summaryrefslogtreecommitdiffstats
path: root/bsps/arm/stm32h7/hal/stm32h7xx_hal_uart.c
diff options
context:
space:
mode:
Diffstat (limited to 'bsps/arm/stm32h7/hal/stm32h7xx_hal_uart.c')
-rw-r--r--bsps/arm/stm32h7/hal/stm32h7xx_hal_uart.c8849
1 files changed, 4732 insertions, 4117 deletions
diff --git a/bsps/arm/stm32h7/hal/stm32h7xx_hal_uart.c b/bsps/arm/stm32h7/hal/stm32h7xx_hal_uart.c
index 4310fbd664..0d0d2791ea 100644
--- a/bsps/arm/stm32h7/hal/stm32h7xx_hal_uart.c
+++ b/bsps/arm/stm32h7/hal/stm32h7xx_hal_uart.c
@@ -1,4125 +1,4740 @@
-/**
- ******************************************************************************
- * @file stm32h7xx_hal_uart.c
- * @author MCD Application Team
- * @brief UART HAL module driver.
- * This file provides firmware functions to manage the following
- * functionalities of the Universal Asynchronous Receiver Transmitter Peripheral (UART).
- * + Initialization and de-initialization functions
- * + IO operation functions
- * + Peripheral Control functions
- *
- *
- @verbatim
- ===============================================================================
- ##### How to use this driver #####
- ===============================================================================
- [..]
- The UART HAL driver can be used as follows:
-
- (#) Declare a UART_HandleTypeDef handle structure (eg. UART_HandleTypeDef huart).
- (#) Initialize the UART low level resources by implementing the HAL_UART_MspInit() API:
- (++) Enable the USARTx interface clock.
- (++) UART pins configuration:
- (+++) Enable the clock for the UART GPIOs.
- (+++) Configure these UART pins as alternate function pull-up.
- (++) NVIC configuration if you need to use interrupt process (HAL_UART_Transmit_IT()
- and HAL_UART_Receive_IT() APIs):
- (+++) Configure the USARTx interrupt priority.
- (+++) Enable the NVIC USART IRQ handle.
- (++) UART interrupts handling:
- -@@- The specific UART interrupts (Transmission complete interrupt,
- RXNE interrupt, RX/TX FIFOs related interrupts and Error Interrupts)
- are managed using the macros __HAL_UART_ENABLE_IT() and __HAL_UART_DISABLE_IT()
- inside the transmit and receive processes.
- (++) DMA Configuration if you need to use DMA process (HAL_UART_Transmit_DMA()
- and HAL_UART_Receive_DMA() APIs):
- (+++) Declare a DMA handle structure for the Tx/Rx channel.
- (+++) Enable the DMAx interface clock.
- (+++) Configure the declared DMA handle structure with the required Tx/Rx parameters.
- (+++) Configure the DMA Tx/Rx channel.
- (+++) Associate the initialized DMA handle to the UART DMA Tx/Rx handle.
- (+++) Configure the priority and enable the NVIC for the transfer complete interrupt on the DMA Tx/Rx channel.
-
- (#) Program the Baud Rate, Word Length, Stop Bit, Parity, Prescaler value , Hardware
- flow control and Mode (Receiver/Transmitter) in the huart handle Init structure.
-
- (#) If required, program UART advanced features (TX/RX pins swap, auto Baud rate detection,...)
- in the huart handle AdvancedInit structure.
-
- (#) For the UART asynchronous mode, initialize the UART registers by calling
- the HAL_UART_Init() API.
-
- (#) For the UART Half duplex mode, initialize the UART registers by calling
- the HAL_HalfDuplex_Init() API.
-
- (#) For the UART LIN (Local Interconnection Network) mode, initialize the UART registers
- by calling the HAL_LIN_Init() API.
-
- (#) For the UART Multiprocessor mode, initialize the UART registers
- by calling the HAL_MultiProcessor_Init() API.
-
- (#) For the UART RS485 Driver Enabled mode, initialize the UART registers
- by calling the HAL_RS485Ex_Init() API.
-
- [..]
- (@) These API's (HAL_UART_Init(), HAL_HalfDuplex_Init(), HAL_LIN_Init(), HAL_MultiProcessor_Init(),
- also configure the low level Hardware GPIO, CLOCK, CORTEX...etc) by
- calling the customized HAL_UART_MspInit() API.
-
- ##### Callback registration #####
- ==================================
-
- [..]
- The compilation define USE_HAL_UART_REGISTER_CALLBACKS when set to 1
- allows the user to configure dynamically the driver callbacks.
-
- [..]
- Use Function @ref HAL_UART_RegisterCallback() to register a user callback.
- Function @ref HAL_UART_RegisterCallback() allows to register following callbacks:
- (+) TxHalfCpltCallback : Tx Half Complete Callback.
- (+) TxCpltCallback : Tx Complete Callback.
- (+) RxHalfCpltCallback : Rx Half Complete Callback.
- (+) RxCpltCallback : Rx Complete Callback.
- (+) ErrorCallback : Error Callback.
- (+) AbortCpltCallback : Abort Complete Callback.
- (+) AbortTransmitCpltCallback : Abort Transmit Complete Callback.
- (+) AbortReceiveCpltCallback : Abort Receive Complete Callback.
- (+) WakeupCallback : Wakeup Callback.
- (+) RxFifoFullCallback : Rx Fifo Full Callback.
- (+) TxFifoEmptyCallback : Tx Fifo Empty Callback.
- (+) MspInitCallback : UART MspInit.
- (+) MspDeInitCallback : UART MspDeInit.
- This function takes as parameters the HAL peripheral handle, the Callback ID
- and a pointer to the user callback function.
-
- [..]
- Use function @ref HAL_UART_UnRegisterCallback() to reset a callback to the default
- weak (surcharged) function.
- @ref HAL_UART_UnRegisterCallback() takes as parameters the HAL peripheral handle,
- and the Callback ID.
- This function allows to reset following callbacks:
- (+) TxHalfCpltCallback : Tx Half Complete Callback.
- (+) TxCpltCallback : Tx Complete Callback.
- (+) RxHalfCpltCallback : Rx Half Complete Callback.
- (+) RxCpltCallback : Rx Complete Callback.
- (+) ErrorCallback : Error Callback.
- (+) AbortCpltCallback : Abort Complete Callback.
- (+) AbortTransmitCpltCallback : Abort Transmit Complete Callback.
- (+) AbortReceiveCpltCallback : Abort Receive Complete Callback.
- (+) WakeupCallback : Wakeup Callback.
- (+) RxFifoFullCallback : Rx Fifo Full Callback.
- (+) TxFifoEmptyCallback : Tx Fifo Empty Callback.
- (+) MspInitCallback : UART MspInit.
- (+) MspDeInitCallback : UART MspDeInit.
-
- [..]
- By default, after the @ref HAL_UART_Init() and when the state is HAL_UART_STATE_RESET
- all callbacks are set to the corresponding weak (surcharged) functions:
- examples @ref HAL_UART_TxCpltCallback(), @ref HAL_UART_RxHalfCpltCallback().
- Exception done for MspInit and MspDeInit functions that are respectively
- reset to the legacy weak (surcharged) functions in the @ref HAL_UART_Init()
- and @ref HAL_UART_DeInit() only when these callbacks are null (not registered beforehand).
- If not, MspInit or MspDeInit are not null, the @ref HAL_UART_Init() and @ref HAL_UART_DeInit()
- keep and use the user MspInit/MspDeInit callbacks (registered beforehand).
-
- [..]
- Callbacks can be registered/unregistered in HAL_UART_STATE_READY state only.
- Exception done MspInit/MspDeInit that can be registered/unregistered
- in HAL_UART_STATE_READY or HAL_UART_STATE_RESET state, thus registered (user)
- MspInit/DeInit callbacks can be used during the Init/DeInit.
- In that case first register the MspInit/MspDeInit user callbacks
- using @ref HAL_UART_RegisterCallback() before calling @ref HAL_UART_DeInit()
- or @ref HAL_UART_Init() function.
-
- [..]
- When The compilation define USE_HAL_UART_REGISTER_CALLBACKS is set to 0 or
- not defined, the callback registration feature is not available
- and weak (surcharged) callbacks are used.
-
-
- @endverbatim
- ******************************************************************************
- * @attention
- *
- * <h2><center>&copy; Copyright (c) 2017 STMicroelectronics.
- * All rights reserved.</center></h2>
- *
- * This software component is licensed by ST under BSD 3-Clause license,
- * the "License"; You may not use this file except in compliance with the
- * License. You may obtain a copy of the License at:
- * opensource.org/licenses/BSD-3-Clause
- *
- ******************************************************************************
- */
-
-/* Includes ------------------------------------------------------------------*/
-#include "stm32h7xx_hal.h"
-
-/** @addtogroup STM32H7xx_HAL_Driver
- * @{
- */
-
-/** @defgroup UART UART
+/**
+ ******************************************************************************
+ * @file stm32h7xx_hal_uart.c
+ * @author MCD Application Team
+ * @brief UART HAL module driver.
+ * This file provides firmware functions to manage the following
+ * functionalities of the Universal Asynchronous Receiver Transmitter Peripheral (UART).
+ * + Initialization and de-initialization functions
+ * + IO operation functions
+ * + Peripheral Control functions
+ *
+ *
+ ******************************************************************************
+ * @attention
+ *
+ * Copyright (c) 2017 STMicroelectronics.
+ * All rights reserved.
+ *
+ * This software is licensed under terms that can be found in the LICENSE file
+ * in the root directory of this software component.
+ * If no LICENSE file comes with this software, it is provided AS-IS.
+ *
+ ******************************************************************************
+ @verbatim
+ ===============================================================================
+ ##### How to use this driver #####
+ ===============================================================================
+ [..]
+ The UART HAL driver can be used as follows:
+
+ (#) Declare a UART_HandleTypeDef handle structure (eg. UART_HandleTypeDef huart).
+ (#) Initialize the UART low level resources by implementing the HAL_UART_MspInit() API:
+ (++) Enable the USARTx interface clock.
+ (++) UART pins configuration:
+ (+++) Enable the clock for the UART GPIOs.
+ (+++) Configure these UART pins as alternate function pull-up.
+ (++) NVIC configuration if you need to use interrupt process (HAL_UART_Transmit_IT()
+ and HAL_UART_Receive_IT() APIs):
+ (+++) Configure the USARTx interrupt priority.
+ (+++) Enable the NVIC USART IRQ handle.
+ (++) UART interrupts handling:
+ -@@- The specific UART interrupts (Transmission complete interrupt,
+ RXNE interrupt, RX/TX FIFOs related interrupts and Error Interrupts)
+ are managed using the macros __HAL_UART_ENABLE_IT() and __HAL_UART_DISABLE_IT()
+ inside the transmit and receive processes.
+ (++) DMA Configuration if you need to use DMA process (HAL_UART_Transmit_DMA()
+ and HAL_UART_Receive_DMA() APIs):
+ (+++) Declare a DMA handle structure for the Tx/Rx channel.
+ (+++) Enable the DMAx interface clock.
+ (+++) Configure the declared DMA handle structure with the required Tx/Rx parameters.
+ (+++) Configure the DMA Tx/Rx channel.
+ (+++) Associate the initialized DMA handle to the UART DMA Tx/Rx handle.
+ (+++) Configure the priority and enable the NVIC for the transfer complete
+ interrupt on the DMA Tx/Rx channel.
+
+ (#) Program the Baud Rate, Word Length, Stop Bit, Parity, Prescaler value , Hardware
+ flow control and Mode (Receiver/Transmitter) in the huart handle Init structure.
+
+ (#) If required, program UART advanced features (TX/RX pins swap, auto Baud rate detection,...)
+ in the huart handle AdvancedInit structure.
+
+ (#) For the UART asynchronous mode, initialize the UART registers by calling
+ the HAL_UART_Init() API.
+
+ (#) For the UART Half duplex mode, initialize the UART registers by calling
+ the HAL_HalfDuplex_Init() API.
+
+ (#) For the UART LIN (Local Interconnection Network) mode, initialize the UART registers
+ by calling the HAL_LIN_Init() API.
+
+ (#) For the UART Multiprocessor mode, initialize the UART registers
+ by calling the HAL_MultiProcessor_Init() API.
+
+ (#) For the UART RS485 Driver Enabled mode, initialize the UART registers
+ by calling the HAL_RS485Ex_Init() API.
+
+ [..]
+ (@) These API's (HAL_UART_Init(), HAL_HalfDuplex_Init(), HAL_LIN_Init(), HAL_MultiProcessor_Init(),
+ also configure the low level Hardware GPIO, CLOCK, CORTEX...etc) by
+ calling the customized HAL_UART_MspInit() API.
+
+ ##### Callback registration #####
+ ==================================
+
+ [..]
+ The compilation define USE_HAL_UART_REGISTER_CALLBACKS when set to 1
+ allows the user to configure dynamically the driver callbacks.
+
+ [..]
+ Use Function HAL_UART_RegisterCallback() to register a user callback.
+ Function HAL_UART_RegisterCallback() allows to register following callbacks:
+ (+) TxHalfCpltCallback : Tx Half Complete Callback.
+ (+) TxCpltCallback : Tx Complete Callback.
+ (+) RxHalfCpltCallback : Rx Half Complete Callback.
+ (+) RxCpltCallback : Rx Complete Callback.
+ (+) ErrorCallback : Error Callback.
+ (+) AbortCpltCallback : Abort Complete Callback.
+ (+) AbortTransmitCpltCallback : Abort Transmit Complete Callback.
+ (+) AbortReceiveCpltCallback : Abort Receive Complete Callback.
+ (+) WakeupCallback : Wakeup Callback.
+ (+) RxFifoFullCallback : Rx Fifo Full Callback.
+ (+) TxFifoEmptyCallback : Tx Fifo Empty Callback.
+ (+) MspInitCallback : UART MspInit.
+ (+) MspDeInitCallback : UART MspDeInit.
+ This function takes as parameters the HAL peripheral handle, the Callback ID
+ and a pointer to the user callback function.
+
+ [..]
+ Use function HAL_UART_UnRegisterCallback() to reset a callback to the default
+ weak (surcharged) function.
+ HAL_UART_UnRegisterCallback() takes as parameters the HAL peripheral handle,
+ and the Callback ID.
+ This function allows to reset following callbacks:
+ (+) TxHalfCpltCallback : Tx Half Complete Callback.
+ (+) TxCpltCallback : Tx Complete Callback.
+ (+) RxHalfCpltCallback : Rx Half Complete Callback.
+ (+) RxCpltCallback : Rx Complete Callback.
+ (+) ErrorCallback : Error Callback.
+ (+) AbortCpltCallback : Abort Complete Callback.
+ (+) AbortTransmitCpltCallback : Abort Transmit Complete Callback.
+ (+) AbortReceiveCpltCallback : Abort Receive Complete Callback.
+ (+) WakeupCallback : Wakeup Callback.
+ (+) RxFifoFullCallback : Rx Fifo Full Callback.
+ (+) TxFifoEmptyCallback : Tx Fifo Empty Callback.
+ (+) MspInitCallback : UART MspInit.
+ (+) MspDeInitCallback : UART MspDeInit.
+
+ [..]
+ For specific callback RxEventCallback, use dedicated registration/reset functions:
+ respectively HAL_UART_RegisterRxEventCallback() , HAL_UART_UnRegisterRxEventCallback().
+
+ [..]
+ By default, after the HAL_UART_Init() and when the state is HAL_UART_STATE_RESET
+ all callbacks are set to the corresponding weak (surcharged) functions:
+ examples HAL_UART_TxCpltCallback(), HAL_UART_RxHalfCpltCallback().
+ Exception done for MspInit and MspDeInit functions that are respectively
+ reset to the legacy weak (surcharged) functions in the HAL_UART_Init()
+ and HAL_UART_DeInit() only when these callbacks are null (not registered beforehand).
+ If not, MspInit or MspDeInit are not null, the HAL_UART_Init() and HAL_UART_DeInit()
+ keep and use the user MspInit/MspDeInit callbacks (registered beforehand).
+
+ [..]
+ Callbacks can be registered/unregistered in HAL_UART_STATE_READY state only.
+ Exception done MspInit/MspDeInit that can be registered/unregistered
+ in HAL_UART_STATE_READY or HAL_UART_STATE_RESET state, thus registered (user)
+ MspInit/DeInit callbacks can be used during the Init/DeInit.
+ In that case first register the MspInit/MspDeInit user callbacks
+ using HAL_UART_RegisterCallback() before calling HAL_UART_DeInit()
+ or HAL_UART_Init() function.
+
+ [..]
+ When The compilation define USE_HAL_UART_REGISTER_CALLBACKS is set to 0 or
+ not defined, the callback registration feature is not available
+ and weak (surcharged) callbacks are used.
+
+
+ @endverbatim
+ ******************************************************************************
+ */
+
+/* Includes ------------------------------------------------------------------*/
+#include "stm32h7xx_hal.h"
+
+/** @addtogroup STM32H7xx_HAL_Driver
+ * @{
+ */
+
+/** @defgroup UART UART
* @ingroup RTEMSBSPsARMSTM32H7
- * @brief HAL UART module driver
- * @{
- */
-
-#ifdef HAL_UART_MODULE_ENABLED
-
-/* Private typedef -----------------------------------------------------------*/
-/* Private define ------------------------------------------------------------*/
-/** @defgroup UART_Private_Constants UART Private Constants
+ * @brief HAL UART module driver
+ * @{
+ */
+
+#ifdef HAL_UART_MODULE_ENABLED
+
+/* Private typedef -----------------------------------------------------------*/
+/* Private define ------------------------------------------------------------*/
+/** @defgroup UART_Private_Constants UART Private Constants
* @ingroup RTEMSBSPsARMSTM32H7
- * @{
- */
-#define USART_CR1_FIELDS ((uint32_t)(USART_CR1_M | USART_CR1_PCE | USART_CR1_PS | \
- USART_CR1_TE | USART_CR1_RE | USART_CR1_OVER8| \
- USART_CR1_FIFOEN )) /*!< UART or USART CR1 fields of parameters set by UART_SetConfig API */
-
-#define USART_CR3_FIELDS ((uint32_t)(USART_CR3_RTSE | USART_CR3_CTSE | USART_CR3_ONEBIT| \
- USART_CR3_TXFTCFG | USART_CR3_RXFTCFG )) /*!< UART or USART CR3 fields of parameters set by UART_SetConfig API */
-
-#define LPUART_BRR_MIN 0x00000300U /* LPUART BRR minimum authorized value */
-#define LPUART_BRR_MAX 0x000FFFFFU /* LPUART BRR maximum authorized value */
-
-#define UART_BRR_MIN 0x10U /* UART BRR minimum authorized value */
-#define UART_BRR_MAX 0x0000FFFFU /* UART BRR maximum authorized value */
-
-/**
- * @}
- */
-
-/* Private macros ------------------------------------------------------------*/
-/* Private variables ---------------------------------------------------------*/
-/* Private function prototypes -----------------------------------------------*/
-/** @addtogroup UART_Private_Functions
- * @{
- */
-static void UART_EndTxTransfer(UART_HandleTypeDef *huart);
-static void UART_EndRxTransfer(UART_HandleTypeDef *huart);
-static void UART_DMATransmitCplt(DMA_HandleTypeDef *hdma);
-static void UART_DMAReceiveCplt(DMA_HandleTypeDef *hdma);
-static void UART_DMARxHalfCplt(DMA_HandleTypeDef *hdma);
-static void UART_DMATxHalfCplt(DMA_HandleTypeDef *hdma);
-static void UART_DMAError(DMA_HandleTypeDef *hdma);
-static void UART_DMAAbortOnError(DMA_HandleTypeDef *hdma);
-static void UART_DMATxAbortCallback(DMA_HandleTypeDef *hdma);
-static void UART_DMARxAbortCallback(DMA_HandleTypeDef *hdma);
-static void UART_DMATxOnlyAbortCallback(DMA_HandleTypeDef *hdma);
-static void UART_DMARxOnlyAbortCallback(DMA_HandleTypeDef *hdma);
-static void UART_TxISR_8BIT(UART_HandleTypeDef *huart);
-static void UART_TxISR_16BIT(UART_HandleTypeDef *huart);
-static void UART_TxISR_8BIT_FIFOEN(UART_HandleTypeDef *huart);
-static void UART_TxISR_16BIT_FIFOEN(UART_HandleTypeDef *huart);
-static void UART_EndTransmit_IT(UART_HandleTypeDef *huart);
-static void UART_RxISR_8BIT(UART_HandleTypeDef *huart);
-static void UART_RxISR_16BIT(UART_HandleTypeDef *huart);
-static void UART_RxISR_8BIT_FIFOEN(UART_HandleTypeDef *huart);
-static void UART_RxISR_16BIT_FIFOEN(UART_HandleTypeDef *huart);
-/**
- * @}
- */
-
-/* Exported functions --------------------------------------------------------*/
-
-/** @defgroup UART_Exported_Functions UART Exported Functions
+ * @{
+ */
+#define USART_CR1_FIELDS ((uint32_t)(USART_CR1_M | USART_CR1_PCE | USART_CR1_PS | USART_CR1_TE | USART_CR1_RE | \
+ USART_CR1_OVER8 | USART_CR1_FIFOEN)) /*!< UART or USART CR1 fields of parameters set by UART_SetConfig API */
+
+#define USART_CR3_FIELDS ((uint32_t)(USART_CR3_RTSE | USART_CR3_CTSE | USART_CR3_ONEBIT | USART_CR3_TXFTCFG | \
+ USART_CR3_RXFTCFG)) /*!< UART or USART CR3 fields of parameters set by UART_SetConfig API */
+
+#define LPUART_BRR_MIN 0x00000300U /* LPUART BRR minimum authorized value */
+#define LPUART_BRR_MAX 0x000FFFFFU /* LPUART BRR maximum authorized value */
+
+#define UART_BRR_MIN 0x10U /* UART BRR minimum authorized value */
+#define UART_BRR_MAX 0x0000FFFFU /* UART BRR maximum authorized value */
+/**
+ * @}
+ */
+
+/* Private macros ------------------------------------------------------------*/
+/* Private function prototypes -----------------------------------------------*/
+/** @addtogroup UART_Private_Functions
+ * @{
+ */
+static void UART_EndTxTransfer(UART_HandleTypeDef *huart);
+static void UART_EndRxTransfer(UART_HandleTypeDef *huart);
+static void UART_DMATransmitCplt(DMA_HandleTypeDef *hdma);
+static void UART_DMAReceiveCplt(DMA_HandleTypeDef *hdma);
+static void UART_DMARxHalfCplt(DMA_HandleTypeDef *hdma);
+static void UART_DMATxHalfCplt(DMA_HandleTypeDef *hdma);
+static void UART_DMAError(DMA_HandleTypeDef *hdma);
+static void UART_DMAAbortOnError(DMA_HandleTypeDef *hdma);
+static void UART_DMATxAbortCallback(DMA_HandleTypeDef *hdma);
+static void UART_DMARxAbortCallback(DMA_HandleTypeDef *hdma);
+static void UART_DMATxOnlyAbortCallback(DMA_HandleTypeDef *hdma);
+static void UART_DMARxOnlyAbortCallback(DMA_HandleTypeDef *hdma);
+static void UART_TxISR_8BIT(UART_HandleTypeDef *huart);
+static void UART_TxISR_16BIT(UART_HandleTypeDef *huart);
+static void UART_TxISR_8BIT_FIFOEN(UART_HandleTypeDef *huart);
+static void UART_TxISR_16BIT_FIFOEN(UART_HandleTypeDef *huart);
+static void UART_EndTransmit_IT(UART_HandleTypeDef *huart);
+static void UART_RxISR_8BIT(UART_HandleTypeDef *huart);
+static void UART_RxISR_16BIT(UART_HandleTypeDef *huart);
+static void UART_RxISR_8BIT_FIFOEN(UART_HandleTypeDef *huart);
+static void UART_RxISR_16BIT_FIFOEN(UART_HandleTypeDef *huart);
+/**
+ * @}
+ */
+
+/* Private variables ---------------------------------------------------------*/
+/** @addtogroup UART_Private_variables
+ * @{
+ */
+const uint16_t UARTPrescTable[12] = {1U, 2U, 4U, 6U, 8U, 10U, 12U, 16U, 32U, 64U, 128U, 256U};
+/**
+ * @}
+ */
+
+/* Exported Constants --------------------------------------------------------*/
+/* Exported functions --------------------------------------------------------*/
+
+/** @defgroup UART_Exported_Functions UART Exported Functions
* @ingroup RTEMSBSPsARMSTM32H7
- * @{
- */
-
-/** @defgroup UART_Exported_Functions_Group1 Initialization and de-initialization functions
+ * @{
+ */
+
+/** @defgroup UART_Exported_Functions_Group1 Initialization and de-initialization functions
* @ingroup RTEMSBSPsARMSTM32H7
- * @brief Initialization and Configuration functions
- *
-@verbatim
-===============================================================================
- ##### Initialization and Configuration functions #####
- ===============================================================================
- [..]
- This subsection provides a set of functions allowing to initialize the USARTx or the UARTy
- in asynchronous mode.
- (+) For the asynchronous mode the parameters below can be configured:
- (++) Baud Rate
- (++) Word Length
- (++) Stop Bit
- (++) Parity: If the parity is enabled, then the MSB bit of the data written
- in the data register is transmitted but is changed by the parity bit.
- (++) Hardware flow control
- (++) Receiver/transmitter modes
- (++) Over Sampling Method
- (++) One-Bit Sampling Method
- (+) For the asynchronous mode, the following advanced features can be configured as well:
- (++) TX and/or RX pin level inversion
- (++) data logical level inversion
- (++) RX and TX pins swap
- (++) RX overrun detection disabling
- (++) DMA disabling on RX error
- (++) MSB first on communication line
- (++) auto Baud rate detection
- [..]
- The HAL_UART_Init(), HAL_HalfDuplex_Init(), HAL_LIN_Init()and HAL_MultiProcessor_Init()API
- follow respectively the UART asynchronous, UART Half duplex, UART LIN mode
- and UART multiprocessor mode configuration procedures (details for the procedures
- are available in reference manual).
-
-@endverbatim
-
- Depending on the frame length defined by the M1 and M0 bits (7-bit,
- 8-bit or 9-bit), the possible UART formats are listed in the
- following table.
-
- Table 1. UART frame format.
- +-----------------------------------------------------------------------+
- | M1 bit | M0 bit | PCE bit | UART frame |
- |---------|---------|-----------|---------------------------------------|
- | 0 | 0 | 0 | | SB | 8 bit data | STB | |
- |---------|---------|-----------|---------------------------------------|
- | 0 | 0 | 1 | | SB | 7 bit data | PB | STB | |
- |---------|---------|-----------|---------------------------------------|
- | 0 | 1 | 0 | | SB | 9 bit data | STB | |
- |---------|---------|-----------|---------------------------------------|
- | 0 | 1 | 1 | | SB | 8 bit data | PB | STB | |
- |---------|---------|-----------|---------------------------------------|
- | 1 | 0 | 0 | | SB | 7 bit data | STB | |
- |---------|---------|-----------|---------------------------------------|
- | 1 | 0 | 1 | | SB | 6 bit data | PB | STB | |
- +-----------------------------------------------------------------------+
-
- * @{
- */
-
-/**
- * @brief Initialize the UART mode according to the specified
- * parameters in the UART_InitTypeDef and initialize the associated handle.
- * @param huart UART handle.
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_UART_Init(UART_HandleTypeDef *huart)
-{
- /* Check the UART handle allocation */
- if (huart == NULL)
- {
- return HAL_ERROR;
- }
-
- if (huart->Init.HwFlowCtl != UART_HWCONTROL_NONE)
- {
- /* Check the parameters */
- assert_param(IS_UART_HWFLOW_INSTANCE(huart->Instance));
- }
- else
- {
- /* Check the parameters */
- assert_param((IS_UART_INSTANCE(huart->Instance)) || (IS_LPUART_INSTANCE(huart->Instance)));
- }
-
- if (huart->gState == HAL_UART_STATE_RESET)
- {
- /* Allocate lock resource and initialize it */
- huart->Lock = HAL_UNLOCKED;
-
-#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
- UART_InitCallbacksToDefault(huart);
-
- if (huart->MspInitCallback == NULL)
- {
- huart->MspInitCallback = HAL_UART_MspInit;
- }
-
- /* Init the low level hardware */
- huart->MspInitCallback(huart);
-#else
- /* Init the low level hardware : GPIO, CLOCK */
- HAL_UART_MspInit(huart);
-#endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */
- }
-
- huart->gState = HAL_UART_STATE_BUSY;
-
- __HAL_UART_DISABLE(huart);
-
- /* Set the UART Communication parameters */
- if (UART_SetConfig(huart) == HAL_ERROR)
- {
- return HAL_ERROR;
- }
-
- if (huart->AdvancedInit.AdvFeatureInit != UART_ADVFEATURE_NO_INIT)
- {
- UART_AdvFeatureConfig(huart);
- }
-
- /* In asynchronous mode, the following bits must be kept cleared:
- - LINEN and CLKEN bits in the USART_CR2 register,
- - SCEN, HDSEL and IREN bits in the USART_CR3 register.*/
- CLEAR_BIT(huart->Instance->CR2, (USART_CR2_LINEN | USART_CR2_CLKEN));
- CLEAR_BIT(huart->Instance->CR3, (USART_CR3_SCEN | USART_CR3_HDSEL | USART_CR3_IREN));
-
- __HAL_UART_ENABLE(huart);
-
- /* TEACK and/or REACK to check before moving huart->gState and huart->RxState to Ready */
- return (UART_CheckIdleState(huart));
-}
-
-/**
- * @brief Initialize the half-duplex mode according to the specified
- * parameters in the UART_InitTypeDef and creates the associated handle.
- * @param huart UART handle.
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_HalfDuplex_Init(UART_HandleTypeDef *huart)
-{
- /* Check the UART handle allocation */
- if (huart == NULL)
- {
- return HAL_ERROR;
- }
-
- /* Check UART instance */
- assert_param(IS_UART_HALFDUPLEX_INSTANCE(huart->Instance));
-
- if (huart->gState == HAL_UART_STATE_RESET)
- {
- /* Allocate lock resource and initialize it */
- huart->Lock = HAL_UNLOCKED;
-
-#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
- UART_InitCallbacksToDefault(huart);
-
- if (huart->MspInitCallback == NULL)
- {
- huart->MspInitCallback = HAL_UART_MspInit;
- }
-
- /* Init the low level hardware */
- huart->MspInitCallback(huart);
-#else
- /* Init the low level hardware : GPIO, CLOCK */
- HAL_UART_MspInit(huart);
-#endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */
- }
-
- huart->gState = HAL_UART_STATE_BUSY;
-
- __HAL_UART_DISABLE(huart);
-
- /* Set the UART Communication parameters */
- if (UART_SetConfig(huart) == HAL_ERROR)
- {
- return HAL_ERROR;
- }
-
- if (huart->AdvancedInit.AdvFeatureInit != UART_ADVFEATURE_NO_INIT)
- {
- UART_AdvFeatureConfig(huart);
- }
-
- /* In half-duplex mode, the following bits must be kept cleared:
- - LINEN and CLKEN bits in the USART_CR2 register,
- - SCEN and IREN bits in the USART_CR3 register.*/
- CLEAR_BIT(huart->Instance->CR2, (USART_CR2_LINEN | USART_CR2_CLKEN));
- CLEAR_BIT(huart->Instance->CR3, (USART_CR3_IREN | USART_CR3_SCEN));
-
- /* Enable the Half-Duplex mode by setting the HDSEL bit in the CR3 register */
- SET_BIT(huart->Instance->CR3, USART_CR3_HDSEL);
-
- __HAL_UART_ENABLE(huart);
-
- /* TEACK and/or REACK to check before moving huart->gState and huart->RxState to Ready */
- return (UART_CheckIdleState(huart));
-}
-
-
-/**
- * @brief Initialize the LIN mode according to the specified
- * parameters in the UART_InitTypeDef and creates the associated handle.
- * @param huart UART handle.
- * @param BreakDetectLength Specifies the LIN break detection length.
- * This parameter can be one of the following values:
- * @arg @ref UART_LINBREAKDETECTLENGTH_10B 10-bit break detection
- * @arg @ref UART_LINBREAKDETECTLENGTH_11B 11-bit break detection
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_LIN_Init(UART_HandleTypeDef *huart, uint32_t BreakDetectLength)
-{
- /* Check the UART handle allocation */
- if (huart == NULL)
- {
- return HAL_ERROR;
- }
-
- /* Check the LIN UART instance */
- assert_param(IS_UART_LIN_INSTANCE(huart->Instance));
- /* Check the Break detection length parameter */
- assert_param(IS_UART_LIN_BREAK_DETECT_LENGTH(BreakDetectLength));
-
- /* LIN mode limited to 16-bit oversampling only */
- if (huart->Init.OverSampling == UART_OVERSAMPLING_8)
- {
- return HAL_ERROR;
- }
- /* LIN mode limited to 8-bit data length */
- if (huart->Init.WordLength != UART_WORDLENGTH_8B)
- {
- return HAL_ERROR;
- }
-
- if (huart->gState == HAL_UART_STATE_RESET)
- {
- /* Allocate lock resource and initialize it */
- huart->Lock = HAL_UNLOCKED;
-
-#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
- UART_InitCallbacksToDefault(huart);
-
- if (huart->MspInitCallback == NULL)
- {
- huart->MspInitCallback = HAL_UART_MspInit;
- }
-
- /* Init the low level hardware */
- huart->MspInitCallback(huart);
-#else
- /* Init the low level hardware : GPIO, CLOCK */
- HAL_UART_MspInit(huart);
-#endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */
- }
-
- huart->gState = HAL_UART_STATE_BUSY;
-
- __HAL_UART_DISABLE(huart);
-
- /* Set the UART Communication parameters */
- if (UART_SetConfig(huart) == HAL_ERROR)
- {
- return HAL_ERROR;
- }
-
- if (huart->AdvancedInit.AdvFeatureInit != UART_ADVFEATURE_NO_INIT)
- {
- UART_AdvFeatureConfig(huart);
- }
-
- /* In LIN mode, the following bits must be kept cleared:
- - LINEN and CLKEN bits in the USART_CR2 register,
- - SCEN and IREN bits in the USART_CR3 register.*/
- CLEAR_BIT(huart->Instance->CR2, USART_CR2_CLKEN);
- CLEAR_BIT(huart->Instance->CR3, (USART_CR3_HDSEL | USART_CR3_IREN | USART_CR3_SCEN));
-
- /* Enable the LIN mode by setting the LINEN bit in the CR2 register */
- SET_BIT(huart->Instance->CR2, USART_CR2_LINEN);
-
- /* Set the USART LIN Break detection length. */
- MODIFY_REG(huart->Instance->CR2, USART_CR2_LBDL, BreakDetectLength);
-
- __HAL_UART_ENABLE(huart);
-
- /* TEACK and/or REACK to check before moving huart->gState and huart->RxState to Ready */
- return (UART_CheckIdleState(huart));
-}
-
-
-/**
- * @brief Initialize the multiprocessor mode according to the specified
- * parameters in the UART_InitTypeDef and initialize the associated handle.
- * @param huart UART handle.
- * @param Address UART node address (4-, 6-, 7- or 8-bit long).
- * @param WakeUpMethod Specifies the UART wakeup method.
- * This parameter can be one of the following values:
- * @arg @ref UART_WAKEUPMETHOD_IDLELINE WakeUp by an idle line detection
- * @arg @ref UART_WAKEUPMETHOD_ADDRESSMARK WakeUp by an address mark
- * @note If the user resorts to idle line detection wake up, the Address parameter
- * is useless and ignored by the initialization function.
- * @note If the user resorts to address mark wake up, the address length detection
- * is configured by default to 4 bits only. For the UART to be able to
- * manage 6-, 7- or 8-bit long addresses detection, the API
- * HAL_MultiProcessorEx_AddressLength_Set() must be called after
- * HAL_MultiProcessor_Init().
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_MultiProcessor_Init(UART_HandleTypeDef *huart, uint8_t Address, uint32_t WakeUpMethod)
-{
- /* Check the UART handle allocation */
- if (huart == NULL)
- {
- return HAL_ERROR;
- }
-
- /* Check the wake up method parameter */
- assert_param(IS_UART_WAKEUPMETHOD(WakeUpMethod));
-
- if (huart->gState == HAL_UART_STATE_RESET)
- {
- /* Allocate lock resource and initialize it */
- huart->Lock = HAL_UNLOCKED;
-
-#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
- UART_InitCallbacksToDefault(huart);
-
- if (huart->MspInitCallback == NULL)
- {
- huart->MspInitCallback = HAL_UART_MspInit;
- }
-
- /* Init the low level hardware */
- huart->MspInitCallback(huart);
-#else
- /* Init the low level hardware : GPIO, CLOCK */
- HAL_UART_MspInit(huart);
-#endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */
- }
-
- huart->gState = HAL_UART_STATE_BUSY;
-
- __HAL_UART_DISABLE(huart);
-
- /* Set the UART Communication parameters */
- if (UART_SetConfig(huart) == HAL_ERROR)
- {
- return HAL_ERROR;
- }
-
- if (huart->AdvancedInit.AdvFeatureInit != UART_ADVFEATURE_NO_INIT)
- {
- UART_AdvFeatureConfig(huart);
- }
-
- /* In multiprocessor mode, the following bits must be kept cleared:
- - LINEN and CLKEN bits in the USART_CR2 register,
- - SCEN, HDSEL and IREN bits in the USART_CR3 register. */
- CLEAR_BIT(huart->Instance->CR2, (USART_CR2_LINEN | USART_CR2_CLKEN));
- CLEAR_BIT(huart->Instance->CR3, (USART_CR3_SCEN | USART_CR3_HDSEL | USART_CR3_IREN));
-
- if (WakeUpMethod == UART_WAKEUPMETHOD_ADDRESSMARK)
- {
- /* If address mark wake up method is chosen, set the USART address node */
- MODIFY_REG(huart->Instance->CR2, USART_CR2_ADD, ((uint32_t)Address << UART_CR2_ADDRESS_LSB_POS));
- }
-
- /* Set the wake up method by setting the WAKE bit in the CR1 register */
- MODIFY_REG(huart->Instance->CR1, USART_CR1_WAKE, WakeUpMethod);
-
- __HAL_UART_ENABLE(huart);
-
- /* TEACK and/or REACK to check before moving huart->gState and huart->RxState to Ready */
- return (UART_CheckIdleState(huart));
-}
-
-
-/**
- * @brief DeInitialize the UART peripheral.
- * @param huart UART handle.
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_UART_DeInit(UART_HandleTypeDef *huart)
-{
- /* Check the UART handle allocation */
- if (huart == NULL)
- {
- return HAL_ERROR;
- }
-
- /* Check the parameters */
- assert_param((IS_UART_INSTANCE(huart->Instance)) || (IS_LPUART_INSTANCE(huart->Instance)));
-
- huart->gState = HAL_UART_STATE_BUSY;
-
- __HAL_UART_DISABLE(huart);
-
- huart->Instance->CR1 = 0x0U;
- huart->Instance->CR2 = 0x0U;
- huart->Instance->CR3 = 0x0U;
-
-#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
- if (huart->MspDeInitCallback == NULL)
- {
- huart->MspDeInitCallback = HAL_UART_MspDeInit;
- }
- /* DeInit the low level hardware */
- huart->MspDeInitCallback(huart);
-#else
- /* DeInit the low level hardware */
- HAL_UART_MspDeInit(huart);
-#endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */
-
- huart->ErrorCode = HAL_UART_ERROR_NONE;
- huart->gState = HAL_UART_STATE_RESET;
- huart->RxState = HAL_UART_STATE_RESET;
-
- __HAL_UNLOCK(huart);
-
- return HAL_OK;
-}
-
-#ifndef __rtems__
-/**
- * @brief Initialize the UART MSP.
- * @param huart UART handle.
- * @retval None
- */
-__weak void HAL_UART_MspInit(UART_HandleTypeDef *huart)
-{
- /* Prevent unused argument(s) compilation warning */
- UNUSED(huart);
-
- /* NOTE : This function should not be modified, when the callback is needed,
- the HAL_UART_MspInit can be implemented in the user file
- */
-}
-#endif /* __rtems__ */
-
-/**
- * @brief DeInitialize the UART MSP.
- * @param huart UART handle.
