summaryrefslogtreecommitdiffstats
path: root/c/src/exec/score/cpu/hppa1.1/cpu_asm.s
diff options
context:
space:
mode:
Diffstat (limited to 'c/src/exec/score/cpu/hppa1.1/cpu_asm.s')
-rw-r--r--c/src/exec/score/cpu/hppa1.1/cpu_asm.s705
1 files changed, 0 insertions, 705 deletions
diff --git a/c/src/exec/score/cpu/hppa1.1/cpu_asm.s b/c/src/exec/score/cpu/hppa1.1/cpu_asm.s
deleted file mode 100644
index bf0d4b0bee..0000000000
--- a/c/src/exec/score/cpu/hppa1.1/cpu_asm.s
+++ /dev/null
@@ -1,705 +0,0 @@
-#
-# TODO:
-# Context_switch needs to only save callee save registers
-# I think this means can skip: r1, r2, r19-29, r31
-# Ref: p 3-2 of Procedure Calling Conventions Manual
-# This should be #ifndef DEBUG so that debugger has
-# accurate visibility into all registers
-#
-# This file contains the assembly code for the HPPA implementation
-# of RTEMS.
-#
-# COPYRIGHT (c) 1994,95 by Division Incorporated
-#
-# To anyone who acknowledges that this file is provided "AS IS"
-# without any express or implied warranty:
-# permission to use, copy, modify, and distribute this file
-# for any purpose is hereby granted without fee, provided that
-# the above copyright notice and this notice appears in all
-# copies, and that the name of Division Incorporated not be
-# used in advertising or publicity pertaining to distribution
-# of the software without specific, written prior permission.
-# Division Incorporated makes no representations about the
-# suitability of this software for any purpose.
-#
-# $Id$
-#
-
-#include <rtems/score/hppa.h>
-#include <rtems/score/cpu_asm.h>
-#include <rtems/score/cpu.h>
-#include <rtems/score/offsets.h>
-
- .SPACE $PRIVATE$
- .SUBSPA $DATA$,QUAD=1,ALIGN=8,ACCESS=31
- .SUBSPA $BSS$,QUAD=1,ALIGN=8,ACCESS=31,ZERO,SORT=82
- .SPACE $TEXT$
- .SUBSPA $LIT$,QUAD=0,ALIGN=8,ACCESS=44
- .SUBSPA $CODE$,QUAD=0,ALIGN=8,ACCESS=44,CODE_ONLY
- .SPACE $TEXT$
- .SUBSPA $CODE$
-
-#
-# Special register usage for context switch and interrupts
-# Stay away from %cr28 which is used for TLB misses on 72000
-#
-
-isr_arg0 .reg %cr24
-isr_r9 .reg %cr25
-isr_r8 .reg %cr26
-
-#
-# Interrupt stack frame looks like this
-#
-# offset item
-# -----------------------------------------------------------------
-# INTEGER_CONTEXT_OFFSET Context_Control
-# FP_CONTEXT_OFFSET Context_Control_fp
-#
-# It is padded out to a multiple of 64
-#
-
-
-# PAGE^L
-# void _Generic_ISR_Handler()
-#
-# This routine provides the RTEMS interrupt management.
-#
-# We jump here from the interrupt vector.
-# The HPPA hardware has done some stuff for us:
-# PSW saved in IPSW
-# PSW set to 0
-# PSW[E] set to default (0)
-# PSW[M] set to 1 iff this is HPMC
-#
-# IIA queue is frozen (since PSW[Q] is now 0)
-# privilege level promoted to 0
-# IIR, ISR, IOR potentially updated if PSW[Q] was 1 at trap
-# registers GR 1,8,9,16,17,24,25 copied to shadow regs
-# SHR 0 1 2 3 4 5 6
-#
-# Our vector stub (in the BSP) MUST have done the following:
-#
-# a) Saved the original %r9 into %isr_r9 (%cr25)
-# b) Placed the vector number in %r9
-# c) Was allowed to also destroy $isr_r8 (%cr26),
-# but the stub was NOT allowed to destroy any other registers.
