summaryrefslogtreecommitdiffstats
path: root/bsps/arm/imxrt/nxp/devices/MIMXRT1052/drivers/fsl_lpuart.c
diff options
context:
space:
mode:
Diffstat (limited to 'bsps/arm/imxrt/nxp/devices/MIMXRT1052/drivers/fsl_lpuart.c')
-rw-r--r--bsps/arm/imxrt/nxp/devices/MIMXRT1052/drivers/fsl_lpuart.c2051
1 files changed, 2051 insertions, 0 deletions
diff --git a/bsps/arm/imxrt/nxp/devices/MIMXRT1052/drivers/fsl_lpuart.c b/bsps/arm/imxrt/nxp/devices/MIMXRT1052/drivers/fsl_lpuart.c
new file mode 100644
index 0000000000..379fd8aec0
--- /dev/null
+++ b/bsps/arm/imxrt/nxp/devices/MIMXRT1052/drivers/fsl_lpuart.c
@@ -0,0 +1,2051 @@
+/*
+ * Copyright (c) 2015-2016, Freescale Semiconductor, Inc.
+ * Copyright 2016-2020 NXP
+ * All rights reserved.
+ *
+ * SPDX-License-Identifier: BSD-3-Clause
+ */
+
+#include "fsl_lpuart.h"
+
+/*******************************************************************************
+ * Definitions
+ ******************************************************************************/
+
+/* Component ID definition, used by tools. */
+#ifndef FSL_COMPONENT_ID
+#define FSL_COMPONENT_ID "platform.drivers.lpuart"
+#endif
+
+/* LPUART transfer state. */
+enum
+{
+ kLPUART_TxIdle, /*!< TX idle. */
+ kLPUART_TxBusy, /*!< TX busy. */
+ kLPUART_RxIdle, /*!< RX idle. */
+ kLPUART_RxBusy /*!< RX busy. */
+};
+
+/* Typedef for interrupt handler. */
+typedef void (*lpuart_isr_t)(LPUART_Type *base, lpuart_handle_t *handle);
+
+/*******************************************************************************
+ * Prototypes
+ ******************************************************************************/
+/*!
+ * @brief Check whether the RX ring buffer is full.
+ *
+ * @userData handle LPUART handle pointer.
+ * @retval true RX ring buffer is full.
+ * @retval false RX ring buffer is not full.
+ */
+static bool LPUART_TransferIsRxRingBufferFull(LPUART_Type *base, lpuart_handle_t *handle);
+
+/*!
+ * @brief Write to TX register using non-blocking method.
+ *
+ * This function writes data to the TX register directly, upper layer must make
+ * sure the TX register is empty or TX FIFO has empty room before calling this function.
+ *
+ * @note This function does not check whether all the data has been sent out to bus,
+ * so before disable TX, check kLPUART_TransmissionCompleteFlag to ensure the TX is
+ * finished.
+ *
+ * @param base LPUART peripheral base address.
+ * @param data Start address of the data to write.
+ * @param length Size of the buffer to be sent.
+ */
+static void LPUART_WriteNonBlocking(LPUART_Type *base, const uint8_t *data, size_t length);
+
+/*!
+ * @brief Read RX register using non-blocking method.
+ *
+ * This function reads data from the TX register directly, upper layer must make
+ * sure the RX register is full or TX FIFO has data before calling this function.
+ *
+ * @param base LPUART peripheral base address.
+ * @param data Start address of the buffer to store the received data.
+ * @param length Size of the buffer.