- * @retval None
- */
-__weak void HAL_UART_MspDeInit(UART_HandleTypeDef *huart)
-{
- /* Prevent unused argument(s) compilation warning */
- UNUSED(huart);
-
- /* NOTE : This function should not be modified, when the callback is needed,
- the HAL_UART_MspDeInit can be implemented in the user file
- */
-}
-
-#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
-/**
- * @brief Register a User UART Callback
- * To be used instead of the weak predefined callback
- * @param huart uart handle
- * @param CallbackID ID of the callback to be registered
- * This parameter can be one of the following values:
- * @arg @ref HAL_UART_TX_HALFCOMPLETE_CB_ID Tx Half Complete Callback ID
- * @arg @ref HAL_UART_TX_COMPLETE_CB_ID Tx Complete Callback ID
- * @arg @ref HAL_UART_RX_HALFCOMPLETE_CB_ID Rx Half Complete Callback ID
- * @arg @ref HAL_UART_RX_COMPLETE_CB_ID Rx Complete Callback ID
- * @arg @ref HAL_UART_ERROR_CB_ID Error Callback ID
- * @arg @ref HAL_UART_ABORT_COMPLETE_CB_ID Abort Complete Callback ID
- * @arg @ref HAL_UART_ABORT_TRANSMIT_COMPLETE_CB_ID Abort Transmit Complete Callback ID
- * @arg @ref HAL_UART_ABORT_RECEIVE_COMPLETE_CB_ID Abort Receive Complete Callback ID
- * @arg @ref HAL_UART_WAKEUP_CB_ID Wakeup Callback ID
- * @arg @ref HAL_UART_RX_FIFO_FULL_CB_ID Rx Fifo Full Callback ID
- * @arg @ref HAL_UART_TX_FIFO_EMPTY_CB_ID Tx Fifo Empty Callback ID
- * @arg @ref HAL_UART_MSPINIT_CB_ID MspInit Callback ID
- * @arg @ref HAL_UART_MSPDEINIT_CB_ID MspDeInit Callback ID
- * @param pCallback pointer to the Callback function
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_UART_RegisterCallback(UART_HandleTypeDef *huart, HAL_UART_CallbackIDTypeDef CallbackID,
- pUART_CallbackTypeDef pCallback)
-{
- HAL_StatusTypeDef status = HAL_OK;
-
- if (pCallback == NULL)
- {
- huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK;
-
- return HAL_ERROR;
- }
-
- __HAL_LOCK(huart);
-
- if (huart->gState == HAL_UART_STATE_READY)
- {
- switch (CallbackID)
- {
- case HAL_UART_TX_HALFCOMPLETE_CB_ID :
- huart->TxHalfCpltCallback = pCallback;
- break;
-
- case HAL_UART_TX_COMPLETE_CB_ID :
- huart->TxCpltCallback = pCallback;
- break;
-
- case HAL_UART_RX_HALFCOMPLETE_CB_ID :
- huart->RxHalfCpltCallback = pCallback;
- break;
-
- case HAL_UART_RX_COMPLETE_CB_ID :
- huart->RxCpltCallback = pCallback;
- break;
-
- case HAL_UART_ERROR_CB_ID :
- huart->ErrorCallback = pCallback;
- break;
-
- case HAL_UART_ABORT_COMPLETE_CB_ID :
- huart->AbortCpltCallback = pCallback;
- break;
-
- case HAL_UART_ABORT_TRANSMIT_COMPLETE_CB_ID :
- huart->AbortTransmitCpltCallback = pCallback;
- break;
-
- case HAL_UART_ABORT_RECEIVE_COMPLETE_CB_ID :
- huart->AbortReceiveCpltCallback = pCallback;
- break;
-
- case HAL_UART_WAKEUP_CB_ID :
- huart->WakeupCallback = pCallback;
- break;
-
- case HAL_UART_RX_FIFO_FULL_CB_ID :
- huart->RxFifoFullCallback = pCallback;
- break;
-
- case HAL_UART_TX_FIFO_EMPTY_CB_ID :
- huart->TxFifoEmptyCallback = pCallback;
- break;
-
- case HAL_UART_MSPINIT_CB_ID :
- huart->MspInitCallback = pCallback;
- break;
-
- case HAL_UART_MSPDEINIT_CB_ID :
- huart->MspDeInitCallback = pCallback;
- break;
-
- default :
- huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK;
-
- status = HAL_ERROR;
- break;
- }
- }
- else if (huart->gState == HAL_UART_STATE_RESET)
- {
- switch (CallbackID)
- {
- case HAL_UART_MSPINIT_CB_ID :
- huart->MspInitCallback = pCallback;
- break;
-
- case HAL_UART_MSPDEINIT_CB_ID :
- huart->MspDeInitCallback = pCallback;
- break;
-
- default :
- huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK;
-
- status = HAL_ERROR;
- break;
- }
- }
- else
- {
- huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK;
-
- status = HAL_ERROR;
- }
-
- __HAL_UNLOCK(huart);
-
- return status;
-}
-
-/**
- * @brief Unregister an UART Callback
- * UART callaback is redirected to the weak predefined callback
- * @param huart uart handle
- * @param CallbackID ID of the callback to be unregistered
- * This parameter can be one of the following values:
- * @arg @ref HAL_UART_TX_HALFCOMPLETE_CB_ID Tx Half Complete Callback ID
- * @arg @ref HAL_UART_TX_COMPLETE_CB_ID Tx Complete Callback ID
- * @arg @ref HAL_UART_RX_HALFCOMPLETE_CB_ID Rx Half Complete Callback ID
- * @arg @ref HAL_UART_RX_COMPLETE_CB_ID Rx Complete Callback ID
- * @arg @ref HAL_UART_ERROR_CB_ID Error Callback ID
- * @arg @ref HAL_UART_ABORT_COMPLETE_CB_ID Abort Complete Callback ID
- * @arg @ref HAL_UART_ABORT_TRANSMIT_COMPLETE_CB_ID Abort Transmit Complete Callback ID
- * @arg @ref HAL_UART_ABORT_RECEIVE_COMPLETE_CB_ID Abort Receive Complete Callback ID
- * @arg @ref HAL_UART_WAKEUP_CB_ID Wakeup Callback ID
- * @arg @ref HAL_UART_RX_FIFO_FULL_CB_ID Rx Fifo Full Callback ID
- * @arg @ref HAL_UART_TX_FIFO_EMPTY_CB_ID Tx Fifo Empty Callback ID
- * @arg @ref HAL_UART_MSPINIT_CB_ID MspInit Callback ID
- * @arg @ref HAL_UART_MSPDEINIT_CB_ID MspDeInit Callback ID
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_UART_UnRegisterCallback(UART_HandleTypeDef *huart, HAL_UART_CallbackIDTypeDef CallbackID)
-{
- HAL_StatusTypeDef status = HAL_OK;
-
- __HAL_LOCK(huart);
-
- if (HAL_UART_STATE_READY == huart->gState)
- {
- switch (CallbackID)
- {
- case HAL_UART_TX_HALFCOMPLETE_CB_ID :
- huart->TxHalfCpltCallback = HAL_UART_TxHalfCpltCallback; /* Legacy weak TxHalfCpltCallback */
- break;
-
- case HAL_UART_TX_COMPLETE_CB_ID :
- huart->TxCpltCallback = HAL_UART_TxCpltCallback; /* Legacy weak TxCpltCallback */
- break;
-
- case HAL_UART_RX_HALFCOMPLETE_CB_ID :
- huart->RxHalfCpltCallback = HAL_UART_RxHalfCpltCallback; /* Legacy weak RxHalfCpltCallback */
- break;
-
- case HAL_UART_RX_COMPLETE_CB_ID :
- huart->RxCpltCallback = HAL_UART_RxCpltCallback; /* Legacy weak RxCpltCallback */
- break;
-
- case HAL_UART_ERROR_CB_ID :
- huart->ErrorCallback = HAL_UART_ErrorCallback; /* Legacy weak ErrorCallback */
- break;
-
- case HAL_UART_ABORT_COMPLETE_CB_ID :
- huart->AbortCpltCallback = HAL_UART_AbortCpltCallback; /* Legacy weak AbortCpltCallback */
- break;
-
- case HAL_UART_ABORT_TRANSMIT_COMPLETE_CB_ID :
- huart->AbortTransmitCpltCallback = HAL_UART_AbortTransmitCpltCallback; /* Legacy weak AbortTransmitCpltCallback */
- break;
-
- case HAL_UART_ABORT_RECEIVE_COMPLETE_CB_ID :
- huart->AbortReceiveCpltCallback = HAL_UART_AbortReceiveCpltCallback; /* Legacy weak AbortReceiveCpltCallback */
- break;
-
- case HAL_UART_WAKEUP_CB_ID :
- huart->WakeupCallback = HAL_UARTEx_WakeupCallback; /* Legacy weak WakeupCallback */
- break;
-
- case HAL_UART_RX_FIFO_FULL_CB_ID :
- huart->RxFifoFullCallback = HAL_UARTEx_RxFifoFullCallback; /* Legacy weak RxFifoFullCallback */
- break;
-
- case HAL_UART_TX_FIFO_EMPTY_CB_ID :
- huart->TxFifoEmptyCallback = HAL_UARTEx_TxFifoEmptyCallback; /* Legacy weak TxFifoEmptyCallback */
- break;
-
- case HAL_UART_MSPINIT_CB_ID :
- huart->MspInitCallback = HAL_UART_MspInit; /* Legacy weak MspInitCallback */
- break;
-
- case HAL_UART_MSPDEINIT_CB_ID :
- huart->MspDeInitCallback = HAL_UART_MspDeInit; /* Legacy weak MspDeInitCallback */
- break;
-
- default :
- huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK;
-
- status = HAL_ERROR;
- break;
- }
- }
- else if (HAL_UART_STATE_RESET == huart->gState)
- {
- switch (CallbackID)
- {
- case HAL_UART_MSPINIT_CB_ID :
- huart->MspInitCallback = HAL_UART_MspInit;
- break;
-
- case HAL_UART_MSPDEINIT_CB_ID :
- huart->MspDeInitCallback = HAL_UART_MspDeInit;
- break;
-
- default :
- huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK;
-
- status = HAL_ERROR;
- break;
- }
- }
- else
- {
- huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK;
-
- status = HAL_ERROR;
- }
-
- __HAL_UNLOCK(huart);
-
- return status;
-}
-#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
-
-/**
- * @}
- */
-
-/** @defgroup UART_Exported_Functions_Group2 IO operation functions
+ * @brief Initialization and Configuration functions
+ *
+@verbatim
+===============================================================================
+ ##### Initialization and Configuration functions #####
+ ===============================================================================
+ [..]
+ This subsection provides a set of functions allowing to initialize the USARTx or the UARTy
+ in asynchronous mode.
+ (+) For the asynchronous mode the parameters below can be configured:
+ (++) Baud Rate
+ (++) Word Length
+ (++) Stop Bit
+ (++) Parity: If the parity is enabled, then the MSB bit of the data written
+ in the data register is transmitted but is changed by the parity bit.
+ (++) Hardware flow control
+ (++) Receiver/transmitter modes
+ (++) Over Sampling Method
+ (++) One-Bit Sampling Method
+ (+) For the asynchronous mode, the following advanced features can be configured as well:
+ (++) TX and/or RX pin level inversion
+ (++) data logical level inversion
+ (++) RX and TX pins swap
+ (++) RX overrun detection disabling
+ (++) DMA disabling on RX error
+ (++) MSB first on communication line
+ (++) auto Baud rate detection
+ [..]
+ The HAL_UART_Init(), HAL_HalfDuplex_Init(), HAL_LIN_Init()and HAL_MultiProcessor_Init()API
+ follow respectively the UART asynchronous, UART Half duplex, UART LIN mode
+ and UART multiprocessor mode configuration procedures (details for the procedures
+ are available in reference manual).
+
+@endverbatim
+
+ Depending on the frame length defined by the M1 and M0 bits (7-bit,
+ 8-bit or 9-bit), the possible UART formats are listed in the
+ following table.
+
+ Table 1. UART frame format.
+ +-----------------------------------------------------------------------+
+ | M1 bit | M0 bit | PCE bit | UART frame |
+ |---------|---------|-----------|---------------------------------------|
+ | 0 | 0 | 0 | | SB | 8 bit data | STB | |
+ |---------|---------|-----------|---------------------------------------|
+ | 0 | 0 | 1 | | SB | 7 bit data | PB | STB | |
+ |---------|---------|-----------|---------------------------------------|
+ | 0 | 1 | 0 | | SB | 9 bit data | STB | |
+ |---------|---------|-----------|---------------------------------------|
+ | 0 | 1 | 1 | | SB | 8 bit data | PB | STB | |
+ |---------|---------|-----------|---------------------------------------|
+ | 1 | 0 | 0 | | SB | 7 bit data | STB | |
+ |---------|---------|-----------|---------------------------------------|
+ | 1 | 0 | 1 | | SB | 6 bit data | PB | STB | |
+ +-----------------------------------------------------------------------+
+
+ * @{
+ */
+
+/**
+ * @brief Initialize the UART mode according to the specified
+ * parameters in the UART_InitTypeDef and initialize the associated handle.
+ * @param huart UART handle.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_UART_Init(UART_HandleTypeDef *huart)
+{
+ /* Check the UART handle allocation */
+ if (huart == NULL)
+ {
+ return HAL_ERROR;
+ }
+
+ if (huart->Init.HwFlowCtl != UART_HWCONTROL_NONE)
+ {
+ /* Check the parameters */
+ assert_param(IS_UART_HWFLOW_INSTANCE(huart->Instance));
+ }
+ else
+ {
+ /* Check the parameters */
+ assert_param((IS_UART_INSTANCE(huart->Instance)) || (IS_LPUART_INSTANCE(huart->Instance)));
+ }
+
+ if (huart->gState == HAL_UART_STATE_RESET)
+ {
+ /* Allocate lock resource and initialize it */
+ huart->Lock = HAL_UNLOCKED;
+
+#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
+ UART_InitCallbacksToDefault(huart);
+
+ if (huart->MspInitCallback == NULL)
+ {
+ huart->MspInitCallback = HAL_UART_MspInit;
+ }
+
+ /* Init the low level hardware */
+ huart->MspInitCallback(huart);
+#else
+ /* Init the low level hardware : GPIO, CLOCK */
+ HAL_UART_MspInit(huart);
+#endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */
+ }
+
+ huart->gState = HAL_UART_STATE_BUSY;
+
+ __HAL_UART_DISABLE(huart);
+
+ /* Perform advanced settings configuration */
+ /* For some items, configuration requires to be done prior TE and RE bits are set */
+ if (huart->AdvancedInit.AdvFeatureInit != UART_ADVFEATURE_NO_INIT)
+ {
+ UART_AdvFeatureConfig(huart);
+ }
+
+ /* Set the UART Communication parameters */
+ if (UART_SetConfig(huart) == HAL_ERROR)
+ {
+ return HAL_ERROR;
+ }
+
+ /* In asynchronous mode, the following bits must be kept cleared:
+ - LINEN and CLKEN bits in the USART_CR2 register,
+ - SCEN, HDSEL and IREN bits in the USART_CR3 register.*/
+ CLEAR_BIT(huart->Instance->CR2, (USART_CR2_LINEN | USART_CR2_CLKEN));
+ CLEAR_BIT(huart->Instance->CR3, (USART_CR3_SCEN | USART_CR3_HDSEL | USART_CR3_IREN));
+
+ __HAL_UART_ENABLE(huart);
+
+ /* TEACK and/or REACK to check before moving huart->gState and huart->RxState to Ready */
+ return (UART_CheckIdleState(huart));
+}
+
+/**
+ * @brief Initialize the half-duplex mode according to the specified
+ * parameters in the UART_InitTypeDef and creates the associated handle.
+ * @param huart UART handle.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_HalfDuplex_Init(UART_HandleTypeDef *huart)
+{
+ /* Check the UART handle allocation */
+ if (huart == NULL)
+ {
+ return HAL_ERROR;
+ }
+
+ /* Check UART instance */
+ assert_param(IS_UART_HALFDUPLEX_INSTANCE(huart->Instance));
+
+ if (huart->gState == HAL_UART_STATE_RESET)
+ {
+ /* Allocate lock resource and initialize it */
+ huart->Lock = HAL_UNLOCKED;
+
+#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
+ UART_InitCallbacksToDefault(huart);
+
+ if (huart->MspInitCallback == NULL)
+ {
+ huart->MspInitCallback = HAL_UART_MspInit;
+ }
+
+ /* Init the low level hardware */
+ huart->MspInitCallback(huart);
+#else
+ /* Init the low level hardware : GPIO, CLOCK */
+ HAL_UART_MspInit(huart);
+#endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */
+ }
+
+ huart->gState = HAL_UART_STATE_BUSY;
+
+ __HAL_UART_DISABLE(huart);
+
+ /* Perform advanced settings configuration */
+ /* For some items, configuration requires to be done prior TE and RE bits are set */
+ if (huart->AdvancedInit.AdvFeatureInit != UART_ADVFEATURE_NO_INIT)
+ {
+ UART_AdvFeatureConfig(huart);
+ }
+
+ /* Set the UART Communication parameters */
+ if (UART_SetConfig(huart) == HAL_ERROR)
+ {
+ return HAL_ERROR;
+ }
+
+ /* In half-duplex mode, the following bits must be kept cleared:
+ - LINEN and CLKEN bits in the USART_CR2 register,
+ - SCEN and IREN bits in the USART_CR3 register.*/
+ CLEAR_BIT(huart->Instance->CR2, (USART_CR2_LINEN | USART_CR2_CLKEN));
+ CLEAR_BIT(huart->Instance->CR3, (USART_CR3_IREN | USART_CR3_SCEN));
+
+ /* Enable the Half-Duplex mode by setting the HDSEL bit in the CR3 register */
+ SET_BIT(huart->Instance->CR3, USART_CR3_HDSEL);
+
+ __HAL_UART_ENABLE(huart);
+
+ /* TEACK and/or REACK to check before moving huart->gState and huart->RxState to Ready */
+ return (UART_CheckIdleState(huart));
+}
+
+
+/**
+ * @brief Initialize the LIN mode according to the specified
+ * parameters in the UART_InitTypeDef and creates the associated handle.
+ * @param huart UART handle.
+ * @param BreakDetectLength Specifies the LIN break detection length.
+ * This parameter can be one of the following values:
+ * @arg @ref UART_LINBREAKDETECTLENGTH_10B 10-bit break detection
+ * @arg @ref UART_LINBREAKDETECTLENGTH_11B 11-bit break detection
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_LIN_Init(UART_HandleTypeDef *huart, uint32_t BreakDetectLength)
+{
+ /* Check the UART handle allocation */
+ if (huart == NULL)
+ {
+ return HAL_ERROR;
+ }
+
+ /* Check the LIN UART instance */
+ assert_param(IS_UART_LIN_INSTANCE(huart->Instance));
+ /* Check the Break detection length parameter */
+ assert_param(IS_UART_LIN_BREAK_DETECT_LENGTH(BreakDetectLength));
+
+ /* LIN mode limited to 16-bit oversampling only */
+ if (huart->Init.OverSampling == UART_OVERSAMPLING_8)
+ {
+ return HAL_ERROR;
+ }
+ /* LIN mode limited to 8-bit data length */
+ if (huart->Init.WordLength != UART_WORDLENGTH_8B)
+ {
+ return HAL_ERROR;
+ }
+
+ if (huart->gState == HAL_UART_STATE_RESET)
+ {
+ /* Allocate lock resource and initialize it */
+ huart->Lock = HAL_UNLOCKED;
+
+#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
+ UART_InitCallbacksToDefault(huart);
+
+ if (huart->MspInitCallback == NULL)
+ {
+ huart->MspInitCallback = HAL_UART_MspInit;
+ }
+
+ /* Init the low level hardware */
+ huart->MspInitCallback(huart);
+#else
+ /* Init the low level hardware : GPIO, CLOCK */
+ HAL_UART_MspInit(huart);
+#endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */
+ }
+
+ huart->gState = HAL_UART_STATE_BUSY;
+
+ __HAL_UART_DISABLE(huart);
+
+ /* Perform advanced settings configuration */
+ /* For some items, configuration requires to be done prior TE and RE bits are set */
+ if (huart->AdvancedInit.AdvFeatureInit != UART_ADVFEATURE_NO_INIT)
+ {
+ UART_AdvFeatureConfig(huart);
+ }
+
+ /* Set the UART Communication parameters */
+ if (UART_SetConfig(huart) == HAL_ERROR)
+ {
+ return HAL_ERROR;
+ }
+
+ /* In LIN mode, the following bits must be kept cleared:
+ - LINEN and CLKEN bits in the USART_CR2 register,
+ - SCEN and IREN bits in the USART_CR3 register.*/
+ CLEAR_BIT(huart->Instance->CR2, USART_CR2_CLKEN);
+ CLEAR_BIT(huart->Instance->CR3, (USART_CR3_HDSEL | USART_CR3_IREN | USART_CR3_SCEN));
+
+ /* Enable the LIN mode by setting the LINEN bit in the CR2 register */
+ SET_BIT(huart->Instance->CR2, USART_CR2_LINEN);
+
+ /* Set the USART LIN Break detection length. */
+ MODIFY_REG(huart->Instance->CR2, USART_CR2_LBDL, BreakDetectLength);
+
+ __HAL_UART_ENABLE(huart);
+
+ /* TEACK and/or REACK to check before moving huart->gState and huart->RxState to Ready */
+ return (UART_CheckIdleState(huart));
+}
+
+
+/**
+ * @brief Initialize the multiprocessor mode according to the specified
+ * parameters in the UART_InitTypeDef and initialize the associated handle.
+ * @param huart UART handle.
+ * @param Address UART node address (4-, 6-, 7- or 8-bit long).
+ * @param WakeUpMethod Specifies the UART wakeup method.
+ * This parameter can be one of the following values:
+ * @arg @ref UART_WAKEUPMETHOD_IDLELINE WakeUp by an idle line detection
+ * @arg @ref UART_WAKEUPMETHOD_ADDRESSMARK WakeUp by an address mark
+ * @note If the user resorts to idle line detection wake up, the Address parameter
+ * is useless and ignored by the initialization function.
+ * @note If the user resorts to address mark wake up, the address length detection
+ * is configured by default to 4 bits only. For the UART to be able to
+ * manage 6-, 7- or 8-bit long addresses detection, the API
+ * HAL_MultiProcessorEx_AddressLength_Set() must be called after
+ * HAL_MultiProcessor_Init().
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_MultiProcessor_Init(UART_HandleTypeDef *huart, uint8_t Address, uint32_t WakeUpMethod)
+{
+ /* Check the UART handle allocation */
+ if (huart == NULL)
+ {
+ return HAL_ERROR;
+ }
+
+ /* Check the wake up method parameter */
+ assert_param(IS_UART_WAKEUPMETHOD(WakeUpMethod));
+
+ if (huart->gState == HAL_UART_STATE_RESET)
+ {
+ /* Allocate lock resource and initialize it */
+ huart->Lock = HAL_UNLOCKED;
+
+#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
+ UART_InitCallbacksToDefault(huart);
+
+ if (huart->MspInitCallback == NULL)
+ {
+ huart->MspInitCallback = HAL_UART_MspInit;
+ }
+
+ /* Init the low level hardware */
+ huart->MspInitCallback(huart);
+#else
+ /* Init the low level hardware : GPIO, CLOCK */
+ HAL_UART_MspInit(huart);
+#endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */
+ }
+
+ huart->gState = HAL_UART_STATE_BUSY;
+
+ __HAL_UART_DISABLE(huart);
+
+ /* Perform advanced settings configuration */
+ /* For some items, configuration requires to be done prior TE and RE bits are set */
+ if (huart->AdvancedInit.AdvFeatureInit != UART_ADVFEATURE_NO_INIT)
+ {
+ UART_AdvFeatureConfig(huart);
+ }
+
+ /* Set the UART Communication parameters */
+ if (UART_SetConfig(huart) == HAL_ERROR)
+ {
+ return HAL_ERROR;
+ }
+
+ /* In multiprocessor mode, the following bits must be kept cleared:
+ - LINEN and CLKEN bits in the USART_CR2 register,
+ - SCEN, HDSEL and IREN bits in the USART_CR3 register. */
+ CLEAR_BIT(huart->Instance->CR2, (USART_CR2_LINEN | USART_CR2_CLKEN));
+ CLEAR_BIT(huart->Instance->CR3, (USART_CR3_SCEN | USART_CR3_HDSEL | USART_CR3_IREN));
+
+ if (WakeUpMethod == UART_WAKEUPMETHOD_ADDRESSMARK)
+ {
+ /* If address mark wake up method is chosen, set the USART address node */
+ MODIFY_REG(huart->Instance->CR2, USART_CR2_ADD, ((uint32_t)Address << UART_CR2_ADDRESS_LSB_POS));
+ }
+
+ /* Set the wake up method by setting the WAKE bit in the CR1 register */
+ MODIFY_REG(huart->Instance->CR1, USART_CR1_WAKE, WakeUpMethod);
+
+ __HAL_UART_ENABLE(huart);
+
+ /* TEACK and/or REACK to check before moving huart->gState and huart->RxState to Ready */
+ return (UART_CheckIdleState(huart));
+}
+
+
+/**
+ * @brief DeInitialize the UART peripheral.
+ * @param huart UART handle.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_UART_DeInit(UART_HandleTypeDef *huart)
+{
+ /* Check the UART handle allocation */
+ if (huart == NULL)
+ {
+ return HAL_ERROR;
+ }
+
+ /* Check the parameters */
+ assert_param((IS_UART_INSTANCE(huart->Instance)) || (IS_LPUART_INSTANCE(huart->Instance)));
+
+ huart->gState = HAL_UART_STATE_BUSY;
+
+ __HAL_UART_DISABLE(huart);
+
+ huart->Instance->CR1 = 0x0U;
+ huart->Instance->CR2 = 0x0U;
+ huart->Instance->CR3 = 0x0U;
+
+#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
+ if (huart->MspDeInitCallback == NULL)
+ {
+ huart->MspDeInitCallback = HAL_UART_MspDeInit;
+ }
+ /* DeInit the low level hardware */
+ huart->MspDeInitCallback(huart);
+#else
+ /* DeInit the low level hardware */
+ HAL_UART_MspDeInit(huart);
+#endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */
+
+ huart->ErrorCode = HAL_UART_ERROR_NONE;
+ huart->gState = HAL_UART_STATE_RESET;
+ huart->RxState = HAL_UART_STATE_RESET;
+ huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
+ huart->RxEventType = HAL_UART_RXEVENT_TC;
+
+ __HAL_UNLOCK(huart);
+
+ return HAL_OK;
+}
+
+#ifndef __rtems__
+/**
+ * @brief Initialize the UART MSP.
+ * @param huart UART handle.
+ * @retval None
+ */
+__weak void HAL_UART_MspInit(UART_HandleTypeDef *huart)
+{
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(huart);
+
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_UART_MspInit can be implemented in the user file
+ */
+}
+#endif /* __rtems__ */
+
+/**
+ * @brief DeInitialize the UART MSP.
+ * @param huart UART handle.
+ * @retval None
+ */
+__weak void HAL_UART_MspDeInit(UART_HandleTypeDef *huart)
+{
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(huart);
+
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_UART_MspDeInit can be implemented in the user file
+ */
+}
+
+#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
+/**
+ * @brief Register a User UART Callback
+ * To be used instead of the weak predefined callback
+ * @note The HAL_UART_RegisterCallback() may be called before HAL_UART_Init(), HAL_HalfDuplex_Init(),
+ * HAL_LIN_Init(), HAL_MultiProcessor_Init() or HAL_RS485Ex_Init() in HAL_UART_STATE_RESET to register
+ * callbacks for HAL_UART_MSPINIT_CB_ID and HAL_UART_MSPDEINIT_CB_ID
+ * @param huart uart handle
+ * @param CallbackID ID of the callback to be registered
+ * This parameter can be one of the following values:
+ * @arg @ref HAL_UART_TX_HALFCOMPLETE_CB_ID Tx Half Complete Callback ID
+ * @arg @ref HAL_UART_TX_COMPLETE_CB_ID Tx Complete Callback ID
+ * @arg @ref HAL_UART_RX_HALFCOMPLETE_CB_ID Rx Half Complete Callback ID
+ * @arg @ref HAL_UART_RX_COMPLETE_CB_ID Rx Complete Callback ID
+ * @arg @ref HAL_UART_ERROR_CB_ID Error Callback ID
+ * @arg @ref HAL_UART_ABORT_COMPLETE_CB_ID Abort Complete Callback ID
+ * @arg @ref HAL_UART_ABORT_TRANSMIT_COMPLETE_CB_ID Abort Transmit Complete Callback ID
+ * @arg @ref HAL_UART_ABORT_RECEIVE_COMPLETE_CB_ID Abort Receive Complete Callback ID
+ * @arg @ref HAL_UART_WAKEUP_CB_ID Wakeup Callback ID
+ * @arg @ref HAL_UART_RX_FIFO_FULL_CB_ID Rx Fifo Full Callback ID
+ * @arg @ref HAL_UART_TX_FIFO_EMPTY_CB_ID Tx Fifo Empty Callback ID
+ * @arg @ref HAL_UART_MSPINIT_CB_ID MspInit Callback ID
+ * @arg @ref HAL_UART_MSPDEINIT_CB_ID MspDeInit Callback ID
+ * @param pCallback pointer to the Callback function
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_UART_RegisterCallback(UART_HandleTypeDef *huart, HAL_UART_CallbackIDTypeDef CallbackID,
+ pUART_CallbackTypeDef pCallback)
+{
+ HAL_StatusTypeDef status = HAL_OK;
+
+ if (pCallback == NULL)
+ {
+ huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK;
+
+ return HAL_ERROR;
+ }
+
+ if (huart->gState == HAL_UART_STATE_READY)
+ {
+ switch (CallbackID)
+ {
+ case HAL_UART_TX_HALFCOMPLETE_CB_ID :
+ huart->TxHalfCpltCallback = pCallback;
+ break;
+
+ case HAL_UART_TX_COMPLETE_CB_ID :
+ huart->TxCpltCallback = pCallback;
+ break;
+
+ case HAL_UART_RX_HALFCOMPLETE_CB_ID :
+ huart->RxHalfCpltCallback = pCallback;
+ break;
+
+ case HAL_UART_RX_COMPLETE_CB_ID :
+ huart->RxCpltCallback = pCallback;
+ break;
+
+ case HAL_UART_ERROR_CB_ID :
+ huart->ErrorCallback = pCallback;
+ break;
+
+ case HAL_UART_ABORT_COMPLETE_CB_ID :
+ huart->AbortCpltCallback = pCallback;
+ break;
+
+ case HAL_UART_ABORT_TRANSMIT_COMPLETE_CB_ID :
+ huart->AbortTransmitCpltCallback = pCallback;
+ break;
+
+ case HAL_UART_ABORT_RECEIVE_COMPLETE_CB_ID :
+ huart->AbortReceiveCpltCallback = pCallback;
+ break;
+
+ case HAL_UART_WAKEUP_CB_ID :
+ huart->WakeupCallback = pCallback;
+ break;
+
+ case HAL_UART_RX_FIFO_FULL_CB_ID :
+ huart->RxFifoFullCallback = pCallback;
+ break;
+
+ case HAL_UART_TX_FIFO_EMPTY_CB_ID :
+ huart->TxFifoEmptyCallback = pCallback;
+ break;
+
+ case HAL_UART_MSPINIT_CB_ID :
+ huart->MspInitCallback = pCallback;
+ break;
+
+ case HAL_UART_MSPDEINIT_CB_ID :
+ huart->MspDeInitCallback = pCallback;
+ break;
+
+ default :
+ huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK;
+
+ status = HAL_ERROR;
+ break;
+ }
+ }
+ else if (huart->gState == HAL_UART_STATE_RESET)
+ {
+ switch (CallbackID)
+ {
+ case HAL_UART_MSPINIT_CB_ID :
+ huart->MspInitCallback = pCallback;
+ break;
+
+ case HAL_UART_MSPDEINIT_CB_ID :
+ huart->MspDeInitCallback = pCallback;
+ break;
+
+ default :
+ huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK;
+
+ status = HAL_ERROR;
+ break;
+ }
+ }
+ else
+ {
+ huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK;
+
+ status = HAL_ERROR;
+ }
+
+ return status;
+}
+
+/**
+ * @brief Unregister an UART Callback
+ * UART callaback is redirected to the weak predefined callback
+ * @note The HAL_UART_UnRegisterCallback() may be called before HAL_UART_Init(), HAL_HalfDuplex_Init(),
+ * HAL_LIN_Init(), HAL_MultiProcessor_Init() or HAL_RS485Ex_Init() in HAL_UART_STATE_RESET to un-register
+ * callbacks for HAL_UART_MSPINIT_CB_ID and HAL_UART_MSPDEINIT_CB_ID
+ * @param huart uart handle
+ * @param CallbackID ID of the callback to be unregistered
+ * This parameter can be one of the following values:
+ * @arg @ref HAL_UART_TX_HALFCOMPLETE_CB_ID Tx Half Complete Callback ID
+ * @arg @ref HAL_UART_TX_COMPLETE_CB_ID Tx Complete Callback ID
+ * @arg @ref HAL_UART_RX_HALFCOMPLETE_CB_ID Rx Half Complete Callback ID
+ * @arg @ref HAL_UART_RX_COMPLETE_CB_ID Rx Complete Callback ID
+ * @arg @ref HAL_UART_ERROR_CB_ID Error Callback ID
+ * @arg @ref HAL_UART_ABORT_COMPLETE_CB_ID Abort Complete Callback ID
+ * @arg @ref HAL_UART_ABORT_TRANSMIT_COMPLETE_CB_ID Abort Transmit Complete Callback ID
+ * @arg @ref HAL_UART_ABORT_RECEIVE_COMPLETE_CB_ID Abort Receive Complete Callback ID
+ * @arg @ref HAL_UART_WAKEUP_CB_ID Wakeup Callback ID
+ * @arg @ref HAL_UART_RX_FIFO_FULL_CB_ID Rx Fifo Full Callback ID
+ * @arg @ref HAL_UART_TX_FIFO_EMPTY_CB_ID Tx Fifo Empty Callback ID
+ * @arg @ref HAL_UART_MSPINIT_CB_ID MspInit Callback ID
+ * @arg @ref HAL_UART_MSPDEINIT_CB_ID MspDeInit Callback ID
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_UART_UnRegisterCallback(UART_HandleTypeDef *huart, HAL_UART_CallbackIDTypeDef CallbackID)
+{
+ HAL_StatusTypeDef status = HAL_OK;
+
+ if (HAL_UART_STATE_READY == huart->gState)
+ {
+ switch (CallbackID)
+ {
+ case HAL_UART_TX_HALFCOMPLETE_CB_ID :
+ huart->TxHalfCpltCallback = HAL_UART_TxHalfCpltCallback; /* Legacy weak TxHalfCpltCallback */
+ break;
+
+ case HAL_UART_TX_COMPLETE_CB_ID :
+ huart->TxCpltCallback = HAL_UART_TxCpltCallback; /* Legacy weak TxCpltCallback */
+ break;
+
+ case HAL_UART_RX_HALFCOMPLETE_CB_ID :
+ huart->RxHalfCpltCallback = HAL_UART_RxHalfCpltCallback; /* Legacy weak RxHalfCpltCallback */
+ break;
+
+ case HAL_UART_RX_COMPLETE_CB_ID :
+ huart->RxCpltCallback = HAL_UART_RxCpltCallback; /* Legacy weak RxCpltCallback */
+ break;
+
+ case HAL_UART_ERROR_CB_ID :
+ huart->ErrorCallback = HAL_UART_ErrorCallback; /* Legacy weak ErrorCallback */
+ break;
+
+ case HAL_UART_ABORT_COMPLETE_CB_ID :
+ huart->AbortCpltCallback = HAL_UART_AbortCpltCallback; /* Legacy weak AbortCpltCallback */
+ break;
+
+ case HAL_UART_ABORT_TRANSMIT_COMPLETE_CB_ID :
+ huart->AbortTransmitCpltCallback = HAL_UART_AbortTransmitCpltCallback; /* Legacy weak
+ AbortTransmitCpltCallback */
+ break;
+
+ case HAL_UART_ABORT_RECEIVE_COMPLETE_CB_ID :
+ huart->AbortReceiveCpltCallback = HAL_UART_AbortReceiveCpltCallback; /* Legacy weak
+ AbortReceiveCpltCallback */
+ break;
+
+ case HAL_UART_WAKEUP_CB_ID :
+ huart->WakeupCallback = HAL_UARTEx_WakeupCallback; /* Legacy weak WakeupCallback */
+ break;
+
+ case HAL_UART_RX_FIFO_FULL_CB_ID :
+ huart->RxFifoFullCallback = HAL_UARTEx_RxFifoFullCallback; /* Legacy weak RxFifoFullCallback */
+ break;
+
+ case HAL_UART_TX_FIFO_EMPTY_CB_ID :
+ huart->TxFifoEmptyCallback = HAL_UARTEx_TxFifoEmptyCallback; /* Legacy weak TxFifoEmptyCallback */
+ break;
+
+ case HAL_UART_MSPINIT_CB_ID :
+ huart->MspInitCallback = HAL_UART_MspInit; /* Legacy weak MspInitCallback */
+ break;
+
+ case HAL_UART_MSPDEINIT_CB_ID :
+ huart->MspDeInitCallback = HAL_UART_MspDeInit; /* Legacy weak MspDeInitCallback */
+ break;
+
+ default :
+ huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK;
+
+ status = HAL_ERROR;
+ break;
+ }
+ }
+ else if (HAL_UART_STATE_RESET == huart->gState)
+ {
+ switch (CallbackID)
+ {
+ case HAL_UART_MSPINIT_CB_ID :
+ huart->MspInitCallback = HAL_UART_MspInit;
+ break;
+
+ case HAL_UART_MSPDEINIT_CB_ID :
+ huart->MspDeInitCallback = HAL_UART_MspDeInit;
+ break;
+
+ default :
+ huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK;
+
+ status = HAL_ERROR;
+ break;
+ }
+ }
+ else
+ {
+ huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK;
+
+ status = HAL_ERROR;
+ }
+
+ return status;
+}
+
+/**
+ * @brief Register a User UART Rx Event Callback
+ * To be used instead of the weak predefined callback
+ * @param huart Uart handle
+ * @param pCallback Pointer to the Rx Event Callback function
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_UART_RegisterRxEventCallback(UART_HandleTypeDef *huart, pUART_RxEventCallbackTypeDef pCallback)
+{
+ HAL_StatusTypeDef status = HAL_OK;
+
+ if (pCallback == NULL)
+ {
+ huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK;
+
+ return HAL_ERROR;
+ }
+
+ /* Process locked */
+ __HAL_LOCK(huart);
+
+ if (huart->gState == HAL_UART_STATE_READY)
+ {
+ huart->RxEventCallback = pCallback;
+ }
+ else
+ {
+ huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK;
+
+ status = HAL_ERROR;
+ }
+
+ /* Release Lock */
+ __HAL_UNLOCK(huart);
+
+ return status;
+}
+
+/**
+ * @brief UnRegister the UART Rx Event Callback
+ * UART Rx Event Callback is redirected to the weak HAL_UARTEx_RxEventCallback() predefined callback
+ * @param huart Uart handle
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_UART_UnRegisterRxEventCallback(UART_HandleTypeDef *huart)
+{
+ HAL_StatusTypeDef status = HAL_OK;
+
+ /* Process locked */
+ __HAL_LOCK(huart);
+
+ if (huart->gState == HAL_UART_STATE_READY)
+ {
+ huart->RxEventCallback = HAL_UARTEx_RxEventCallback; /* Legacy weak UART Rx Event Callback */
+ }
+ else
+ {
+ huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK;
+
+ status = HAL_ERROR;
+ }
+
+ /* Release Lock */
+ __HAL_UNLOCK(huart);
+ return status;
+}
+
+#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
+
+/**
+ * @}
+ */
+
+/** @defgroup UART_Exported_Functions_Group2 IO operation functions
* @ingroup RTEMSBSPsARMSTM32H7
- * @brief UART Transmit/Receive functions
- *
-@verbatim
- ===============================================================================
- ##### IO operation functions #####
- ===============================================================================
- This subsection provides a set of functions allowing to manage the UART asynchronous
- and Half duplex data transfers.
-
- (#) There are two mode of transfer:
- (+) Blocking mode: The communication is performed in polling mode.
- The HAL status of all data processing is returned by the same function
- after finishing transfer.
- (+) Non-Blocking mode: The communication is performed using Interrupts
- or DMA, These API's return the HAL status.
- The end of the data processing will be indicated through the
- dedicated UART IRQ when using Interrupt mode or the DMA IRQ when
- using DMA mode.
- The HAL_UART_TxCpltCallback(), HAL_UART_RxCpltCallback() user callbacks
- will be executed respectively at the end of the transmit or Receive process
- The HAL_UART_ErrorCallback()user callback will be executed when a communication error is detected
-
- (#) Blocking mode API's are :
- (+) HAL_UART_Transmit()
- (+) HAL_UART_Receive()
-
- (#) Non-Blocking mode API's with Interrupt are :
- (+) HAL_UART_Transmit_IT()
- (+) HAL_UART_Receive_IT()
- (+) HAL_UART_IRQHandler()
-
- (#) Non-Blocking mode API's with DMA are :
- (+) HAL_UART_Transmit_DMA()
- (+) HAL_UART_Receive_DMA()
- (+) HAL_UART_DMAPause()
- (+) HAL_UART_DMAResume()
- (+) HAL_UART_DMAStop()
-
- (#) A set of Transfer Complete Callbacks are provided in Non_Blocking mode:
- (+) HAL_UART_TxHalfCpltCallback()
- (+) HAL_UART_TxCpltCallback()
- (+) HAL_UART_RxHalfCpltCallback()
- (+) HAL_UART_RxCpltCallback()
- (+) HAL_UART_ErrorCallback()
-
- (#) Non-Blocking mode transfers could be aborted using Abort API's :
- (+) HAL_UART_Abort()
- (+) HAL_UART_AbortTransmit()
- (+) HAL_UART_AbortReceive()
- (+) HAL_UART_Abort_IT()
- (+) HAL_UART_AbortTransmit_IT()
- (+) HAL_UART_AbortReceive_IT()
-
- (#) For Abort services based on interrupts (HAL_UART_Abortxxx_IT), a set of Abort Complete Callbacks are provided:
- (+) HAL_UART_AbortCpltCallback()
- (+) HAL_UART_AbortTransmitCpltCallback()
- (+) HAL_UART_AbortReceiveCpltCallback()
-
- (#) In Non-Blocking mode transfers, possible errors are split into 2 categories.