-#
-# The typical stub sequence (in the BSP) should look like this:
-#
-# a) mtctl %r9,isr_r9 ; (save r9 in cr25)
-# b) ldi vector,%r9 ; (load constant vector number in r9)
-# c) mtctl %r8,isr_r8 ; (save r8 in cr26)
-# d) ldil L%MY_BSP_first_level_interrupt_handler,%r8
-# e) ldo R%MY_BSP_first_level_interrupt_handler(%r8),%r8
-# ; (point to BSP raw handler table)
-# f) ldwx,s %r9(%r8),%r8 ; (load value from raw handler table)
-# g) bv 0(%r8) ; (call raw handler: _Generic_ISR_Handler)
-# h) mfctl isr_r8,%r8 ; (restore r8 from cr26 in delay slot)
-#
-# Optionally, steps (c) thru (h) _could_ be replaced with a single
-# bl,n _Generic_ISR_Handler,%r0
-#
-#
-#
- .EXPORT _Generic_ISR_Handler,ENTRY,PRIV_LEV=0
-_Generic_ISR_Handler:
- .PROC
- .CALLINFO FRAME=0,NO_CALLS
- .ENTRY
-
- mtctl arg0, isr_arg0
-
-# save interrupt state
- mfctl ipsw, arg0
- stw arg0, IPSW_OFFSET(sp)
-
- mfctl iir, arg0
- stw arg0, IIR_OFFSET(sp)
-
- mfctl ior, arg0
- stw arg0, IOR_OFFSET(sp)
-
- mfctl pcoq, arg0
- stw arg0, PCOQFRONT_OFFSET(sp)
-
- mtctl %r0, pcoq
- mfctl pcoq, arg0
- stw arg0, PCOQBACK_OFFSET(sp)
-
- mfctl %sar, arg0
- stw arg0, SAR_OFFSET(sp)
-
-#
-# Build an interrupt frame to hold the contexts we will need.
-# We have already saved the interrupt items on the stack
-
-# At this point the following registers are damaged wrt the interrupt
-# reg current value saved value
-# ------------------------------------------------
-# arg0 scratch isr_arg0 (cr24)
-# r9 vector number isr_r9 (cr25)
-#
-# Point to beginning of integer context and
-# save the integer context
- stw %r1,R1_OFFSET(sp)
- stw %r2,R2_OFFSET(sp)
- stw %r3,R3_OFFSET(sp)
- stw %r4,R4_OFFSET(sp)
- stw %r5,R5_OFFSET(sp)
- stw %r6,R6_OFFSET(sp)
- stw %r7,R7_OFFSET(sp)
- stw %r8,R8_OFFSET(sp)
-# skip r9
- stw %r10,R10_OFFSET(sp)
- stw %r11,R11_OFFSET(sp)
- stw %r12,R12_OFFSET(sp)
- stw %r13,R13_OFFSET(sp)
- stw %r14,R14_OFFSET(sp)
- stw %r15,R15_OFFSET(sp)
- stw %r16,R16_OFFSET(sp)
- stw %r17,R17_OFFSET(sp)
- stw %r18,R18_OFFSET(sp)
- stw %r19,R19_OFFSET(sp)
- stw %r20,R20_OFFSET(sp)
- stw %r21,R21_OFFSET(sp)
- stw %r22,R22_OFFSET(sp)
- stw %r23,R23_OFFSET(sp)
- stw %r24,R24_OFFSET(sp)
- stw %r25,R25_OFFSET(sp)
-# skip arg0
- stw %r27,R27_OFFSET(sp)
- stw %r28,R28_OFFSET(sp)
- stw %r29,R29_OFFSET(sp)
- stw %r30,R30_OFFSET(sp)
- stw %r31,R31_OFFSET(sp)
-
-# Now most registers are available since they have been saved
-#
-# The following items are currently wrong in the integer context
-# reg current value saved value
-# ------------------------------------------------
-# arg0 scratch isr_arg0 (cr24)
-# r9 vector number isr_r9 (cr25)
-#
-# Fix them
-
- mfctl isr_arg0,%r3
- stw %r3,ARG0_OFFSET(sp)
-
- mfctl isr_r9,%r3
- stw %r3,R9_OFFSET(sp)
-
-#
-# At this point we are done with isr_arg0, and isr_r9 control registers
-#
-# Prepare to re-enter virtual mode
-# We need Q in case the interrupt handler enables interrupts
-#
-
- ldil L%CPU_PSW_DEFAULT, arg0
- ldo R%CPU_PSW_DEFAULT(arg0), arg0
- mtctl arg0, ipsw
-
-# Now jump to "rest_of_isr_handler" with the rfi
-# We are assuming the space queues are all correct already
-
- ldil L%rest_of_isr_handler, arg0
- ldo R%rest_of_isr_handler(arg0), arg0
- mtctl arg0, pcoq
- ldo 4(arg0), arg0
- mtctl arg0, pcoq
-
- rfi
- nop
-
-# At this point we are back in virtual mode and all our
-# normal addressing is once again ok.
