
--- a/c/src/exec/score/cpu/mips/rtems/score/mips.h
+++ /dev/null
@@ -1,272 +0,0 @@
-/* mips.h
- *
- * COPYRIGHT (c) 1989-2001.
- * On-Line Applications Research Corporation (OAR).
- *
- * The license and distribution terms for this file may be
- * found in the file LICENSE in this distribution or at
- * http://www.OARcorp.com/rtems/license.html.
- *
- * $Id$
- */
-/* @(#)mips64orion.h 08/29/96 1.3 */
-
-#ifndef _INCLUDE_MIPS_h
-#define _INCLUDE_MIPS_h
-
-#ifdef __cplusplus
-extern "C" {
-#endif
-
-#ifndef ASM
-#include <idtcpu.h>
-#endif
-
-/*
- * SR bits that enable/disable interrupts
- *
- * NOTE: XXX what about SR_ERL?
- */
-
-#if __mips == 3
-#ifdef ASM
-#define SR_INTERRUPT_ENABLE_BITS 0x01
-#else
-#define SR_INTERRUPT_ENABLE_BITS SR_IE
-#endif
-
-#elif __mips == 1
-#define SR_INTERRUPT_ENABLE_BITS SR_IEC
-
-#else
-#error "mips interrupt enable bits: unknown architecture level!"
-#endif
-
-/*
- * This file contains the information required to build
- * RTEMS for a particular member of the "no cpu"
- * family when executing in protected mode. It does
- * this by setting variables to indicate which implementation
- * dependent features are present in a particular member
- * of the family.
- */
-
-#if defined(__mips_soft_float)
-#define MIPS_HAS_FPU 0
-#else
-#define MIPS_HAS_FPU 1
-#endif
-
-#if (__mips == 1)
-#define CPU_MODEL_NAME "ISA Level 1 or 2"
-#elif (__mips == 3)
-#if defined(__mips64)
-#define CPU_MODEL_NAME "ISA Level 4"
-#else
-#define CPU_MODEL_NAME "ISA Level 3"
-#endif
-#else
-#error "Unknown MIPS ISA level"
-#endif
-
-/*
- * Define the name of the CPU family.
- */
-
-#define CPU_NAME "MIPS"
-
-/*
- * RTEMS Vector numbers for exception conditions. This is a direct
- * map to the causes.
- */
-
-#define MIPS_EXCEPTION_BASE 0
-
-#define MIPS_EXCEPTION_INT MIPS_EXCEPTION_BASE+0
-#define MIPS_EXCEPTION_MOD MIPS_EXCEPTION_BASE+1
-#define MIPS_EXCEPTION_TLBL MIPS_EXCEPTION_BASE+2
-#define MIPS_EXCEPTION_TLBS MIPS_EXCEPTION_BASE+3
-#define MIPS_EXCEPTION_ADEL MIPS_EXCEPTION_BASE+4
-#define MIPS_EXCEPTION_ADES MIPS_EXCEPTION_BASE+5
-#define MIPS_EXCEPTION_IBE MIPS_EXCEPTION_BASE+6
-#define MIPS_EXCEPTION_DBE MIPS_EXCEPTION_BASE+7
-#define MIPS_EXCEPTION_SYSCALL MIPS_EXCEPTION_BASE+8
-#define MIPS_EXCEPTION_BREAK MIPS_EXCEPTION_BASE+9
-#define MIPS_EXCEPTION_RI MIPS_EXCEPTION_BASE+10
-#define MIPS_EXCEPTION_CPU MIPS_EXCEPTION_BASE+11
-#define MIPS_EXCEPTION_OVERFLOW MIPS_EXCEPTION_BASE+12
-#define MIPS_EXCEPTION_TRAP MIPS_EXCEPTION_BASE+13
-#define MIPS_EXCEPTION_VCEI MIPS_EXCEPTION_BASE+14
-/* FPE only on mips2 and higher */
-#define MIPS_EXCEPTION_FPE MIPS_EXCEPTION_BASE+15
-#define MIPS_EXCEPTION_C2E MIPS_EXCEPTION_BASE+16
-/* 17-22 reserved */
-#define MIPS_EXCEPTION_WATCH MIPS_EXCEPTION_BASE+23
-/* 24-30 reserved */
-#define MIPS_EXCEPTION_VCED MIPS_EXCEPTION_BASE+31
-
-#define MIPS_INTERRUPT_BASE MIPS_EXCEPTION_BASE+32
-
-/*
- * Some macros to access registers
- */
-
-#define mips_get_sr( _x ) \
- do { \
- asm volatile( "mfc0 %0, $12; nop" : "=r" (_x) : ); \
- } while (0)
-
-#define mips_set_sr( _x ) \
- do { \
- register unsigned int __x = (_x); \
- asm volatile( "mtc0 %0, $12; nop" : : "r" (__x) ); \
- } while (0)
-
-
-/*
- * Access the Cause register
- */
-
-#define mips_get_cause( _x ) \
- do { \
- asm volatile( "mfc0 %0, $13; nop" : "=r" (_x) : ); \
- } while (0)
-
-
-#define mips_set_cause( _x ) \
- do { \
- register unsigned int __x = (_x); \
- asm volatile( "mtc0 %0, $13; nop" : : "r" (__x) ); \
- } while (0)
-
-
-
-
-/*
- * Access the Debug Cache Invalidate Control register
- */
-
-#define mips_get_dcic( _x ) \
- do { \
- asm volatile( "mfc0 %0, $7; nop" : "=r" (_x) : ); \
- } while (0)
-
-
-#define mips_set_dcic( _x ) \
- do { \
- register unsigned int __x = (_x); \
- asm volatile( "mtc0 %0, $7; nop" : : "r" (__x) ); \
- } while (0)
-
-
-
-
-/*
- * Access the Breakpoint Program Counter & Mask registers
- * (_x for BPC, _y for mask)
- */
-
-#define mips_get_bpcrm( _x, _y ) \
- do { \