- Errors are handled as follows :
- (+) Error is considered as Recoverable and non blocking : Transfer could go till end, but error severity is
- to be evaluated by user : this concerns Frame Error, Parity Error or Noise Error in Interrupt mode reception .
- Received character is then retrieved and stored in Rx buffer, Error code is set to allow user to identify error type,
- and HAL_UART_ErrorCallback() user callback is executed. Transfer is kept ongoing on UART side.
- If user wants to abort it, Abort services should be called by user.
- (+) Error is considered as Blocking : Transfer could not be completed properly and is aborted.
- This concerns Overrun Error In Interrupt mode reception and all errors in DMA mode.
- Error code is set to allow user to identify error type, and HAL_UART_ErrorCallback() user callback is executed.
-
- -@- In the Half duplex communication, it is forbidden to run the transmit
- and receive process in parallel, the UART state HAL_UART_STATE_BUSY_TX_RX can't be useful.
-
-@endverbatim
- * @{
- */
-
-/**
- * @brief Send an amount of data in blocking mode.
- * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
- * the sent data is handled as a set of u16. In this case, Size must indicate the number
- * of u16 provided through pData.
- * @note When FIFO mode is enabled, writing a data in the TDR register adds one
- * data to the TXFIFO. Write operations to the TDR register are performed
- * when TXFNF flag is set. From hardware perspective, TXFNF flag and
- * TXE are mapped on the same bit-field.
- * @param huart UART handle.
- * @param pData Pointer to data buffer (u8 or u16 data elements).
- * @param Size Amount of data elements (u8 or u16) to be sent.
- * @param Timeout Timeout duration.
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_UART_Transmit(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size, uint32_t Timeout)
-{
- uint8_t *pdata8bits;
- uint16_t *pdata16bits;
- uint32_t tickstart;
-
- /* Check that a Tx process is not already ongoing */
- if (huart->gState == HAL_UART_STATE_READY)
- {
- if ((pData == NULL) || (Size == 0U))
- {
- return HAL_ERROR;
- }
-
- __HAL_LOCK(huart);
-
- huart->ErrorCode = HAL_UART_ERROR_NONE;
- huart->gState = HAL_UART_STATE_BUSY_TX;
-
- /* Init tickstart for timeout managment*/
- tickstart = HAL_GetTick();
-
- huart->TxXferSize = Size;
- huart->TxXferCount = Size;
-
- /* In case of 9bits/No Parity transfer, pData needs to be handled as a uint16_t pointer */
- if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE))
- {
- pdata8bits = NULL;
- pdata16bits = (uint16_t *) pData;
- }
- else
- {
- pdata8bits = pData;
- pdata16bits = NULL;
- }
-
- while (huart->TxXferCount > 0U)
- {
- if (UART_WaitOnFlagUntilTimeout(huart, UART_FLAG_TXE, RESET, tickstart, Timeout) != HAL_OK)
- {
- return HAL_TIMEOUT;
- }
- if (pdata8bits == NULL)
- {
- huart->Instance->TDR = (uint16_t)(*pdata16bits & 0x01FFU);
- pdata16bits++;
- }
- else
- {
- huart->Instance->TDR = (uint8_t)(*pdata8bits & 0xFFU);
- pdata8bits++;
- }
- huart->TxXferCount--;
- }
-
- if (UART_WaitOnFlagUntilTimeout(huart, UART_FLAG_TC, RESET, tickstart, Timeout) != HAL_OK)
- {
- return HAL_TIMEOUT;
- }
-
- /* At end of Tx process, restore huart->gState to Ready */
- huart->gState = HAL_UART_STATE_READY;
-
- __HAL_UNLOCK(huart);
-
- return HAL_OK;
- }
- else
- {
- return HAL_BUSY;
- }
-}
-
-/**
- * @brief Receive an amount of data in blocking mode.
- * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
- * the received data is handled as a set of u16. In this case, Size must indicate the number
- * of u16 available through pData.
- * @note When FIFO mode is enabled, the RXFNE flag is set as long as the RXFIFO
- * is not empty. Read operations from the RDR register are performed when
- * RXFNE flag is set. From hardware perspective, RXFNE flag and
- * RXNE are mapped on the same bit-field.
- * @param huart UART handle.
- * @param pData Pointer to data buffer (u8 or u16 data elements).
- * @param Size Amount of data elements (u8 or u16) to be received.
- * @param Timeout Timeout duration.
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_UART_Receive(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size, uint32_t Timeout)
-{
- uint8_t *pdata8bits;
- uint16_t *pdata16bits;
- uint16_t uhMask;
- uint32_t tickstart;
-
- /* Check that a Rx process is not already ongoing */
- if (huart->RxState == HAL_UART_STATE_READY)
- {
- if ((pData == NULL) || (Size == 0U))
- {
- return HAL_ERROR;
- }
-
- __HAL_LOCK(huart);
-
- huart->ErrorCode = HAL_UART_ERROR_NONE;
- huart->RxState = HAL_UART_STATE_BUSY_RX;
-
- /* Init tickstart for timeout managment*/
- tickstart = HAL_GetTick();
-
- huart->RxXferSize = Size;
- huart->RxXferCount = Size;
-
- /* Computation of UART mask to apply to RDR register */
- UART_MASK_COMPUTATION(huart);
- uhMask = huart->Mask;
-
- /* In case of 9bits/No Parity transfer, pRxData needs to be handled as a uint16_t pointer */
- if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE))
- {
- pdata8bits = NULL;
- pdata16bits = (uint16_t *) pData;
- }
- else
- {
- pdata8bits = pData;
- pdata16bits = NULL;
- }
-
- /* as long as data have to be received */
- while (huart->RxXferCount > 0U)
- {
- if (UART_WaitOnFlagUntilTimeout(huart, UART_FLAG_RXNE, RESET, tickstart, Timeout) != HAL_OK)
- {
- return HAL_TIMEOUT;
- }
- if (pdata8bits == NULL)
- {
- *pdata16bits = (uint16_t)(huart->Instance->RDR & uhMask);
- pdata16bits++;
- }
- else
- {
- *pdata8bits = (uint8_t)(huart->Instance->RDR & (uint8_t)uhMask);
- pdata8bits++;
- }
- huart->RxXferCount--;
- }
-
- /* At end of Rx process, restore huart->RxState to Ready */
- huart->RxState = HAL_UART_STATE_READY;
-
- __HAL_UNLOCK(huart);
-
- return HAL_OK;
- }
- else
- {
- return HAL_BUSY;
- }
-}
-
-/**
- * @brief Send an amount of data in interrupt mode.
- * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
- * the sent data is handled as a set of u16. In this case, Size must indicate the number
- * of u16 provided through pData.
- * @param huart UART handle.
- * @param pData Pointer to data buffer (u8 or u16 data elements).
- * @param Size Amount of data elements (u8 or u16) to be sent.
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_UART_Transmit_IT(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size)
-{
- /* Check that a Tx process is not already ongoing */
- if (huart->gState == HAL_UART_STATE_READY)
- {
- if ((pData == NULL) || (Size == 0U))
- {
- return HAL_ERROR;
- }
-
- __HAL_LOCK(huart);
-
- huart->pTxBuffPtr = pData;
- huart->TxXferSize = Size;
- huart->TxXferCount = Size;
- huart->TxISR = NULL;
-
- huart->ErrorCode = HAL_UART_ERROR_NONE;
- huart->gState = HAL_UART_STATE_BUSY_TX;
-
- /* Configure Tx interrupt processing */
- if (huart->FifoMode == UART_FIFOMODE_ENABLE)
- {
- /* Set the Tx ISR function pointer according to the data word length */
- if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE))
- {
- huart->TxISR = UART_TxISR_16BIT_FIFOEN;
- }
- else
- {
- huart->TxISR = UART_TxISR_8BIT_FIFOEN;
- }
-
- __HAL_UNLOCK(huart);
-
- /* Enable the TX FIFO threshold interrupt */
- SET_BIT(huart->Instance->CR3, USART_CR3_TXFTIE);
- }
- else
- {
- /* Set the Tx ISR function pointer according to the data word length */
- if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE))
- {
- huart->TxISR = UART_TxISR_16BIT;
- }
- else
- {
- huart->TxISR = UART_TxISR_8BIT;
- }
-
- __HAL_UNLOCK(huart);
-
- /* Enable the Transmit Data Register Empty interrupt */
- SET_BIT(huart->Instance->CR1, USART_CR1_TXEIE_TXFNFIE);
- }
-
- return HAL_OK;
- }
- else
- {
- return HAL_BUSY;
- }
-}
-
-/**
- * @brief Receive an amount of data in interrupt mode.
- * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
- * the received data is handled as a set of u16. In this case, Size must indicate the number
- * of u16 available through pData.
- * @param huart UART handle.
- * @param pData Pointer to data buffer (u8 or u16 data elements).
- * @param Size Amount of data elements (u8 or u16) to be received.
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_UART_Receive_IT(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size)
-{
- /* Check that a Rx process is not already ongoing */
- if (huart->RxState == HAL_UART_STATE_READY)
- {
- if ((pData == NULL) || (Size == 0U))
- {
- return HAL_ERROR;
- }
-
- __HAL_LOCK(huart);
-
- huart->pRxBuffPtr = pData;
- huart->RxXferSize = Size;
- huart->RxXferCount = Size;
- huart->RxISR = NULL;
-
- /* Computation of UART mask to apply to RDR register */
- UART_MASK_COMPUTATION(huart);
-
- huart->ErrorCode = HAL_UART_ERROR_NONE;
- huart->RxState = HAL_UART_STATE_BUSY_RX;
-
- /* Enable the UART Error Interrupt: (Frame error, noise error, overrun error) */
- SET_BIT(huart->Instance->CR3, USART_CR3_EIE);
-
- /* Configure Rx interrupt processing*/
- if ((huart->FifoMode == UART_FIFOMODE_ENABLE) && (Size >= huart->NbRxDataToProcess))
- {
- /* Set the Rx ISR function pointer according to the data word length */
- if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE))
- {
- huart->RxISR = UART_RxISR_16BIT_FIFOEN;
- }
- else
- {
- huart->RxISR = UART_RxISR_8BIT_FIFOEN;
- }
-
- __HAL_UNLOCK(huart);
-
- /* Enable the UART Parity Error interrupt and RX FIFO Threshold interrupt */
- SET_BIT(huart->Instance->CR1, USART_CR1_PEIE);
- SET_BIT(huart->Instance->CR3, USART_CR3_RXFTIE);
- }
- else
- {
- /* Set the Rx ISR function pointer according to the data word length */
- if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE))
- {
- huart->RxISR = UART_RxISR_16BIT;
- }
- else
- {
- huart->RxISR = UART_RxISR_8BIT;
- }
-
- __HAL_UNLOCK(huart);
-
- /* Enable the UART Parity Error interrupt and Data Register Not Empty interrupt */
- SET_BIT(huart->Instance->CR1, USART_CR1_PEIE | USART_CR1_RXNEIE_RXFNEIE);
- }
-
- return HAL_OK;
- }
- else
- {
- return HAL_BUSY;
- }
-}
-
-/**
- * @brief Send an amount of data in DMA mode.
- * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
- * the sent data is handled as a set of u16. In this case, Size must indicate the number
- * of u16 provided through pData.
- * @param huart UART handle.
- * @param pData Pointer to data buffer (u8 or u16 data elements).
- * @param Size Amount of data elements (u8 or u16) to be sent.
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_UART_Transmit_DMA(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size)
-{
- /* Check that a Tx process is not already ongoing */
- if (huart->gState == HAL_UART_STATE_READY)
- {
- if ((pData == NULL) || (Size == 0U))
- {
- return HAL_ERROR;
- }
-
- __HAL_LOCK(huart);
-
- huart->pTxBuffPtr = pData;
- huart->TxXferSize = Size;
- huart->TxXferCount = Size;
-
- huart->ErrorCode = HAL_UART_ERROR_NONE;
- huart->gState = HAL_UART_STATE_BUSY_TX;
-
- if (huart->hdmatx != NULL)
- {
- /* Set the UART DMA transfer complete callback */
- huart->hdmatx->XferCpltCallback = UART_DMATransmitCplt;
-
- /* Set the UART DMA Half transfer complete callback */
- huart->hdmatx->XferHalfCpltCallback = UART_DMATxHalfCplt;
-
- /* Set the DMA error callback */
- huart->hdmatx->XferErrorCallback = UART_DMAError;
-
- /* Set the DMA abort callback */
- huart->hdmatx->XferAbortCallback = NULL;
-
- /* Enable the UART transmit DMA channel */
- if (HAL_DMA_Start_IT(huart->hdmatx, (uint32_t)huart->pTxBuffPtr, (uint32_t)&huart->Instance->TDR, Size) != HAL_OK)
- {
- /* Set error code to DMA */
- huart->ErrorCode = HAL_UART_ERROR_DMA;
-
- __HAL_UNLOCK(huart);
-
- /* Restore huart->gState to ready */
- huart->gState = HAL_UART_STATE_READY;
-
- return HAL_ERROR;
- }
- }
- /* Clear the TC flag in the ICR register */
- __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_TCF);
-
- __HAL_UNLOCK(huart);
-
- /* Enable the DMA transfer for transmit request by setting the DMAT bit
- in the UART CR3 register */
- SET_BIT(huart->Instance->CR3, USART_CR3_DMAT);
-
- return HAL_OK;
- }
- else
- {
- return HAL_BUSY;
- }
-}
-
-/**
- * @brief Receive an amount of data in DMA mode.
- * @note When the UART parity is enabled (PCE = 1), the received data contain
- * the parity bit (MSB position).
- * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
- * the received data is handled as a set of u16. In this case, Size must indicate the number
- * of u16 available through pData.
- * @param huart UART handle.
- * @param pData Pointer to data buffer (u8 or u16 data elements).
- * @param Size Amount of data elements (u8 or u16) to be received.
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_UART_Receive_DMA(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size)
-{
- /* Check that a Rx process is not already ongoing */
- if (huart->RxState == HAL_UART_STATE_READY)
- {
- if ((pData == NULL) || (Size == 0U))
- {
- return HAL_ERROR;
- }
-
- __HAL_LOCK(huart);
-
- huart->pRxBuffPtr = pData;
- huart->RxXferSize = Size;
-
- huart->ErrorCode = HAL_UART_ERROR_NONE;
- huart->RxState = HAL_UART_STATE_BUSY_RX;
-
- if (huart->hdmarx != NULL)
- {
- /* Set the UART DMA transfer complete callback */
- huart->hdmarx->XferCpltCallback = UART_DMAReceiveCplt;
-
- /* Set the UART DMA Half transfer complete callback */
- huart->hdmarx->XferHalfCpltCallback = UART_DMARxHalfCplt;
-
- /* Set the DMA error callback */
- huart->hdmarx->XferErrorCallback = UART_DMAError;
-
- /* Set the DMA abort callback */
- huart->hdmarx->XferAbortCallback = NULL;
-
- /* Enable the DMA channel */
- if (HAL_DMA_Start_IT(huart->hdmarx, (uint32_t)&huart->Instance->RDR, (uint32_t)huart->pRxBuffPtr, Size) != HAL_OK)
- {
- /* Set error code to DMA */
- huart->ErrorCode = HAL_UART_ERROR_DMA;
-
- __HAL_UNLOCK(huart);
-
- /* Restore huart->gState to ready */
- huart->gState = HAL_UART_STATE_READY;
-
- return HAL_ERROR;
- }
- }
- __HAL_UNLOCK(huart);
-
- /* Enable the UART Parity Error Interrupt */
- SET_BIT(huart->Instance->CR1, USART_CR1_PEIE);
-
- /* Enable the UART Error Interrupt: (Frame error, noise error, overrun error) */
- SET_BIT(huart->Instance->CR3, USART_CR3_EIE);
-
- /* Enable the DMA transfer for the receiver request by setting the DMAR bit
- in the UART CR3 register */
- SET_BIT(huart->Instance->CR3, USART_CR3_DMAR);
-
- return HAL_OK;
- }
- else
- {
- return HAL_BUSY;
- }
-}
-
-/**
- * @brief Pause the DMA Transfer.
- * @param huart UART handle.
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_UART_DMAPause(UART_HandleTypeDef *huart)
-{
- const HAL_UART_StateTypeDef gstate = huart->gState;
- const HAL_UART_StateTypeDef rxstate = huart->RxState;
-
- __HAL_LOCK(huart);
-
- if ((HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT)) &&
- (gstate == HAL_UART_STATE_BUSY_TX))
- {
- /* Disable the UART DMA Tx request */
- CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT);
- }
- if ((HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR)) &&
- (rxstate == HAL_UART_STATE_BUSY_RX))
- {
- /* Disable PE and ERR (Frame error, noise error, overrun error) interrupts */
- CLEAR_BIT(huart->Instance->CR1, USART_CR1_PEIE);
- CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);
-
- /* Disable the UART DMA Rx request */
- CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR);
- }
-
- __HAL_UNLOCK(huart);
-
- return HAL_OK;
-}
-
-/**
- * @brief Resume the DMA Transfer.
- * @param huart UART handle.
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_UART_DMAResume(UART_HandleTypeDef *huart)
-{
- __HAL_LOCK(huart);
-
- if (huart->gState == HAL_UART_STATE_BUSY_TX)
- {
- /* Enable the UART DMA Tx request */
- SET_BIT(huart->Instance->CR3, USART_CR3_DMAT);
- }
- if (huart->RxState == HAL_UART_STATE_BUSY_RX)
- {
- /* Clear the Overrun flag before resuming the Rx transfer */
- __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_OREF);
-
- /* Reenable PE and ERR (Frame error, noise error, overrun error) interrupts */
- SET_BIT(huart->Instance->CR1, USART_CR1_PEIE);
- SET_BIT(huart->Instance->CR3, USART_CR3_EIE);
-
- /* Enable the UART DMA Rx request */
- SET_BIT(huart->Instance->CR3, USART_CR3_DMAR);
- }
-
- __HAL_UNLOCK(huart);
-
- return HAL_OK;
-}
-
-/**
- * @brief Stop the DMA Transfer.
- * @param huart UART handle.
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_UART_DMAStop(UART_HandleTypeDef *huart)
-{
- /* The Lock is not implemented on this API to allow the user application
- to call the HAL UART API under callbacks HAL_UART_TxCpltCallback() / HAL_UART_RxCpltCallback() /
- HAL_UART_TxHalfCpltCallback / HAL_UART_RxHalfCpltCallback:
- indeed, when HAL_DMA_Abort() API is called, the DMA TX/RX Transfer or Half Transfer complete
- interrupt is generated if the DMA transfer interruption occurs at the middle or at the end of
- the stream and the corresponding call back is executed. */
-
- const HAL_UART_StateTypeDef gstate = huart->gState;
- const HAL_UART_StateTypeDef rxstate = huart->RxState;
-
- /* Stop UART DMA Tx request if ongoing */
- if ((HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT)) &&
- (gstate == HAL_UART_STATE_BUSY_TX))
- {
- CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT);
-
- /* Abort the UART DMA Tx channel */
- if (huart->hdmatx != NULL)
- {
- if (HAL_DMA_Abort(huart->hdmatx) != HAL_OK)
- {
- if (HAL_DMA_GetError(huart->hdmatx) == HAL_DMA_ERROR_TIMEOUT)
- {
- /* Set error code to DMA */
- huart->ErrorCode = HAL_UART_ERROR_DMA;
-
- return HAL_TIMEOUT;
- }
- }
- }
-
- UART_EndTxTransfer(huart);
- }
-
- /* Stop UART DMA Rx request if ongoing */
- if ((HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR)) &&
- (rxstate == HAL_UART_STATE_BUSY_RX))
- {
- CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR);
-
- /* Abort the UART DMA Rx channel */
- if (huart->hdmarx != NULL)
- {
- if (HAL_DMA_Abort(huart->hdmarx) != HAL_OK)
- {
- if (HAL_DMA_GetError(huart->hdmarx) == HAL_DMA_ERROR_TIMEOUT)
- {
- /* Set error code to DMA */
- huart->ErrorCode = HAL_UART_ERROR_DMA;
-
- return HAL_TIMEOUT;
- }
- }
- }
-
- UART_EndRxTransfer(huart);
- }
-
- return HAL_OK;
-}
-
-/**
- * @brief Abort ongoing transfers (blocking mode).
- * @param huart UART handle.
- * @note This procedure could be used for aborting any ongoing transfer started in Interrupt or DMA mode.
- * This procedure performs following operations :
- * - Disable UART Interrupts (Tx and Rx)
- * - Disable the DMA transfer in the peripheral register (if enabled)
- * - Abort DMA transfer by calling HAL_DMA_Abort (in case of transfer in DMA mode)
- * - Set handle State to READY
- * @note This procedure is executed in blocking mode : when exiting function, Abort is considered as completed.
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_UART_Abort(UART_HandleTypeDef *huart)
-{
- /* Disable TXE, TC, RXNE, PE, RXFT, TXFT and ERR (Frame error, noise error, overrun error) interrupts */
- CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE_RXFNEIE | USART_CR1_PEIE | USART_CR1_TXEIE_TXFNFIE | USART_CR1_TCIE));
- CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE | USART_CR3_RXFTIE | USART_CR3_TXFTIE);
-
- /* Disable the UART DMA Tx request if enabled */
- if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT))
- {
- CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT);
-
- /* Abort the UART DMA Tx channel : use blocking DMA Abort API (no callback) */
- if (huart->hdmatx != NULL)
- {
- /* Set the UART DMA Abort callback to Null.
- No call back execution at end of DMA abort procedure */
- huart->hdmatx->XferAbortCallback = NULL;
-
- if (HAL_DMA_Abort(huart->hdmatx) != HAL_OK)
- {
- if (HAL_DMA_GetError(huart->hdmatx) == HAL_DMA_ERROR_TIMEOUT)
- {
- /* Set error code to DMA */
- huart->ErrorCode = HAL_UART_ERROR_DMA;
-
- return HAL_TIMEOUT;
- }
- }
- }
- }
-
- /* Disable the UART DMA Rx request if enabled */
- if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR))
- {
- CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR);
-
- /* Abort the UART DMA Rx channel : use blocking DMA Abort API (no callback) */
- if (huart->hdmarx != NULL)
- {
- /* Set the UART DMA Abort callback to Null.
- No call back execution at end of DMA abort procedure */
- huart->hdmarx->XferAbortCallback = NULL;
-
- if (HAL_DMA_Abort(huart->hdmarx) != HAL_OK)
- {
- if (HAL_DMA_GetError(huart->hdmarx) == HAL_DMA_ERROR_TIMEOUT)
- {
- /* Set error code to DMA */
- huart->ErrorCode = HAL_UART_ERROR_DMA;
-
- return HAL_TIMEOUT;
- }
- }
- }
- }
-
- /* Reset Tx and Rx transfer counters */
- huart->TxXferCount = 0U;
- huart->RxXferCount = 0U;
-
- /* Clear the Error flags in the ICR register */
- __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_OREF | UART_CLEAR_NEF | UART_CLEAR_PEF | UART_CLEAR_FEF);
-
- /* Flush the whole TX FIFO (if needed) */
- if (huart->FifoMode == UART_FIFOMODE_ENABLE)
- {
- __HAL_UART_SEND_REQ(huart, UART_TXDATA_FLUSH_REQUEST);
- }
-
- /* Discard the received data */
- __HAL_UART_SEND_REQ(huart, UART_RXDATA_FLUSH_REQUEST);
-
- /* Restore huart->gState and huart->RxState to Ready */
- huart->gState = HAL_UART_STATE_READY;
- huart->RxState = HAL_UART_STATE_READY;
-
- huart->ErrorCode = HAL_UART_ERROR_NONE;
-
- return HAL_OK;
-}
-
-/**
- * @brief Abort ongoing Transmit transfer (blocking mode).
- * @param huart UART handle.
- * @note This procedure could be used for aborting any ongoing Tx transfer started in Interrupt or DMA mode.
- * This procedure performs following operations :
- * - Disable UART Interrupts (Tx)
- * - Disable the DMA transfer in the peripheral register (if enabled)
- * - Abort DMA transfer by calling HAL_DMA_Abort (in case of transfer in DMA mode)
- * - Set handle State to READY
- * @note This procedure is executed in blocking mode : when exiting function, Abort is considered as completed.
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_UART_AbortTransmit(UART_HandleTypeDef *huart)
-{
- /* Disable TCIE, TXEIE and TXFTIE interrupts */
- CLEAR_BIT(huart->Instance->CR1, (USART_CR1_TCIE | USART_CR1_TXEIE_TXFNFIE));
- CLEAR_BIT(huart->Instance->CR3, USART_CR3_TXFTIE);
-
- /* Disable the UART DMA Tx request if enabled */
- if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT))
- {
- CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT);
-
- /* Abort the UART DMA Tx channel : use blocking DMA Abort API (no callback) */
- if (huart->hdmatx != NULL)
- {
- /* Set the UART DMA Abort callback to Null.
- No call back execution at end of DMA abort procedure */
- huart->hdmatx->XferAbortCallback = NULL;
-
- if (HAL_DMA_Abort(huart->hdmatx) != HAL_OK)
- {
- if (HAL_DMA_GetError(huart->hdmatx) == HAL_DMA_ERROR_TIMEOUT)
- {
- /* Set error code to DMA */
- huart->ErrorCode = HAL_UART_ERROR_DMA;
-
- return HAL_TIMEOUT;
- }
- }
- }
- }
-
- /* Reset Tx transfer counter */
- huart->TxXferCount = 0U;
-
- /* Flush the whole TX FIFO (if needed) */
- if (huart->FifoMode == UART_FIFOMODE_ENABLE)
- {
- __HAL_UART_SEND_REQ(huart, UART_TXDATA_FLUSH_REQUEST);
- }
-
- /* Restore huart->gState to Ready */
- huart->gState = HAL_UART_STATE_READY;
-
- return HAL_OK;
-}
-
-/**
- * @brief Abort ongoing Receive transfer (blocking mode).
- * @param huart UART handle.
- * @note This procedure could be used for aborting any ongoing Rx transfer started in Interrupt or DMA mode.
- * This procedure performs following operations :
- * - Disable UART Interrupts (Rx)
- * - Disable the DMA transfer in the peripheral register (if enabled)
- * - Abort DMA transfer by calling HAL_DMA_Abort (in case of transfer in DMA mode)
- * - Set handle State to READY
- * @note This procedure is executed in blocking mode : when exiting function, Abort is considered as completed.
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_UART_AbortReceive(UART_HandleTypeDef *huart)
-{
- /* Disable PEIE, EIE, RXNEIE and RXFTIE interrupts */
- CLEAR_BIT(huart->Instance->CR1, (USART_CR1_PEIE | USART_CR1_RXNEIE_RXFNEIE));
- CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE | USART_CR3_RXFTIE);
-
- /* Disable the UART DMA Rx request if enabled */
- if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR))
- {
- CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR);
-
- /* Abort the UART DMA Rx channel : use blocking DMA Abort API (no callback) */
- if (huart->hdmarx != NULL)
- {
- /* Set the UART DMA Abort callback to Null.
- No call back execution at end of DMA abort procedure */
- huart->hdmarx->XferAbortCallback = NULL;
-
- if (HAL_DMA_Abort(huart->hdmarx) != HAL_OK)
- {
- if (HAL_DMA_GetError(huart->hdmarx) == HAL_DMA_ERROR_TIMEOUT)
- {
- /* Set error code to DMA */
- huart->ErrorCode = HAL_UART_ERROR_DMA;
-
- return HAL_TIMEOUT;
- }
- }
- }
- }
-
- /* Reset Rx transfer counter */
- huart->RxXferCount = 0U;
-
- /* Clear the Error flags in the ICR register */
- __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_OREF | UART_CLEAR_NEF | UART_CLEAR_PEF | UART_CLEAR_FEF);
-
- /* Discard the received data */
- __HAL_UART_SEND_REQ(huart, UART_RXDATA_FLUSH_REQUEST);
-
- /* Restore huart->RxState to Ready */
- huart->RxState = HAL_UART_STATE_READY;
-
- return HAL_OK;
-}
-
-/**
- * @brief Abort ongoing transfers (Interrupt mode).
- * @param huart UART handle.
- * @note This procedure could be used for aborting any ongoing transfer started in Interrupt or DMA mode.
- * This procedure performs following operations :
- * - Disable UART Interrupts (Tx and Rx)
- * - Disable the DMA transfer in the peripheral register (if enabled)
- * - Abort DMA transfer by calling HAL_DMA_Abort_IT (in case of transfer in DMA mode)
- * - Set handle State to READY
- * - At abort completion, call user abort complete callback
- * @note This procedure is executed in Interrupt mode, meaning that abort procedure could be
- * considered as completed only when user abort complete callback is executed (not when exiting function).
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_UART_Abort_IT(UART_HandleTypeDef *huart)
-{
- uint32_t abortcplt = 1U;
-
- /* Disable interrupts */
- CLEAR_BIT(huart->Instance->CR1, (USART_CR1_PEIE | USART_CR1_TCIE | USART_CR1_RXNEIE_RXFNEIE | USART_CR1_TXEIE_TXFNFIE));
- CLEAR_BIT(huart->Instance->CR3, (USART_CR3_EIE | USART_CR3_RXFTIE | USART_CR3_TXFTIE));
-
- /* If DMA Tx and/or DMA Rx Handles are associated to UART Handle, DMA Abort complete callbacks should be initialised
- before any call to DMA Abort functions */
- /* DMA Tx Handle is valid */
- if (huart->hdmatx != NULL)
- {
- /* Set DMA Abort Complete callback if UART DMA Tx request if enabled.
- Otherwise, set it to NULL */
- if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT))
- {
- huart->hdmatx->XferAbortCallback = UART_DMATxAbortCallback;
- }
- else
- {
- huart->hdmatx->XferAbortCallback = NULL;
- }
- }
- /* DMA Rx Handle is valid */
- if (huart->hdmarx != NULL)
- {
- /* Set DMA Abort Complete callback if UART DMA Rx request if enabled.
- Otherwise, set it to NULL */
- if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR))
- {
- huart->hdmarx->XferAbortCallback = UART_DMARxAbortCallback;
- }
- else
- {
- huart->hdmarx->XferAbortCallback = NULL;
- }
- }
-
- /* Disable the UART DMA Tx request if enabled */
- if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT))
- {
- /* Disable DMA Tx at UART level */
- CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT);
-
- /* Abort the UART DMA Tx channel : use non blocking DMA Abort API (callback) */
- if (huart->hdmatx != NULL)
- {
- /* UART Tx DMA Abort callback has already been initialised :
- will lead to call HAL_UART_AbortCpltCallback() at end of DMA abort procedure */
-
- /* Abort DMA TX */
- if (HAL_DMA_Abort_IT(huart->hdmatx) != HAL_OK)
- {
- huart->hdmatx->XferAbortCallback = NULL;
- }
- else
- {
- abortcplt = 0U;
- }
- }
- }
-
- /* Disable the UART DMA Rx request if enabled */
- if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR))
- {
- CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR);
-
- /* Abort the UART DMA Rx channel : use non blocking DMA Abort API (callback) */
- if (huart->hdmarx != NULL)
- {
- /* UART Rx DMA Abort callback has already been initialised :
- will lead to call HAL_UART_AbortCpltCallback() at end of DMA abort procedure */
-
- /* Abort DMA RX */
- if (HAL_DMA_Abort_IT(huart->hdmarx) != HAL_OK)
- {
- huart->hdmarx->XferAbortCallback = NULL;
- abortcplt = 1U;
- }
- else
- {
- abortcplt = 0U;
- }
- }
- }
-
- /* if no DMA abort complete callback execution is required => call user Abort Complete callback */
- if (abortcplt == 1U)
- {
- /* Reset Tx and Rx transfer counters */
- huart->TxXferCount = 0U;
- huart->RxXferCount = 0U;
-
- /* Clear ISR function pointers */
- huart->RxISR = NULL;
- huart->TxISR = NULL;
-
- /* Reset errorCode */
- huart->ErrorCode = HAL_UART_ERROR_NONE;
-
- /* Clear the Error flags in the ICR register */
- __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_OREF | UART_CLEAR_NEF | UART_CLEAR_PEF | UART_CLEAR_FEF);
-
- /* Flush the whole TX FIFO (if needed) */
- if (huart->FifoMode == UART_FIFOMODE_ENABLE)
- {
- __HAL_UART_SEND_REQ(huart, UART_TXDATA_FLUSH_REQUEST);
- }
-
- /* Discard the received data */
- __HAL_UART_SEND_REQ(huart, UART_RXDATA_FLUSH_REQUEST);
-
- /* Restore huart->gState and huart->RxState to Ready */
- huart->gState = HAL_UART_STATE_READY;
- huart->RxState = HAL_UART_STATE_READY;
-
- /* As no DMA to be aborted, call directly user Abort complete callback */
-#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
- /* Call registered Abort complete callback */
- huart->AbortCpltCallback(huart);
-#else
- /* Call legacy weak Abort complete callback */
- HAL_UART_AbortCpltCallback(huart);
-#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
- }
-
- return HAL_OK;
-}
-
-/**
- * @brief Abort ongoing Transmit transfer (Interrupt mode).
- * @param huart UART handle.
- * @note This procedure could be used for aborting any ongoing Tx transfer started in Interrupt or DMA mode.
- * This procedure performs following operations :
- * - Disable UART Interrupts (Tx)
- * - Disable the DMA transfer in the peripheral register (if enabled)
- * - Abort DMA transfer by calling HAL_DMA_Abort_IT (in case of transfer in DMA mode)
- * - Set handle State to READY
- * - At abort completion, call user abort complete callback
- * @note This procedure is executed in Interrupt mode, meaning that abort procedure could be
- * considered as completed only when user abort complete callback is executed (not when exiting function).
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_UART_AbortTransmit_IT(UART_HandleTypeDef *huart)
-{
- /* Disable interrupts */
- CLEAR_BIT(huart->Instance->CR1, (USART_CR1_TCIE | USART_CR1_TXEIE_TXFNFIE));
- CLEAR_BIT(huart->Instance->CR3, USART_CR3_TXFTIE);
-
- /* Disable the UART DMA Tx request if enabled */
- if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT))
- {
- CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT);
-
- /* Abort the UART DMA Tx channel : use non blocking DMA Abort API (callback) */
- if (huart->hdmatx != NULL)
- {
- /* Set the UART DMA Abort callback :
- will lead to call HAL_UART_AbortCpltCallback() at end of DMA abort procedure */
- huart->hdmatx->XferAbortCallback = UART_DMATxOnlyAbortCallback;
-
- /* Abort DMA TX */
- if (HAL_DMA_Abort_IT(huart->hdmatx) != HAL_OK)
- {
- /* Call Directly huart->hdmatx->XferAbortCallback function in case of error */
- huart->hdmatx->XferAbortCallback(huart->hdmatx);
- }
- }
- else
- {
- /* Reset Tx transfer counter */
- huart->TxXferCount = 0U;
-
- /* Clear TxISR function pointers */
- huart->TxISR = NULL;
-
- /* Restore huart->gState to Ready */
- huart->gState = HAL_UART_STATE_READY;
-
- /* As no DMA to be aborted, call directly user Abort complete callback */
-#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
- /* Call registered Abort Transmit Complete Callback */
- huart->AbortTransmitCpltCallback(huart);
-#else
- /* Call legacy weak Abort Transmit Complete Callback */
- HAL_UART_AbortTransmitCpltCallback(huart);
-#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
- }
- }
- else
- {
- /* Reset Tx transfer counter */
- huart->TxXferCount = 0U;
-
- /* Clear TxISR function pointers */
- huart->TxISR = NULL;
-
- /* Flush the whole TX FIFO (if needed) */
- if (huart->FifoMode == UART_FIFOMODE_ENABLE)
- {
- __HAL_UART_SEND_REQ(huart, UART_TXDATA_FLUSH_REQUEST);
- }
-
- /* Restore huart->gState to Ready */
- huart->gState = HAL_UART_STATE_READY;
-
- /* As no DMA to be aborted, call directly user Abort complete callback */
-#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
- /* Call registered Abort Transmit Complete Callback */
- huart->AbortTransmitCpltCallback(huart);
-#else
- /* Call legacy weak Abort Transmit Complete Callback */
- HAL_UART_AbortTransmitCpltCallback(huart);
-#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
- }
-
- return HAL_OK;
-}
-
-/**
- * @brief Abort ongoing Receive transfer (Interrupt mode).
- * @param huart UART handle.
- * @note This procedure could be used for aborting any ongoing Rx transfer started in Interrupt or DMA mode.
- * This procedure performs following operations :
- * - Disable UART Interrupts (Rx)
- * - Disable the DMA transfer in the peripheral register (if enabled)
- * - Abort DMA transfer by calling HAL_DMA_Abort_IT (in case of transfer in DMA mode)
- * - Set handle State to READY
- * - At abort completion, call user abort complete callback
- * @note This procedure is executed in Interrupt mode, meaning that abort procedure could be
- * considered as completed only when user abort complete callback is executed (not when exiting function).
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_UART_AbortReceive_IT(UART_HandleTypeDef *huart)
-{
- /* Disable RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */
- CLEAR_BIT(huart->Instance->CR1, (USART_CR1_PEIE | USART_CR1_RXNEIE_RXFNEIE));
- CLEAR_BIT(huart->Instance->CR3, (USART_CR3_EIE | USART_CR3_RXFTIE));
-
- /* Disable the UART DMA Rx request if enabled */
- if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR))
- {
- CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR);
-
- /* Abort the UART DMA Rx channel : use non blocking DMA Abort API (callback) */
- if (huart->hdmarx != NULL)
- {
- /* Set the UART DMA Abort callback :
- will lead to call HAL_UART_AbortCpltCallback() at end of DMA abort procedure */
- huart->hdmarx->XferAbortCallback = UART_DMARxOnlyAbortCallback;
-
- /* Abort DMA RX */
- if (HAL_DMA_Abort_IT(huart->hdmarx) != HAL_OK)
- {
- /* Call Directly huart->hdmarx->XferAbortCallback function in case of error */
- huart->hdmarx->XferAbortCallback(huart->hdmarx);
- }
- }
- else
- {
- /* Reset Rx transfer counter */
- huart->RxXferCount = 0U;
-
- /* Clear RxISR function pointer */
- huart->pRxBuffPtr = NULL;
-
- /* Clear the Error flags in the ICR register */
- __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_OREF | UART_CLEAR_NEF | UART_CLEAR_PEF | UART_CLEAR_FEF);
-
- /* Discard the received data */
- __HAL_UART_SEND_REQ(huart, UART_RXDATA_FLUSH_REQUEST);
-
- /* Restore huart->RxState to Ready */
- huart->RxState = HAL_UART_STATE_READY;
-
- /* As no DMA to be aborted, call directly user Abort complete callback */
-#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
- /* Call registered Abort Receive Complete Callback */
- huart->AbortReceiveCpltCallback(huart);
-#else
- /* Call legacy weak Abort Receive Complete Callback */
- HAL_UART_AbortReceiveCpltCallback(huart);
-#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
- }
- }
- else
- {
- /* Reset Rx transfer counter */
- huart->RxXferCount = 0U;
-
- /* Clear RxISR function pointer */
- huart->pRxBuffPtr = NULL;
-
- /* Clear the Error flags in the ICR register */
- __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_OREF | UART_CLEAR_NEF | UART_CLEAR_PEF | UART_CLEAR_FEF);
-
- /* Restore huart->RxState to Ready */
- huart->RxState = HAL_UART_STATE_READY;
-
- /* As no DMA to be aborted, call directly user Abort complete callback */
-#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
- /* Call registered Abort Receive Complete Callback */
- huart->AbortReceiveCpltCallback(huart);
-#else
- /* Call legacy weak Abort Receive Complete Callback */
- HAL_UART_AbortReceiveCpltCallback(huart);
-#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
- }
-
- return HAL_OK;
-}
-
-/**
- * @brief Handle UART interrupt request.
- * @param huart UART handle.