-#
-# It is now ok to take an exception or trap
-#
-
-rest_of_isr_handler:
-
-# Point to beginning of float context and
-# save the floating point context -- doing whatever patches are necessary
- .call ARGW0=GR
- bl _CPU_Save_float_context,%r2
- ldo FP_CONTEXT_OFFSET(sp),arg0
-
-# save the ptr to interrupt frame as an argument for the interrupt handler
- copy sp, arg1
-
-# Advance the frame to point beyond all interrupt contexts (integer & float)
-# this also includes the pad to align to 64byte stack boundary
- ldo CPU_INTERRUPT_FRAME_SIZE(sp), sp
-
-# r3 -- &_ISR_Nest_level
-# r5 -- value _ISR_Nest_level
-# r4 -- &_Thread_Dispatch_disable_level
-# r6 -- value _Thread_Dispatch_disable_level
-# r9 -- vector number
-
- .import _ISR_Nest_level,data
- ldil L%_ISR_Nest_level,%r3
- ldo R%_ISR_Nest_level(%r3),%r3
- ldw 0(%r3),%r5
-
- .import _Thread_Dispatch_disable_level,data
- ldil L%_Thread_Dispatch_disable_level,%r4
- ldo R%_Thread_Dispatch_disable_level(%r4),%r4
- ldw 0(%r4),%r6
-
-# increment interrupt nest level counter. If outermost interrupt
-# switch the stack and squirrel away the previous sp.
- addi 1,%r5,%r5
- stw %r5, 0(%r3)
-
-# compute and save new stack (with frame)
-# just in case we are nested -- simpler this way
- comibf,= 1,%r5,stack_done
- ldo 128(sp),%r7
-
-#
-# Switch to interrupt stack allocated by the interrupt manager (intr.c)
-#
- .import _CPU_Interrupt_stack_low,data
- ldil L%_CPU_Interrupt_stack_low,%r7
- ldw R%_CPU_Interrupt_stack_low(%r7),%r7
- ldo 128(%r7),%r7
-
-stack_done:
-# save our current stack pointer where the "old sp" is supposed to be
- stw sp, -4(%r7)
-# and switch stacks (or advance old stack in nested case)
- copy %r7, sp
-
-# increment the dispatch disable level counter.
- addi 1,%r6,%r6
- stw %r6, 0(%r4)
-
-# load address of user handler
-# Note: No error checking is done, it is assumed that the
-# vector table contains a valid address or a stub
-# spurious handler.