- asm volatile( "mfc0 %0, $3; nop" : "=r" (_x) : ); \
- asm volatile( "mfc0 %0, $11; nop" : "=r" (_y) : ); \
- } while (0)
-
-
-#define mips_set_bpcrm( _x, _y ) \
- do { \
- register unsigned int __x = (_x); \
- register unsigned int __y = (_y); \
- asm volatile( "mtc0 %0, $11; nop" : : "r" (__y) ); \
- asm volatile( "mtc0 %0, $3; nop" : : "r" (__x) ); \
- } while (0)
-
-
-
-
-
-
-/*
- * Access the Breakpoint Data Address & Mask registers
- * (_x for BDA, _y for mask)
- */
-
-#define mips_get_bdarm( _x, _y ) \
- do { \
- asm volatile( "mfc0 %0, $5; nop" : "=r" (_x) : ); \
- asm volatile( "mfc0 %0, $9; nop" : "=r" (_y) : ); \
- } while (0)
-
-
-#define mips_set_bdarm( _x, _y ) \
- do { \
- register unsigned int __x = (_x); \
- register unsigned int __y = (_y); \
- asm volatile( "mtc0 %0, $9; nop" : : "r" (__y) ); \
- asm volatile( "mtc0 %0, $5; nop" : : "r" (__x) ); \
- } while (0)
-
-
-
-
-
-
-
-/*
- * Access FCR31
- */
-
-#define mips_get_fcr31( _x ) \
- do { \
- asm volatile( "cfc1 %0, $31; nop" : "=r" (_x) : ); \
- } while(0)
-
-
-#define mips_set_fcr31( _x ) \
- do { \
- register unsigned int __x = (_x); \
- asm volatile( "ctc1 %0, $31; nop" : : "r" (__x) ); \
- } while(0)
-
-
-/*
- * Manipulate interrupt mask
- *
- * mips_unmask_interrupt( _mask)
- * enables interrupts - mask is positioned so it only needs to be or'ed
- * into the status reg. This also does some other things !!!! Caution
- * should be used if invoking this while in the middle of a debugging
- * session where the client may have nested interrupts.
- *
- * mips_mask_interrupt( _mask )
- * disable the interrupt - mask is the complement of the bits to be
- * cleared - i.e. to clear ext int 5 the mask would be - 0xffff7fff
- *
- *
- * NOTE: mips_mask_interrupt() used to be disable_int().
- * mips_unmask_interrupt() used to be enable_int().
- *
- */
-
-#define mips_enable_in_interrupt_mask( _mask ) \
- do { \
- unsigned int _sr; \
- mips_get_sr( _sr ); \
- _sr |= (_mask); \
- mips_set_sr( _sr ); \
- } while (0)
-
-#define mips_disable_in_interrupt_mask( _mask ) \
- do { \
- unsigned int _sr; \
- mips_get_sr( _sr ); \
- _sr &= ~(_mask); \
- mips_set_sr( _sr ); \
- } while (0)
-
-#ifdef __cplusplus
-}
-#endif
-
-#endif /* ! _INCLUDE_MIPS_h */
-/* end of include file */
diff --git a/c/src/exec/score/cpu/mips/rtems/score/types.h b/c/src/exec/score/cpu/mips/rtems/score/types.h
deleted file mode 100644
index 3720032a76..0000000000
--- a/c/src/exec/score/cpu/mips/rtems/score/types.h
+++ /dev/null
@@ -1,57 +0,0 @@
-/* mipstypes.h
- *
- * This include file contains type definitions pertaining to the MIPS
- * processor family.
- *
- * COPYRIGHT (c) 1989-2001.
- * On-Line Applications Research Corporation (OAR).
- *
- * The license and distribution terms for this file may be
- * found in the file LICENSE in this distribution or at
- * http://www.OARcorp.com/rtems/license.html.
- *
- * $Id$
- */
-/* @(#)mipstypes.h 08/20/96 1.4 */
-
-#ifndef __MIPS_TYPES_h
-#define __MIPS_TYPES_h
-
-#ifndef ASM
-
-#ifdef __cplusplus
-extern "C" {
-#endif
-
-/*
- * This section defines the basic types for this processor.
- */
-
-typedef unsigned char unsigned8; /* unsigned 8-bit integer */
-typedef unsigned short unsigned16; /* unsigned 16-bit integer */
-typedef unsigned int unsigned32; /* unsigned 32-bit integer */
-typedef unsigned long long unsigned64; /* unsigned 64-bit integer */
-
-typedef unsigned16 Priority_Bit_map_control;
-
-typedef signed char signed8; /* 8-bit signed integer */
-typedef signed short signed16; /* 16-bit signed integer */
-typedef signed int signed32; /* 32-bit signed integer */
-typedef signed long long signed64; /* 64 bit signed integer */
-
-typedef unsigned32 boolean; /* Boolean value */
-
-typedef float single_precision; /* single precision float */
-typedef double double_precision; /* double precision float */
-
-typedef void mips_isr;
-typedef void ( *mips_isr_entry )( void );
-
-#ifdef __cplusplus
-}
-#endif
-
-#endif /* !ASM */
-
-#endif
-/* end of include file */