- * @retval None
- */
-void HAL_UART_IRQHandler(UART_HandleTypeDef *huart)
-{
- uint32_t isrflags = READ_REG(huart->Instance->ISR);
- uint32_t cr1its = READ_REG(huart->Instance->CR1);
- uint32_t cr3its = READ_REG(huart->Instance->CR3);
-
- uint32_t errorflags;
- uint32_t errorcode;
-
- /* If no error occurs */
- errorflags = (isrflags & (uint32_t)(USART_ISR_PE | USART_ISR_FE | USART_ISR_ORE | USART_ISR_NE | USART_ISR_RTOF));
- if (errorflags == 0U)
- {
- /* UART in mode Receiver ---------------------------------------------------*/
- if (((isrflags & USART_ISR_RXNE_RXFNE) != 0U)
- && (((cr1its & USART_CR1_RXNEIE_RXFNEIE) != 0U)
- || ((cr3its & USART_CR3_RXFTIE) != 0U)))
- {
- if (huart->RxISR != NULL)
- {
- huart->RxISR(huart);
- }
- return;
- }
- }
-
- /* If some errors occur */
- if ((errorflags != 0U)
- && ((((cr3its & (USART_CR3_RXFTIE | USART_CR3_EIE)) != 0U)
- || ((cr1its & (USART_CR1_RXNEIE_RXFNEIE | USART_CR1_PEIE | USART_CR1_RTOIE)) != 0U))))
- {
- /* UART parity error interrupt occurred -------------------------------------*/
- if (((isrflags & USART_ISR_PE) != 0U) && ((cr1its & USART_CR1_PEIE) != 0U))
- {
- __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_PEF);
-
- huart->ErrorCode |= HAL_UART_ERROR_PE;
- }
-
- /* UART frame error interrupt occurred --------------------------------------*/
- if (((isrflags & USART_ISR_FE) != 0U) && ((cr3its & USART_CR3_EIE) != 0U))
- {
- __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_FEF);
-
- huart->ErrorCode |= HAL_UART_ERROR_FE;
- }
-
- /* UART noise error interrupt occurred --------------------------------------*/
- if (((isrflags & USART_ISR_NE) != 0U) && ((cr3its & USART_CR3_EIE) != 0U))
- {
- __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_NEF);
-
- huart->ErrorCode |= HAL_UART_ERROR_NE;
- }
-
- /* UART Over-Run interrupt occurred -----------------------------------------*/
- if (((isrflags & USART_ISR_ORE) != 0U)
- && (((cr1its & USART_CR1_RXNEIE_RXFNEIE) != 0U) ||
- ((cr3its & (USART_CR3_RXFTIE | USART_CR3_EIE)) != 0U)))
- {
- __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_OREF);
-
- huart->ErrorCode |= HAL_UART_ERROR_ORE;
- }
-
- /* UART Receiver Timeout interrupt occurred ---------------------------------*/
- if (((isrflags & USART_ISR_RTOF) != 0U) && ((cr1its & USART_CR1_RTOIE) != 0U))
- {
- __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_RTOF);
-
- huart->ErrorCode |= HAL_UART_ERROR_RTO;
- }
-
- /* Call UART Error Call back function if need be ----------------------------*/
- if (huart->ErrorCode != HAL_UART_ERROR_NONE)
- {
- /* UART in mode Receiver --------------------------------------------------*/
- if (((isrflags & USART_ISR_RXNE_RXFNE) != 0U)
- && (((cr1its & USART_CR1_RXNEIE_RXFNEIE) != 0U)
- || ((cr3its & USART_CR3_RXFTIE) != 0U)))
- {
- if (huart->RxISR != NULL)
- {
- huart->RxISR(huart);
- }
- }
-
- /* If Error is to be considered as blocking :
- - Receiver Timeout error in Reception
- - Overrun error in Reception
- - any error occurs in DMA mode reception
- */
- errorcode = huart->ErrorCode;
- if ((HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR)) ||
- ((errorcode & (HAL_UART_ERROR_RTO | HAL_UART_ERROR_ORE)) != 0U))
- {
- /* Blocking error : transfer is aborted
- Set the UART state ready to be able to start again the process,
- Disable Rx Interrupts, and disable Rx DMA request, if ongoing */
- UART_EndRxTransfer(huart);
-
- /* Disable the UART DMA Rx request if enabled */
- if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR))
- {
- CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR);
-
- /* Abort the UART DMA Rx channel */
- if (huart->hdmarx != NULL)
- {
- /* Set the UART DMA Abort callback :
- will lead to call HAL_UART_ErrorCallback() at end of DMA abort procedure */
- huart->hdmarx->XferAbortCallback = UART_DMAAbortOnError;
-
- /* Abort DMA RX */
- if (HAL_DMA_Abort_IT(huart->hdmarx) != HAL_OK)
- {
- /* Call Directly huart->hdmarx->XferAbortCallback function in case of error */
- huart->hdmarx->XferAbortCallback(huart->hdmarx);
- }
- }
- else
- {
- /* Call user error callback */
-#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
- /*Call registered error callback*/
- huart->ErrorCallback(huart);
-#else
- /*Call legacy weak error callback*/
- HAL_UART_ErrorCallback(huart);
-#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
-
- }
- }
- else
- {
- /* Call user error callback */
-#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
- /*Call registered error callback*/
- huart->ErrorCallback(huart);
-#else
- /*Call legacy weak error callback*/
- HAL_UART_ErrorCallback(huart);
-#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
- }
- }
- else
- {
- /* Non Blocking error : transfer could go on.
- Error is notified to user through user error callback */
-#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
- /*Call registered error callback*/
- huart->ErrorCallback(huart);
-#else
- /*Call legacy weak error callback*/
- HAL_UART_ErrorCallback(huart);
-#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
- huart->ErrorCode = HAL_UART_ERROR_NONE;
- }
- }
- return;
-
- } /* End if some error occurs */
-
- /* UART wakeup from Stop mode interrupt occurred ---------------------------*/
- if (((isrflags & USART_ISR_WUF) != 0U) && ((cr3its & USART_CR3_WUFIE) != 0U))
- {
- __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_WUF);
-
- /* UART Rx state is not reset as a reception process might be ongoing.
- If UART handle state fields need to be reset to READY, this could be done in Wakeup callback */
-
-#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
- /* Call registered Wakeup Callback */
- huart->WakeupCallback(huart);
-#else
- /* Call legacy weak Wakeup Callback */
- HAL_UARTEx_WakeupCallback(huart);
-#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
- return;
- }
-
- /* UART in mode Transmitter ------------------------------------------------*/
- if (((isrflags & USART_ISR_TXE_TXFNF) != 0U)
- && (((cr1its & USART_CR1_TXEIE_TXFNFIE) != 0U)
- || ((cr3its & USART_CR3_TXFTIE) != 0U)))
- {
- if (huart->TxISR != NULL)
- {
- huart->TxISR(huart);
- }
- return;
- }
-
- /* UART in mode Transmitter (transmission end) -----------------------------*/
- if (((isrflags & USART_ISR_TC) != 0U) && ((cr1its & USART_CR1_TCIE) != 0U))
- {
- UART_EndTransmit_IT(huart);
- return;
- }
-
- /* UART TX Fifo Empty occurred ----------------------------------------------*/
- if (((isrflags & USART_ISR_TXFE) != 0U) && ((cr1its & USART_CR1_TXFEIE) != 0U))
- {
-#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
- /* Call registered Tx Fifo Empty Callback */
- huart->TxFifoEmptyCallback(huart);
-#else
- /* Call legacy weak Tx Fifo Empty Callback */
- HAL_UARTEx_TxFifoEmptyCallback(huart);
-#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
- return;
- }
-
- /* UART RX Fifo Full occurred ----------------------------------------------*/
- if (((isrflags & USART_ISR_RXFF) != 0U) && ((cr1its & USART_CR1_RXFFIE) != 0U))
- {
-#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
- /* Call registered Rx Fifo Full Callback */
- huart->RxFifoFullCallback(huart);
-#else
- /* Call legacy weak Rx Fifo Full Callback */
- HAL_UARTEx_RxFifoFullCallback(huart);
-#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
- return;
- }
-}
-
-/**
- * @brief Tx Transfer completed callback.
- * @param huart UART handle.
- * @retval None
- */
-__weak void HAL_UART_TxCpltCallback(UART_HandleTypeDef *huart)
-{
- /* Prevent unused argument(s) compilation warning */
- UNUSED(huart);
-
- /* NOTE : This function should not be modified, when the callback is needed,
- the HAL_UART_TxCpltCallback can be implemented in the user file.
- */
-}
-
-/**
- * @brief Tx Half Transfer completed callback.
- * @param huart UART handle.
- * @retval None
- */
-__weak void HAL_UART_TxHalfCpltCallback(UART_HandleTypeDef *huart)
-{
- /* Prevent unused argument(s) compilation warning */
- UNUSED(huart);
-
- /* NOTE: This function should not be modified, when the callback is needed,
- the HAL_UART_TxHalfCpltCallback can be implemented in the user file.
- */
-}
-
-/**
- * @brief Rx Transfer completed callback.
- * @param huart UART handle.
- * @retval None
- */
-__weak void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart)
-{
- /* Prevent unused argument(s) compilation warning */
- UNUSED(huart);
-
- /* NOTE : This function should not be modified, when the callback is needed,
- the HAL_UART_RxCpltCallback can be implemented in the user file.
- */
-}
-
-/**
- * @brief Rx Half Transfer completed callback.
- * @param huart UART handle.
- * @retval None
- */
-__weak void HAL_UART_RxHalfCpltCallback(UART_HandleTypeDef *huart)
-{
- /* Prevent unused argument(s) compilation warning */
- UNUSED(huart);
-
- /* NOTE: This function should not be modified, when the callback is needed,
- the HAL_UART_RxHalfCpltCallback can be implemented in the user file.
- */
-}
-
-/**
- * @brief UART error callback.
- * @param huart UART handle.
- * @retval None
- */
-__weak void HAL_UART_ErrorCallback(UART_HandleTypeDef *huart)
-{
- /* Prevent unused argument(s) compilation warning */
- UNUSED(huart);
-
- /* NOTE : This function should not be modified, when the callback is needed,
- the HAL_UART_ErrorCallback can be implemented in the user file.
- */
-}
-
-/**
- * @brief UART Abort Complete callback.
- * @param huart UART handle.
- * @retval None
- */
-__weak void HAL_UART_AbortCpltCallback(UART_HandleTypeDef *huart)
-{
- /* Prevent unused argument(s) compilation warning */
- UNUSED(huart);
-
- /* NOTE : This function should not be modified, when the callback is needed,
- the HAL_UART_AbortCpltCallback can be implemented in the user file.
- */
-}
-
-/**
- * @brief UART Abort Complete callback.
- * @param huart UART handle.
- * @retval None
- */
-__weak void HAL_UART_AbortTransmitCpltCallback(UART_HandleTypeDef *huart)
-{
- /* Prevent unused argument(s) compilation warning */
- UNUSED(huart);
-
- /* NOTE : This function should not be modified, when the callback is needed,
- the HAL_UART_AbortTransmitCpltCallback can be implemented in the user file.
- */
-}
-
-/**
- * @brief UART Abort Receive Complete callback.
- * @param huart UART handle.
- * @retval None
- */
-__weak void HAL_UART_AbortReceiveCpltCallback(UART_HandleTypeDef *huart)
-{
- /* Prevent unused argument(s) compilation warning */
- UNUSED(huart);
-
- /* NOTE : This function should not be modified, when the callback is needed,
- the HAL_UART_AbortReceiveCpltCallback can be implemented in the user file.
- */
-}
-
-/**
- * @}
- */
-
-/** @defgroup UART_Exported_Functions_Group3 Peripheral Control functions
+ * @brief UART Transmit/Receive functions
+ *
+@verbatim
+ ===============================================================================
+ ##### IO operation functions #####
+ ===============================================================================
+ This subsection provides a set of functions allowing to manage the UART asynchronous
+ and Half duplex data transfers.
+
+ (#) There are two mode of transfer:
+ (+) Blocking mode: The communication is performed in polling mode.
+ The HAL status of all data processing is returned by the same function
+ after finishing transfer.
+ (+) Non-Blocking mode: The communication is performed using Interrupts
+ or DMA, These API's return the HAL status.
+ The end of the data processing will be indicated through the
+ dedicated UART IRQ when using Interrupt mode or the DMA IRQ when
+ using DMA mode.
+ The HAL_UART_TxCpltCallback(), HAL_UART_RxCpltCallback() user callbacks
+ will be executed respectively at the end of the transmit or Receive process
+ The HAL_UART_ErrorCallback()user callback will be executed when a communication error is detected
+
+ (#) Blocking mode API's are :
+ (+) HAL_UART_Transmit()
+ (+) HAL_UART_Receive()
+
+ (#) Non-Blocking mode API's with Interrupt are :
+ (+) HAL_UART_Transmit_IT()
+ (+) HAL_UART_Receive_IT()
+ (+) HAL_UART_IRQHandler()
+
+ (#) Non-Blocking mode API's with DMA are :
+ (+) HAL_UART_Transmit_DMA()
+ (+) HAL_UART_Receive_DMA()
+ (+) HAL_UART_DMAPause()
+ (+) HAL_UART_DMAResume()
+ (+) HAL_UART_DMAStop()
+
+ (#) A set of Transfer Complete Callbacks are provided in Non_Blocking mode:
+ (+) HAL_UART_TxHalfCpltCallback()
+ (+) HAL_UART_TxCpltCallback()
+ (+) HAL_UART_RxHalfCpltCallback()
+ (+) HAL_UART_RxCpltCallback()
+ (+) HAL_UART_ErrorCallback()
+
+ (#) Non-Blocking mode transfers could be aborted using Abort API's :
+ (+) HAL_UART_Abort()
+ (+) HAL_UART_AbortTransmit()
+ (+) HAL_UART_AbortReceive()
+ (+) HAL_UART_Abort_IT()
+ (+) HAL_UART_AbortTransmit_IT()
+ (+) HAL_UART_AbortReceive_IT()
+
+ (#) For Abort services based on interrupts (HAL_UART_Abortxxx_IT), a set of Abort Complete Callbacks are provided:
+ (+) HAL_UART_AbortCpltCallback()
+ (+) HAL_UART_AbortTransmitCpltCallback()
+ (+) HAL_UART_AbortReceiveCpltCallback()
+
+ (#) A Rx Event Reception Callback (Rx event notification) is available for Non_Blocking modes of enhanced
+ reception services:
+ (+) HAL_UARTEx_RxEventCallback()
+
+ (#) In Non-Blocking mode transfers, possible errors are split into 2 categories.
+ Errors are handled as follows :
+ (+) Error is considered as Recoverable and non blocking : Transfer could go till end, but error severity is
+ to be evaluated by user : this concerns Frame Error, Parity Error or Noise Error
+ in Interrupt mode reception .
+ Received character is then retrieved and stored in Rx buffer, Error code is set to allow user
+ to identify error type, and HAL_UART_ErrorCallback() user callback is executed.
+ Transfer is kept ongoing on UART side.
+ If user wants to abort it, Abort services should be called by user.
+ (+) Error is considered as Blocking : Transfer could not be completed properly and is aborted.
+ This concerns Overrun Error In Interrupt mode reception and all errors in DMA mode.
+ Error code is set to allow user to identify error type, and HAL_UART_ErrorCallback()
+ user callback is executed.
+
+ -@- In the Half duplex communication, it is forbidden to run the transmit
+ and receive process in parallel, the UART state HAL_UART_STATE_BUSY_TX_RX can't be useful.
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Send an amount of data in blocking mode.
+ * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
+ * the sent data is handled as a set of u16. In this case, Size must indicate the number
+ * of u16 provided through pData.
+ * @note When FIFO mode is enabled, writing a data in the TDR register adds one
+ * data to the TXFIFO. Write operations to the TDR register are performed
+ * when TXFNF flag is set. From hardware perspective, TXFNF flag and
+ * TXE are mapped on the same bit-field.
+ * @param huart UART handle.
+ * @param pData Pointer to data buffer (u8 or u16 data elements).
+ * @param Size Amount of data elements (u8 or u16) to be sent.
+ * @param Timeout Timeout duration.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_UART_Transmit(UART_HandleTypeDef *huart, const uint8_t *pData, uint16_t Size, uint32_t Timeout)
+{
+ const uint8_t *pdata8bits;
+ const uint16_t *pdata16bits;
+ uint32_t tickstart;
+
+ /* Check that a Tx process is not already ongoing */
+ if (huart->gState == HAL_UART_STATE_READY)
+ {
+ if ((pData == NULL) || (Size == 0U))
+ {
+ return HAL_ERROR;
+ }
+
+ huart->ErrorCode = HAL_UART_ERROR_NONE;
+ huart->gState = HAL_UART_STATE_BUSY_TX;
+
+ /* Init tickstart for timeout management */
+ tickstart = HAL_GetTick();
+
+ huart->TxXferSize = Size;
+ huart->TxXferCount = Size;
+
+ /* In case of 9bits/No Parity transfer, pData needs to be handled as a uint16_t pointer */
+ if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE))
+ {
+ pdata8bits = NULL;
+ pdata16bits = (const uint16_t *) pData;
+ }
+ else
+ {
+ pdata8bits = pData;
+ pdata16bits = NULL;
+ }
+
+ while (huart->TxXferCount > 0U)
+ {
+ if (UART_WaitOnFlagUntilTimeout(huart, UART_FLAG_TXE, RESET, tickstart, Timeout) != HAL_OK)
+ {
+
+ huart->gState = HAL_UART_STATE_READY;
+
+ return HAL_TIMEOUT;
+ }
+ if (pdata8bits == NULL)
+ {
+ huart->Instance->TDR = (uint16_t)(*pdata16bits & 0x01FFU);
+ pdata16bits++;
+ }
+ else
+ {
+ huart->Instance->TDR = (uint8_t)(*pdata8bits & 0xFFU);
+ pdata8bits++;
+ }
+ huart->TxXferCount--;
+ }
+
+ if (UART_WaitOnFlagUntilTimeout(huart, UART_FLAG_TC, RESET, tickstart, Timeout) != HAL_OK)
+ {
+ huart->gState = HAL_UART_STATE_READY;
+
+ return HAL_TIMEOUT;
+ }
+
+ /* At end of Tx process, restore huart->gState to Ready */
+ huart->gState = HAL_UART_STATE_READY;
+
+ return HAL_OK;
+ }
+ else
+ {
+ return HAL_BUSY;
+ }
+}
+
+/**
+ * @brief Receive an amount of data in blocking mode.
+ * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
+ * the received data is handled as a set of u16. In this case, Size must indicate the number
+ * of u16 available through pData.
+ * @note When FIFO mode is enabled, the RXFNE flag is set as long as the RXFIFO
+ * is not empty. Read operations from the RDR register are performed when
+ * RXFNE flag is set. From hardware perspective, RXFNE flag and
+ * RXNE are mapped on the same bit-field.
+ * @param huart UART handle.
+ * @param pData Pointer to data buffer (u8 or u16 data elements).
+ * @param Size Amount of data elements (u8 or u16) to be received.
+ * @param Timeout Timeout duration.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_UART_Receive(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size, uint32_t Timeout)
+{
+ uint8_t *pdata8bits;
+ uint16_t *pdata16bits;
+ uint16_t uhMask;
+ uint32_t tickstart;
+
+ /* Check that a Rx process is not already ongoing */
+ if (huart->RxState == HAL_UART_STATE_READY)
+ {
+ if ((pData == NULL) || (Size == 0U))
+ {
+ return HAL_ERROR;
+ }
+
+ huart->ErrorCode = HAL_UART_ERROR_NONE;
+ huart->RxState = HAL_UART_STATE_BUSY_RX;
+ huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
+
+ /* Init tickstart for timeout management */
+ tickstart = HAL_GetTick();
+
+ huart->RxXferSize = Size;
+ huart->RxXferCount = Size;
+
+ /* Computation of UART mask to apply to RDR register */
+ UART_MASK_COMPUTATION(huart);
+ uhMask = huart->Mask;
+
+ /* In case of 9bits/No Parity transfer, pRxData needs to be handled as a uint16_t pointer */
+ if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE))
+ {
+ pdata8bits = NULL;
+ pdata16bits = (uint16_t *) pData;
+ }
+ else
+ {
+ pdata8bits = pData;
+ pdata16bits = NULL;
+ }
+
+ /* as long as data have to be received */
+ while (huart->RxXferCount > 0U)
+ {
+ if (UART_WaitOnFlagUntilTimeout(huart, UART_FLAG_RXNE, RESET, tickstart, Timeout) != HAL_OK)
+ {
+ huart->RxState = HAL_UART_STATE_READY;
+
+ return HAL_TIMEOUT;
+ }
+ if (pdata8bits == NULL)
+ {
+ *pdata16bits = (uint16_t)(huart->Instance->RDR & uhMask);
+ pdata16bits++;
+ }
+ else
+ {
+ *pdata8bits = (uint8_t)(huart->Instance->RDR & (uint8_t)uhMask);
+ pdata8bits++;
+ }
+ huart->RxXferCount--;
+ }
+
+ /* At end of Rx process, restore huart->RxState to Ready */
+ huart->RxState = HAL_UART_STATE_READY;
+
+ return HAL_OK;
+ }
+ else
+ {
+ return HAL_BUSY;
+ }
+}
+
+/**
+ * @brief Send an amount of data in interrupt mode.
+ * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
+ * the sent data is handled as a set of u16. In this case, Size must indicate the number
+ * of u16 provided through pData.
+ * @param huart UART handle.
+ * @param pData Pointer to data buffer (u8 or u16 data elements).
+ * @param Size Amount of data elements (u8 or u16) to be sent.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_UART_Transmit_IT(UART_HandleTypeDef *huart, const uint8_t *pData, uint16_t Size)
+{
+ /* Check that a Tx process is not already ongoing */
+ if (huart->gState == HAL_UART_STATE_READY)
+ {
+ if ((pData == NULL) || (Size == 0U))
+ {
+ return HAL_ERROR;
+ }
+
+ huart->pTxBuffPtr = pData;
+ huart->TxXferSize = Size;
+ huart->TxXferCount = Size;
+ huart->TxISR = NULL;
+
+ huart->ErrorCode = HAL_UART_ERROR_NONE;
+ huart->gState = HAL_UART_STATE_BUSY_TX;
+
+ /* Configure Tx interrupt processing */
+ if (huart->FifoMode == UART_FIFOMODE_ENABLE)
+ {
+ /* Set the Tx ISR function pointer according to the data word length */
+ if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE))
+ {
+ huart->TxISR = UART_TxISR_16BIT_FIFOEN;
+ }
+ else
+ {
+ huart->TxISR = UART_TxISR_8BIT_FIFOEN;
+ }
+
+ /* Enable the TX FIFO threshold interrupt */
+ ATOMIC_SET_BIT(huart->Instance->CR3, USART_CR3_TXFTIE);
+ }
+ else
+ {
+ /* Set the Tx ISR function pointer according to the data word length */
+ if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE))
+ {
+ huart->TxISR = UART_TxISR_16BIT;
+ }
+ else
+ {
+ huart->TxISR = UART_TxISR_8BIT;
+ }
+
+ /* Enable the Transmit Data Register Empty interrupt */
+ ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_TXEIE_TXFNFIE);
+ }
+
+ return HAL_OK;
+ }
+ else
+ {
+ return HAL_BUSY;
+ }
+}
+
+/**
+ * @brief Receive an amount of data in interrupt mode.
+ * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
+ * the received data is handled as a set of u16. In this case, Size must indicate the number
+ * of u16 available through pData.
+ * @param huart UART handle.
+ * @param pData Pointer to data buffer (u8 or u16 data elements).
+ * @param Size Amount of data elements (u8 or u16) to be received.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_UART_Receive_IT(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size)
+{
+ /* Check that a Rx process is not already ongoing */
+ if (huart->RxState == HAL_UART_STATE_READY)
+ {
+ if ((pData == NULL) || (Size == 0U))
+ {
+ return HAL_ERROR;
+ }
+
+ /* Set Reception type to Standard reception */
+ huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
+
+ if (!(IS_LPUART_INSTANCE(huart->Instance)))
+ {
+ /* Check that USART RTOEN bit is set */
+ if (READ_BIT(huart->Instance->CR2, USART_CR2_RTOEN) != 0U)
+ {
+ /* Enable the UART Receiver Timeout Interrupt */
+ ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_RTOIE);
+ }
+ }
+
+ return (UART_Start_Receive_IT(huart, pData, Size));
+ }
+ else
+ {
+ return HAL_BUSY;
+ }
+}
+
+/**
+ * @brief Send an amount of data in DMA mode.
+ * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
+ * the sent data is handled as a set of u16. In this case, Size must indicate the number
+ * of u16 provided through pData.
+ * @param huart UART handle.
+ * @param pData Pointer to data buffer (u8 or u16 data elements).
+ * @param Size Amount of data elements (u8 or u16) to be sent.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_UART_Transmit_DMA(UART_HandleTypeDef *huart, const uint8_t *pData, uint16_t Size)
+{
+ /* Check that a Tx process is not already ongoing */
+ if (huart->gState == HAL_UART_STATE_READY)
+ {
+ if ((pData == NULL) || (Size == 0U))
+ {
+ return HAL_ERROR;
+ }
+
+ huart->pTxBuffPtr = pData;
+ huart->TxXferSize = Size;
+ huart->TxXferCount = Size;
+
+ huart->ErrorCode = HAL_UART_ERROR_NONE;
+ huart->gState = HAL_UART_STATE_BUSY_TX;
+
+ if (huart->hdmatx != NULL)
+ {
+ /* Set the UART DMA transfer complete callback */
+ huart->hdmatx->XferCpltCallback = UART_DMATransmitCplt;
+
+ /* Set the UART DMA Half transfer complete callback */
+ huart->hdmatx->XferHalfCpltCallback = UART_DMATxHalfCplt;
+
+ /* Set the DMA error callback */
+ huart->hdmatx->XferErrorCallback = UART_DMAError;
+
+ /* Set the DMA abort callback */
+ huart->hdmatx->XferAbortCallback = NULL;
+
+ /* Enable the UART transmit DMA channel */
+ if (HAL_DMA_Start_IT(huart->hdmatx, (uint32_t)huart->pTxBuffPtr, (uint32_t)&huart->Instance->TDR, Size) != HAL_OK)
+ {
+ /* Set error code to DMA */
+ huart->ErrorCode = HAL_UART_ERROR_DMA;
+
+ /* Restore huart->gState to ready */
+ huart->gState = HAL_UART_STATE_READY;
+
+ return HAL_ERROR;
+ }
+ }
+ /* Clear the TC flag in the ICR register */
+ __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_TCF);
+
+ /* Enable the DMA transfer for transmit request by setting the DMAT bit
+ in the UART CR3 register */
+ ATOMIC_SET_BIT(huart->Instance->CR3, USART_CR3_DMAT);
+
+ return HAL_OK;
+ }
+ else
+ {
+ return HAL_BUSY;
+ }
+}
+
+/**
+ * @brief Receive an amount of data in DMA mode.
+ * @note When the UART parity is enabled (PCE = 1), the received data contain
+ * the parity bit (MSB position).
+ * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
+ * the received data is handled as a set of u16. In this case, Size must indicate the number
+ * of u16 available through pData.
+ * @param huart UART handle.
+ * @param pData Pointer to data buffer (u8 or u16 data elements).
+ * @param Size Amount of data elements (u8 or u16) to be received.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_UART_Receive_DMA(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size)
+{
+ /* Check that a Rx process is not already ongoing */
+ if (huart->RxState == HAL_UART_STATE_READY)
+ {
+ if ((pData == NULL) || (Size == 0U))
+ {
+ return HAL_ERROR;
+ }
+
+ /* Set Reception type to Standard reception */
+ huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
+
+ if (!(IS_LPUART_INSTANCE(huart->Instance)))
+ {
+ /* Check that USART RTOEN bit is set */
+ if (READ_BIT(huart->Instance->CR2, USART_CR2_RTOEN) != 0U)
+ {
+ /* Enable the UART Receiver Timeout Interrupt */
+ ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_RTOIE);
+ }
+ }
+
+ return (UART_Start_Receive_DMA(huart, pData, Size));
+ }
+ else
+ {
+ return HAL_BUSY;
+ }
+}
+
+/**
+ * @brief Pause the DMA Transfer.
+ * @param huart UART handle.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_UART_DMAPause(UART_HandleTypeDef *huart)
+{
+ const HAL_UART_StateTypeDef gstate = huart->gState;
+ const HAL_UART_StateTypeDef rxstate = huart->RxState;
+
+ if ((HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT)) &&
+ (gstate == HAL_UART_STATE_BUSY_TX))
+ {
+ /* Disable the UART DMA Tx request */
+ ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT);
+ }
+ if ((HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR)) &&
+ (rxstate == HAL_UART_STATE_BUSY_RX))
+ {
+ /* Disable PE and ERR (Frame error, noise error, overrun error) interrupts */
+ ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_PEIE);
+ ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);
+
+ /* Disable the UART DMA Rx request */
+ ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR);
+ }
+
+ return HAL_OK;
+}
+
+/**
+ * @brief Resume the DMA Transfer.
+ * @param huart UART handle.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_UART_DMAResume(UART_HandleTypeDef *huart)
+{
+ if (huart->gState == HAL_UART_STATE_BUSY_TX)
+ {
+ /* Enable the UART DMA Tx request */
+ ATOMIC_SET_BIT(huart->Instance->CR3, USART_CR3_DMAT);
+ }
+ if (huart->RxState == HAL_UART_STATE_BUSY_RX)
+ {
+ /* Clear the Overrun flag before resuming the Rx transfer */
+ __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_OREF);
+
+ /* Re-enable PE and ERR (Frame error, noise error, overrun error) interrupts */
+ if (huart->Init.Parity != UART_PARITY_NONE)
+ {
+ ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_PEIE);
+ }
+ ATOMIC_SET_BIT(huart->Instance->CR3, USART_CR3_EIE);
+
+ /* Enable the UART DMA Rx request */
+ ATOMIC_SET_BIT(huart->Instance->CR3, USART_CR3_DMAR);
+ }
+
+ return HAL_OK;
+}
+
+/**
+ * @brief Stop the DMA Transfer.
+ * @param huart UART handle.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_UART_DMAStop(UART_HandleTypeDef *huart)
+{
+ /* The Lock is not implemented on this API to allow the user application
+ to call the HAL UART API under callbacks HAL_UART_TxCpltCallback() / HAL_UART_RxCpltCallback() /
+ HAL_UART_TxHalfCpltCallback / HAL_UART_RxHalfCpltCallback:
+ indeed, when HAL_DMA_Abort() API is called, the DMA TX/RX Transfer or Half Transfer complete
+ interrupt is generated if the DMA transfer interruption occurs at the middle or at the end of
+ the stream and the corresponding call back is executed. */
+
+ const HAL_UART_StateTypeDef gstate = huart->gState;
+ const HAL_UART_StateTypeDef rxstate = huart->RxState;
+
+ /* Stop UART DMA Tx request if ongoing */
+ if ((HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT)) &&
+ (gstate == HAL_UART_STATE_BUSY_TX))
+ {
+ ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT);
+
+ /* Abort the UART DMA Tx channel */
+ if (huart->hdmatx != NULL)
+ {
+ if (HAL_DMA_Abort(huart->hdmatx) != HAL_OK)
+ {
+ if (HAL_DMA_GetError(huart->hdmatx) == HAL_DMA_ERROR_TIMEOUT)
+ {
+ /* Set error code to DMA */
+ huart->ErrorCode = HAL_UART_ERROR_DMA;
+
+ return HAL_TIMEOUT;
+ }
+ }
+ }
+
+ UART_EndTxTransfer(huart);
+ }
+
+ /* Stop UART DMA Rx request if ongoing */
+ if ((HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR)) &&
+ (rxstate == HAL_UART_STATE_BUSY_RX))
+ {
+ ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR);
+
+ /* Abort the UART DMA Rx channel */
+ if (huart->hdmarx != NULL)
+ {
+ if (HAL_DMA_Abort(huart->hdmarx) != HAL_OK)
+ {
+ if (HAL_DMA_GetError(huart->hdmarx) == HAL_DMA_ERROR_TIMEOUT)
+ {
+ /* Set error code to DMA */
+ huart->ErrorCode = HAL_UART_ERROR_DMA;
+
+ return HAL_TIMEOUT;
+ }
+ }
+ }
+
+ UART_EndRxTransfer(huart);
+ }
+
+ return HAL_OK;
+}
+
+/**
+ * @brief Abort ongoing transfers (blocking mode).
+ * @param huart UART handle.
+ * @note This procedure could be used for aborting any ongoing transfer started in Interrupt or DMA mode.
+ * This procedure performs following operations :
+ * - Disable UART Interrupts (Tx and Rx)
+ * - Disable the DMA transfer in the peripheral register (if enabled)
+ * - Abort DMA transfer by calling HAL_DMA_Abort (in case of transfer in DMA mode)
+ * - Set handle State to READY
+ * @note This procedure is executed in blocking mode : when exiting function, Abort is considered as completed.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_UART_Abort(UART_HandleTypeDef *huart)
+{
+ /* Disable TXE, TC, RXNE, PE, RXFT, TXFT and ERR (Frame error, noise error, overrun error) interrupts */
+ ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE_RXFNEIE | USART_CR1_PEIE |
+ USART_CR1_TXEIE_TXFNFIE | USART_CR1_TCIE));
+ ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE | USART_CR3_RXFTIE | USART_CR3_TXFTIE);
+
+ /* If Reception till IDLE event was ongoing, disable IDLEIE interrupt */
+ if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
+ {
+ ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_IDLEIE));
+ }
+
+ /* Abort the UART DMA Tx channel if enabled */
+ if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT))
+ {
+ /* Disable the UART DMA Tx request if enabled */
+ ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT);
+
+ /* Abort the UART DMA Tx channel : use blocking DMA Abort API (no callback) */
+ if (huart->hdmatx != NULL)
+ {
+ /* Set the UART DMA Abort callback to Null.
+ No call back execution at end of DMA abort procedure */
+ huart->hdmatx->XferAbortCallback = NULL;
+
+ if (HAL_DMA_Abort(huart->hdmatx) != HAL_OK)
+ {
+ if (HAL_DMA_GetError(huart->hdmatx) == HAL_DMA_ERROR_TIMEOUT)
+ {
+ /* Set error code to DMA */
+ huart->ErrorCode = HAL_UART_ERROR_DMA;
+
+ return HAL_TIMEOUT;
+ }
+ }
+ }
+ }
+
+ /* Abort the UART DMA Rx channel if enabled */
+ if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR))
+ {
+ /* Disable the UART DMA Rx request if enabled */
+ ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR);
+
+ /* Abort the UART DMA Rx channel : use blocking DMA Abort API (no callback) */
+ if (huart->hdmarx != NULL)
+ {
+ /* Set the UART DMA Abort callback to Null.
+ No call back execution at end of DMA abort procedure */
+ huart->hdmarx->XferAbortCallback = NULL;
+
+ if (HAL_DMA_Abort(huart->hdmarx) != HAL_OK)
+ {
+ if (HAL_DMA_GetError(huart->hdmarx) == HAL_DMA_ERROR_TIMEOUT)
+ {
+ /* Set error code to DMA */
+ huart->ErrorCode = HAL_UART_ERROR_DMA;
+
+ return HAL_TIMEOUT;
+ }
+ }
+ }
+ }
+
+ /* Reset Tx and Rx transfer counters */
+ huart->TxXferCount = 0U;
+ huart->RxXferCount = 0U;
+
+ /* Clear the Error flags in the ICR register */
+ __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_OREF | UART_CLEAR_NEF | UART_CLEAR_PEF | UART_CLEAR_FEF);
+
+ /* Flush the whole TX FIFO (if needed) */
+ if (huart->FifoMode == UART_FIFOMODE_ENABLE)
+ {
+ __HAL_UART_SEND_REQ(huart, UART_TXDATA_FLUSH_REQUEST);
+ }
+
+ /* Discard the received data */
+ __HAL_UART_SEND_REQ(huart, UART_RXDATA_FLUSH_REQUEST);
+
+ /* Restore huart->gState and huart->RxState to Ready */
+ huart->gState = HAL_UART_STATE_READY;
+ huart->RxState = HAL_UART_STATE_READY;
+ huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
+
+ huart->ErrorCode = HAL_UART_ERROR_NONE;
+
+ return HAL_OK;
+}
+
+/**
+ * @brief Abort ongoing Transmit transfer (blocking mode).
+ * @param huart UART handle.
+ * @note This procedure could be used for aborting any ongoing Tx transfer started in Interrupt or DMA mode.
+ * This procedure performs following operations :
+ * - Disable UART Interrupts (Tx)
+ * - Disable the DMA transfer in the peripheral register (if enabled)
+ * - Abort DMA transfer by calling HAL_DMA_Abort (in case of transfer in DMA mode)
+ * - Set handle State to READY
+ * @note This procedure is executed in blocking mode : when exiting function, Abort is considered as completed.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_UART_AbortTransmit(UART_HandleTypeDef *huart)
+{
+ /* Disable TCIE, TXEIE and TXFTIE interrupts */
+ ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_TCIE | USART_CR1_TXEIE_TXFNFIE));
+ ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_TXFTIE);
+
+ /* Abort the UART DMA Tx channel if enabled */
+ if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT))
+ {
+ /* Disable the UART DMA Tx request if enabled */
+ ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT);
+
+ /* Abort the UART DMA Tx channel : use blocking DMA Abort API (no callback) */
+ if (huart->hdmatx != NULL)
+ {
+ /* Set the UART DMA Abort callback to Null.
+ No call back execution at end of DMA abort procedure */
+ huart->hdmatx->XferAbortCallback = NULL;
+
+ if (HAL_DMA_Abort(huart->hdmatx) != HAL_OK)
+ {
+ if (HAL_DMA_GetError(huart->hdmatx) == HAL_DMA_ERROR_TIMEOUT)
+ {
+ /* Set error code to DMA */
+ huart->ErrorCode = HAL_UART_ERROR_DMA;
+
+ return HAL_TIMEOUT;
+ }
+ }
+ }
+ }
+
+ /* Reset Tx transfer counter */
+ huart->TxXferCount = 0U;
+
+ /* Flush the whole TX FIFO (if needed) */
+ if (huart->FifoMode == UART_FIFOMODE_ENABLE)
+ {
+ __HAL_UART_SEND_REQ(huart, UART_TXDATA_FLUSH_REQUEST);
+ }
+
+ /* Restore huart->gState to Ready */
+ huart->gState = HAL_UART_STATE_READY;
+
+ return HAL_OK;
+}
+
+/**
+ * @brief Abort ongoing Receive transfer (blocking mode).
+ * @param huart UART handle.
+ * @note This procedure could be used for aborting any ongoing Rx transfer started in Interrupt or DMA mode.
+ * This procedure performs following operations :
+ * - Disable UART Interrupts (Rx)
+ * - Disable the DMA transfer in the peripheral register (if enabled)
+ * - Abort DMA transfer by calling HAL_DMA_Abort (in case of transfer in DMA mode)
+ * - Set handle State to READY
+ * @note This procedure is executed in blocking mode : when exiting function, Abort is considered as completed.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_UART_AbortReceive(UART_HandleTypeDef *huart)
+{
+ /* Disable PEIE, EIE, RXNEIE and RXFTIE interrupts */
+ ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_PEIE | USART_CR1_RXNEIE_RXFNEIE));
+ ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE | USART_CR3_RXFTIE);
+
+ /* If Reception till IDLE event was ongoing, disable IDLEIE interrupt */
+ if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
+ {
+ ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_IDLEIE));
+ }
+
+ /* Abort the UART DMA Rx channel if enabled */
+ if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR))
+ {
+ /* Disable the UART DMA Rx request if enabled */
+ ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR);
+
+ /* Abort the UART DMA Rx channel : use blocking DMA Abort API (no callback) */
+ if (huart->hdmarx != NULL)
+ {
+ /* Set the UART DMA Abort callback to Null.
+ No call back execution at end of DMA abort procedure */
+ huart->hdmarx->XferAbortCallback = NULL;
+
+ if (HAL_DMA_Abort(huart->hdmarx) != HAL_OK)
+ {
+ if (HAL_DMA_GetError(huart->hdmarx) == HAL_DMA_ERROR_TIMEOUT)
+ {
+ /* Set error code to DMA */
+ huart->ErrorCode = HAL_UART_ERROR_DMA;
+
+ return HAL_TIMEOUT;
+ }
+ }
+ }
+ }
+
+ /* Reset Rx transfer counter */
+ huart->RxXferCount = 0U;
+
+ /* Clear the Error flags in the ICR register */
+ __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_OREF | UART_CLEAR_NEF | UART_CLEAR_PEF | UART_CLEAR_FEF);
+
+ /* Discard the received data */
+ __HAL_UART_SEND_REQ(huart, UART_RXDATA_FLUSH_REQUEST);
+
+ /* Restore huart->RxState to Ready */
+ huart->RxState = HAL_UART_STATE_READY;
+ huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
+
+ return HAL_OK;
+}
+
+/**
+ * @brief Abort ongoing transfers (Interrupt mode).
+ * @param huart UART handle.
+ * @note This procedure could be used for aborting any ongoing transfer started in Interrupt or DMA mode.
+ * This procedure performs following operations :
+ * - Disable UART Interrupts (Tx and Rx)
+ * - Disable the DMA transfer in the peripheral register (if enabled)
+ * - Abort DMA transfer by calling HAL_DMA_Abort_IT (in case of transfer in DMA mode)
+ * - Set handle State to READY
+ * - At abort completion, call user abort complete callback
+ * @note This procedure is executed in Interrupt mode, meaning that abort procedure could be
+ * considered as completed only when user abort complete callback is executed (not when exiting function).