- .import _ISR_Vector_table,data
- ldil L%_ISR_Vector_table,%r8
- ldo R%_ISR_Vector_table(%r8),%r8
- ldwx,s %r9(%r8),%r8
-
-# invoke user interrupt handler
-# Interrupts are currently disabled, as per RTEMS convention
-# The handler has the option of re-enabling interrupts
-# NOTE: can not use 'bl' since it uses "pc-relative" addressing
-# and we are using a hard coded address from a table
-# So... we fudge r2 ourselves (ala dynacall)
-# arg0 = vector number, arg1 = ptr to rtems_interrupt_frame
- copy %r9, %r26
- .call ARGW0=GR, ARGW1=GR
- blr %r0, rp
- bv,n 0(%r8)
-
-post_user_interrupt_handler:
-
-# Back from user handler(s)
-# Disable external interrupts (since the interrupt handler could
-# have turned them on) and return to the interrupted task stack (assuming
-# (_ISR_Nest_level == 0)
-
- rsm HPPA_PSW_I + HPPA_PSW_R, %r0
- ldw -4(sp), sp
-
-# r3 -- (most of) &_ISR_Nest_level
-# r5 -- value _ISR_Nest_level
-# r4 -- (most of) &_Thread_Dispatch_disable_level
-# r6 -- value _Thread_Dispatch_disable_level
-# r7 -- (most of) &_ISR_Signals_to_thread_executing
-# r8 -- value _ISR_Signals_to_thread_executing
-
- .import _ISR_Nest_level,data
- ldil L%_ISR_Nest_level,%r3
- ldw R%_ISR_Nest_level(%r3),%r5
-
- .import _Thread_Dispatch_disable_level,data
- ldil L%_Thread_Dispatch_disable_level,%r4
- ldw R%_Thread_Dispatch_disable_level(%r4),%r6
-
- .import _ISR_Signals_to_thread_executing,data
- ldil L%_ISR_Signals_to_thread_executing,%r7
-
-# decrement isr nest level
- addi -1, %r5, %r5
- stw %r5, R%_ISR_Nest_level(%r3)
-
-# decrement dispatch disable level counter and, if not 0, go on
- addi -1,%r6,%r6
- comibf,= 0,%r6,isr_restore
- stw %r6, R%_Thread_Dispatch_disable_level(%r4)
-
-# check whether or not a context switch is necessary
- .import _Context_Switch_necessary,data
- ldil L%_Context_Switch_necessary,%r8
- ldw R%_Context_Switch_necessary(%r8),%r8
- comibf,=,n 0,%r8,ISR_dispatch
-
-# check whether or not a context switch is necessary because an ISR
-# sent signals to the interrupted task
- ldw R%_ISR_Signals_to_thread_executing(%r7),%r8
- comibt,=,n 0,%r8,isr_restore
-
-
-# OK, something happened while in ISR and we need to switch to a task
-# other than the one which was interrupted or the
-# ISR_Signals_to_thread_executing case
-# We also turn on interrupts, since the interrupted task had them
-# on (obviously :-) and Thread_Dispatch is happy to leave ints on.
-#
-
-ISR_dispatch:
- stw %r0, R%_ISR_Signals_to_thread_executing(%r7)
-
- ssm HPPA_PSW_I, %r0
-
- .import _Thread_Dispatch,code
- .call
- bl _Thread_Dispatch,%r2
- ldo 128(sp),sp
-