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_UART_Abort_IT(UART_HandleTypeDef *huart)
+{
+ uint32_t abortcplt = 1U;
+
+ /* Disable interrupts */
+ ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_PEIE | USART_CR1_TCIE | USART_CR1_RXNEIE_RXFNEIE |
+ USART_CR1_TXEIE_TXFNFIE));
+ ATOMIC_CLEAR_BIT(huart->Instance->CR3, (USART_CR3_EIE | USART_CR3_RXFTIE | USART_CR3_TXFTIE));
+
+ /* If Reception till IDLE event was ongoing, disable IDLEIE interrupt */
+ if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
+ {
+ ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_IDLEIE));
+ }
+
+ /* If DMA Tx and/or DMA Rx Handles are associated to UART Handle, DMA Abort complete callbacks should be initialised
+ before any call to DMA Abort functions */
+ /* DMA Tx Handle is valid */
+ if (huart->hdmatx != NULL)
+ {
+ /* Set DMA Abort Complete callback if UART DMA Tx request if enabled.
+ Otherwise, set it to NULL */
+ if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT))
+ {
+ huart->hdmatx->XferAbortCallback = UART_DMATxAbortCallback;
+ }
+ else
+ {
+ huart->hdmatx->XferAbortCallback = NULL;
+ }
+ }
+ /* DMA Rx Handle is valid */
+ if (huart->hdmarx != NULL)
+ {
+ /* Set DMA Abort Complete callback if UART DMA Rx request if enabled.
+ Otherwise, set it to NULL */
+ if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR))
+ {
+ huart->hdmarx->XferAbortCallback = UART_DMARxAbortCallback;
+ }
+ else
+ {
+ huart->hdmarx->XferAbortCallback = NULL;
+ }
+ }
+
+ /* Abort the UART DMA Tx channel if enabled */
+ if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT))
+ {
+ /* Disable DMA Tx at UART level */
+ ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT);
+
+ /* Abort the UART DMA Tx channel : use non blocking DMA Abort API (callback) */
+ if (huart->hdmatx != NULL)
+ {
+ /* UART Tx DMA Abort callback has already been initialised :
+ will lead to call HAL_UART_AbortCpltCallback() at end of DMA abort procedure */
+
+ /* Abort DMA TX */
+ if (HAL_DMA_Abort_IT(huart->hdmatx) != HAL_OK)
+ {
+ huart->hdmatx->XferAbortCallback = NULL;
+ }
+ else
+ {
+ abortcplt = 0U;
+ }
+ }
+ }
+
+ /* Abort the UART DMA Rx channel if enabled */
+ if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR))
+ {
+ /* Disable the UART DMA Rx request if enabled */
+ ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR);
+
+ /* Abort the UART DMA Rx channel : use non blocking DMA Abort API (callback) */
+ if (huart->hdmarx != NULL)
+ {
+ /* UART Rx DMA Abort callback has already been initialised :
+ will lead to call HAL_UART_AbortCpltCallback() at end of DMA abort procedure */
+
+ /* Abort DMA RX */
+ if (HAL_DMA_Abort_IT(huart->hdmarx) != HAL_OK)
+ {
+ huart->hdmarx->XferAbortCallback = NULL;
+ abortcplt = 1U;
+ }
+ else
+ {
+ abortcplt = 0U;
+ }
+ }
+ }
+
+ /* if no DMA abort complete callback execution is required => call user Abort Complete callback */
+ if (abortcplt == 1U)
+ {
+ /* Reset Tx and Rx transfer counters */
+ huart->TxXferCount = 0U;
+ huart->RxXferCount = 0U;
+
+ /* Clear ISR function pointers */
+ huart->RxISR = NULL;
+ huart->TxISR = NULL;
+
+ /* Reset errorCode */
+ huart->ErrorCode = HAL_UART_ERROR_NONE;
+
+ /* Clear the Error flags in the ICR register */
+ __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_OREF | UART_CLEAR_NEF | UART_CLEAR_PEF | UART_CLEAR_FEF);
+
+ /* Flush the whole TX FIFO (if needed) */
+ if (huart->FifoMode == UART_FIFOMODE_ENABLE)
+ {
+ __HAL_UART_SEND_REQ(huart, UART_TXDATA_FLUSH_REQUEST);
+ }
+
+ /* Discard the received data */
+ __HAL_UART_SEND_REQ(huart, UART_RXDATA_FLUSH_REQUEST);
+
+ /* Restore huart->gState and huart->RxState to Ready */
+ huart->gState = HAL_UART_STATE_READY;
+ huart->RxState = HAL_UART_STATE_READY;
+ huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
+
+ /* As no DMA to be aborted, call directly user Abort complete callback */
+#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
+ /* Call registered Abort complete callback */
+ huart->AbortCpltCallback(huart);
+#else
+ /* Call legacy weak Abort complete callback */
+ HAL_UART_AbortCpltCallback(huart);
+#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
+ }
+
+ return HAL_OK;
+}
+
+/**
+ * @brief Abort ongoing Transmit transfer (Interrupt mode).
+ * @param huart UART handle.
+ * @note This procedure could be used for aborting any ongoing Tx transfer started in Interrupt or DMA mode.
+ * This procedure performs following operations :
+ * - Disable UART Interrupts (Tx)
+ * - Disable the DMA transfer in the peripheral register (if enabled)
+ * - Abort DMA transfer by calling HAL_DMA_Abort_IT (in case of transfer in DMA mode)
+ * - Set handle State to READY
+ * - At abort completion, call user abort complete callback
+ * @note This procedure is executed in Interrupt mode, meaning that abort procedure could be
+ * considered as completed only when user abort complete callback is executed (not when exiting function).
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_UART_AbortTransmit_IT(UART_HandleTypeDef *huart)
+{
+ /* Disable interrupts */
+ ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_TCIE | USART_CR1_TXEIE_TXFNFIE));
+ ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_TXFTIE);
+
+ /* Abort the UART DMA Tx channel if enabled */
+ if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT))
+ {
+ /* Disable the UART DMA Tx request if enabled */
+ ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT);
+
+ /* Abort the UART DMA Tx channel : use non blocking DMA Abort API (callback) */
+ if (huart->hdmatx != NULL)
+ {
+ /* Set the UART DMA Abort callback :
+ will lead to call HAL_UART_AbortCpltCallback() at end of DMA abort procedure */
+ huart->hdmatx->XferAbortCallback = UART_DMATxOnlyAbortCallback;
+
+ /* Abort DMA TX */
+ if (HAL_DMA_Abort_IT(huart->hdmatx) != HAL_OK)
+ {
+ /* Call Directly huart->hdmatx->XferAbortCallback function in case of error */
+ huart->hdmatx->XferAbortCallback(huart->hdmatx);
+ }
+ }
+ else
+ {
+ /* Reset Tx transfer counter */
+ huart->TxXferCount = 0U;
+
+ /* Clear TxISR function pointers */
+ huart->TxISR = NULL;
+
+ /* Restore huart->gState to Ready */
+ huart->gState = HAL_UART_STATE_READY;
+
+ /* As no DMA to be aborted, call directly user Abort complete callback */
+#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
+ /* Call registered Abort Transmit Complete Callback */
+ huart->AbortTransmitCpltCallback(huart);
+#else
+ /* Call legacy weak Abort Transmit Complete Callback */
+ HAL_UART_AbortTransmitCpltCallback(huart);
+#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
+ }
+ }
+ else
+ {
+ /* Reset Tx transfer counter */
+ huart->TxXferCount = 0U;
+
+ /* Clear TxISR function pointers */
+ huart->TxISR = NULL;
+
+ /* Flush the whole TX FIFO (if needed) */
+ if (huart->FifoMode == UART_FIFOMODE_ENABLE)
+ {
+ __HAL_UART_SEND_REQ(huart, UART_TXDATA_FLUSH_REQUEST);
+ }
+
+ /* Restore huart->gState to Ready */
+ huart->gState = HAL_UART_STATE_READY;
+
+ /* As no DMA to be aborted, call directly user Abort complete callback */
+#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
+ /* Call registered Abort Transmit Complete Callback */
+ huart->AbortTransmitCpltCallback(huart);
+#else
+ /* Call legacy weak Abort Transmit Complete Callback */
+ HAL_UART_AbortTransmitCpltCallback(huart);
+#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
+ }
+
+ return HAL_OK;
+}
+
+/**
+ * @brief Abort ongoing Receive transfer (Interrupt mode).
+ * @param huart UART handle.
+ * @note This procedure could be used for aborting any ongoing Rx transfer started in Interrupt or DMA mode.
+ * This procedure performs following operations :
+ * - Disable UART Interrupts (Rx)
+ * - Disable the DMA transfer in the peripheral register (if enabled)
+ * - Abort DMA transfer by calling HAL_DMA_Abort_IT (in case of transfer in DMA mode)
+ * - Set handle State to READY
+ * - At abort completion, call user abort complete callback
+ * @note This procedure is executed in Interrupt mode, meaning that abort procedure could be
+ * considered as completed only when user abort complete callback is executed (not when exiting function).
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_UART_AbortReceive_IT(UART_HandleTypeDef *huart)
+{
+ /* Disable RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */
+ ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_PEIE | USART_CR1_RXNEIE_RXFNEIE));
+ ATOMIC_CLEAR_BIT(huart->Instance->CR3, (USART_CR3_EIE | USART_CR3_RXFTIE));
+
+ /* If Reception till IDLE event was ongoing, disable IDLEIE interrupt */
+ if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
+ {
+ ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_IDLEIE));
+ }
+
+ /* Abort the UART DMA Rx channel if enabled */
+ if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR))
+ {
+ /* Disable the UART DMA Rx request if enabled */
+ ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR);
+
+ /* Abort the UART DMA Rx channel : use non blocking DMA Abort API (callback) */
+ if (huart->hdmarx != NULL)
+ {
+ /* Set the UART DMA Abort callback :
+ will lead to call HAL_UART_AbortCpltCallback() at end of DMA abort procedure */
+ huart->hdmarx->XferAbortCallback = UART_DMARxOnlyAbortCallback;
+
+ /* Abort DMA RX */
+ if (HAL_DMA_Abort_IT(huart->hdmarx) != HAL_OK)
+ {
+ /* Call Directly huart->hdmarx->XferAbortCallback function in case of error */
+ huart->hdmarx->XferAbortCallback(huart->hdmarx);
+ }
+ }
+ else
+ {
+ /* Reset Rx transfer counter */
+ huart->RxXferCount = 0U;
+
+ /* Clear RxISR function pointer */
+ huart->pRxBuffPtr = NULL;
+
+ /* Clear the Error flags in the ICR register */
+ __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_OREF | UART_CLEAR_NEF | UART_CLEAR_PEF | UART_CLEAR_FEF);
+
+ /* Discard the received data */
+ __HAL_UART_SEND_REQ(huart, UART_RXDATA_FLUSH_REQUEST);
+
+ /* Restore huart->RxState to Ready */
+ huart->RxState = HAL_UART_STATE_READY;
+ huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
+
+ /* As no DMA to be aborted, call directly user Abort complete callback */
+#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
+ /* Call registered Abort Receive Complete Callback */
+ huart->AbortReceiveCpltCallback(huart);
+#else
+ /* Call legacy weak Abort Receive Complete Callback */
+ HAL_UART_AbortReceiveCpltCallback(huart);
+#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
+ }
+ }
+ else
+ {
+ /* Reset Rx transfer counter */
+ huart->RxXferCount = 0U;
+
+ /* Clear RxISR function pointer */
+ huart->pRxBuffPtr = NULL;
+
+ /* Clear the Error flags in the ICR register */
+ __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_OREF | UART_CLEAR_NEF | UART_CLEAR_PEF | UART_CLEAR_FEF);
+
+ /* Restore huart->RxState to Ready */
+ huart->RxState = HAL_UART_STATE_READY;
+ huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
+
+ /* As no DMA to be aborted, call directly user Abort complete callback */
+#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
+ /* Call registered Abort Receive Complete Callback */
+ huart->AbortReceiveCpltCallback(huart);
+#else
+ /* Call legacy weak Abort Receive Complete Callback */
+ HAL_UART_AbortReceiveCpltCallback(huart);
+#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
+ }
+
+ return HAL_OK;
+}
+
+/**
+ * @brief Handle UART interrupt request.
+ * @param huart UART handle.
+ * @retval None
+ */
+void HAL_UART_IRQHandler(UART_HandleTypeDef *huart)
+{
+ uint32_t isrflags = READ_REG(huart->Instance->ISR);
+ uint32_t cr1its = READ_REG(huart->Instance->CR1);
+ uint32_t cr3its = READ_REG(huart->Instance->CR3);
+
+ uint32_t errorflags;
+ uint32_t errorcode;
+
+ /* If no error occurs */
+ errorflags = (isrflags & (uint32_t)(USART_ISR_PE | USART_ISR_FE | USART_ISR_ORE | USART_ISR_NE | USART_ISR_RTOF));
+ if (errorflags == 0U)
+ {
+ /* UART in mode Receiver ---------------------------------------------------*/
+ if (((isrflags & USART_ISR_RXNE_RXFNE) != 0U)
+ && (((cr1its & USART_CR1_RXNEIE_RXFNEIE) != 0U)
+ || ((cr3its & USART_CR3_RXFTIE) != 0U)))
+ {
+ if (huart->RxISR != NULL)
+ {
+ huart->RxISR(huart);
+ }
+ return;
+ }
+ }
+
+ /* If some errors occur */
+ if ((errorflags != 0U)
+ && ((((cr3its & (USART_CR3_RXFTIE | USART_CR3_EIE)) != 0U)
+ || ((cr1its & (USART_CR1_RXNEIE_RXFNEIE | USART_CR1_PEIE | USART_CR1_RTOIE)) != 0U))))
+ {
+ /* UART parity error interrupt occurred -------------------------------------*/
+ if (((isrflags & USART_ISR_PE) != 0U) && ((cr1its & USART_CR1_PEIE) != 0U))
+ {
+ __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_PEF);
+
+ huart->ErrorCode |= HAL_UART_ERROR_PE;
+ }
+
+ /* UART frame error interrupt occurred --------------------------------------*/
+ if (((isrflags & USART_ISR_FE) != 0U) && ((cr3its & USART_CR3_EIE) != 0U))
+ {
+ __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_FEF);
+
+ huart->ErrorCode |= HAL_UART_ERROR_FE;
+ }
+
+ /* UART noise error interrupt occurred --------------------------------------*/
+ if (((isrflags & USART_ISR_NE) != 0U) && ((cr3its & USART_CR3_EIE) != 0U))
+ {
+ __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_NEF);
+
+ huart->ErrorCode |= HAL_UART_ERROR_NE;
+ }
+
+ /* UART Over-Run interrupt occurred -----------------------------------------*/
+ if (((isrflags & USART_ISR_ORE) != 0U)
+ && (((cr1its & USART_CR1_RXNEIE_RXFNEIE) != 0U) ||
+ ((cr3its & (USART_CR3_RXFTIE | USART_CR3_EIE)) != 0U)))
+ {
+ __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_OREF);
+
+ huart->ErrorCode |= HAL_UART_ERROR_ORE;
+ }
+
+ /* UART Receiver Timeout interrupt occurred ---------------------------------*/
+ if (((isrflags & USART_ISR_RTOF) != 0U) && ((cr1its & USART_CR1_RTOIE) != 0U))
+ {
+ __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_RTOF);
+
+ huart->ErrorCode |= HAL_UART_ERROR_RTO;
+ }
+
+ /* Call UART Error Call back function if need be ----------------------------*/
+ if (huart->ErrorCode != HAL_UART_ERROR_NONE)
+ {
+ /* UART in mode Receiver --------------------------------------------------*/
+ if (((isrflags & USART_ISR_RXNE_RXFNE) != 0U)
+ && (((cr1its & USART_CR1_RXNEIE_RXFNEIE) != 0U)
+ || ((cr3its & USART_CR3_RXFTIE) != 0U)))
+ {
+ if (huart->RxISR != NULL)
+ {
+ huart->RxISR(huart);
+ }
+ }
+
+ /* If Error is to be considered as blocking :
+ - Receiver Timeout error in Reception
+ - Overrun error in Reception
+ - any error occurs in DMA mode reception
+ */
+ errorcode = huart->ErrorCode;
+ if ((HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR)) ||
+ ((errorcode & (HAL_UART_ERROR_RTO | HAL_UART_ERROR_ORE)) != 0U))
+ {
+ /* Blocking error : transfer is aborted
+ Set the UART state ready to be able to start again the process,
+ Disable Rx Interrupts, and disable Rx DMA request, if ongoing */
+ UART_EndRxTransfer(huart);
+
+ /* Abort the UART DMA Rx channel if enabled */
+ if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR))
+ {
+ /* Disable the UART DMA Rx request if enabled */
+ ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR);
+
+ /* Abort the UART DMA Rx channel */
+ if (huart->hdmarx != NULL)
+ {
+ /* Set the UART DMA Abort callback :
+ will lead to call HAL_UART_ErrorCallback() at end of DMA abort procedure */
+ huart->hdmarx->XferAbortCallback = UART_DMAAbortOnError;
+
+ /* Abort DMA RX */
+ if (HAL_DMA_Abort_IT(huart->hdmarx) != HAL_OK)
+ {
+ /* Call Directly huart->hdmarx->XferAbortCallback function in case of error */
+ huart->hdmarx->XferAbortCallback(huart->hdmarx);
+ }
+ }
+ else
+ {
+ /* Call user error callback */
+#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
+ /*Call registered error callback*/
+ huart->ErrorCallback(huart);
+#else
+ /*Call legacy weak error callback*/
+ HAL_UART_ErrorCallback(huart);
+#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
+
+ }
+ }
+ else
+ {
+ /* Call user error callback */
+#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
+ /*Call registered error callback*/
+ huart->ErrorCallback(huart);
+#else
+ /*Call legacy weak error callback*/
+ HAL_UART_ErrorCallback(huart);
+#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
+ }
+ }
+ else
+ {
+ /* Non Blocking error : transfer could go on.
+ Error is notified to user through user error callback */
+#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
+ /*Call registered error callback*/
+ huart->ErrorCallback(huart);
+#else
+ /*Call legacy weak error callback*/
+ HAL_UART_ErrorCallback(huart);
+#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
+ huart->ErrorCode = HAL_UART_ERROR_NONE;
+ }
+ }
+ return;
+
+ } /* End if some error occurs */
+
+ /* Check current reception Mode :
+ If Reception till IDLE event has been selected : */
+ if ((huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
+ && ((isrflags & USART_ISR_IDLE) != 0U)
+ && ((cr1its & USART_ISR_IDLE) != 0U))
+ {
+ __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_IDLEF);
+
+ /* Check if DMA mode is enabled in UART */
+ if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR))
+ {
+ /* DMA mode enabled */
+ /* Check received length : If all expected data are received, do nothing,
+ (DMA cplt callback will be called).
+ Otherwise, if at least one data has already been received, IDLE event is to be notified to user */
+ uint16_t nb_remaining_rx_data = (uint16_t) __HAL_DMA_GET_COUNTER(huart->hdmarx);
+ if ((nb_remaining_rx_data > 0U)
+ && (nb_remaining_rx_data < huart->RxXferSize))
+ {
+ /* Reception is not complete */
+ huart->RxXferCount = nb_remaining_rx_data;
+
+ /* In Normal mode, end DMA xfer and HAL UART Rx process*/
+ if (huart->hdmarx->Init.Mode != DMA_CIRCULAR)
+ {
+ /* Disable PE and ERR (Frame error, noise error, overrun error) interrupts */
+ ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_PEIE);
+ ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);
+
+ /* Disable the DMA transfer for the receiver request by resetting the DMAR bit
+ in the UART CR3 register */
+ ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR);
+
+ /* At end of Rx process, restore huart->RxState to Ready */
+ huart->RxState = HAL_UART_STATE_READY;
+ huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
+
+ ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_IDLEIE);
+
+ /* Last bytes received, so no need as the abort is immediate */
+ (void)HAL_DMA_Abort(huart->hdmarx);
+ }
+
+ /* Initialize type of RxEvent that correspond to RxEvent callback execution;
+ In this case, Rx Event type is Idle Event */
+ huart->RxEventType = HAL_UART_RXEVENT_IDLE;
+
+#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
+ /*Call registered Rx Event callback*/
+ huart->RxEventCallback(huart, (huart->RxXferSize - huart->RxXferCount));
+#else
+ /*Call legacy weak Rx Event callback*/
+ HAL_UARTEx_RxEventCallback(huart, (huart->RxXferSize - huart->RxXferCount));
+#endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */
+ }
+ return;
+ }
+ else
+ {
+ /* DMA mode not enabled */
+ /* Check received length : If all expected data are received, do nothing.
+ Otherwise, if at least one data has already been received, IDLE event is to be notified to user */
+ uint16_t nb_rx_data = huart->RxXferSize - huart->RxXferCount;
+ if ((huart->RxXferCount > 0U)
+ && (nb_rx_data > 0U))
+ {
+ /* Disable the UART Parity Error Interrupt and RXNE interrupts */
+ ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE_RXFNEIE | USART_CR1_PEIE));
+
+ /* Disable the UART Error Interrupt:(Frame error, noise error, overrun error) and RX FIFO Threshold interrupt */
+ ATOMIC_CLEAR_BIT(huart->Instance->CR3, (USART_CR3_EIE | USART_CR3_RXFTIE));
+
+ /* Rx process is completed, restore huart->RxState to Ready */
+ huart->RxState = HAL_UART_STATE_READY;
+ huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
+
+ /* Clear RxISR function pointer */
+ huart->RxISR = NULL;
+
+ ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_IDLEIE);
+
+ /* Initialize type of RxEvent that correspond to RxEvent callback execution;
+ In this case, Rx Event type is Idle Event */
+ huart->RxEventType = HAL_UART_RXEVENT_IDLE;
+
+#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
+ /*Call registered Rx complete callback*/
+ huart->RxEventCallback(huart, nb_rx_data);
+#else
+ /*Call legacy weak Rx Event callback*/
+ HAL_UARTEx_RxEventCallback(huart, nb_rx_data);
+#endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */
+ }
+ return;
+ }
+ }
+
+ /* UART wakeup from Stop mode interrupt occurred ---------------------------*/
+ if (((isrflags & USART_ISR_WUF) != 0U) && ((cr3its & USART_CR3_WUFIE) != 0U))
+ {
+ __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_WUF);
+
+ /* UART Rx state is not reset as a reception process might be ongoing.
+ If UART handle state fields need to be reset to READY, this could be done in Wakeup callback */
+
+#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
+ /* Call registered Wakeup Callback */
+ huart->WakeupCallback(huart);
+#else
+ /* Call legacy weak Wakeup Callback */
+ HAL_UARTEx_WakeupCallback(huart);
+#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
+ return;
+ }
+
+ /* UART in mode Transmitter ------------------------------------------------*/
+ if (((isrflags & USART_ISR_TXE_TXFNF) != 0U)
+ && (((cr1its & USART_CR1_TXEIE_TXFNFIE) != 0U)
+ || ((cr3its & USART_CR3_TXFTIE) != 0U)))
+ {
+ if (huart->TxISR != NULL)
+ {
+ huart->TxISR(huart);
+ }
+ return;
+ }
+
+ /* UART in mode Transmitter (transmission end) -----------------------------*/
+ if (((isrflags & USART_ISR_TC) != 0U) && ((cr1its & USART_CR1_TCIE) != 0U))
+ {
+ UART_EndTransmit_IT(huart);
+ return;
+ }
+
+ /* UART TX Fifo Empty occurred ----------------------------------------------*/
+ if (((isrflags & USART_ISR_TXFE) != 0U) && ((cr1its & USART_CR1_TXFEIE) != 0U))
+ {
+#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
+ /* Call registered Tx Fifo Empty Callback */
+ huart->TxFifoEmptyCallback(huart);
+#else
+ /* Call legacy weak Tx Fifo Empty Callback */
+ HAL_UARTEx_TxFifoEmptyCallback(huart);
+#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
+ return;
+ }
+
+ /* UART RX Fifo Full occurred ----------------------------------------------*/
+ if (((isrflags & USART_ISR_RXFF) != 0U) && ((cr1its & USART_CR1_RXFFIE) != 0U))
+ {
+#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
+ /* Call registered Rx Fifo Full Callback */
+ huart->RxFifoFullCallback(huart);
+#else
+ /* Call legacy weak Rx Fifo Full Callback */
+ HAL_UARTEx_RxFifoFullCallback(huart);
+#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
+ return;
+ }
+}
+
+/**
+ * @brief Tx Transfer completed callback.
+ * @param huart UART handle.
+ * @retval None
+ */
+__weak void HAL_UART_TxCpltCallback(UART_HandleTypeDef *huart)
+{
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(huart);
+
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_UART_TxCpltCallback can be implemented in the user file.
+ */
+}
+
+/**
+ * @brief Tx Half Transfer completed callback.
+ * @param huart UART handle.
+ * @retval None
+ */
+__weak void HAL_UART_TxHalfCpltCallback(UART_HandleTypeDef *huart)
+{
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(huart);
+
+ /* NOTE: This function should not be modified, when the callback is needed,
+ the HAL_UART_TxHalfCpltCallback can be implemented in the user file.
+ */
+}
+
+/**
+ * @brief Rx Transfer completed callback.
+ * @param huart UART handle.
+ * @retval None
+ */
+__weak void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart)
+{
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(huart);
+
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_UART_RxCpltCallback can be implemented in the user file.
+ */
+}
+
+/**
+ * @brief Rx Half Transfer completed callback.
+ * @param huart UART handle.
+ * @retval None
+ */
+__weak void HAL_UART_RxHalfCpltCallback(UART_HandleTypeDef *huart)
+{
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(huart);
+
+ /* NOTE: This function should not be modified, when the callback is needed,
+ the HAL_UART_RxHalfCpltCallback can be implemented in the user file.
+ */
+}
+
+/**
+ * @brief UART error callback.
+ * @param huart UART handle.
+ * @retval None
+ */
+__weak void HAL_UART_ErrorCallback(UART_HandleTypeDef *huart)
+{
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(huart);
+
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_UART_ErrorCallback can be implemented in the user file.
+ */
+}
+
+/**
+ * @brief UART Abort Complete callback.
+ * @param huart UART handle.
+ * @retval None
+ */
+__weak void HAL_UART_AbortCpltCallback(UART_HandleTypeDef *huart)
+{
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(huart);
+
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_UART_AbortCpltCallback can be implemented in the user file.
+ */
+}
+
+/**
+ * @brief UART Abort Complete callback.
+ * @param huart UART handle.
+ * @retval None
+ */
+__weak void HAL_UART_AbortTransmitCpltCallback(UART_HandleTypeDef *huart)
+{
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(huart);
+
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_UART_AbortTransmitCpltCallback can be implemented in the user file.
+ */
+}
+
+/**
+ * @brief UART Abort Receive Complete callback.
+ * @param huart UART handle.
+ * @retval None
+ */
+__weak void HAL_UART_AbortReceiveCpltCallback(UART_HandleTypeDef *huart)
+{
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(huart);
+
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_UART_AbortReceiveCpltCallback can be implemented in the user file.
+ */
+}
+
+/**
+ * @brief Reception Event Callback (Rx event notification called after use of advanced reception service).
+ * @param huart UART handle
+ * @param Size Number of data available in application reception buffer (indicates a position in
+ * reception buffer until which, data are available)
+ * @retval None
+ */
+__weak void HAL_UARTEx_RxEventCallback(UART_HandleTypeDef *huart, uint16_t Size)
+{
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(huart);
+ UNUSED(Size);
+
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_UARTEx_RxEventCallback can be implemented in the user file.
+ */
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup UART_Exported_Functions_Group3 Peripheral Control functions
* @ingroup RTEMSBSPsARMSTM32H7
- * @brief UART control functions
- *
-@verbatim
- ===============================================================================
- ##### Peripheral Control functions #####
- ===============================================================================
- [..]
- This subsection provides a set of functions allowing to control the UART.
- (+) HAL_UART_ReceiverTimeout_Config() API allows to configure the receiver timeout value on the fly
- (+) HAL_UART_EnableReceiverTimeout() API enables the receiver timeout feature
- (+) HAL_UART_DisableReceiverTimeout() API disables the receiver timeout feature
- (+) HAL_MultiProcessor_EnableMuteMode() API enables mute mode
- (+) HAL_MultiProcessor_DisableMuteMode() API disables mute mode
- (+) HAL_MultiProcessor_EnterMuteMode() API enters mute mode
- (+) UART_SetConfig() API configures the UART peripheral
- (+) UART_AdvFeatureConfig() API optionally configures the UART advanced features
- (+) UART_CheckIdleState() API ensures that TEACK and/or REACK are set after initialization
- (+) HAL_HalfDuplex_EnableTransmitter() API disables receiver and enables transmitter
- (+) HAL_HalfDuplex_EnableReceiver() API disables transmitter and enables receiver
- (+) HAL_LIN_SendBreak() API transmits the break characters
-@endverbatim
- * @{
- */
-
-/**
- * @brief Update on the fly the receiver timeout value in RTOR register.
- * @param huart Pointer to a UART_HandleTypeDef structure that contains
- * the configuration information for the specified UART module.
- * @param TimeoutValue receiver timeout value in number of baud blocks. The timeout
- * value must be less or equal to 0x0FFFFFFFF.
- * @retval None
- */
-void HAL_UART_ReceiverTimeout_Config(UART_HandleTypeDef *huart, uint32_t TimeoutValue)
-{
- if (!(IS_LPUART_INSTANCE(huart->Instance)))
- {
- assert_param(IS_UART_RECEIVER_TIMEOUT_VALUE(TimeoutValue));
- MODIFY_REG(huart->Instance->RTOR, USART_RTOR_RTO, TimeoutValue);
- }
-}
-
-/**
- * @brief Enable the UART receiver timeout feature.
- * @param huart Pointer to a UART_HandleTypeDef structure that contains
- * the configuration information for the specified UART module.
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_UART_EnableReceiverTimeout(UART_HandleTypeDef *huart)
-{
- if (!(IS_LPUART_INSTANCE(huart->Instance)))
- {
- if (huart->gState == HAL_UART_STATE_READY)
- {
- /* Process Locked */
- __HAL_LOCK(huart);
-
- huart->gState = HAL_UART_STATE_BUSY;
-
- /* Set the USART RTOEN bit */
- SET_BIT(huart->Instance->CR2, USART_CR2_RTOEN);
-
- huart->gState = HAL_UART_STATE_READY;
-
- /* Process Unlocked */
- __HAL_UNLOCK(huart);
-
- return HAL_OK;
- }
- else
- {
- return HAL_BUSY;
- }
- }
- else
- {
- return HAL_ERROR;
- }
-}
-
-/**
- * @brief Disable the UART receiver timeout feature.
- * @param huart Pointer to a UART_HandleTypeDef structure that contains
- * the configuration information for the specified UART module.
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_UART_DisableReceiverTimeout(UART_HandleTypeDef *huart)
-{
- if (!(IS_LPUART_INSTANCE(huart->Instance)))
- {
- if (huart->gState == HAL_UART_STATE_READY)
- {
- /* Process Locked */
- __HAL_LOCK(huart);
-
- huart->gState = HAL_UART_STATE_BUSY;
-
- /* Clear the USART RTOEN bit */
- CLEAR_BIT(huart->Instance->CR2, USART_CR2_RTOEN);
-
- huart->gState = HAL_UART_STATE_READY;
-
- /* Process Unlocked */
- __HAL_UNLOCK(huart);
-
- return HAL_OK;
- }
- else
- {
- return HAL_BUSY;
- }
- }
- else
- {
- return HAL_ERROR;
- }
-}
-
-/**
- * @brief Enable UART in mute mode (does not mean UART enters mute mode;
- * to enter mute mode, HAL_MultiProcessor_EnterMuteMode() API must be called).
- * @param huart UART handle.
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_MultiProcessor_EnableMuteMode(UART_HandleTypeDef *huart)
-{
- __HAL_LOCK(huart);
-
- huart->gState = HAL_UART_STATE_BUSY;
-
- /* Enable USART mute mode by setting the MME bit in the CR1 register */
- SET_BIT(huart->Instance->CR1, USART_CR1_MME);
-
- huart->gState = HAL_UART_STATE_READY;
-
- return (UART_CheckIdleState(huart));
-}
-
-/**
- * @brief Disable UART mute mode (does not mean the UART actually exits mute mode
- * as it may not have been in mute mode at this very moment).
- * @param huart UART handle.
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_MultiProcessor_DisableMuteMode(UART_HandleTypeDef *huart)
-{
- __HAL_LOCK(huart);
-
- huart->gState = HAL_UART_STATE_BUSY;
-
- /* Disable USART mute mode by clearing the MME bit in the CR1 register */
- CLEAR_BIT(huart->Instance->CR1, USART_CR1_MME);
-
- huart->gState = HAL_UART_STATE_READY;
-
- return (UART_CheckIdleState(huart));
-}
-
-/**
- * @brief Enter UART mute mode (means UART actually enters mute mode).
- * @note To exit from mute mode, HAL_MultiProcessor_DisableMuteMode() API must be called.
- * @param huart UART handle.
- * @retval None
- */
-void HAL_MultiProcessor_EnterMuteMode(UART_HandleTypeDef *huart)
-{
- __HAL_UART_SEND_REQ(huart, UART_MUTE_MODE_REQUEST);
-}
-
-/**
- * @brief Enable the UART transmitter and disable the UART receiver.
- * @param huart UART handle.
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_HalfDuplex_EnableTransmitter(UART_HandleTypeDef *huart)
-{
- __HAL_LOCK(huart);
- huart->gState = HAL_UART_STATE_BUSY;
-
- /* Clear TE and RE bits */
- CLEAR_BIT(huart->Instance->CR1, (USART_CR1_TE | USART_CR1_RE));
-
- /* Enable the USART's transmit interface by setting the TE bit in the USART CR1 register */
- SET_BIT(huart->Instance->CR1, USART_CR1_TE);
-
- huart->gState = HAL_UART_STATE_READY;
-
- __HAL_UNLOCK(huart);
-
- return HAL_OK;
-}
-
-/**
- * @brief Enable the UART receiver and disable the UART transmitter.
- * @param huart UART handle.
- * @retval HAL status.
- */
-HAL_StatusTypeDef HAL_HalfDuplex_EnableReceiver(UART_HandleTypeDef *huart)
-{
- __HAL_LOCK(huart);
- huart->gState = HAL_UART_STATE_BUSY;
-
- /* Clear TE and RE bits */
- CLEAR_BIT(huart->Instance->CR1, (USART_CR1_TE | USART_CR1_RE));
-
- /* Enable the USART's receive interface by setting the RE bit in the USART CR1 register */
- SET_BIT(huart->Instance->CR1, USART_CR1_RE);
-
- huart->gState = HAL_UART_STATE_READY;
-
- __HAL_UNLOCK(huart);
-
- return HAL_OK;
-}
-
-
-/**
- * @brief Transmit break characters.
- * @param huart UART handle.
- * @retval HAL status
- */
-HAL_StatusTypeDef HAL_LIN_SendBreak(UART_HandleTypeDef *huart)
-{
- /* Check the parameters */
- assert_param(IS_UART_LIN_INSTANCE(huart->Instance));
-
- __HAL_LOCK(huart);
-
- huart->gState = HAL_UART_STATE_BUSY;
-
- /* Send break characters */
- __HAL_UART_SEND_REQ(huart, UART_SENDBREAK_REQUEST);
-
- huart->gState = HAL_UART_STATE_READY;
-
- __HAL_UNLOCK(huart);
-
- return HAL_OK;
-}
-
-/**
- * @}
- */
-
-/** @defgroup UART_Exported_Functions_Group4 Peripheral State and Error functions
+ * @brief UART control functions
+ *
+@verbatim
+ ===============================================================================
+ ##### Peripheral Control functions #####
+ ===============================================================================
+ [..]
+ This subsection provides a set of functions allowing to control the UART.
+ (+) HAL_UART_ReceiverTimeout_Config() API allows to configure the receiver timeout value on the fly
+ (+) HAL_UART_EnableReceiverTimeout() API enables the receiver timeout feature
+ (+) HAL_UART_DisableReceiverTimeout() API disables the receiver timeout feature
+ (+) HAL_MultiProcessor_EnableMuteMode() API enables mute mode
+ (+) HAL_MultiProcessor_DisableMuteMode() API disables mute mode
+ (+) HAL_MultiProcessor_EnterMuteMode() API enters mute mode
+ (+) UART_SetConfig() API configures the UART peripheral
+ (+) UART_AdvFeatureConfig() API optionally configures the UART advanced features
+ (+) UART_CheckIdleState() API ensures that TEACK and/or REACK are set after initialization
+ (+) HAL_HalfDuplex_EnableTransmitter() API disables receiver and enables transmitter
+ (+) HAL_HalfDuplex_EnableReceiver() API disables transmitter and enables receiver
+ (+) HAL_LIN_SendBreak() API transmits the break characters
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Update on the fly the receiver timeout value in RTOR register.
+ * @param huart Pointer to a UART_HandleTypeDef structure that contains
+ * the configuration information for the specified UART module.
+ * @param TimeoutValue receiver timeout value in number of baud blocks. The timeout
+ * value must be less or equal to 0x0FFFFFFFF.
+ * @retval None
+ */
+void HAL_UART_ReceiverTimeout_Config(UART_HandleTypeDef *huart, uint32_t TimeoutValue)
+{
+ if (!(IS_LPUART_INSTANCE(huart->Instance)))
+ {
+ assert_param(IS_UART_RECEIVER_TIMEOUT_VALUE(TimeoutValue));
+ MODIFY_REG(huart->Instance->RTOR, USART_RTOR_RTO, TimeoutValue);
+ }
+}
+
+/**
+ * @brief Enable the UART receiver timeout feature.
+ * @param huart Pointer to a UART_HandleTypeDef structure that contains
+ * the configuration information for the specified UART module.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_UART_EnableReceiverTimeout(UART_HandleTypeDef *huart)
+{
+ if (!(IS_LPUART_INSTANCE(huart->Instance)))
+ {
+ if (huart->gState == HAL_UART_STATE_READY)
+ {
+ /* Process Locked */
+ __HAL_LOCK(huart);
+
+ huart->gState = HAL_UART_STATE_BUSY;
+
+ /* Set the USART RTOEN bit */
+ SET_BIT(huart->Instance->CR2, USART_CR2_RTOEN);
+
+ huart->gState = HAL_UART_STATE_READY;
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(huart);
+
+ return HAL_OK;
+ }
+ else
+ {
+ return HAL_BUSY;
+ }
+ }
+ else
+ {
+ return HAL_ERROR;
+ }
+}
+
+/**
+ * @brief Disable the UART receiver timeout feature.
+ * @param huart Pointer to a UART_HandleTypeDef structure that contains
+ * the configuration information for the specified UART module.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_UART_DisableReceiverTimeout(UART_HandleTypeDef *huart)
+{
+ if (!(IS_LPUART_INSTANCE(huart->Instance)))
+ {
+ if (huart->gState == HAL_UART_STATE_READY)
+ {
+ /* Process Locked */
+ __HAL_LOCK(huart);
+
+ huart->gState = HAL_UART_STATE_BUSY;
+
+ /* Clear the USART RTOEN bit */
+ CLEAR_BIT(huart->Instance->CR2, USART_CR2_RTOEN);
+
+ huart->gState = HAL_UART_STATE_READY;
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(huart);
+
+ return HAL_OK;
+ }
+ else
+ {
+ return HAL_BUSY;
+ }
+ }
+ else
+ {
+ return HAL_ERROR;
+ }
+}
+
+/**
+ * @brief Enable UART in mute mode (does not mean UART enters mute mode;
+ * to enter mute mode, HAL_MultiProcessor_EnterMuteMode() API must be called).
+ * @param huart UART handle.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_MultiProcessor_EnableMuteMode(UART_HandleTypeDef *huart)
+{
+ __HAL_LOCK(huart);
+
+ huart->gState = HAL_UART_STATE_BUSY;
+
+ /* Enable USART mute mode by setting the MME bit in the CR1 register */
+ ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_MME);
+
+ huart->gState = HAL_UART_STATE_READY;
+
+ return (UART_CheckIdleState(huart));
+}
+
+/**
+ * @brief Disable UART mute mode (does not mean the UART actually exits mute mode
+ * as it may not have been in mute mode at this very moment).
+ * @param huart UART handle.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_MultiProcessor_DisableMuteMode(UART_HandleTypeDef *huart)
+{
+ __HAL_LOCK(huart);
+
+ huart->gState = HAL_UART_STATE_BUSY;
+
+ /* Disable USART mute mode by clearing the MME bit in the CR1 register */
+ ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_MME);
+
+ huart->gState = HAL_UART_STATE_READY;
+
+ return (UART_CheckIdleState(huart));
+}
+
+/**
+ * @brief Enter UART mute mode (means UART actually enters mute mode).
+ * @note To exit from mute mode, HAL_MultiProcessor_DisableMuteMode() API must be called.
+ * @param huart UART handle.