- ldo -128(sp),sp
-
-isr_restore:
-
-# enable interrupts during most of restore
- ssm HPPA_PSW_I, %r0
-
-# Get a pointer to beginning of our stack frame
- ldo -CPU_INTERRUPT_FRAME_SIZE(sp), %arg1
-
-# restore float
- .call ARGW0=GR
- bl _CPU_Restore_float_context,%r2
- ldo FP_CONTEXT_OFFSET(%arg1), arg0
-
- copy %arg1, %arg0
-
-# ********** FALL THRU **********
-
-# Jump here from bottom of Context_Switch
-# Also called directly by _CPU_Context_Restart_self via _Thread_Restart_self
-# restore interrupt state
-#
-
- .EXPORT _CPU_Context_restore
-_CPU_Context_restore:
-
-#
-# restore integer state
-#
- ldw R1_OFFSET(arg0),%r1
- ldw R2_OFFSET(arg0),%r2
- ldw R3_OFFSET(arg0),%r3
- ldw R4_OFFSET(arg0),%r4
- ldw R5_OFFSET(arg0),%r5
- ldw R6_OFFSET(arg0),%r6
- ldw R7_OFFSET(arg0),%r7
- ldw R8_OFFSET(arg0),%r8
- ldw R9_OFFSET(arg0),%r9
- ldw R10_OFFSET(arg0),%r10
- ldw R11_OFFSET(arg0),%r11
- ldw R12_OFFSET(arg0),%r12
- ldw R13_OFFSET(arg0),%r13
- ldw R14_OFFSET(arg0),%r14
- ldw R15_OFFSET(arg0),%r15
- ldw R16_OFFSET(arg0),%r16
- ldw R17_OFFSET(arg0),%r17
- ldw R18_OFFSET(arg0),%r18
- ldw R19_OFFSET(arg0),%r19
- ldw R20_OFFSET(arg0),%r20
- ldw R21_OFFSET(arg0),%r21
- ldw R22_OFFSET(arg0),%r22
- ldw R23_OFFSET(arg0),%r23
- ldw R24_OFFSET(arg0),%r24
-# skipping r25; used as scratch register below
-# skipping r26 (arg0) until we are done with it
- ldw R27_OFFSET(arg0),%r27
- ldw R28_OFFSET(arg0),%r28
- ldw R29_OFFSET(arg0),%r29
-# skipping r30 (sp) until we turn off interrupts
- ldw R31_OFFSET(arg0),%r31
-
-# Turn off Q & R & I so we can write r30 and interrupt control registers
- rsm HPPA_PSW_Q + HPPA_PSW_R + HPPA_PSW_I, %r0
-
-# now safe to restore r30
- ldw R30_OFFSET(arg0),%r30
-
- ldw IPSW_OFFSET(arg0), %r25
- mtctl %r25, ipsw
-
- ldw SAR_OFFSET(arg0), %r25
- mtctl %r25, sar
-
- ldw PCOQFRONT_OFFSET(arg0), %r25
- mtctl %r25, pcoq
-
- ldw PCOQBACK_OFFSET(arg0), %r25
- mtctl %r25, pcoq
-
-# Load r25 with interrupts off
- ldw R25_OFFSET(arg0),%r25
-# Must load r26 (arg0) last
- ldw R26_OFFSET(arg0),%r26
-
-isr_exit:
- rfi
- .EXIT
- .PROCEND
-
-#
-# This section is used to context switch floating point registers.
-# Ref: 6-35 of Architecture 1.1
-#
-# NOTE: since integer multiply uses the floating point unit,
-# we have to save/restore fp on every trap. We cannot
-# just try to keep track of fp usage.
-
- .align 32
- .EXPORT _CPU_Save_float_context,ENTRY,PRIV_LEV=0
-_CPU_Save_float_context:
- .PROC
- .CALLINFO FRAME=0,NO_CALLS
- .ENTRY
- fstds,ma %fr0,8(%arg0)
- fstds,ma %fr1,8(%arg0)
- fstds,ma %fr2,8(%arg0)
- fstds,ma %fr3,8(%arg0)
- fstds,ma %fr4,8(%arg0)
- fstds,ma %fr5,8(%arg0)
- fstds,ma %fr6,8(%arg0)
- fstds,ma %fr7,8(%arg0)
- fstds,ma %fr8,8(%arg0)
- fstds,ma %fr9,8(%arg0)
- fstds,ma %fr10,8(%arg0)
- fstds,ma %fr11,8(%arg0)
- fstds,ma %fr12,8(%arg0)
- fstds,ma %fr13,8(%arg0)
- fstds,ma %fr14,8(%arg0)
- fstds,ma %fr15,8(%arg0)
- fstds,ma %fr16,8(%arg0)
- fstds,ma %fr17,8(%arg0)
- fstds,ma %fr18,8(%arg0)
- fstds,ma %fr19,8(%arg0)
- fstds,ma %fr20,8(%arg0)
- fstds,ma %fr21,8(%arg0)
- fstds,ma %fr22,8(%arg0)
- fstds,ma %fr23,8(%arg0)
- fstds,ma %fr24,8(%arg0)
- fstds,ma %fr25,8(%arg0)
- fstds,ma %fr26,8(%arg0)
- fstds,ma %fr27,8(%arg0)
- fstds,ma %fr28,8(%arg0)
- fstds,ma %fr29,8(%arg0)
- fstds,ma %fr30,8(%arg0)
- fstds %fr31,0(%arg0)
- bv 0(%r2)
- addi -(31*8), %arg0, %arg0 ; restore arg0 just for fun
- .EXIT
- .PROCEND
-
- .align 32
- .EXPORT _CPU_Restore_float_context,ENTRY,PRIV_LEV=0
-_CPU_Restore_float_context:
- .PROC
- .CALLINFO FRAME=0,NO_CALLS
- .ENTRY
- addi (31*8), %arg0, %arg0 ; point at last double
- fldds 0(%arg0),%fr31
- fldds,mb -8(%arg0),%fr30
- fldds,mb -8(%arg0),%fr29
- fldds,mb -8(%arg0),%fr28
- fldds,mb -8(%arg0),%fr27
- fldds,mb -8(%arg0),%fr26
- fldds,mb -8(%arg0),%fr25
- fldds,mb -8(%arg0),%fr24
- fldds,mb -8(%arg0),%fr23
- fldds,mb -8(%arg0),%fr22
- fldds,mb -8(%arg0),%fr21
- fldds,mb -8(%arg0),%fr20
- fldds,mb -8(%arg0),%fr19
- fldds,mb -8(%arg0),%fr18
- fldds,mb -8(%arg0),%fr17
- fldds,mb -8(%arg0),%fr16
- fldds,mb -8(%arg0),%fr15
- fldds,mb -8(%arg0),%fr14
- fldds,mb -8(%arg0),%fr13
- fldds,mb -8(%arg0),%fr12
- fldds,mb -8(%arg0),%fr11
- fldds,mb -8(%arg0),%fr10
- fldds,mb -8(%arg0),%fr9
- fldds,mb -8(%arg0),%fr8
- fldds,mb -8(%arg0),%fr7
- fldds,mb -8(%arg0),%fr6
- fldds,mb -8(%arg0),%fr5
- fldds,mb -8(%arg0),%fr4
- fldds,mb -8(%arg0),%fr3
- fldds,mb -8(%arg0),%fr2
- fldds,mb -8(%arg0),%fr1
- bv 0(%r2)
- fldds,mb -8(%arg0),%fr0
- .EXIT
- .PROCEND
-
-#
-# These 2 small routines are unused right now.
-# Normally we just go thru _CPU_Save_float_context (and Restore)
-#
-# Here we just deref the ptr and jump up, letting _CPU_Save_float_context
-# do the return for us.
-#
- .EXPORT _CPU_Context_save_fp,ENTRY,PRIV_LEV=0
-_CPU_Context_save_fp:
- .PROC
- .CALLINFO FRAME=0,NO_CALLS
- .ENTRY
- bl _CPU_Save_float_context, %r0
- ldw 0(%arg0), %arg0
- .EXIT
- .PROCEND
-
- .EXPORT _CPU_Context_restore_fp,ENTRY,PRIV_LEV=0
-_CPU_Context_restore_fp:
- .PROC
- .CALLINFO FRAME=0,NO_CALLS
- .ENTRY
- bl _CPU_Restore_float_context, %r0
- ldw 0(%arg0), %arg0
- .EXIT
- .PROCEND
-
-
-# void _CPU_Context_switch( run_context, heir_context )
-#
-# This routine performs a normal non-FP context switch.