+ * @retval None
+ */
+void HAL_MultiProcessor_EnterMuteMode(UART_HandleTypeDef *huart)
+{
+ __HAL_UART_SEND_REQ(huart, UART_MUTE_MODE_REQUEST);
+}
+
+/**
+ * @brief Enable the UART transmitter and disable the UART receiver.
+ * @param huart UART handle.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_HalfDuplex_EnableTransmitter(UART_HandleTypeDef *huart)
+{
+ __HAL_LOCK(huart);
+ huart->gState = HAL_UART_STATE_BUSY;
+
+ /* Clear TE and RE bits */
+ ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_TE | USART_CR1_RE));
+
+ /* Enable the USART's transmit interface by setting the TE bit in the USART CR1 register */
+ ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_TE);
+
+ huart->gState = HAL_UART_STATE_READY;
+
+ __HAL_UNLOCK(huart);
+
+ return HAL_OK;
+}
+
+/**
+ * @brief Enable the UART receiver and disable the UART transmitter.
+ * @param huart UART handle.
+ * @retval HAL status.
+ */
+HAL_StatusTypeDef HAL_HalfDuplex_EnableReceiver(UART_HandleTypeDef *huart)
+{
+ __HAL_LOCK(huart);
+ huart->gState = HAL_UART_STATE_BUSY;
+
+ /* Clear TE and RE bits */
+ ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_TE | USART_CR1_RE));
+
+ /* Enable the USART's receive interface by setting the RE bit in the USART CR1 register */
+ ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_RE);
+
+ huart->gState = HAL_UART_STATE_READY;
+
+ __HAL_UNLOCK(huart);
+
+ return HAL_OK;
+}
+
+
+/**
+ * @brief Transmit break characters.
+ * @param huart UART handle.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_LIN_SendBreak(UART_HandleTypeDef *huart)
+{
+ /* Check the parameters */
+ assert_param(IS_UART_LIN_INSTANCE(huart->Instance));
+
+ __HAL_LOCK(huart);
+
+ huart->gState = HAL_UART_STATE_BUSY;
+
+ /* Send break characters */
+ __HAL_UART_SEND_REQ(huart, UART_SENDBREAK_REQUEST);
+
+ huart->gState = HAL_UART_STATE_READY;
+
+ __HAL_UNLOCK(huart);
+
+ return HAL_OK;
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup UART_Exported_Functions_Group4 Peripheral State and Error functions
* @ingroup RTEMSBSPsARMSTM32H7
- * @brief UART Peripheral State functions
- *
-@verbatim
- ==============================================================================
- ##### Peripheral State and Error functions #####
- ==============================================================================
- [..]
- This subsection provides functions allowing to :
- (+) Return the UART handle state.
- (+) Return the UART handle error code
-
-@endverbatim
- * @{
- */
-
-/**
- * @brief Return the UART handle state.
- * @param huart Pointer to a UART_HandleTypeDef structure that contains
- * the configuration information for the specified UART.
- * @retval HAL state
- */
-HAL_UART_StateTypeDef HAL_UART_GetState(UART_HandleTypeDef *huart)
-{
- uint32_t temp1;
- uint32_t temp2;
- temp1 = huart->gState;
- temp2 = huart->RxState;
-
- return (HAL_UART_StateTypeDef)(temp1 | temp2);
-}
-
-/**
- * @brief Return the UART handle error code.
- * @param huart Pointer to a UART_HandleTypeDef structure that contains
- * the configuration information for the specified UART.
- * @retval UART Error Code
- */
-uint32_t HAL_UART_GetError(UART_HandleTypeDef *huart)
-{
- return huart->ErrorCode;
-}
-/**
- * @}
- */
-
-/**
- * @}
- */
-
-/** @defgroup UART_Private_Functions UART Private Functions
+ * @brief UART Peripheral State functions
+ *
+@verbatim
+ ==============================================================================
+ ##### Peripheral State and Error functions #####
+ ==============================================================================
+ [..]
+ This subsection provides functions allowing to :
+ (+) Return the UART handle state.
+ (+) Return the UART handle error code
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Return the UART handle state.
+ * @param huart Pointer to a UART_HandleTypeDef structure that contains
+ * the configuration information for the specified UART.
+ * @retval HAL state
+ */
+HAL_UART_StateTypeDef HAL_UART_GetState(const UART_HandleTypeDef *huart)
+{
+ uint32_t temp1;
+ uint32_t temp2;
+ temp1 = huart->gState;
+ temp2 = huart->RxState;
+
+ return (HAL_UART_StateTypeDef)(temp1 | temp2);
+}
+
+/**
+ * @brief Return the UART handle error code.
+ * @param huart Pointer to a UART_HandleTypeDef structure that contains
+ * the configuration information for the specified UART.
+ * @retval UART Error Code
+ */
+uint32_t HAL_UART_GetError(const UART_HandleTypeDef *huart)
+{
+ return huart->ErrorCode;
+}
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/** @defgroup UART_Private_Functions UART Private Functions
* @ingroup RTEMSBSPsARMSTM32H7
- * @{
- */
-
-/**
- * @brief Initialize the callbacks to their default values.
- * @param huart UART handle.
- * @retval none
- */
-#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
-void UART_InitCallbacksToDefault(UART_HandleTypeDef *huart)
-{
- /* Init the UART Callback settings */
- huart->TxHalfCpltCallback = HAL_UART_TxHalfCpltCallback; /* Legacy weak TxHalfCpltCallback */
- huart->TxCpltCallback = HAL_UART_TxCpltCallback; /* Legacy weak TxCpltCallback */
- huart->RxHalfCpltCallback = HAL_UART_RxHalfCpltCallback; /* Legacy weak RxHalfCpltCallback */
- huart->RxCpltCallback = HAL_UART_RxCpltCallback; /* Legacy weak RxCpltCallback */
- huart->ErrorCallback = HAL_UART_ErrorCallback; /* Legacy weak ErrorCallback */
- huart->AbortCpltCallback = HAL_UART_AbortCpltCallback; /* Legacy weak AbortCpltCallback */
- huart->AbortTransmitCpltCallback = HAL_UART_AbortTransmitCpltCallback; /* Legacy weak AbortTransmitCpltCallback */
- huart->AbortReceiveCpltCallback = HAL_UART_AbortReceiveCpltCallback; /* Legacy weak AbortReceiveCpltCallback */
- huart->WakeupCallback = HAL_UARTEx_WakeupCallback; /* Legacy weak WakeupCallback */
- huart->RxFifoFullCallback = HAL_UARTEx_RxFifoFullCallback; /* Legacy weak RxFifoFullCallback */
- huart->TxFifoEmptyCallback = HAL_UARTEx_TxFifoEmptyCallback; /* Legacy weak TxFifoEmptyCallback */
-
-}
-#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
-
-/**
- * @brief Configure the UART peripheral.
- * @param huart UART handle.
- * @retval HAL status
- */
-HAL_StatusTypeDef UART_SetConfig(UART_HandleTypeDef *huart)
-{
- uint32_t tmpreg;
- uint16_t brrtemp;
- UART_ClockSourceTypeDef clocksource;
- uint32_t usartdiv = 0x00000000U;
- HAL_StatusTypeDef ret = HAL_OK;
- uint32_t lpuart_ker_ck_pres = 0x00000000U;
- PLL2_ClocksTypeDef pll2_clocks;
- PLL3_ClocksTypeDef pll3_clocks;
- uint32_t pclk;
-
- /* Check the parameters */
- assert_param(IS_UART_BAUDRATE(huart->Init.BaudRate));
- assert_param(IS_UART_WORD_LENGTH(huart->Init.WordLength));
- if (UART_INSTANCE_LOWPOWER(huart))
- {
- assert_param(IS_LPUART_STOPBITS(huart->Init.StopBits));
- }
- else
- {
- assert_param(IS_UART_STOPBITS(huart->Init.StopBits));
- assert_param(IS_UART_ONE_BIT_SAMPLE(huart->Init.OneBitSampling));
- }
-
- assert_param(IS_UART_PARITY(huart->Init.Parity));
- assert_param(IS_UART_MODE(huart->Init.Mode));
- assert_param(IS_UART_HARDWARE_FLOW_CONTROL(huart->Init.HwFlowCtl));
- assert_param(IS_UART_OVERSAMPLING(huart->Init.OverSampling));
- assert_param(IS_UART_PRESCALER(huart->Init.ClockPrescaler));
-
- /*-------------------------- USART CR1 Configuration -----------------------*/
- /* Clear M, PCE, PS, TE, RE and OVER8 bits and configure
- * the UART Word Length, Parity, Mode and oversampling:
- * set the M bits according to huart->Init.WordLength value
- * set PCE and PS bits according to huart->Init.Parity value
- * set TE and RE bits according to huart->Init.Mode value
- * set OVER8 bit according to huart->Init.OverSampling value */
- tmpreg = (uint32_t)huart->Init.WordLength | huart->Init.Parity | huart->Init.Mode | huart->Init.OverSampling ;
- tmpreg |= (uint32_t)huart->FifoMode;
- MODIFY_REG(huart->Instance->CR1, USART_CR1_FIELDS, tmpreg);
-
- /*-------------------------- USART CR2 Configuration -----------------------*/
- /* Configure the UART Stop Bits: Set STOP[13:12] bits according
- * to huart->Init.StopBits value */
- MODIFY_REG(huart->Instance->CR2, USART_CR2_STOP, huart->Init.StopBits);
-
- /*-------------------------- USART CR3 Configuration -----------------------*/
- /* Configure
- * - UART HardWare Flow Control: set CTSE and RTSE bits according
- * to huart->Init.HwFlowCtl value
- * - one-bit sampling method versus three samples' majority rule according
- * to huart->Init.OneBitSampling (not applicable to LPUART) */
- tmpreg = (uint32_t)huart->Init.HwFlowCtl;
-
- if (!(UART_INSTANCE_LOWPOWER(huart)))
- {
- tmpreg |= huart->Init.OneBitSampling;
- }
- MODIFY_REG(huart->Instance->CR3, USART_CR3_FIELDS, tmpreg);
-
- /*-------------------------- USART PRESC Configuration -----------------------*/
- /* Configure
- * - UART Clock Prescaler : set PRESCALER according to huart->Init.ClockPrescaler value */
- MODIFY_REG(huart->Instance->PRESC, USART_PRESC_PRESCALER, huart->Init.ClockPrescaler);
-
- /*-------------------------- USART BRR Configuration -----------------------*/
- UART_GETCLOCKSOURCE(huart, clocksource);
-
- /* Check LPUART instance */
- if (UART_INSTANCE_LOWPOWER(huart))
- {
- /* Retrieve frequency clock */
- switch (clocksource)
- {
- case UART_CLOCKSOURCE_D3PCLK1:
- lpuart_ker_ck_pres = (HAL_RCCEx_GetD3PCLK1Freq() / UART_GET_DIV_FACTOR(huart->Init.ClockPrescaler));
- break;
- case UART_CLOCKSOURCE_PLL2:
- HAL_RCCEx_GetPLL2ClockFreq(&pll2_clocks);
- lpuart_ker_ck_pres = (pll2_clocks.PLL2_Q_Frequency / UART_GET_DIV_FACTOR(huart->Init.ClockPrescaler));
- break;
- case UART_CLOCKSOURCE_PLL3:
- HAL_RCCEx_GetPLL3ClockFreq(&pll3_clocks);
- lpuart_ker_ck_pres = (pll3_clocks.PLL3_Q_Frequency / UART_GET_DIV_FACTOR(huart->Init.ClockPrescaler));
- break;
- case UART_CLOCKSOURCE_HSI:
- if (__HAL_RCC_GET_FLAG(RCC_FLAG_HSIDIV) != 0U)
- {
- lpuart_ker_ck_pres = ((uint32_t)(HSI_VALUE >> (__HAL_RCC_GET_HSI_DIVIDER() >> 3U)) / UART_GET_DIV_FACTOR(huart->Init.ClockPrescaler));
- }
- else
- {
- lpuart_ker_ck_pres = ((uint32_t) HSI_VALUE / UART_GET_DIV_FACTOR(huart->Init.ClockPrescaler));
- }
- break;
- case UART_CLOCKSOURCE_CSI:
- lpuart_ker_ck_pres = ((uint32_t)CSI_VALUE / UART_GET_DIV_FACTOR(huart->Init.ClockPrescaler));
- break;
- case UART_CLOCKSOURCE_LSE:
- lpuart_ker_ck_pres = ((uint32_t)LSE_VALUE / UART_GET_DIV_FACTOR(huart->Init.ClockPrescaler));
- break;
- default:
- ret = HAL_ERROR;
- break;
- }
-
- /* if proper clock source reported */
- if (lpuart_ker_ck_pres != 0U)
- {
- /* ensure that Frequency clock is in the range [3 * baudrate, 4096 * baudrate] */
- if ((lpuart_ker_ck_pres < (3U * huart->Init.BaudRate)) ||
- (lpuart_ker_ck_pres > (4096U * huart->Init.BaudRate)))
- {
- ret = HAL_ERROR;
- }
- else
- {
- switch (clocksource)
- {
- case UART_CLOCKSOURCE_D3PCLK1:
- pclk = HAL_RCCEx_GetD3PCLK1Freq();
- usartdiv = (uint32_t)(UART_DIV_LPUART(pclk, huart->Init.BaudRate, huart->Init.ClockPrescaler));
- break;
- case UART_CLOCKSOURCE_PLL2:
- HAL_RCCEx_GetPLL2ClockFreq(&pll2_clocks);
- usartdiv = (uint32_t)(UART_DIV_LPUART(pll2_clocks.PLL2_Q_Frequency, huart->Init.BaudRate, huart->Init.ClockPrescaler));
- break;
- case UART_CLOCKSOURCE_PLL3:
- HAL_RCCEx_GetPLL3ClockFreq(&pll3_clocks);
- usartdiv = (uint32_t)(UART_DIV_LPUART(pll3_clocks.PLL3_Q_Frequency, huart->Init.BaudRate, huart->Init.ClockPrescaler));
- break;
- case UART_CLOCKSOURCE_HSI:
- if (__HAL_RCC_GET_FLAG(RCC_FLAG_HSIDIV) != 0U)
- {
- usartdiv = (uint32_t)(UART_DIV_LPUART((uint32_t)(HSI_VALUE >> (__HAL_RCC_GET_HSI_DIVIDER() >> 3U)), huart->Init.BaudRate, huart->Init.ClockPrescaler));
- }
- else
- {
- usartdiv = (uint32_t)(UART_DIV_LPUART(HSI_VALUE, huart->Init.BaudRate, huart->Init.ClockPrescaler));
- }
- break;
- case UART_CLOCKSOURCE_CSI:
- usartdiv = (uint32_t)(UART_DIV_LPUART(CSI_VALUE, huart->Init.BaudRate, huart->Init.ClockPrescaler));
- break;
- case UART_CLOCKSOURCE_LSE:
- usartdiv = (uint32_t)(UART_DIV_LPUART(LSE_VALUE, huart->Init.BaudRate, huart->Init.ClockPrescaler));
- break;
- default:
- ret = HAL_ERROR;
- break;
- }
-
- /* It is forbidden to write values lower than 0x300 in the LPUART_BRR register */
- if ((usartdiv >= LPUART_BRR_MIN) && (usartdiv <= LPUART_BRR_MAX))
- {
- huart->Instance->BRR = usartdiv;
- }
- else
- {
- ret = HAL_ERROR;
- }
- } /* if ( (lpuart_ker_ck_pres < (3 * huart->Init.BaudRate) ) || (lpuart_ker_ck_pres > (4096 * huart->Init.BaudRate) )) */
- } /* if (lpuart_ker_ck_pres != 0) */
- }
- /* Check UART Over Sampling to set Baud Rate Register */
- else if (huart->Init.OverSampling == UART_OVERSAMPLING_8)
- {
- switch (clocksource)
- {
- case UART_CLOCKSOURCE_D2PCLK1:
- pclk = HAL_RCC_GetPCLK1Freq();
- usartdiv = (uint16_t)(UART_DIV_SAMPLING8(pclk, huart->Init.BaudRate, huart->Init.ClockPrescaler));
- break;
- case UART_CLOCKSOURCE_D2PCLK2:
- pclk = HAL_RCC_GetPCLK2Freq();
- usartdiv = (uint16_t)(UART_DIV_SAMPLING8(pclk, huart->Init.BaudRate, huart->Init.ClockPrescaler));
- break;
- case UART_CLOCKSOURCE_PLL2:
- HAL_RCCEx_GetPLL2ClockFreq(&pll2_clocks);
- usartdiv = (uint16_t)(UART_DIV_SAMPLING8(pll2_clocks.PLL2_Q_Frequency, huart->Init.BaudRate, huart->Init.ClockPrescaler));
- break;
- case UART_CLOCKSOURCE_PLL3:
- HAL_RCCEx_GetPLL3ClockFreq(&pll3_clocks);
- usartdiv = (uint16_t)(UART_DIV_SAMPLING8(pll3_clocks.PLL3_Q_Frequency, huart->Init.BaudRate, huart->Init.ClockPrescaler));
- break;
- case UART_CLOCKSOURCE_HSI:
- if (__HAL_RCC_GET_FLAG(RCC_FLAG_HSIDIV) != 0U)
- {
- usartdiv = (uint16_t)(UART_DIV_SAMPLING8((HSI_VALUE >> (__HAL_RCC_GET_HSI_DIVIDER() >> 3U)), huart->Init.BaudRate, huart->Init.ClockPrescaler));
- }
- else
- {
- usartdiv = (uint16_t)(UART_DIV_SAMPLING8(HSI_VALUE, huart->Init.BaudRate, huart->Init.ClockPrescaler));
- }
- break;
- case UART_CLOCKSOURCE_CSI:
- usartdiv = (uint16_t)(UART_DIV_SAMPLING8(CSI_VALUE, huart->Init.BaudRate, huart->Init.ClockPrescaler));
- break;
- case UART_CLOCKSOURCE_LSE:
- usartdiv = (uint16_t)(UART_DIV_SAMPLING8((uint32_t)LSE_VALUE, huart->Init.BaudRate, huart->Init.ClockPrescaler));
- break;
- default:
- ret = HAL_ERROR;
- break;
- }
-
- /* USARTDIV must be greater than or equal to 0d16 */
- if ((usartdiv >= UART_BRR_MIN) && (usartdiv <= UART_BRR_MAX))
- {
- brrtemp = (uint16_t)(usartdiv & 0xFFF0U);
- brrtemp |= (uint16_t)((usartdiv & (uint16_t)0x000FU) >> 1U);
- huart->Instance->BRR = brrtemp;
- }
- else
- {
- ret = HAL_ERROR;
- }
- }
- else
- {
- switch (clocksource)
- {
- case UART_CLOCKSOURCE_D2PCLK1:
- pclk = HAL_RCC_GetPCLK1Freq();
- usartdiv = (uint16_t)(UART_DIV_SAMPLING16(pclk, huart->Init.BaudRate, huart->Init.ClockPrescaler));
- break;
- case UART_CLOCKSOURCE_D2PCLK2:
- pclk = HAL_RCC_GetPCLK2Freq();
- usartdiv = (uint16_t)(UART_DIV_SAMPLING16(pclk, huart->Init.BaudRate, huart->Init.ClockPrescaler));
- break;
- case UART_CLOCKSOURCE_PLL2:
- HAL_RCCEx_GetPLL2ClockFreq(&pll2_clocks);
- usartdiv = (uint16_t)(UART_DIV_SAMPLING16(pll2_clocks.PLL2_Q_Frequency, huart->Init.BaudRate, huart->Init.ClockPrescaler));
- break;
- case UART_CLOCKSOURCE_PLL3:
- HAL_RCCEx_GetPLL3ClockFreq(&pll3_clocks);
- usartdiv = (uint16_t)(UART_DIV_SAMPLING16(pll3_clocks.PLL3_Q_Frequency, huart->Init.BaudRate, huart->Init.ClockPrescaler));
- break;
- case UART_CLOCKSOURCE_HSI:
- if (__HAL_RCC_GET_FLAG(RCC_FLAG_HSIDIV) != 0U)
- {
- usartdiv = (uint16_t)(UART_DIV_SAMPLING16((HSI_VALUE >> (__HAL_RCC_GET_HSI_DIVIDER() >> 3U)), huart->Init.BaudRate, huart->Init.ClockPrescaler));
- }
- else
- {
- usartdiv = (uint16_t)(UART_DIV_SAMPLING16(HSI_VALUE, huart->Init.BaudRate, huart->Init.ClockPrescaler));
- }
- break;
- case UART_CLOCKSOURCE_CSI:
- usartdiv = (uint16_t)(UART_DIV_SAMPLING16(CSI_VALUE, huart->Init.BaudRate, huart->Init.ClockPrescaler));
- break;
- case UART_CLOCKSOURCE_LSE:
- usartdiv = (uint16_t)(UART_DIV_SAMPLING16((uint32_t)LSE_VALUE, huart->Init.BaudRate, huart->Init.ClockPrescaler));
- break;
- default:
- ret = HAL_ERROR;
- break;
- }
-
- /* USARTDIV must be greater than or equal to 0d16 */
- if ((usartdiv >= UART_BRR_MIN) && (usartdiv <= UART_BRR_MAX))
- {
- huart->Instance->BRR = usartdiv;
- }
- else
- {
- ret = HAL_ERROR;
- }
- }
-
- /* Initialize the number of data to process during RX/TX ISR execution */
- huart->NbTxDataToProcess = 1;
- huart->NbRxDataToProcess = 1;
-
- /* Clear ISR function pointers */
- huart->RxISR = NULL;
- huart->TxISR = NULL;
-
- return ret;
-}
-
-/**
- * @brief Configure the UART peripheral advanced features.
- * @param huart UART handle.
- * @retval None
- */
-void UART_AdvFeatureConfig(UART_HandleTypeDef *huart)
-{
- /* Check whether the set of advanced features to configure is properly set */
- assert_param(IS_UART_ADVFEATURE_INIT(huart->AdvancedInit.AdvFeatureInit));
-
- /* if required, configure TX pin active level inversion */
- if (HAL_IS_BIT_SET(huart->AdvancedInit.AdvFeatureInit, UART_ADVFEATURE_TXINVERT_INIT))
- {
- assert_param(IS_UART_ADVFEATURE_TXINV(huart->AdvancedInit.TxPinLevelInvert));
- MODIFY_REG(huart->Instance->CR2, USART_CR2_TXINV, huart->AdvancedInit.TxPinLevelInvert);
- }
-
- /* if required, configure RX pin active level inversion */
- if (HAL_IS_BIT_SET(huart->AdvancedInit.AdvFeatureInit, UART_ADVFEATURE_RXINVERT_INIT))
- {
- assert_param(IS_UART_ADVFEATURE_RXINV(huart->AdvancedInit.RxPinLevelInvert));
- MODIFY_REG(huart->Instance->CR2, USART_CR2_RXINV, huart->AdvancedInit.RxPinLevelInvert);
- }
-
- /* if required, configure data inversion */
- if (HAL_IS_BIT_SET(huart->AdvancedInit.AdvFeatureInit, UART_ADVFEATURE_DATAINVERT_INIT))
- {
- assert_param(IS_UART_ADVFEATURE_DATAINV(huart->AdvancedInit.DataInvert));
- MODIFY_REG(huart->Instance->CR2, USART_CR2_DATAINV, huart->AdvancedInit.DataInvert);
- }
-
- /* if required, configure RX/TX pins swap */
- if (HAL_IS_BIT_SET(huart->AdvancedInit.AdvFeatureInit, UART_ADVFEATURE_SWAP_INIT))
- {
- assert_param(IS_UART_ADVFEATURE_SWAP(huart->AdvancedInit.Swap));
- MODIFY_REG(huart->Instance->CR2, USART_CR2_SWAP, huart->AdvancedInit.Swap);
- }
-
- /* if required, configure RX overrun detection disabling */
- if (HAL_IS_BIT_SET(huart->AdvancedInit.AdvFeatureInit, UART_ADVFEATURE_RXOVERRUNDISABLE_INIT))
- {
- assert_param(IS_UART_OVERRUN(huart->AdvancedInit.OverrunDisable));
- MODIFY_REG(huart->Instance->CR3, USART_CR3_OVRDIS, huart->AdvancedInit.OverrunDisable);
- }
-
- /* if required, configure DMA disabling on reception error */
- if (HAL_IS_BIT_SET(huart->AdvancedInit.AdvFeatureInit, UART_ADVFEATURE_DMADISABLEONERROR_INIT))
- {
- assert_param(IS_UART_ADVFEATURE_DMAONRXERROR(huart->AdvancedInit.DMADisableonRxError));
- MODIFY_REG(huart->Instance->CR3, USART_CR3_DDRE, huart->AdvancedInit.DMADisableonRxError);
- }
-
- /* if required, configure auto Baud rate detection scheme */
- if (HAL_IS_BIT_SET(huart->AdvancedInit.AdvFeatureInit, UART_ADVFEATURE_AUTOBAUDRATE_INIT))
- {
- assert_param(IS_USART_AUTOBAUDRATE_DETECTION_INSTANCE(huart->Instance));
- assert_param(IS_UART_ADVFEATURE_AUTOBAUDRATE(huart->AdvancedInit.AutoBaudRateEnable));
- MODIFY_REG(huart->Instance->CR2, USART_CR2_ABREN, huart->AdvancedInit.AutoBaudRateEnable);
- /* set auto Baudrate detection parameters if detection is enabled */
- if (huart->AdvancedInit.AutoBaudRateEnable == UART_ADVFEATURE_AUTOBAUDRATE_ENABLE)
- {
- assert_param(IS_UART_ADVFEATURE_AUTOBAUDRATEMODE(huart->AdvancedInit.AutoBaudRateMode));
- MODIFY_REG(huart->Instance->CR2, USART_CR2_ABRMODE, huart->AdvancedInit.AutoBaudRateMode);
- }
- }
-
- /* if required, configure MSB first on communication line */
- if (HAL_IS_BIT_SET(huart->AdvancedInit.AdvFeatureInit, UART_ADVFEATURE_MSBFIRST_INIT))
- {
- assert_param(IS_UART_ADVFEATURE_MSBFIRST(huart->AdvancedInit.MSBFirst));
- MODIFY_REG(huart->Instance->CR2, USART_CR2_MSBFIRST, huart->AdvancedInit.MSBFirst);
- }
-}
-
-/**
- * @brief Check the UART Idle State.
- * @param huart UART handle.
- * @retval HAL status
- */
-HAL_StatusTypeDef UART_CheckIdleState(UART_HandleTypeDef *huart)
-{
- uint32_t tickstart;
-
- /* Initialize the UART ErrorCode */
- huart->ErrorCode = HAL_UART_ERROR_NONE;
-
- /* Init tickstart for timeout managment*/
- tickstart = HAL_GetTick();
-
- /* Check if the Transmitter is enabled */
- if ((huart->Instance->CR1 & USART_CR1_TE) == USART_CR1_TE)
- {
- /* Wait until TEACK flag is set */
- if (UART_WaitOnFlagUntilTimeout(huart, USART_ISR_TEACK, RESET, tickstart, HAL_UART_TIMEOUT_VALUE) != HAL_OK)
- {
- /* Timeout occurred */
- return HAL_TIMEOUT;
- }
- }
-
- /* Check if the Receiver is enabled */
- if ((huart->Instance->CR1 & USART_CR1_RE) == USART_CR1_RE)
- {
- /* Wait until REACK flag is set */
- if (UART_WaitOnFlagUntilTimeout(huart, USART_ISR_REACK, RESET, tickstart, HAL_UART_TIMEOUT_VALUE) != HAL_OK)
- {
- /* Timeout occurred */
- return HAL_TIMEOUT;
- }
- }
-
- /* Initialize the UART State */
- huart->gState = HAL_UART_STATE_READY;
- huart->RxState = HAL_UART_STATE_READY;
-
- __HAL_UNLOCK(huart);
-
- return HAL_OK;
-}
-
-/**
- * @brief Handle UART Communication Timeout.
- * @param huart UART handle.
- * @param Flag Specifies the UART flag to check
- * @param Status Flag status (SET or RESET)
- * @param Tickstart Tick start value
- * @param Timeout Timeout duration
- * @retval HAL status
- */
-HAL_StatusTypeDef UART_WaitOnFlagUntilTimeout(UART_HandleTypeDef *huart, uint32_t Flag, FlagStatus Status,
- uint32_t Tickstart, uint32_t Timeout)
-{
- /* Wait until flag is set */
- while ((__HAL_UART_GET_FLAG(huart, Flag) ? SET : RESET) == Status)
- {
- /* Check for the Timeout */
- if (Timeout != HAL_MAX_DELAY)
- {
- if (((HAL_GetTick() - Tickstart) > Timeout) || (Timeout == 0U))
- {
- /* Disable TXE, RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts for the interrupt process */
- CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE_RXFNEIE | USART_CR1_PEIE | USART_CR1_TXEIE_TXFNFIE));
- CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);
-
- huart->gState = HAL_UART_STATE_READY;
- huart->RxState = HAL_UART_STATE_READY;
-
- __HAL_UNLOCK(huart);
-
- return HAL_TIMEOUT;
- }
-
- if (READ_BIT(huart->Instance->CR1, USART_CR1_RE) != 0U)
- {
- if (__HAL_UART_GET_FLAG(huart, UART_FLAG_RTOF) == SET)
- {
- /* Clear Receiver Timeout flag*/
- __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_RTOF);
-
- /* Disable TXE, RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts for the interrupt process */
- CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE_RXFNEIE | USART_CR1_PEIE | USART_CR1_TXEIE_TXFNFIE));
- CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);
-
- huart->gState = HAL_UART_STATE_READY;
- huart->RxState = HAL_UART_STATE_READY;
- huart->ErrorCode = HAL_UART_ERROR_RTO;
-
- /* Process Unlocked */
- __HAL_UNLOCK(huart);
-
- return HAL_TIMEOUT;
- }
- }
- }
- }
- return HAL_OK;
-}
-
-
-/**
- * @brief End ongoing Tx transfer on UART peripheral (following error detection or Transmit completion).
- * @param huart UART handle.
- * @retval None
- */
-static void UART_EndTxTransfer(UART_HandleTypeDef *huart)
-{
- /* Disable TXEIE, TCIE, TXFT interrupts */
- CLEAR_BIT(huart->Instance->CR1, (USART_CR1_TXEIE_TXFNFIE | USART_CR1_TCIE));
- CLEAR_BIT(huart->Instance->CR3, (USART_CR3_TXFTIE));
-
- /* At end of Tx process, restore huart->gState to Ready */
- huart->gState = HAL_UART_STATE_READY;
-}
-
-
-/**
- * @brief End ongoing Rx transfer on UART peripheral (following error detection or Reception completion).
- * @param huart UART handle.
- * @retval None
- */
-static void UART_EndRxTransfer(UART_HandleTypeDef *huart)
-{
- /* Disable RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */
- CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE_RXFNEIE | USART_CR1_PEIE));
- CLEAR_BIT(huart->Instance->CR3, (USART_CR3_EIE | USART_CR3_RXFTIE));
-
- /* At end of Rx process, restore huart->RxState to Ready */
- huart->RxState = HAL_UART_STATE_READY;
-
- /* Reset RxIsr function pointer */
- huart->RxISR = NULL;
-}
-
-
-/**
- * @brief DMA UART transmit process complete callback.
- * @param hdma DMA handle.
- * @retval None
- */
-static void UART_DMATransmitCplt(DMA_HandleTypeDef *hdma)
-{
- UART_HandleTypeDef *huart = (UART_HandleTypeDef *)(hdma->Parent);
-
- /* DMA Normal mode */
- if (hdma->Init.Mode != DMA_CIRCULAR)
- {
- huart->TxXferCount = 0U;
-
- /* Disable the DMA transfer for transmit request by resetting the DMAT bit
- in the UART CR3 register */
- CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT);
-
- /* Enable the UART Transmit Complete Interrupt */
- SET_BIT(huart->Instance->CR1, USART_CR1_TCIE);
- }
- /* DMA Circular mode */
- else
- {
-#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
- /*Call registered Tx complete callback*/
- huart->TxCpltCallback(huart);
-#else
- /*Call legacy weak Tx complete callback*/
- HAL_UART_TxCpltCallback(huart);
-#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
- }
-}
-
-/**
- * @brief DMA UART transmit process half complete callback.
- * @param hdma DMA handle.
- * @retval None
- */
-static void UART_DMATxHalfCplt(DMA_HandleTypeDef *hdma)
-{
- UART_HandleTypeDef *huart = (UART_HandleTypeDef *)(hdma->Parent);
-
-#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
- /*Call registered Tx Half complete callback*/
- huart->TxHalfCpltCallback(huart);
-#else
- /*Call legacy weak Tx Half complete callback*/
- HAL_UART_TxHalfCpltCallback(huart);
-#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
-}
-
-/**
- * @brief DMA UART receive process complete callback.
- * @param hdma DMA handle.
- * @retval None
- */
-static void UART_DMAReceiveCplt(DMA_HandleTypeDef *hdma)
-{
- UART_HandleTypeDef *huart = (UART_HandleTypeDef *)(hdma->Parent);
-
- /* DMA Normal mode */
- if (hdma->Init.Mode != DMA_CIRCULAR)
- {
- huart->RxXferCount = 0U;
-
- /* Disable PE and ERR (Frame error, noise error, overrun error) interrupts */
- CLEAR_BIT(huart->Instance->CR1, USART_CR1_PEIE);
- CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);
-
- /* Disable the DMA transfer for the receiver request by resetting the DMAR bit
- in the UART CR3 register */
- CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR);
-
- /* At end of Rx process, restore huart->RxState to Ready */
- huart->RxState = HAL_UART_STATE_READY;
- }
-
-#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
- /*Call registered Rx complete callback*/
- huart->RxCpltCallback(huart);
-#else
- /*Call legacy weak Rx complete callback*/
- HAL_UART_RxCpltCallback(huart);
-#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
-}
-
-/**
- * @brief DMA UART receive process half complete callback.
- * @param hdma DMA handle.
- * @retval None
- */
-static void UART_DMARxHalfCplt(DMA_HandleTypeDef *hdma)
-{
- UART_HandleTypeDef *huart = (UART_HandleTypeDef *)(hdma->Parent);
-
-#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
- /*Call registered Rx Half complete callback*/
- huart->RxHalfCpltCallback(huart);
-#else
- /*Call legacy weak Rx Half complete callback*/
- HAL_UART_RxHalfCpltCallback(huart);
-#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
-}
-
-/**
- * @brief DMA UART communication error callback.
- * @param hdma DMA handle.
- * @retval None
- */
-static void UART_DMAError(DMA_HandleTypeDef *hdma)
-{
- UART_HandleTypeDef *huart = (UART_HandleTypeDef *)(hdma->Parent);
-
- const HAL_UART_StateTypeDef gstate = huart->gState;
- const HAL_UART_StateTypeDef rxstate = huart->RxState;
-
- /* Stop UART DMA Tx request if ongoing */
- if ((HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT)) &&
- (gstate == HAL_UART_STATE_BUSY_TX))
- {
- huart->TxXferCount = 0U;
- UART_EndTxTransfer(huart);
- }
-
- /* Stop UART DMA Rx request if ongoing */
- if ((HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR)) &&
- (rxstate == HAL_UART_STATE_BUSY_RX))
- {
- huart->RxXferCount = 0U;
- UART_EndRxTransfer(huart);
- }
-
- huart->ErrorCode |= HAL_UART_ERROR_DMA;
-
-#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
- /*Call registered error callback*/
- huart->ErrorCallback(huart);
-#else
- /*Call legacy weak error callback*/
- HAL_UART_ErrorCallback(huart);
-#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
-}
-
-/**
- * @brief DMA UART communication abort callback, when initiated by HAL services on Error
- * (To be called at end of DMA Abort procedure following error occurrence).
- * @param hdma DMA handle.
- * @retval None
- */
-static void UART_DMAAbortOnError(DMA_HandleTypeDef *hdma)
-{
- UART_HandleTypeDef *huart = (UART_HandleTypeDef *)(hdma->Parent);
- huart->RxXferCount = 0U;
- huart->TxXferCount = 0U;
-
-#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
- /*Call registered error callback*/
- huart->ErrorCallback(huart);
-#else
- /*Call legacy weak error callback*/
- HAL_UART_ErrorCallback(huart);
-#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
-}
-
-/**
- * @brief DMA UART Tx communication abort callback, when initiated by user
- * (To be called at end of DMA Tx Abort procedure following user abort request).
- * @note When this callback is executed, User Abort complete call back is called only if no
- * Abort still ongoing for Rx DMA Handle.
- * @param hdma DMA handle.
- * @retval None
- */
-static void UART_DMATxAbortCallback(DMA_HandleTypeDef *hdma)
-{
- UART_HandleTypeDef *huart = (UART_HandleTypeDef *)(hdma->Parent);
-
- huart->hdmatx->XferAbortCallback = NULL;
-
- /* Check if an Abort process is still ongoing */
- if (huart->hdmarx != NULL)
- {
- if (huart->hdmarx->XferAbortCallback != NULL)
- {
- return;
- }
- }
-
- /* No Abort process still ongoing : All DMA channels are aborted, call user Abort Complete callback */
- huart->TxXferCount = 0U;
- huart->RxXferCount = 0U;
-
- /* Reset errorCode */
- huart->ErrorCode = HAL_UART_ERROR_NONE;
-
- /* Clear the Error flags in the ICR register */
- __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_OREF | UART_CLEAR_NEF | UART_CLEAR_PEF | UART_CLEAR_FEF);
-
- /* Flush the whole TX FIFO (if needed) */
- if (huart->FifoMode == UART_FIFOMODE_ENABLE)
- {
- __HAL_UART_SEND_REQ(huart, UART_TXDATA_FLUSH_REQUEST);
- }
-
- /* Restore huart->gState and huart->RxState to Ready */
- huart->gState = HAL_UART_STATE_READY;
- huart->RxState = HAL_UART_STATE_READY;
-
- /* Call user Abort complete callback */
-#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
- /* Call registered Abort complete callback */
- huart->AbortCpltCallback(huart);
-#else
- /* Call legacy weak Abort complete callback */
- HAL_UART_AbortCpltCallback(huart);
-#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
-}
-
-
-/**
- * @brief DMA UART Rx communication abort callback, when initiated by user
- * (To be called at end of DMA Rx Abort procedure following user abort request).
- * @note When this callback is executed, User Abort complete call back is called only if no
- * Abort still ongoing for Tx DMA Handle.
- * @param hdma DMA handle.
- * @retval None
- */
-static void UART_DMARxAbortCallback(DMA_HandleTypeDef *hdma)
-{
- UART_HandleTypeDef *huart = (UART_HandleTypeDef *)(hdma->Parent);
-
- huart->hdmarx->XferAbortCallback = NULL;
-
- /* Check if an Abort process is still ongoing */
- if (huart->hdmatx != NULL)
- {
- if (huart->hdmatx->XferAbortCallback != NULL)
- {
- return;
- }
- }
-
- /* No Abort process still ongoing : All DMA channels are aborted, call user Abort Complete callback */
- huart->TxXferCount = 0U;
- huart->RxXferCount = 0U;
-
- /* Reset errorCode */
- huart->ErrorCode = HAL_UART_ERROR_NONE;
-
- /* Clear the Error flags in the ICR register */
- __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_OREF | UART_CLEAR_NEF | UART_CLEAR_PEF | UART_CLEAR_FEF);
-
- /* Discard the received data */
- __HAL_UART_SEND_REQ(huart, UART_RXDATA_FLUSH_REQUEST);
-
- /* Restore huart->gState and huart->RxState to Ready */
- huart->gState = HAL_UART_STATE_READY;
- huart->RxState = HAL_UART_STATE_READY;
-
- /* Call user Abort complete callback */
-#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
- /* Call registered Abort complete callback */
- huart->AbortCpltCallback(huart);
-#else
- /* Call legacy weak Abort complete callback */
- HAL_UART_AbortCpltCallback(huart);
-#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
-}
-
-
-/**
- * @brief DMA UART Tx communication abort callback, when initiated by user by a call to
- * HAL_UART_AbortTransmit_IT API (Abort only Tx transfer)
- * (This callback is executed at end of DMA Tx Abort procedure following user abort request,
- * and leads to user Tx Abort Complete callback execution).
- * @param hdma DMA handle.
- * @retval None
- */
-static void UART_DMATxOnlyAbortCallback(DMA_HandleTypeDef *hdma)
-{
- UART_HandleTypeDef *huart = (UART_HandleTypeDef *)(hdma->Parent);
-
- huart->TxXferCount = 0U;
-
- /* Flush the whole TX FIFO (if needed) */
- if (huart->FifoMode == UART_FIFOMODE_ENABLE)
- {
- __HAL_UART_SEND_REQ(huart, UART_TXDATA_FLUSH_REQUEST);
- }
-
- /* Restore huart->gState to Ready */
- huart->gState = HAL_UART_STATE_READY;
-
- /* Call user Abort complete callback */
-#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
- /* Call registered Abort Transmit Complete Callback */
- huart->AbortTransmitCpltCallback(huart);
-#else
- /* Call legacy weak Abort Transmit Complete Callback */
- HAL_UART_AbortTransmitCpltCallback(huart);
-#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
-}
-
-/**
- * @brief DMA UART Rx communication abort callback, when initiated by user by a call to
- * HAL_UART_AbortReceive_IT API (Abort only Rx transfer)
- * (This callback is executed at end of DMA Rx Abort procedure following user abort request,
- * and leads to user Rx Abort Complete callback execution).
- * @param hdma DMA handle.
- * @retval None
- */
-static void UART_DMARxOnlyAbortCallback(DMA_HandleTypeDef *hdma)
-{
- UART_HandleTypeDef *huart = (UART_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
-
- huart->RxXferCount = 0U;
-
- /* Clear the Error flags in the ICR register */
- __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_OREF | UART_CLEAR_NEF | UART_CLEAR_PEF | UART_CLEAR_FEF);
-
- /* Discard the received data */
- __HAL_UART_SEND_REQ(huart, UART_RXDATA_FLUSH_REQUEST);
-
- /* Restore huart->RxState to Ready */
- huart->RxState = HAL_UART_STATE_READY;
-
- /* Call user Abort complete callback */
-#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
- /* Call registered Abort Receive Complete Callback */
- huart->AbortReceiveCpltCallback(huart);
-#else
- /* Call legacy weak Abort Receive Complete Callback */
- HAL_UART_AbortReceiveCpltCallback(huart);
-#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
-}
-
-/**
- * @brief TX interrrupt handler for 7 or 8 bits data word length .
- * @note Function is called under interruption only, once
- * interruptions have been enabled by HAL_UART_Transmit_IT().
- * @param huart UART handle.
- * @retval None
- */
-static void UART_TxISR_8BIT(UART_HandleTypeDef *huart)
-{
- /* Check that a Tx process is ongoing */
- if (huart->gState == HAL_UART_STATE_BUSY_TX)
- {
- if (huart->TxXferCount == 0U)
- {
- /* Disable the UART Transmit Data Register Empty Interrupt */
- CLEAR_BIT(huart->Instance->CR1, USART_CR1_TXEIE_TXFNFIE);
-
- /* Enable the UART Transmit Complete Interrupt */
- SET_BIT(huart->Instance->CR1, USART_CR1_TCIE);
- }
- else
- {
- huart->Instance->TDR = (uint8_t)(*huart->pTxBuffPtr & (uint8_t)0xFF);
- huart->pTxBuffPtr++;
- huart->TxXferCount--;
- }
- }
-}
-
-/**
- * @brief TX interrrupt handler for 9 bits data word length.
- * @note Function is called under interruption only, once
- * interruptions have been enabled by HAL_UART_Transmit_IT().
- * @param huart UART handle.
- * @retval None
- */
-static void UART_TxISR_16BIT(UART_HandleTypeDef *huart)
-{
- uint16_t *tmp;
-
- /* Check that a Tx process is ongoing */
- if (huart->gState == HAL_UART_STATE_BUSY_TX)
- {
- if (huart->TxXferCount == 0U)
- {
- /* Disable the UART Transmit Data Register Empty Interrupt */
- CLEAR_BIT(huart->Instance->CR1, USART_CR1_TXEIE_TXFNFIE);
-
- /* Enable the UART Transmit Complete Interrupt */
- SET_BIT(huart->Instance->CR1, USART_CR1_TCIE);
- }
- else
- {
- tmp = (uint16_t *) huart->pTxBuffPtr;
- huart->Instance->TDR = (((uint32_t)(*tmp)) & 0x01FFUL);
- huart->pTxBuffPtr += 2U;
- huart->TxXferCount--;
- }
- }
-}
-
-/**
- * @brief TX interrrupt handler for 7 or 8 bits data word length and FIFO mode is enabled.
- * @note Function is called under interruption only, once
- * interruptions have been enabled by HAL_UART_Transmit_IT().
- * @param huart UART handle.
- * @retval None
- */
-static void UART_TxISR_8BIT_FIFOEN(UART_HandleTypeDef *huart)
-{
- uint16_t nb_tx_data;
-
- /* Check that a Tx process is ongoing */
- if (huart->gState == HAL_UART_STATE_BUSY_TX)
- {
- for (nb_tx_data = huart->NbTxDataToProcess ; nb_tx_data > 0U ; nb_tx_data--)
- {
- if (huart->TxXferCount == 0U)
- {
- /* Disable the TX FIFO threshold interrupt */
- CLEAR_BIT(huart->Instance->CR3, USART_CR3_TXFTIE);
-
- /* Enable the UART Transmit Complete Interrupt */
- SET_BIT(huart->Instance->CR1, USART_CR1_TCIE);
-
- break; /* force exit loop */
- }
- else if (READ_BIT(huart->Instance->ISR, USART_ISR_TXE_TXFNF) != 0U)
- {
- huart->Instance->TDR = (uint8_t)(*huart->pTxBuffPtr & (uint8_t)0xFF);
- huart->pTxBuffPtr++;
- huart->TxXferCount--;
- }
- else
- {
- /* Nothing to do */
- }
- }
- }
-}
-
-/**
- * @brief TX interrrupt handler for 9 bits data word length and FIFO mode is enabled.
- * @note Function is called under interruption only, once
- * interruptions have been enabled by HAL_UART_Transmit_IT().
- * @param huart UART handle.
- * @retval None
- */
-static void UART_TxISR_16BIT_FIFOEN(UART_HandleTypeDef *huart)
-{
- uint16_t *tmp;
- uint16_t nb_tx_data;
-
- /* Check that a Tx process is ongoing */
- if (huart->gState == HAL_UART_STATE_BUSY_TX)
- {
- for (nb_tx_data = huart->NbTxDataToProcess ; nb_tx_data > 0U ; nb_tx_data--)
- {
- if (huart->TxXferCount == 0U)
- {
- /* Disable the TX FIFO threshold interrupt */
- CLEAR_BIT(huart->Instance->CR3, USART_CR3_TXFTIE);
-
- /* Enable the UART Transmit Complete Interrupt */
- SET_BIT(huart->Instance->CR1, USART_CR1_TCIE);
-
- break; /* force exit loop */
- }
- else if (READ_BIT(huart->Instance->ISR, USART_ISR_TXE_TXFNF) != 0U)
- {
- tmp = (uint16_t *) huart->pTxBuffPtr;
- huart->Instance->TDR = (((uint32_t)(*tmp)) & 0x01FFUL);
- huart->pTxBuffPtr += 2U;
- huart->TxXferCount--;
- }
- else
- {
- /* Nothing to do */
- }
- }
- }
-}
-
-/**
- * @brief Wrap up transmission in non-blocking mode.
- * @param huart pointer to a UART_HandleTypeDef structure that contains
- * the configuration information for the specified UART module.
- * @retval None
- */
-static void UART_EndTransmit_IT(UART_HandleTypeDef *huart)
-{
- /* Disable the UART Transmit Complete Interrupt */
- CLEAR_BIT(huart->Instance->CR1, USART_CR1_TCIE);
-
- /* Tx process is ended, restore huart->gState to Ready */
- huart->gState = HAL_UART_STATE_READY;
-
- /* Cleat TxISR function pointer */
- huart->TxISR = NULL;
-
-#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
- /*Call registered Tx complete callback*/
- huart->TxCpltCallback(huart);
-#else
- /*Call legacy weak Tx complete callback*/
- HAL_UART_TxCpltCallback(huart);
-#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
-}
-
-/**
- * @brief RX interrrupt handler for 7 or 8 bits data word length .
- * @param huart UART handle.
- * @retval None
- */
-static void UART_RxISR_8BIT(UART_HandleTypeDef *huart)
-{
- uint16_t uhMask = huart->Mask;
- uint16_t uhdata;
-
- /* Check that a Rx process is ongoing */
- if (huart->RxState == HAL_UART_STATE_BUSY_RX)
- {
- uhdata = (uint16_t) READ_REG(huart->Instance->RDR);
- *huart->pRxBuffPtr = (uint8_t)(uhdata & (uint8_t)uhMask);
- huart->pRxBuffPtr++;
- huart->RxXferCount--;
-
- if (huart->RxXferCount == 0U)
- {
- /* Disable the UART Parity Error Interrupt and RXNE interrupts */
- CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE_RXFNEIE | USART_CR1_PEIE));
-
- /* Disable the UART Error Interrupt: (Frame error, noise error, overrun error) */
- CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);
-
- /* Rx process is completed, restore huart->RxState to Ready */
- huart->RxState = HAL_UART_STATE_READY;
-
- /* Clear RxISR function pointer */
- huart->RxISR = NULL;
-
-#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
- /*Call registered Rx complete callback*/
- huart->RxCpltCallback(huart);
-#else
- /*Call legacy weak Rx complete callback*/
- HAL_UART_RxCpltCallback(huart);
-#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
- }
- }
- else
- {
- /* Clear RXNE interrupt flag */
- __HAL_UART_SEND_REQ(huart, UART_RXDATA_FLUSH_REQUEST);
- }
-}
-
-/**
- * @brief RX interrrupt handler for 9 bits data word length .
- * @note Function is called under interruption only, once
- * interruptions have been enabled by HAL_UART_Receive_IT()
- * @param huart UART handle.
- * @retval None
- */
-static void UART_RxISR_16BIT(UART_HandleTypeDef *huart)
-{
- uint16_t *tmp;
- uint16_t uhMask = huart->Mask;
- uint16_t uhdata;
-
- /* Check that a Rx process is ongoing */
- if (huart->RxState == HAL_UART_STATE_BUSY_RX)
- {
- uhdata = (uint16_t) READ_REG(huart->Instance->RDR);
- tmp = (uint16_t *) huart->pRxBuffPtr ;
- *tmp = (uint16_t)(uhdata & uhMask);
- huart->pRxBuffPtr += 2U;
- huart->RxXferCount--;
-
- if (huart->RxXferCount == 0U)
- {
- /* Disable the UART Parity Error Interrupt and RXNE interrupt*/
- CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE_RXFNEIE | USART_CR1_PEIE));
-
- /* Disable the UART Error Interrupt: (Frame error, noise error, overrun error) */
- CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);
-
- /* Rx process is completed, restore huart->RxState to Ready */
- huart->RxState = HAL_UART_STATE_READY;
-
- /* Clear RxISR function pointer */
- huart->RxISR = NULL;
-
-#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
- /*Call registered Rx complete callback*/
- huart->RxCpltCallback(huart);
-#else
- /*Call legacy weak Rx complete callback*/
- HAL_UART_RxCpltCallback(huart);
-#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
- }
- }
- else
- {
- /* Clear RXNE interrupt flag */
- __HAL_UART_SEND_REQ(huart, UART_RXDATA_FLUSH_REQUEST);
- }
-}
-
-/**
- * @brief RX interrrupt handler for 7 or 8 bits data word length and FIFO mode is enabled.
- * @note Function is called under interruption only, once
- * interruptions have been enabled by HAL_UART_Receive_IT()
- * @param huart UART handle.
- * @retval None
- */
-static void UART_RxISR_8BIT_FIFOEN(UART_HandleTypeDef *huart)
-{
- uint16_t uhMask = huart->Mask;
- uint16_t uhdata;
- uint16_t nb_rx_data;
- uint16_t rxdatacount;
-
- /* Check that a Rx process is ongoing */
- if (huart->RxState == HAL_UART_STATE_BUSY_RX)
- {
- for (nb_rx_data = huart->NbRxDataToProcess ; nb_rx_data > 0U ; nb_rx_data--)
- {
- uhdata = (uint16_t) READ_REG(huart->Instance->RDR);
- *huart->pRxBuffPtr = (uint8_t)(uhdata & (uint8_t)uhMask);
- huart->pRxBuffPtr++;
- huart->RxXferCount--;
-
- if (huart->RxXferCount == 0U)
- {
- /* Disable the UART Parity Error Interrupt and RXFT interrupt*/
- CLEAR_BIT(huart->Instance->CR1, USART_CR1_PEIE);
-
- /* Disable the UART Error Interrupt: (Frame error, noise error, overrun error) and RX FIFO Threshold interrupt */
- CLEAR_BIT(huart->Instance->CR3, (USART_CR3_EIE | USART_CR3_RXFTIE));
-
- /* Rx process is completed, restore huart->RxState to Ready */
- huart->RxState = HAL_UART_STATE_READY;
-
- /* Clear RxISR function pointer */
- huart->RxISR = NULL;
-
-#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
- /*Call registered Rx complete callback*/
- huart->RxCpltCallback(huart);
-#else
- /*Call legacy weak Rx complete callback*/
- HAL_UART_RxCpltCallback(huart);
-#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
- }
- }
-
- /* When remaining number of bytes to receive is less than the RX FIFO
- threshold, next incoming frames are processed as if FIFO mode was
- disabled (i.e. one interrupt per received frame).
- */
- rxdatacount = huart->RxXferCount;
- if ((rxdatacount != 0U) && (rxdatacount < huart->NbRxDataToProcess))
- {
- /* Disable the UART RXFT interrupt*/
- CLEAR_BIT(huart->Instance->CR3, USART_CR3_RXFTIE);
-
- /* Update the RxISR function pointer */
- huart->RxISR = UART_RxISR_8BIT;
-
- /* Enable the UART Data Register Not Empty interrupt */
- SET_BIT(huart->Instance->CR1, USART_CR1_RXNEIE_RXFNEIE);
- }
- }
- else
- {
- /* Clear RXNE interrupt flag */
- __HAL_UART_SEND_REQ(huart, UART_RXDATA_FLUSH_REQUEST);
- }
-}
-
-/**
- * @brief RX interrrupt handler for 9 bits data word length and FIFO mode is enabled.
- * @note Function is called under interruption only, once
- * interruptions have been enabled by HAL_UART_Receive_IT()
- * @param huart UART handle.
- * @retval None
- */
-static void UART_RxISR_16BIT_FIFOEN(UART_HandleTypeDef *huart)
-{
- uint16_t *tmp;
- uint16_t uhMask = huart->Mask;
- uint16_t uhdata;
- uint16_t nb_rx_data;
- uint16_t rxdatacount;
-
- /* Check that a Rx process is ongoing */
- if (huart->RxState == HAL_UART_STATE_BUSY_RX)
- {
- for (nb_rx_data = huart->NbRxDataToProcess ; nb_rx_data > 0U ; nb_rx_data--)
- {
- uhdata = (uint16_t) READ_REG(huart->Instance->RDR);
- tmp = (uint16_t *) huart->pRxBuffPtr ;
- *tmp = (uint16_t)(uhdata & uhMask);
- huart->pRxBuffPtr += 2U;
- huart->RxXferCount--;
-
- if (huart->RxXferCount == 0U)
- {
- /* Disable the UART Parity Error Interrupt and RXFT interrupt*/
- CLEAR_BIT(huart->Instance->CR1, USART_CR1_PEIE);
-
- /* Disable the UART Error Interrupt: (Frame error, noise error, overrun error) and RX FIFO Threshold interrupt */
- CLEAR_BIT(huart->Instance->CR3, (USART_CR3_EIE | USART_CR3_RXFTIE));
-
- /* Rx process is completed, restore huart->RxState to Ready */
- huart->RxState = HAL_UART_STATE_READY;
-
- /* Clear RxISR function pointer */
- huart->RxISR = NULL;
-
-#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
- /*Call registered Rx complete callback*/
- huart->RxCpltCallback(huart);
-#else
- /*Call legacy weak Rx complete callback*/
- HAL_UART_RxCpltCallback(huart);
-#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
- }
- }
-
- /* When remaining number of bytes to receive is less than the RX FIFO
- threshold, next incoming frames are processed as if FIFO mode was
- disabled (i.e. one interrupt per received frame).
- */
- rxdatacount = huart->RxXferCount;
- if ((rxdatacount != 0U) && (rxdatacount < huart->NbRxDataToProcess))
- {
- /* Disable the UART RXFT interrupt*/
- CLEAR_BIT(huart->Instance->CR3, USART_CR3_RXFTIE);
-
- /* Update the RxISR function pointer */
- huart->RxISR = UART_RxISR_16BIT;
-
- /* Enable the UART Data Register Not Empty interrupt */
- SET_BIT(huart->Instance->CR1, USART_CR1_RXNEIE_RXFNEIE);
- }
- }
- else
- {
- /* Clear RXNE interrupt flag */
- __HAL_UART_SEND_REQ(huart, UART_RXDATA_FLUSH_REQUEST);
- }
-}
-
-/**
- * @}
- */
-
-#endif /* HAL_UART_MODULE_ENABLED */
-/**
- * @}
- */
-
-/**
- * @}
- */
-
-/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
+ * @{
+ */
+
+/**
+ * @brief Initialize the callbacks to their default values.
+ * @param huart UART handle.
+ * @retval none
+ */
+#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
+void UART_InitCallbacksToDefault(UART_HandleTypeDef *huart)
+{
+ /* Init the UART Callback settings */
+ huart->TxHalfCpltCallback = HAL_UART_TxHalfCpltCallback; /* Legacy weak TxHalfCpltCallback */
+ huart->TxCpltCallback = HAL_UART_TxCpltCallback; /* Legacy weak TxCpltCallback */
+ huart->RxHalfCpltCallback = HAL_UART_RxHalfCpltCallback; /* Legacy weak RxHalfCpltCallback */
+ huart->RxCpltCallback = HAL_UART_RxCpltCallback; /* Legacy weak RxCpltCallback */
+ huart->ErrorCallback = HAL_UART_ErrorCallback; /* Legacy weak ErrorCallback */
+ huart->AbortCpltCallback = HAL_UART_AbortCpltCallback; /* Legacy weak AbortCpltCallback */
+ huart->AbortTransmitCpltCallback = HAL_UART_AbortTransmitCpltCallback; /* Legacy weak AbortTransmitCpltCallback */
+ huart->AbortReceiveCpltCallback = HAL_UART_AbortReceiveCpltCallback; /* Legacy weak AbortReceiveCpltCallback */
+ huart->WakeupCallback = HAL_UARTEx_WakeupCallback; /* Legacy weak WakeupCallback */
+ huart->RxFifoFullCallback = HAL_UARTEx_RxFifoFullCallback; /* Legacy weak RxFifoFullCallback */
+ huart->TxFifoEmptyCallback = HAL_UARTEx_TxFifoEmptyCallback; /* Legacy weak TxFifoEmptyCallback */
+ huart->RxEventCallback = HAL_UARTEx_RxEventCallback; /* Legacy weak RxEventCallback */
+
+}
+#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
+
+/**
+ * @brief Configure the UART peripheral.
+ * @param huart UART handle.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef UART_SetConfig(UART_HandleTypeDef *huart)
+{
+ uint32_t tmpreg;
+ uint16_t brrtemp;
+ UART_ClockSourceTypeDef clocksource;
+ uint32_t usartdiv;
+ HAL_StatusTypeDef ret = HAL_OK;
+ uint32_t lpuart_ker_ck_pres;
+ PLL2_ClocksTypeDef pll2_clocks;
+ PLL3_ClocksTypeDef pll3_clocks;
+ uint32_t pclk;
+
+ /* Check the parameters */
+ assert_param(IS_UART_BAUDRATE(huart->Init.BaudRate));
+ assert_param(IS_UART_WORD_LENGTH(huart->Init.WordLength));
+ if (UART_INSTANCE_LOWPOWER(huart))
+ {
+ assert_param(IS_LPUART_STOPBITS(huart->Init.StopBits));
+ }
+ else
+ {
+ assert_param(IS_UART_STOPBITS(huart->Init.StopBits));
+ assert_param(IS_UART_ONE_BIT_SAMPLE(huart->Init.OneBitSampling));
+ }
+
+ assert_param(IS_UART_PARITY(huart->Init.Parity));
+ assert_param(IS_UART_MODE(huart->Init.Mode));
+ assert_param(IS_UART_HARDWARE_FLOW_CONTROL(huart->Init.HwFlowCtl));
+ assert_param(IS_UART_OVERSAMPLING(huart->Init.OverSampling));
+ assert_param(IS_UART_PRESCALER(huart->Init.ClockPrescaler));
+
+ /*-------------------------- USART CR1 Configuration -----------------------*/
+ /* Clear M, PCE, PS, TE, RE and OVER8 bits and configure
+ * the UART Word Length, Parity, Mode and oversampling:
+ * set the M bits according to huart->Init.WordLength value
+ * set PCE and PS bits according to huart->Init.Parity value
+ * set TE and RE bits according to huart->Init.Mode value
+ * set OVER8 bit according to huart->Init.OverSampling value */
+ tmpreg = (uint32_t)huart->Init.WordLength | huart->Init.Parity | huart->Init.Mode | huart->Init.OverSampling ;
+ MODIFY_REG(huart->Instance->CR1, USART_CR1_FIELDS, tmpreg);
+
+ /*-------------------------- USART CR2 Configuration -----------------------*/
+ /* Configure the UART Stop Bits: Set STOP[13:12] bits according
+ * to huart->Init.StopBits value */
+ MODIFY_REG(huart->Instance->CR2, USART_CR2_STOP, huart->Init.StopBits);
+
+ /*-------------------------- USART CR3 Configuration -----------------------*/
+ /* Configure
+ * - UART HardWare Flow Control: set CTSE and RTSE bits according
+ * to huart->Init.HwFlowCtl value
+ * - one-bit sampling method versus three samples' majority rule according
+ * to huart->Init.OneBitSampling (not applicable to LPUART) */
+ tmpreg = (uint32_t)huart->Init.HwFlowCtl;
+
+ if (!(UART_INSTANCE_LOWPOWER(huart)))
+ {
+ tmpreg |= huart->Init.OneBitSampling;
+ }
+ MODIFY_REG(huart->Instance->CR3, USART_CR3_FIELDS, tmpreg);
+
+ /*-------------------------- USART PRESC Configuration -----------------------*/
+ /* Configure
+ * - UART Clock Prescaler : set PRESCALER according to huart->Init.ClockPrescaler value */
+ MODIFY_REG(huart->Instance->PRESC, USART_PRESC_PRESCALER, huart->Init.ClockPrescaler);
+
+ /*-------------------------- USART BRR Configuration -----------------------*/
+ UART_GETCLOCKSOURCE(huart, clocksource);
+
+ /* Check LPUART instance */
+ if (UART_INSTANCE_LOWPOWER(huart))
+ {
+ /* Retrieve frequency clock */
+ switch (clocksource)
+ {
+ case UART_CLOCKSOURCE_D3PCLK1:
+ pclk = HAL_RCCEx_GetD3PCLK1Freq();
+ break;
+ case UART_CLOCKSOURCE_PLL2:
+ HAL_RCCEx_GetPLL2ClockFreq(&pll2_clocks);
+ pclk = pll2_clocks.PLL2_Q_Frequency;
+ break;
+ case UART_CLOCKSOURCE_PLL3:
+ HAL_RCCEx_GetPLL3ClockFreq(&pll3_clocks);
+ pclk = pll3_clocks.PLL3_Q_Frequency;
+ break;
+ case UART_CLOCKSOURCE_HSI:
+ if (__HAL_RCC_GET_FLAG(RCC_FLAG_HSIDIV) != 0U)
+ {
+ pclk = (uint32_t)(HSI_VALUE >> (__HAL_RCC_GET_HSI_DIVIDER() >> 3U));
+ }
+ else
+ {
+ pclk = (uint32_t) HSI_VALUE;
+ }
+ break;
+ case UART_CLOCKSOURCE_CSI:
+ pclk = (uint32_t) CSI_VALUE;
+ break;
+ case UART_CLOCKSOURCE_LSE:
+ pclk = (uint32_t) LSE_VALUE;
+ break;
+ default:
+ pclk = 0U;
+ ret = HAL_ERROR;
+ break;
+ }
+
+ /* If proper clock source reported */
+ if (pclk != 0U)
+ {
+ /* Compute clock after Prescaler */
+ lpuart_ker_ck_pres = (pclk / UARTPrescTable[huart->Init.ClockPrescaler]);
+
+ /* Ensure that Frequency clock is in the range [3 * baudrate, 4096 * baudrate] */
+ if ((lpuart_ker_ck_pres < (3U * huart->Init.BaudRate)) ||
+ (lpuart_ker_ck_pres > (4096U * huart->Init.BaudRate)))
+ {
+ ret = HAL_ERROR;
+ }
+ else
+ {
+ /* Check computed UsartDiv value is in allocated range
+ (it is forbidden to write values lower than 0x300 in the LPUART_BRR register) */
+ usartdiv = (uint32_t)(UART_DIV_LPUART(pclk, huart->Init.BaudRate, huart->Init.ClockPrescaler));
+ if ((usartdiv >= LPUART_BRR_MIN) && (usartdiv <= LPUART_BRR_MAX))
+ {
+ huart->Instance->BRR = usartdiv;
+ }
+ else
+ {
+ ret = HAL_ERROR;
+ }
+ } /* if ( (lpuart_ker_ck_pres < (3 * huart->Init.BaudRate) ) ||
+ (lpuart_ker_ck_pres > (4096 * huart->Init.BaudRate) )) */
+ } /* if (pclk != 0) */
+ }
+ /* Check UART Over Sampling to set Baud Rate Register */
+ else if (huart->Init.OverSampling == UART_OVERSAMPLING_8)
+ {
+ switch (clocksource)
+ {
+ case UART_CLOCKSOURCE_D2PCLK1:
+ pclk = HAL_RCC_GetPCLK1Freq();
+ break;
+ case UART_CLOCKSOURCE_D2PCLK2:
+ pclk = HAL_RCC_GetPCLK2Freq();
+ break;
+ case UART_CLOCKSOURCE_PLL2:
+ HAL_RCCEx_GetPLL2ClockFreq(&pll2_clocks);
+ pclk = pll2_clocks.PLL2_Q_Frequency;
+ break;
+ case UART_CLOCKSOURCE_PLL3:
+ HAL_RCCEx_GetPLL3ClockFreq(&pll3_clocks);
+ pclk = pll3_clocks.PLL3_Q_Frequency;
+ break;
+ case UART_CLOCKSOURCE_HSI:
+ if (__HAL_RCC_GET_FLAG(RCC_FLAG_HSIDIV) != 0U)
+ {
+ pclk = (uint32_t)(HSI_VALUE >> (__HAL_RCC_GET_HSI_DIVIDER() >> 3U));
+ }
+ else
+ {
+ pclk = (uint32_t) HSI_VALUE;
+ }
+ break;
+ case UART_CLOCKSOURCE_CSI:
+ pclk = (uint32_t) CSI_VALUE;
+ break;
+ case UART_CLOCKSOURCE_LSE:
+ pclk = (uint32_t) LSE_VALUE;
+ break;
+ default:
+ pclk = 0U;
+ ret = HAL_ERROR;
+ break;
+ }
+
+ /* USARTDIV must be greater than or equal to 0d16 */
+ if (pclk != 0U)
+ {
+ usartdiv = (uint32_t)(UART_DIV_SAMPLING8(pclk, huart->Init.BaudRate, huart->Init.ClockPrescaler));
+ if ((usartdiv >= UART_BRR_MIN) && (usartdiv <= UART_BRR_MAX))
+ {
+ brrtemp = (uint16_t)(usartdiv & 0xFFF0U);
+ brrtemp |= (uint16_t)((usartdiv & (uint16_t)0x000FU) >> 1U);
+ huart->Instance->BRR = brrtemp;
+ }
+ else
+ {
+ ret = HAL_ERROR;
+ }
+ }
+ }
+ else
+ {
+ switch (clocksource)
+ {
+ case UART_CLOCKSOURCE_D2PCLK1:
+ pclk = HAL_RCC_GetPCLK1Freq();
+ break;
+ case UART_CLOCKSOURCE_D2PCLK2:
+ pclk = HAL_RCC_GetPCLK2Freq();
+ break;
+ case UART_CLOCKSOURCE_PLL2:
+ HAL_RCCEx_GetPLL2ClockFreq(&pll2_clocks);
+ pclk = pll2_clocks.PLL2_Q_Frequency;
+ break;
+ case UART_CLOCKSOURCE_PLL3:
+ HAL_RCCEx_GetPLL3ClockFreq(&pll3_clocks);
+ pclk = pll3_clocks.PLL3_Q_Frequency;
+ break;
+ case UART_CLOCKSOURCE_HSI:
+ if (__HAL_RCC_GET_FLAG(RCC_FLAG_HSIDIV) != 0U)
+ {
+ pclk = (uint32_t)(HSI_VALUE >> (__HAL_RCC_GET_HSI_DIVIDER() >> 3U));
+ }
+ else
+ {
+ pclk = (uint32_t) HSI_VALUE;
+ }
+ break;
+ case UART_CLOCKSOURCE_CSI:
+ pclk = (uint32_t) CSI_VALUE;
+ break;
+ case UART_CLOCKSOURCE_LSE:
+ pclk = (uint32_t) LSE_VALUE;
+ break;
+ default:
+ pclk = 0U;
+ ret = HAL_ERROR;
+ break;
+ }
+
+ if (pclk != 0U)
+ {
+ /* USARTDIV must be greater than or equal to 0d16 */
+ usartdiv = (uint32_t)(UART_DIV_SAMPLING16(pclk, huart->Init.BaudRate, huart->Init.ClockPrescaler));
+ if ((usartdiv >= UART_BRR_MIN) && (usartdiv <= UART_BRR_MAX))
+ {
+ huart->Instance->BRR = (uint16_t)usartdiv;
+ }
+ else
+ {
+ ret = HAL_ERROR;
+ }
+ }
+ }
+
+ /* Initialize the number of data to process during RX/TX ISR execution */
+ huart->NbTxDataToProcess = 1;
+ huart->NbRxDataToProcess = 1;
+
+ /* Clear ISR function pointers */
+ huart->RxISR = NULL;
+ huart->TxISR = NULL;
+
+ return ret;
+}
+
+/**
+ * @brief Configure the UART peripheral advanced features.
+ * @param huart UART handle.
+ * @retval None
+ */
+void UART_AdvFeatureConfig(UART_HandleTypeDef *huart)
+{
+ /* Check whether the set of advanced features to configure is properly set */
+ assert_param(IS_UART_ADVFEATURE_INIT(huart->AdvancedInit.AdvFeatureInit));
+
+ /* if required, configure RX/TX pins swap */
+ if (HAL_IS_BIT_SET(huart->AdvancedInit.AdvFeatureInit, UART_ADVFEATURE_SWAP_INIT))
+ {
+ assert_param(IS_UART_ADVFEATURE_SWAP(huart->AdvancedInit.Swap));
+ MODIFY_REG(huart->Instance->CR2, USART_CR2_SWAP, huart->AdvancedInit.Swap);
+ }
+
+ /* if required, configure TX pin active level inversion */
+ if (HAL_IS_BIT_SET(huart->AdvancedInit.AdvFeatureInit, UART_ADVFEATURE_TXINVERT_INIT))
+ {
+ assert_param(IS_UART_ADVFEATURE_TXINV(huart->AdvancedInit.TxPinLevelInvert));
+ MODIFY_REG(huart->Instance->CR2, USART_CR2_TXINV, huart->AdvancedInit.TxPinLevelInvert);
+ }
+
+ /* if required, configure RX pin active level inversion */
+ if (HAL_IS_BIT_SET(huart->AdvancedInit.AdvFeatureInit, UART_ADVFEATURE_RXINVERT_INIT))
+ {
+ assert_param(IS_UART_ADVFEATURE_RXINV(huart->AdvancedInit.RxPinLevelInvert));
+ MODIFY_REG(huart->Instance->CR2, USART_CR2_RXINV, huart->AdvancedInit.RxPinLevelInvert);
+ }
+
+ /* if required, configure data inversion */
+ if (HAL_IS_BIT_SET(huart->AdvancedInit.AdvFeatureInit, UART_ADVFEATURE_DATAINVERT_INIT))
+ {
+ assert_param(IS_UART_ADVFEATURE_DATAINV(huart->AdvancedInit.DataInvert));
+ MODIFY_REG(huart->Instance->CR2, USART_CR2_DATAINV, huart->AdvancedInit.DataInvert);
+ }
+
+ /* if required, configure RX overrun detection disabling */
+ if (HAL_IS_BIT_SET(huart->AdvancedInit.AdvFeatureInit, UART_ADVFEATURE_RXOVERRUNDISABLE_INIT))
+ {
+ assert_param(IS_UART_OVERRUN(huart->AdvancedInit.OverrunDisable));
+ MODIFY_REG(huart->Instance->CR3, USART_CR3_OVRDIS, huart->AdvancedInit.OverrunDisable);
+ }
+
+ /* if required, configure DMA disabling on reception error */
+ if (HAL_IS_BIT_SET(huart->AdvancedInit.AdvFeatureInit, UART_ADVFEATURE_DMADISABLEONERROR_INIT))
+ {
+ assert_param(IS_UART_ADVFEATURE_DMAONRXERROR(huart->AdvancedInit.DMADisableonRxError));
+ MODIFY_REG(huart->Instance->CR3, USART_CR3_DDRE, huart->AdvancedInit.DMADisableonRxError);
+ }
+
+ /* if required, configure auto Baud rate detection scheme */
+ if (HAL_IS_BIT_SET(huart->AdvancedInit.AdvFeatureInit, UART_ADVFEATURE_AUTOBAUDRATE_INIT))
+ {
+ assert_param(IS_USART_AUTOBAUDRATE_DETECTION_INSTANCE(huart->Instance));
+ assert_param(IS_UART_ADVFEATURE_AUTOBAUDRATE(huart->AdvancedInit.AutoBaudRateEnable));
+ MODIFY_REG(huart->Instance->CR2, USART_CR2_ABREN, huart->AdvancedInit.AutoBaudRateEnable);
+ /* set auto Baudrate detection parameters if detection is enabled */
+ if (huart->AdvancedInit.AutoBaudRateEnable == UART_ADVFEATURE_AUTOBAUDRATE_ENABLE)
+ {
+ assert_param(IS_UART_ADVFEATURE_AUTOBAUDRATEMODE(huart->AdvancedInit.AutoBaudRateMode));
+ MODIFY_REG(huart->Instance->CR2, USART_CR2_ABRMODE, huart->AdvancedInit.AutoBaudRateMode);
+ }
+ }
+
+ /* if required, configure MSB first on communication line */
+ if (HAL_IS_BIT_SET(huart->AdvancedInit.AdvFeatureInit, UART_ADVFEATURE_MSBFIRST_INIT))
+ {
+ assert_param(IS_UART_ADVFEATURE_MSBFIRST(huart->AdvancedInit.MSBFirst));
+ MODIFY_REG(huart->Instance->CR2, USART_CR2_MSBFIRST, huart->AdvancedInit.MSBFirst);
+ }
+}
+
+/**
+ * @brief Check the UART Idle State.
+ * @param huart UART handle.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef UART_CheckIdleState(UART_HandleTypeDef *huart)
+{
+ uint32_t tickstart;
+
+ /* Initialize the UART ErrorCode */
+ huart->ErrorCode = HAL_UART_ERROR_NONE;
+
+ /* Init tickstart for timeout management */
+ tickstart = HAL_GetTick();
+
+ /* Check if the Transmitter is enabled */
+ if ((huart->Instance->CR1 & USART_CR1_TE) == USART_CR1_TE)
+ {
+ /* Wait until TEACK flag is set */
+ if (UART_WaitOnFlagUntilTimeout(huart, USART_ISR_TEACK, RESET, tickstart, HAL_UART_TIMEOUT_VALUE) != HAL_OK)
+ {
+ /* Disable TXE interrupt for the interrupt process */
+ ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_TXEIE_TXFNFIE));
+
+ huart->gState = HAL_UART_STATE_READY;
+
+ __HAL_UNLOCK(huart);
+
+ /* Timeout occurred */
+ return HAL_TIMEOUT;
+ }
+ }
+
+ /* Check if the Receiver is enabled */
+ if ((huart->Instance->CR1 & USART_CR1_RE) == USART_CR1_RE)
+ {
+ /* Wait until REACK flag is set */
+ if (UART_WaitOnFlagUntilTimeout(huart, USART_ISR_REACK, RESET, tickstart, HAL_UART_TIMEOUT_VALUE) != HAL_OK)
+ {
+ /* Disable RXNE, PE and ERR (Frame error, noise error, overrun error)
+ interrupts for the interrupt process */
+ ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE_RXFNEIE | USART_CR1_PEIE));
+ ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);
+
+ huart->RxState = HAL_UART_STATE_READY;
+
+ __HAL_UNLOCK(huart);
+
+ /* Timeout occurred */
+ return HAL_TIMEOUT;
+ }
+ }
+
+ /* Initialize the UART State */
+ huart->gState = HAL_UART_STATE_READY;
+ huart->RxState = HAL_UART_STATE_READY;
+ huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
+ huart->RxEventType = HAL_UART_RXEVENT_TC;
+
+ __HAL_UNLOCK(huart);
+
+ return HAL_OK;
+}
+
+/**
+ * @brief This function handles UART Communication Timeout. It waits
+ * until a flag is no longer in the specified status.
+ * @param huart UART handle.
+ * @param Flag Specifies the UART flag to check
+ * @param Status The actual Flag status (SET or RESET)
+ * @param Tickstart Tick start value
+ * @param Timeout Timeout duration
+ * @retval HAL status
+ */
+HAL_StatusTypeDef UART_WaitOnFlagUntilTimeout(UART_HandleTypeDef *huart, uint32_t Flag, FlagStatus Status,
+ uint32_t Tickstart, uint32_t Timeout)
+{
+ /* Wait until flag is set */
+ while ((__HAL_UART_GET_FLAG(huart, Flag) ? SET : RESET) == Status)
+ {
+ /* Check for the Timeout */
+ if (Timeout != HAL_MAX_DELAY)
+ {
+ if (((HAL_GetTick() - Tickstart) > Timeout) || (Timeout == 0U))
+ {
+
+ return HAL_TIMEOUT;
+ }
+
+ if (READ_BIT(huart->Instance->CR1, USART_CR1_RE) != 0U)
+ {
+ if (__HAL_UART_GET_FLAG(huart, UART_FLAG_ORE) == SET)
+ {
+ /* Clear Overrun Error flag*/
+ __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_OREF);
+
+ /* Blocking error : transfer is aborted
+ Set the UART state ready to be able to start again the process,
+ Disable Rx Interrupts if ongoing */
+ UART_EndRxTransfer(huart);
+
+ huart->ErrorCode = HAL_UART_ERROR_ORE;
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(huart);
+
+ return HAL_ERROR;
+ }
+ if (__HAL_UART_GET_FLAG(huart, UART_FLAG_RTOF) == SET)
+ {
+ /* Clear Receiver Timeout flag*/
+ __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_RTOF);
+
+ /* Blocking error : transfer is aborted
+ Set the UART state ready to be able to start again the process,
+ Disable Rx Interrupts if ongoing */
+ UART_EndRxTransfer(huart);
+
+ huart->ErrorCode = HAL_UART_ERROR_RTO;
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(huart);
+
+ return HAL_TIMEOUT;
+ }
+ }
+ }
+ }
+ return HAL_OK;
+}
+
+/**
+ * @brief Start Receive operation in interrupt mode.
+ * @note This function could be called by all HAL UART API providing reception in Interrupt mode.
+ * @note When calling this function, parameters validity is considered as already checked,
+ * i.e. Rx State, buffer address, ...
+ * UART Handle is assumed as Locked.
+ * @param huart UART handle.
+ * @param pData Pointer to data buffer (u8 or u16 data elements).
+ * @param Size Amount of data elements (u8 or u16) to be received.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef UART_Start_Receive_IT(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size)
+{
+ huart->pRxBuffPtr = pData;
+ huart->RxXferSize = Size;
+ huart->RxXferCount = Size;
+ huart->RxISR = NULL;
+
+ /* Computation of UART mask to apply to RDR register */
+ UART_MASK_COMPUTATION(huart);
+
+ huart->ErrorCode = HAL_UART_ERROR_NONE;
+ huart->RxState = HAL_UART_STATE_BUSY_RX;
+
+ /* Enable the UART Error Interrupt: (Frame error, noise error, overrun error) */
+ ATOMIC_SET_BIT(huart->Instance->CR3, USART_CR3_EIE);
+
+ /* Configure Rx interrupt processing */
+ if ((huart->FifoMode == UART_FIFOMODE_ENABLE) && (Size >= huart->NbRxDataToProcess))
+ {
+ /* Set the Rx ISR function pointer according to the data word length */
+ if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE))
+ {
+ huart->RxISR = UART_RxISR_16BIT_FIFOEN;
+ }
+ else
+ {
+ huart->RxISR = UART_RxISR_8BIT_FIFOEN;
+ }
+
+ /* Enable the UART Parity Error interrupt and RX FIFO Threshold interrupt */
+ if (huart->Init.Parity != UART_PARITY_NONE)
+ {
+ ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_PEIE);
+ }
+ ATOMIC_SET_BIT(huart->Instance->CR3, USART_CR3_RXFTIE);
+ }
+ else
+ {
+ /* Set the Rx ISR function pointer according to the data word length */
+ if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE))
+ {
+ huart->RxISR = UART_RxISR_16BIT;
+ }
+ else
+ {
+ huart->RxISR = UART_RxISR_8BIT;
+ }
+
+ /* Enable the UART Parity Error interrupt and Data Register Not Empty interrupt */
+ if (huart->Init.Parity != UART_PARITY_NONE)
+ {
+ ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_PEIE | USART_CR1_RXNEIE_RXFNEIE);
+ }
+ else
+ {
+ ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_RXNEIE_RXFNEIE);
+ }
+ }
+ return HAL_OK;
+}
+
+/**
+ * @brief Start Receive operation in DMA mode.