-#
-
- .align 32
- .EXPORT _CPU_Context_switch,ENTRY,PRIV_LEV=0,ARGW0=GR,ARGW1=GR
-_CPU_Context_switch:
- .PROC
- .CALLINFO FRAME=64
- .ENTRY
-
-# Save the integer context
- stw %r1,R1_OFFSET(arg0)
- stw %r2,R2_OFFSET(arg0)
- stw %r3,R3_OFFSET(arg0)
- stw %r4,R4_OFFSET(arg0)
- stw %r5,R5_OFFSET(arg0)
- stw %r6,R6_OFFSET(arg0)
- stw %r7,R7_OFFSET(arg0)
- stw %r8,R8_OFFSET(arg0)
- stw %r9,R9_OFFSET(arg0)
- stw %r10,R10_OFFSET(arg0)
- stw %r11,R11_OFFSET(arg0)
- stw %r12,R12_OFFSET(arg0)
- stw %r13,R13_OFFSET(arg0)
- stw %r14,R14_OFFSET(arg0)
- stw %r15,R15_OFFSET(arg0)
- stw %r16,R16_OFFSET(arg0)
- stw %r17,R17_OFFSET(arg0)
- stw %r18,R18_OFFSET(arg0)
- stw %r19,R19_OFFSET(arg0)
- stw %r20,R20_OFFSET(arg0)
- stw %r21,R21_OFFSET(arg0)
- stw %r22,R22_OFFSET(arg0)
- stw %r23,R23_OFFSET(arg0)
- stw %r24,R24_OFFSET(arg0)
- stw %r25,R25_OFFSET(arg0)
- stw %r26,R26_OFFSET(arg0)
- stw %r27,R27_OFFSET(arg0)
- stw %r28,R28_OFFSET(arg0)
- stw %r29,R29_OFFSET(arg0)
- stw %r30,R30_OFFSET(arg0)
- stw %r31,R31_OFFSET(arg0)
-
-# fill in interrupt context section
- stw %r2, PCOQFRONT_OFFSET(%arg0)
- ldo 4(%r2), %r2
- stw %r2, PCOQBACK_OFFSET(%arg0)
-
-# Generate a suitable IPSW by using the system default psw
-# with the current low bits added in.
-
- ldil L%CPU_PSW_DEFAULT, %r2
- ldo R%CPU_PSW_DEFAULT(%r2), %r2
- ssm 0, %arg2
- dep %arg2, 31, 8, %r2
- stw %r2, IPSW_OFFSET(%arg0)
-
-# at this point, the running task context is completely saved
-# Now jump to the bottom of the interrupt handler to load the
-# heirs context
-
- b _CPU_Context_restore
- copy %arg1, %arg0
-
- .EXIT
- .PROCEND
-
-
-/*
- * Find first bit
- * NOTE:
- * This is used (and written) only for the ready chain code and
- * priority bit maps.
- * Any other use constitutes fraud.
- * Returns first bit from the least significant side.
- * Eg: if input is 0x8001
- * output will indicate the '1' bit and return 0.
- * This is counter to HPPA bit numbering which calls this
- * bit 31. This way simplifies the macros _CPU_Priority_Mask
- * and _CPU_Priority_Bits_index.
- *
- * NOTE:
- * We just use 16 bit version
- * does not handle zero case
- *
- * Based on the UTAH Mach libc version of ffs.
- */
-
- .align 32
- .EXPORT hppa_rtems_ffs,ENTRY,PRIV_LEV=0,ARGW0=GR
-hppa_rtems_ffs:
- .PROC
- .CALLINFO FRAME=0,NO_CALLS
- .ENTRY
-
-#ifdef RETURN_ERROR_ON_ZERO
- comb,= %arg0,%r0,ffsdone ; If arg0 is 0
- ldi -1,%ret0 ; return -1
-#endif
-
-#if BITFIELD_SIZE == 32
- ldi 31,%ret0 ; Set return to high bit
- extru,= %arg0,31,16,%r0 ; If low 16 bits are non-zero
- addi,tr -16,%ret0,%ret0 ; subtract 16 from bitpos
- shd %r0,%arg0,16,%arg0 ; else shift right 16 bits
-#else
- ldi 15,%ret0 ; Set return to high bit
-#endif
- extru,= %arg0,31,8,%r0 ; If low 8 bits are non-zero
- addi,tr -8,%ret0,%ret0 ; subtract 8 from bitpos
- shd %r0,%arg0,8,%arg0 ; else shift right 8 bits
- extru,= %arg0,31,4,%r0 ; If low 4 bits are non-zero
- addi,tr -4,%ret0,%ret0 ; subtract 4 from bitpos
- shd %r0,%arg0,4,%arg0 ; else shift right 4 bits
- extru,= %arg0,31,2,%r0 ; If low 2 bits are non-zero
- addi,tr -2,%ret0,%ret0 ; subtract 2 from bitpos
- shd %r0,%arg0,2,%arg0 ; else shift right 2 bits
- extru,= %arg0,31,1,%r0 ; If low bit is non-zero
- addi -1,%ret0,%ret0 ; subtract 1 from bitpos
-ffsdone:
- bv,n 0(%r2)
- nop
- .EXIT
- .PROCEND