+ * @note This function could be called by all HAL UART API providing reception in DMA mode.
+ * @note When calling this function, parameters validity is considered as already checked,
+ * i.e. Rx State, buffer address, ...
+ * UART Handle is assumed as Locked.
+ * @param huart UART handle.
+ * @param pData Pointer to data buffer (u8 or u16 data elements).
+ * @param Size Amount of data elements (u8 or u16) to be received.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef UART_Start_Receive_DMA(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size)
+{
+ huart->pRxBuffPtr = pData;
+ huart->RxXferSize = Size;
+
+ huart->ErrorCode = HAL_UART_ERROR_NONE;
+ huart->RxState = HAL_UART_STATE_BUSY_RX;
+
+ if (huart->hdmarx != NULL)
+ {
+ /* Set the UART DMA transfer complete callback */
+ huart->hdmarx->XferCpltCallback = UART_DMAReceiveCplt;
+
+ /* Set the UART DMA Half transfer complete callback */
+ huart->hdmarx->XferHalfCpltCallback = UART_DMARxHalfCplt;
+
+ /* Set the DMA error callback */
+ huart->hdmarx->XferErrorCallback = UART_DMAError;
+
+ /* Set the DMA abort callback */
+ huart->hdmarx->XferAbortCallback = NULL;
+
+ /* Enable the DMA channel */
+ if (HAL_DMA_Start_IT(huart->hdmarx, (uint32_t)&huart->Instance->RDR, (uint32_t)huart->pRxBuffPtr, Size) != HAL_OK)
+ {
+ /* Set error code to DMA */
+ huart->ErrorCode = HAL_UART_ERROR_DMA;
+
+ /* Restore huart->RxState to ready */
+ huart->RxState = HAL_UART_STATE_READY;
+
+ return HAL_ERROR;
+ }
+ }
+
+ /* Enable the UART Parity Error Interrupt */
+ if (huart->Init.Parity != UART_PARITY_NONE)
+ {
+ ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_PEIE);
+ }
+
+ /* Enable the UART Error Interrupt: (Frame error, noise error, overrun error) */
+ ATOMIC_SET_BIT(huart->Instance->CR3, USART_CR3_EIE);
+
+ /* Enable the DMA transfer for the receiver request by setting the DMAR bit
+ in the UART CR3 register */
+ ATOMIC_SET_BIT(huart->Instance->CR3, USART_CR3_DMAR);
+
+ return HAL_OK;
+}
+
+
+/**
+ * @brief End ongoing Tx transfer on UART peripheral (following error detection or Transmit completion).
+ * @param huart UART handle.
+ * @retval None
+ */
+static void UART_EndTxTransfer(UART_HandleTypeDef *huart)
+{
+ /* Disable TXEIE, TCIE, TXFT interrupts */
+ ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_TXEIE_TXFNFIE | USART_CR1_TCIE));
+ ATOMIC_CLEAR_BIT(huart->Instance->CR3, (USART_CR3_TXFTIE));
+
+ /* At end of Tx process, restore huart->gState to Ready */
+ huart->gState = HAL_UART_STATE_READY;
+}
+
+
+/**
+ * @brief End ongoing Rx transfer on UART peripheral (following error detection or Reception completion).
+ * @param huart UART handle.
+ * @retval None
+ */
+static void UART_EndRxTransfer(UART_HandleTypeDef *huart)
+{
+ /* Disable RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */
+ ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE_RXFNEIE | USART_CR1_PEIE));
+ ATOMIC_CLEAR_BIT(huart->Instance->CR3, (USART_CR3_EIE | USART_CR3_RXFTIE));
+
+ /* In case of reception waiting for IDLE event, disable also the IDLE IE interrupt source */
+ if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
+ {
+ ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_IDLEIE);
+ }
+
+ /* At end of Rx process, restore huart->RxState to Ready */
+ huart->RxState = HAL_UART_STATE_READY;
+ huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
+
+ /* Reset RxIsr function pointer */
+ huart->RxISR = NULL;
+}
+
+
+/**
+ * @brief DMA UART transmit process complete callback.
+ * @param hdma DMA handle.
+ * @retval None
+ */
+static void UART_DMATransmitCplt(DMA_HandleTypeDef *hdma)
+{
+ UART_HandleTypeDef *huart = (UART_HandleTypeDef *)(hdma->Parent);
+
+ /* DMA Normal mode */
+ if (hdma->Init.Mode != DMA_CIRCULAR)
+ {
+ huart->TxXferCount = 0U;
+
+ /* Disable the DMA transfer for transmit request by resetting the DMAT bit
+ in the UART CR3 register */
+ ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT);
+
+ /* Enable the UART Transmit Complete Interrupt */
+ ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_TCIE);
+ }
+ /* DMA Circular mode */
+ else
+ {
+#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
+ /*Call registered Tx complete callback*/
+ huart->TxCpltCallback(huart);
+#else
+ /*Call legacy weak Tx complete callback*/
+ HAL_UART_TxCpltCallback(huart);
+#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
+ }
+}
+
+/**
+ * @brief DMA UART transmit process half complete callback.
+ * @param hdma DMA handle.
+ * @retval None
+ */
+static void UART_DMATxHalfCplt(DMA_HandleTypeDef *hdma)
+{
+ UART_HandleTypeDef *huart = (UART_HandleTypeDef *)(hdma->Parent);
+
+#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
+ /*Call registered Tx Half complete callback*/
+ huart->TxHalfCpltCallback(huart);
+#else
+ /*Call legacy weak Tx Half complete callback*/
+ HAL_UART_TxHalfCpltCallback(huart);
+#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
+}
+
+/**
+ * @brief DMA UART receive process complete callback.
+ * @param hdma DMA handle.
+ * @retval None
+ */
+static void UART_DMAReceiveCplt(DMA_HandleTypeDef *hdma)
+{
+ UART_HandleTypeDef *huart = (UART_HandleTypeDef *)(hdma->Parent);
+
+ /* DMA Normal mode */
+ if (hdma->Init.Mode != DMA_CIRCULAR)
+ {
+ huart->RxXferCount = 0U;
+
+ /* Disable PE and ERR (Frame error, noise error, overrun error) interrupts */
+ ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_PEIE);
+ ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);
+
+ /* Disable the DMA transfer for the receiver request by resetting the DMAR bit
+ in the UART CR3 register */
+ ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR);
+
+ /* At end of Rx process, restore huart->RxState to Ready */
+ huart->RxState = HAL_UART_STATE_READY;
+
+ /* If Reception till IDLE event has been selected, Disable IDLE Interrupt */
+ if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
+ {
+ ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_IDLEIE);
+ }
+ }
+
+ /* Initialize type of RxEvent that correspond to RxEvent callback execution;
+ In this case, Rx Event type is Transfer Complete */
+ huart->RxEventType = HAL_UART_RXEVENT_TC;
+
+ /* Check current reception Mode :
+ If Reception till IDLE event has been selected : use Rx Event callback */
+ if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
+ {
+#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
+ /*Call registered Rx Event callback*/
+ huart->RxEventCallback(huart, huart->RxXferSize);
+#else
+ /*Call legacy weak Rx Event callback*/
+ HAL_UARTEx_RxEventCallback(huart, huart->RxXferSize);
+#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
+ }
+ else
+ {
+ /* In other cases : use Rx Complete callback */
+#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
+ /*Call registered Rx complete callback*/
+ huart->RxCpltCallback(huart);
+#else
+ /*Call legacy weak Rx complete callback*/
+ HAL_UART_RxCpltCallback(huart);
+#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
+ }
+}
+
+/**
+ * @brief DMA UART receive process half complete callback.
+ * @param hdma DMA handle.
+ * @retval None
+ */
+static void UART_DMARxHalfCplt(DMA_HandleTypeDef *hdma)
+{
+ UART_HandleTypeDef *huart = (UART_HandleTypeDef *)(hdma->Parent);
+
+ /* Initialize type of RxEvent that correspond to RxEvent callback execution;
+ In this case, Rx Event type is Half Transfer */
+ huart->RxEventType = HAL_UART_RXEVENT_HT;
+
+ /* Check current reception Mode :
+ If Reception till IDLE event has been selected : use Rx Event callback */
+ if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
+ {
+#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
+ /*Call registered Rx Event callback*/
+ huart->RxEventCallback(huart, huart->RxXferSize / 2U);
+#else
+ /*Call legacy weak Rx Event callback*/
+ HAL_UARTEx_RxEventCallback(huart, huart->RxXferSize / 2U);
+#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
+ }
+ else
+ {
+ /* In other cases : use Rx Half Complete callback */
+#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
+ /*Call registered Rx Half complete callback*/
+ huart->RxHalfCpltCallback(huart);
+#else
+ /*Call legacy weak Rx Half complete callback*/
+ HAL_UART_RxHalfCpltCallback(huart);
+#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
+ }
+}
+
+/**
+ * @brief DMA UART communication error callback.
+ * @param hdma DMA handle.
+ * @retval None
+ */
+static void UART_DMAError(DMA_HandleTypeDef *hdma)
+{
+ UART_HandleTypeDef *huart = (UART_HandleTypeDef *)(hdma->Parent);
+
+ const HAL_UART_StateTypeDef gstate = huart->gState;
+ const HAL_UART_StateTypeDef rxstate = huart->RxState;
+
+ /* Stop UART DMA Tx request if ongoing */
+ if ((HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT)) &&
+ (gstate == HAL_UART_STATE_BUSY_TX))
+ {
+ huart->TxXferCount = 0U;
+ UART_EndTxTransfer(huart);
+ }
+
+ /* Stop UART DMA Rx request if ongoing */
+ if ((HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR)) &&
+ (rxstate == HAL_UART_STATE_BUSY_RX))
+ {
+ huart->RxXferCount = 0U;
+ UART_EndRxTransfer(huart);
+ }
+
+ huart->ErrorCode |= HAL_UART_ERROR_DMA;
+
+#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
+ /*Call registered error callback*/
+ huart->ErrorCallback(huart);
+#else
+ /*Call legacy weak error callback*/
+ HAL_UART_ErrorCallback(huart);
+#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
+}
+
+/**
+ * @brief DMA UART communication abort callback, when initiated by HAL services on Error
+ * (To be called at end of DMA Abort procedure following error occurrence).
+ * @param hdma DMA handle.
+ * @retval None
+ */
+static void UART_DMAAbortOnError(DMA_HandleTypeDef *hdma)
+{
+ UART_HandleTypeDef *huart = (UART_HandleTypeDef *)(hdma->Parent);
+ huart->RxXferCount = 0U;
+ huart->TxXferCount = 0U;
+
+#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
+ /*Call registered error callback*/
+ huart->ErrorCallback(huart);
+#else
+ /*Call legacy weak error callback*/
+ HAL_UART_ErrorCallback(huart);
+#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
+}
+
+/**
+ * @brief DMA UART Tx communication abort callback, when initiated by user
+ * (To be called at end of DMA Tx Abort procedure following user abort request).
+ * @note When this callback is executed, User Abort complete call back is called only if no
+ * Abort still ongoing for Rx DMA Handle.
+ * @param hdma DMA handle.
+ * @retval None
+ */
+static void UART_DMATxAbortCallback(DMA_HandleTypeDef *hdma)
+{
+ UART_HandleTypeDef *huart = (UART_HandleTypeDef *)(hdma->Parent);
+
+ huart->hdmatx->XferAbortCallback = NULL;
+
+ /* Check if an Abort process is still ongoing */
+ if (huart->hdmarx != NULL)
+ {
+ if (huart->hdmarx->XferAbortCallback != NULL)
+ {
+ return;
+ }
+ }
+
+ /* No Abort process still ongoing : All DMA channels are aborted, call user Abort Complete callback */
+ huart->TxXferCount = 0U;
+ huart->RxXferCount = 0U;
+
+ /* Reset errorCode */
+ huart->ErrorCode = HAL_UART_ERROR_NONE;
+
+ /* Clear the Error flags in the ICR register */
+ __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_OREF | UART_CLEAR_NEF | UART_CLEAR_PEF | UART_CLEAR_FEF);
+
+ /* Flush the whole TX FIFO (if needed) */
+ if (huart->FifoMode == UART_FIFOMODE_ENABLE)
+ {
+ __HAL_UART_SEND_REQ(huart, UART_TXDATA_FLUSH_REQUEST);
+ }
+
+ /* Restore huart->gState and huart->RxState to Ready */
+ huart->gState = HAL_UART_STATE_READY;
+ huart->RxState = HAL_UART_STATE_READY;
+ huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
+
+ /* Call user Abort complete callback */
+#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
+ /* Call registered Abort complete callback */
+ huart->AbortCpltCallback(huart);
+#else
+ /* Call legacy weak Abort complete callback */
+ HAL_UART_AbortCpltCallback(huart);
+#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
+}
+
+
+/**
+ * @brief DMA UART Rx communication abort callback, when initiated by user
+ * (To be called at end of DMA Rx Abort procedure following user abort request).
+ * @note When this callback is executed, User Abort complete call back is called only if no
+ * Abort still ongoing for Tx DMA Handle.
+ * @param hdma DMA handle.
+ * @retval None
+ */
+static void UART_DMARxAbortCallback(DMA_HandleTypeDef *hdma)
+{
+ UART_HandleTypeDef *huart = (UART_HandleTypeDef *)(hdma->Parent);
+
+ huart->hdmarx->XferAbortCallback = NULL;
+
+ /* Check if an Abort process is still ongoing */
+ if (huart->hdmatx != NULL)
+ {
+ if (huart->hdmatx->XferAbortCallback != NULL)
+ {
+ return;
+ }
+ }
+
+ /* No Abort process still ongoing : All DMA channels are aborted, call user Abort Complete callback */
+ huart->TxXferCount = 0U;
+ huart->RxXferCount = 0U;
+
+ /* Reset errorCode */
+ huart->ErrorCode = HAL_UART_ERROR_NONE;
+
+ /* Clear the Error flags in the ICR register */
+ __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_OREF | UART_CLEAR_NEF | UART_CLEAR_PEF | UART_CLEAR_FEF);
+
+ /* Discard the received data */
+ __HAL_UART_SEND_REQ(huart, UART_RXDATA_FLUSH_REQUEST);
+
+ /* Restore huart->gState and huart->RxState to Ready */
+ huart->gState = HAL_UART_STATE_READY;
+ huart->RxState = HAL_UART_STATE_READY;
+ huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
+
+ /* Call user Abort complete callback */
+#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
+ /* Call registered Abort complete callback */
+ huart->AbortCpltCallback(huart);
+#else
+ /* Call legacy weak Abort complete callback */
+ HAL_UART_AbortCpltCallback(huart);
+#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
+}
+
+
+/**
+ * @brief DMA UART Tx communication abort callback, when initiated by user by a call to
+ * HAL_UART_AbortTransmit_IT API (Abort only Tx transfer)
+ * (This callback is executed at end of DMA Tx Abort procedure following user abort request,
+ * and leads to user Tx Abort Complete callback execution).
+ * @param hdma DMA handle.
+ * @retval None
+ */
+static void UART_DMATxOnlyAbortCallback(DMA_HandleTypeDef *hdma)
+{
+ UART_HandleTypeDef *huart = (UART_HandleTypeDef *)(hdma->Parent);
+
+ huart->TxXferCount = 0U;
+
+ /* Flush the whole TX FIFO (if needed) */
+ if (huart->FifoMode == UART_FIFOMODE_ENABLE)
+ {
+ __HAL_UART_SEND_REQ(huart, UART_TXDATA_FLUSH_REQUEST);
+ }
+
+ /* Restore huart->gState to Ready */
+ huart->gState = HAL_UART_STATE_READY;
+
+ /* Call user Abort complete callback */
+#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
+ /* Call registered Abort Transmit Complete Callback */
+ huart->AbortTransmitCpltCallback(huart);
+#else
+ /* Call legacy weak Abort Transmit Complete Callback */
+ HAL_UART_AbortTransmitCpltCallback(huart);
+#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
+}
+
+/**
+ * @brief DMA UART Rx communication abort callback, when initiated by user by a call to
+ * HAL_UART_AbortReceive_IT API (Abort only Rx transfer)
+ * (This callback is executed at end of DMA Rx Abort procedure following user abort request,
+ * and leads to user Rx Abort Complete callback execution).
+ * @param hdma DMA handle.
+ * @retval None
+ */
+static void UART_DMARxOnlyAbortCallback(DMA_HandleTypeDef *hdma)
+{
+ UART_HandleTypeDef *huart = (UART_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
+
+ huart->RxXferCount = 0U;
+
+ /* Clear the Error flags in the ICR register */
+ __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_OREF | UART_CLEAR_NEF | UART_CLEAR_PEF | UART_CLEAR_FEF);
+
+ /* Discard the received data */
+ __HAL_UART_SEND_REQ(huart, UART_RXDATA_FLUSH_REQUEST);
+
+ /* Restore huart->RxState to Ready */
+ huart->RxState = HAL_UART_STATE_READY;
+ huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
+
+ /* Call user Abort complete callback */
+#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
+ /* Call registered Abort Receive Complete Callback */
+ huart->AbortReceiveCpltCallback(huart);
+#else
+ /* Call legacy weak Abort Receive Complete Callback */
+ HAL_UART_AbortReceiveCpltCallback(huart);
+#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
+}
+
+/**
+ * @brief TX interrupt handler for 7 or 8 bits data word length .
+ * @note Function is called under interruption only, once
+ * interruptions have been enabled by HAL_UART_Transmit_IT().
+ * @param huart UART handle.
+ * @retval None
+ */
+static void UART_TxISR_8BIT(UART_HandleTypeDef *huart)
+{
+ /* Check that a Tx process is ongoing */
+ if (huart->gState == HAL_UART_STATE_BUSY_TX)
+ {
+ if (huart->TxXferCount == 0U)
+ {
+ /* Disable the UART Transmit Data Register Empty Interrupt */
+ ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_TXEIE_TXFNFIE);
+
+ /* Enable the UART Transmit Complete Interrupt */
+ ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_TCIE);
+ }
+ else
+ {
+ huart->Instance->TDR = (uint8_t)(*huart->pTxBuffPtr & (uint8_t)0xFF);
+ huart->pTxBuffPtr++;
+ huart->TxXferCount--;
+ }
+ }
+}
+
+/**
+ * @brief TX interrupt handler for 9 bits data word length.
+ * @note Function is called under interruption only, once
+ * interruptions have been enabled by HAL_UART_Transmit_IT().
+ * @param huart UART handle.
+ * @retval None
+ */
+static void UART_TxISR_16BIT(UART_HandleTypeDef *huart)
+{
+ const uint16_t *tmp;
+
+ /* Check that a Tx process is ongoing */
+ if (huart->gState == HAL_UART_STATE_BUSY_TX)
+ {
+ if (huart->TxXferCount == 0U)
+ {
+ /* Disable the UART Transmit Data Register Empty Interrupt */
+ ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_TXEIE_TXFNFIE);
+
+ /* Enable the UART Transmit Complete Interrupt */
+ ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_TCIE);
+ }
+ else
+ {
+ tmp = (const uint16_t *) huart->pTxBuffPtr;
+ huart->Instance->TDR = (((uint32_t)(*tmp)) & 0x01FFUL);
+ huart->pTxBuffPtr += 2U;
+ huart->TxXferCount--;
+ }
+ }
+}
+
+/**
+ * @brief TX interrupt handler for 7 or 8 bits data word length and FIFO mode is enabled.
+ * @note Function is called under interruption only, once
+ * interruptions have been enabled by HAL_UART_Transmit_IT().
+ * @param huart UART handle.
+ * @retval None
+ */
+static void UART_TxISR_8BIT_FIFOEN(UART_HandleTypeDef *huart)
+{
+ uint16_t nb_tx_data;
+
+ /* Check that a Tx process is ongoing */
+ if (huart->gState == HAL_UART_STATE_BUSY_TX)
+ {
+ for (nb_tx_data = huart->NbTxDataToProcess ; nb_tx_data > 0U ; nb_tx_data--)
+ {
+ if (huart->TxXferCount == 0U)
+ {
+ /* Disable the TX FIFO threshold interrupt */
+ ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_TXFTIE);
+
+ /* Enable the UART Transmit Complete Interrupt */
+ ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_TCIE);
+
+ break; /* force exit loop */
+ }
+ else if (READ_BIT(huart->Instance->ISR, USART_ISR_TXE_TXFNF) != 0U)
+ {
+ huart->Instance->TDR = (uint8_t)(*huart->pTxBuffPtr & (uint8_t)0xFF);
+ huart->pTxBuffPtr++;
+ huart->TxXferCount--;
+ }
+ else
+ {
+ /* Nothing to do */
+ }
+ }
+ }
+}
+
+/**
+ * @brief TX interrupt handler for 9 bits data word length and FIFO mode is enabled.
+ * @note Function is called under interruption only, once
+ * interruptions have been enabled by HAL_UART_Transmit_IT().
+ * @param huart UART handle.
+ * @retval None
+ */
+static void UART_TxISR_16BIT_FIFOEN(UART_HandleTypeDef *huart)
+{
+ const uint16_t *tmp;
+ uint16_t nb_tx_data;
+
+ /* Check that a Tx process is ongoing */
+ if (huart->gState == HAL_UART_STATE_BUSY_TX)
+ {
+ for (nb_tx_data = huart->NbTxDataToProcess ; nb_tx_data > 0U ; nb_tx_data--)
+ {
+ if (huart->TxXferCount == 0U)
+ {
+ /* Disable the TX FIFO threshold interrupt */
+ ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_TXFTIE);
+
+ /* Enable the UART Transmit Complete Interrupt */
+ ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_TCIE);
+
+ break; /* force exit loop */
+ }
+ else if (READ_BIT(huart->Instance->ISR, USART_ISR_TXE_TXFNF) != 0U)
+ {
+ tmp = (const uint16_t *) huart->pTxBuffPtr;
+ huart->Instance->TDR = (((uint32_t)(*tmp)) & 0x01FFUL);
+ huart->pTxBuffPtr += 2U;
+ huart->TxXferCount--;
+ }
+ else
+ {
+ /* Nothing to do */
+ }
+ }
+ }
+}
+
+/**
+ * @brief Wrap up transmission in non-blocking mode.
+ * @param huart pointer to a UART_HandleTypeDef structure that contains
+ * the configuration information for the specified UART module.
+ * @retval None
+ */
+static void UART_EndTransmit_IT(UART_HandleTypeDef *huart)
+{
+ /* Disable the UART Transmit Complete Interrupt */
+ ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_TCIE);
+
+ /* Tx process is ended, restore huart->gState to Ready */
+ huart->gState = HAL_UART_STATE_READY;
+
+ /* Cleat TxISR function pointer */
+ huart->TxISR = NULL;
+
+#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
+ /*Call registered Tx complete callback*/
+ huart->TxCpltCallback(huart);
+#else
+ /*Call legacy weak Tx complete callback*/
+ HAL_UART_TxCpltCallback(huart);
+#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
+}
+
+/**
+ * @brief RX interrupt handler for 7 or 8 bits data word length .
+ * @param huart UART handle.
+ * @retval None
+ */
+static void UART_RxISR_8BIT(UART_HandleTypeDef *huart)
+{
+ uint16_t uhMask = huart->Mask;
+ uint16_t uhdata;
+
+ /* Check that a Rx process is ongoing */
+ if (huart->RxState == HAL_UART_STATE_BUSY_RX)
+ {
+ uhdata = (uint16_t) READ_REG(huart->Instance->RDR);
+ *huart->pRxBuffPtr = (uint8_t)(uhdata & (uint8_t)uhMask);
+ huart->pRxBuffPtr++;
+ huart->RxXferCount--;
+
+ if (huart->RxXferCount == 0U)
+ {
+ /* Disable the UART Parity Error Interrupt and RXNE interrupts */
+ ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE_RXFNEIE | USART_CR1_PEIE));
+
+ /* Disable the UART Error Interrupt: (Frame error, noise error, overrun error) */
+ ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);
+
+ /* Rx process is completed, restore huart->RxState to Ready */
+ huart->RxState = HAL_UART_STATE_READY;
+
+ /* Clear RxISR function pointer */
+ huart->RxISR = NULL;
+
+ /* Initialize type of RxEvent to Transfer Complete */
+ huart->RxEventType = HAL_UART_RXEVENT_TC;
+
+ if (!(IS_LPUART_INSTANCE(huart->Instance)))
+ {
+ /* Check that USART RTOEN bit is set */
+ if (READ_BIT(huart->Instance->CR2, USART_CR2_RTOEN) != 0U)
+ {
+ /* Enable the UART Receiver Timeout Interrupt */
+ ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_RTOIE);
+ }
+ }
+
+ /* Check current reception Mode :
+ If Reception till IDLE event has been selected : */
+ if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
+ {
+ /* Set reception type to Standard */
+ huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
+
+ /* Disable IDLE interrupt */
+ ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_IDLEIE);
+
+ if (__HAL_UART_GET_FLAG(huart, UART_FLAG_IDLE) == SET)
+ {
+ /* Clear IDLE Flag */
+ __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_IDLEF);
+ }
+
+#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
+ /*Call registered Rx Event callback*/
+ huart->RxEventCallback(huart, huart->RxXferSize);
+#else
+ /*Call legacy weak Rx Event callback*/
+ HAL_UARTEx_RxEventCallback(huart, huart->RxXferSize);
+#endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */
+ }
+ else
+ {
+ /* Standard reception API called */
+#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
+ /*Call registered Rx complete callback*/
+ huart->RxCpltCallback(huart);
+#else
+ /*Call legacy weak Rx complete callback*/
+ HAL_UART_RxCpltCallback(huart);
+#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
+ }
+ }
+ }
+ else
+ {
+ /* Clear RXNE interrupt flag */
+ __HAL_UART_SEND_REQ(huart, UART_RXDATA_FLUSH_REQUEST);
+ }
+}
+
+/**
+ * @brief RX interrupt handler for 9 bits data word length .
+ * @note Function is called under interruption only, once
+ * interruptions have been enabled by HAL_UART_Receive_IT()
+ * @param huart UART handle.
+ * @retval None
+ */
+static void UART_RxISR_16BIT(UART_HandleTypeDef *huart)
+{
+ uint16_t *tmp;
+ uint16_t uhMask = huart->Mask;
+ uint16_t uhdata;
+
+ /* Check that a Rx process is ongoing */
+ if (huart->RxState == HAL_UART_STATE_BUSY_RX)
+ {
+ uhdata = (uint16_t) READ_REG(huart->Instance->RDR);
+ tmp = (uint16_t *) huart->pRxBuffPtr ;
+ *tmp = (uint16_t)(uhdata & uhMask);
+ huart->pRxBuffPtr += 2U;
+ huart->RxXferCount--;
+
+ if (huart->RxXferCount == 0U)
+ {
+ /* Disable the UART Parity Error Interrupt and RXNE interrupt*/
+ ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE_RXFNEIE | USART_CR1_PEIE));
+
+ /* Disable the UART Error Interrupt: (Frame error, noise error, overrun error) */
+ ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);
+
+ /* Rx process is completed, restore huart->RxState to Ready */
+ huart->RxState = HAL_UART_STATE_READY;
+
+ /* Clear RxISR function pointer */
+ huart->RxISR = NULL;
+
+ /* Initialize type of RxEvent to Transfer Complete */
+ huart->RxEventType = HAL_UART_RXEVENT_TC;
+
+ if (!(IS_LPUART_INSTANCE(huart->Instance)))
+ {
+ /* Check that USART RTOEN bit is set */
+ if (READ_BIT(huart->Instance->CR2, USART_CR2_RTOEN) != 0U)
+ {
+ /* Enable the UART Receiver Timeout Interrupt */
+ ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_RTOIE);
+ }
+ }
+
+ /* Check current reception Mode :
+ If Reception till IDLE event has been selected : */
+ if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
+ {
+ /* Set reception type to Standard */
+ huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
+
+ /* Disable IDLE interrupt */
+ ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_IDLEIE);
+
+ if (__HAL_UART_GET_FLAG(huart, UART_FLAG_IDLE) == SET)
+ {
+ /* Clear IDLE Flag */
+ __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_IDLEF);
+ }
+
+#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
+ /*Call registered Rx Event callback*/
+ huart->RxEventCallback(huart, huart->RxXferSize);
+#else
+ /*Call legacy weak Rx Event callback*/
+ HAL_UARTEx_RxEventCallback(huart, huart->RxXferSize);
+#endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */
+ }
+ else
+ {
+ /* Standard reception API called */
+#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
+ /*Call registered Rx complete callback*/
+ huart->RxCpltCallback(huart);
+#else
+ /*Call legacy weak Rx complete callback*/
+ HAL_UART_RxCpltCallback(huart);
+#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
+ }
+ }
+ }
+ else
+ {
+ /* Clear RXNE interrupt flag */
+ __HAL_UART_SEND_REQ(huart, UART_RXDATA_FLUSH_REQUEST);
+ }
+}
+
+/**
+ * @brief RX interrupt handler for 7 or 8 bits data word length and FIFO mode is enabled.
+ * @note Function is called under interruption only, once
+ * interruptions have been enabled by HAL_UART_Receive_IT()
+ * @param huart UART handle.
+ * @retval None
+ */
+static void UART_RxISR_8BIT_FIFOEN(UART_HandleTypeDef *huart)
+{
+ uint16_t uhMask = huart->Mask;
+ uint16_t uhdata;
+ uint16_t nb_rx_data;
+ uint16_t rxdatacount;
+ uint32_t isrflags = READ_REG(huart->Instance->ISR);
+ uint32_t cr1its = READ_REG(huart->Instance->CR1);
+ uint32_t cr3its = READ_REG(huart->Instance->CR3);
+
+ /* Check that a Rx process is ongoing */
+ if (huart->RxState == HAL_UART_STATE_BUSY_RX)
+ {
+ nb_rx_data = huart->NbRxDataToProcess;
+ while ((nb_rx_data > 0U) && ((isrflags & USART_ISR_RXNE_RXFNE) != 0U))
+ {
+ uhdata = (uint16_t) READ_REG(huart->Instance->RDR);
+ *huart->pRxBuffPtr = (uint8_t)(uhdata & (uint8_t)uhMask);
+ huart->pRxBuffPtr++;
+ huart->RxXferCount--;
+ isrflags = READ_REG(huart->Instance->ISR);
+
+ /* If some non blocking errors occurred */
+ if ((isrflags & (USART_ISR_PE | USART_ISR_FE | USART_ISR_NE)) != 0U)
+ {
+ /* UART parity error interrupt occurred -------------------------------------*/
+ if (((isrflags & USART_ISR_PE) != 0U) && ((cr1its & USART_CR1_PEIE) != 0U))
+ {
+ __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_PEF);
+
+ huart->ErrorCode |= HAL_UART_ERROR_PE;
+ }
+
+ /* UART frame error interrupt occurred --------------------------------------*/
+ if (((isrflags & USART_ISR_FE) != 0U) && ((cr3its & USART_CR3_EIE) != 0U))
+ {
+ __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_FEF);
+
+ huart->ErrorCode |= HAL_UART_ERROR_FE;
+ }
+
+ /* UART noise error interrupt occurred --------------------------------------*/
+ if (((isrflags & USART_ISR_NE) != 0U) && ((cr3its & USART_CR3_EIE) != 0U))
+ {
+ __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_NEF);
+
+ huart->ErrorCode |= HAL_UART_ERROR_NE;
+ }
+
+ /* Call UART Error Call back function if need be ----------------------------*/
+ if (huart->ErrorCode != HAL_UART_ERROR_NONE)
+ {
+ /* Non Blocking error : transfer could go on.
+ Error is notified to user through user error callback */
+#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
+ /*Call registered error callback*/
+ huart->ErrorCallback(huart);
+#else
+ /*Call legacy weak error callback*/
+ HAL_UART_ErrorCallback(huart);
+#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
+ huart->ErrorCode = HAL_UART_ERROR_NONE;
+ }
+ }
+
+ if (huart->RxXferCount == 0U)
+ {
+ /* Disable the UART Parity Error Interrupt and RXFT interrupt*/
+ ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_PEIE);
+
+ /* Disable the UART Error Interrupt: (Frame error, noise error, overrun error)
+ and RX FIFO Threshold interrupt */
+ ATOMIC_CLEAR_BIT(huart->Instance->CR3, (USART_CR3_EIE | USART_CR3_RXFTIE));
+
+ /* Rx process is completed, restore huart->RxState to Ready */
+ huart->RxState = HAL_UART_STATE_READY;
+
+ /* Clear RxISR function pointer */
+ huart->RxISR = NULL;
+
+ /* Initialize type of RxEvent to Transfer Complete */
+ huart->RxEventType = HAL_UART_RXEVENT_TC;
+
+ if (!(IS_LPUART_INSTANCE(huart->Instance)))
+ {
+ /* Check that USART RTOEN bit is set */
+ if (READ_BIT(huart->Instance->CR2, USART_CR2_RTOEN) != 0U)
+ {
+ /* Enable the UART Receiver Timeout Interrupt */
+ ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_RTOIE);
+ }
+ }
+
+ /* Check current reception Mode :
+ If Reception till IDLE event has been selected : */
+ if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
+ {
+ /* Set reception type to Standard */
+ huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
+
+ /* Disable IDLE interrupt */
+ ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_IDLEIE);
+
+ if (__HAL_UART_GET_FLAG(huart, UART_FLAG_IDLE) == SET)
+ {
+ /* Clear IDLE Flag */
+ __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_IDLEF);
+ }
+
+#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
+ /*Call registered Rx Event callback*/
+ huart->RxEventCallback(huart, huart->RxXferSize);
+#else
+ /*Call legacy weak Rx Event callback*/
+ HAL_UARTEx_RxEventCallback(huart, huart->RxXferSize);
+#endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */
+ }
+ else
+ {
+ /* Standard reception API called */
+#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
+ /*Call registered Rx complete callback*/
+ huart->RxCpltCallback(huart);
+#else
+ /*Call legacy weak Rx complete callback*/
+ HAL_UART_RxCpltCallback(huart);
+#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
+ }
+ }
+ }
+
+ /* When remaining number of bytes to receive is less than the RX FIFO
+ threshold, next incoming frames are processed as if FIFO mode was
+ disabled (i.e. one interrupt per received frame).
+ */
+ rxdatacount = huart->RxXferCount;
+ if ((rxdatacount != 0U) && (rxdatacount < huart->NbRxDataToProcess))
+ {
+ /* Disable the UART RXFT interrupt*/
+ ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_RXFTIE);
+
+ /* Update the RxISR function pointer */
+ huart->RxISR = UART_RxISR_8BIT;
+
+ /* Enable the UART Data Register Not Empty interrupt */
+ ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_RXNEIE_RXFNEIE);
+ }
+ }
+ else
+ {
+ /* Clear RXNE interrupt flag */
+ __HAL_UART_SEND_REQ(huart, UART_RXDATA_FLUSH_REQUEST);
+ }
+}
+
+/**
+ * @brief RX interrupt handler for 9 bits data word length and FIFO mode is enabled.
+ * @note Function is called under interruption only, once
+ * interruptions have been enabled by HAL_UART_Receive_IT()
+ * @param huart UART handle.
+ * @retval None
+ */
+static void UART_RxISR_16BIT_FIFOEN(UART_HandleTypeDef *huart)
+{
+ uint16_t *tmp;
+ uint16_t uhMask = huart->Mask;
+ uint16_t uhdata;
+ uint16_t nb_rx_data;
+ uint16_t rxdatacount;
+ uint32_t isrflags = READ_REG(huart->Instance->ISR);
+ uint32_t cr1its = READ_REG(huart->Instance->CR1);
+ uint32_t cr3its = READ_REG(huart->Instance->CR3);
+
+ /* Check that a Rx process is ongoing */
+ if (huart->RxState == HAL_UART_STATE_BUSY_RX)
+ {
+ nb_rx_data = huart->NbRxDataToProcess;
+ while ((nb_rx_data > 0U) && ((isrflags & USART_ISR_RXNE_RXFNE) != 0U))
+ {
+ uhdata = (uint16_t) READ_REG(huart->Instance->RDR);
+ tmp = (uint16_t *) huart->pRxBuffPtr ;
+ *tmp = (uint16_t)(uhdata & uhMask);
+ huart->pRxBuffPtr += 2U;
+ huart->RxXferCount--;
+ isrflags = READ_REG(huart->Instance->ISR);
+
+ /* If some non blocking errors occurred */
+ if ((isrflags & (USART_ISR_PE | USART_ISR_FE | USART_ISR_NE)) != 0U)
+ {
+ /* UART parity error interrupt occurred -------------------------------------*/
+ if (((isrflags & USART_ISR_PE) != 0U) && ((cr1its & USART_CR1_PEIE) != 0U))
+ {
+ __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_PEF);
+
+ huart->ErrorCode |= HAL_UART_ERROR_PE;
+ }
+
+ /* UART frame error interrupt occurred --------------------------------------*/
+ if (((isrflags & USART_ISR_FE) != 0U) && ((cr3its & USART_CR3_EIE) != 0U))
+ {
+ __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_FEF);
+
+ huart->ErrorCode |= HAL_UART_ERROR_FE;
+ }
+
+ /* UART noise error interrupt occurred --------------------------------------*/
+ if (((isrflags & USART_ISR_NE) != 0U) && ((cr3its & USART_CR3_EIE) != 0U))
+ {
+ __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_NEF);
+
+ huart->ErrorCode |= HAL_UART_ERROR_NE;
+ }
+
+ /* Call UART Error Call back function if need be ----------------------------*/
+ if (huart->ErrorCode != HAL_UART_ERROR_NONE)
+ {
+ /* Non Blocking error : transfer could go on.
+ Error is notified to user through user error callback */
+#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
+ /*Call registered error callback*/
+ huart->ErrorCallback(huart);
+#else
+ /*Call legacy weak error callback*/
+ HAL_UART_ErrorCallback(huart);
+#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
+ huart->ErrorCode = HAL_UART_ERROR_NONE;
+ }
+ }
+
+ if (huart->RxXferCount == 0U)
+ {
+ /* Disable the UART Parity Error Interrupt and RXFT interrupt*/
+ ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_PEIE);
+
+ /* Disable the UART Error Interrupt: (Frame error, noise error, overrun error)
+ and RX FIFO Threshold interrupt */
+ ATOMIC_CLEAR_BIT(huart->Instance->CR3, (USART_CR3_EIE | USART_CR3_RXFTIE));
+
+ /* Rx process is completed, restore huart->RxState to Ready */
+ huart->RxState = HAL_UART_STATE_READY;
+
+ /* Clear RxISR function pointer */
+ huart->RxISR = NULL;
+
+ /* Initialize type of RxEvent to Transfer Complete */
+ huart->RxEventType = HAL_UART_RXEVENT_TC;
+
+ if (!(IS_LPUART_INSTANCE(huart->Instance)))
+ {
+ /* Check that USART RTOEN bit is set */
+ if (READ_BIT(huart->Instance->CR2, USART_CR2_RTOEN) != 0U)
+ {
+ /* Enable the UART Receiver Timeout Interrupt */
+ ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_RTOIE);
+ }
+ }
+
+ /* Check current reception Mode :
+ If Reception till IDLE event has been selected : */
+ if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
+ {
+ /* Set reception type to Standard */
+ huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
+
+ /* Disable IDLE interrupt */
+ ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_IDLEIE);
+
+ if (__HAL_UART_GET_FLAG(huart, UART_FLAG_IDLE) == SET)
+ {
+ /* Clear IDLE Flag */
+ __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_IDLEF);
+ }
+
+#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
+ /*Call registered Rx Event callback*/
+ huart->RxEventCallback(huart, huart->RxXferSize);
+#else
+ /*Call legacy weak Rx Event callback*/
+ HAL_UARTEx_RxEventCallback(huart, huart->RxXferSize);
+#endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */
+ }
+ else
+ {
+ /* Standard reception API called */
+#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
+ /*Call registered Rx complete callback*/
+ huart->RxCpltCallback(huart);
+#else
+ /*Call legacy weak Rx complete callback*/
+ HAL_UART_RxCpltCallback(huart);
+#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
+ }
+ }
+ }
+
+ /* When remaining number of bytes to receive is less than the RX FIFO
+ threshold, next incoming frames are processed as if FIFO mode was
+ disabled (i.e. one interrupt per received frame).
+ */
+ rxdatacount = huart->RxXferCount;
+ if ((rxdatacount != 0U) && (rxdatacount < huart->NbRxDataToProcess))
+ {
+ /* Disable the UART RXFT interrupt*/
+ ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_RXFTIE);
+
+ /* Update the RxISR function pointer */
+ huart->RxISR = UART_RxISR_16BIT;
+
+ /* Enable the UART Data Register Not Empty interrupt */
+ ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_RXNEIE_RXFNEIE);
+ }
+ }
+ else
+ {
+ /* Clear RXNE interrupt flag */
+ __HAL_UART_SEND_REQ(huart, UART_RXDATA_FLUSH_REQUEST);
+ }
+}
+
+/**
+ * @}
+ */
+
+#endif /* HAL_UART_MODULE_ENABLED */
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+