+ */
+static void LPUART_ReadNonBlocking(LPUART_Type *base, uint8_t *data, size_t length);
+
+/*******************************************************************************
+ * Variables
+ ******************************************************************************/
+/* Array of LPUART peripheral base address. */
+static LPUART_Type *const s_lpuartBases[] = LPUART_BASE_PTRS;
+/* Array of LPUART handle. */
+static lpuart_handle_t *s_lpuartHandle[ARRAY_SIZE(s_lpuartBases)];
+/* Array of LPUART IRQ number. */
+#if defined(FSL_FEATURE_LPUART_HAS_SEPARATE_RX_TX_IRQ) && FSL_FEATURE_LPUART_HAS_SEPARATE_RX_TX_IRQ
+static const IRQn_Type s_lpuartRxIRQ[] = LPUART_RX_IRQS;
+static const IRQn_Type s_lpuartTxIRQ[] = LPUART_TX_IRQS;
+#else
+static const IRQn_Type s_lpuartIRQ[] = LPUART_RX_TX_IRQS;
+#endif
+#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
+/* Array of LPUART clock name. */
+static const clock_ip_name_t s_lpuartClock[] = LPUART_CLOCKS;
+
+#if defined(LPUART_PERIPH_CLOCKS)
+/* Array of LPUART functional clock name. */
+static const clock_ip_name_t s_lpuartPeriphClocks[] = LPUART_PERIPH_CLOCKS;
+#endif
+
+#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
+
+/* LPUART ISR for transactional APIs. */
+#if defined(__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050)
+static lpuart_isr_t s_lpuartIsr = (lpuart_isr_t)DefaultISR;
+#else
+static lpuart_isr_t s_lpuartIsr;
+#endif
+
+/*******************************************************************************
+ * Code
+ ******************************************************************************/
+/*!
+ * brief Get the LPUART instance from peripheral base address.
+ *
+ * param base LPUART peripheral base address.
+ * return LPUART instance.
+ */
+uint32_t LPUART_GetInstance(LPUART_Type *base)
+{
+ uint32_t instance;
+
+ /* Find the instance index from base address mappings. */
+ for (instance = 0U; instance < ARRAY_SIZE(s_lpuartBases); instance++)
+ {
+ if (s_lpuartBases[instance] == base)
+ {
+ break;
+ }
+ }
+
+ assert(instance < ARRAY_SIZE(s_lpuartBases));
+
+ return instance;
+}
+
+/*!
+ * brief Get the length of received data in RX ring buffer.
+ *
+ * userData handle LPUART handle pointer.
+ * return Length of received data in RX ring buffer.
+ */
+size_t LPUART_TransferGetRxRingBufferLength(LPUART_Type *base, lpuart_handle_t *handle)
+{
+ assert(NULL != handle);
+
+ size_t size;
+ size_t tmpRxRingBufferSize = handle->rxRingBufferSize;
+ uint16_t tmpRxRingBufferTail = handle->rxRingBufferTail;
+ uint16_t tmpRxRingBufferHead = handle->rxRingBufferHead;
+
+ if (tmpRxRingBufferTail > tmpRxRingBufferHead)
+ {
+ size = ((size_t)tmpRxRingBufferHead + tmpRxRingBufferSize - (size_t)tmpRxRingBufferTail);
+ }
+ else
+ {
+ size = ((size_t)tmpRxRingBufferHead - (size_t)tmpRxRingBufferTail);
+ }
+
+ return size;
+}
+
+static bool LPUART_TransferIsRxRingBufferFull(LPUART_Type *base, lpuart_handle_t *handle)
+{
+ assert(NULL != handle);
+
+ bool full;
+
+ if (LPUART_TransferGetRxRingBufferLength(base, handle) == (handle->rxRingBufferSize - 1U))
+ {
+ full = true;
+ }
+ else
+ {
+ full = false;
+ }
+ return full;
+}
+
+static void LPUART_WriteNonBlocking(LPUART_Type *base, const uint8_t *data, size_t length)
+{
+ assert(NULL != data);
+
+ size_t i;
+
+ /* The Non Blocking write data API assume user have ensured there is enough space in
+ peripheral to write. */
+ for (i = 0; i < length; i++)
+ {
+ base->DATA = data[i];
+ }
+}
+
+static void LPUART_ReadNonBlocking(LPUART_Type *base, uint8_t *data, size_t length)
+{
+ assert(NULL != data);
+
+ size_t i;
+#if defined(FSL_FEATURE_LPUART_HAS_7BIT_DATA_SUPPORT) && FSL_FEATURE_LPUART_HAS_7BIT_DATA_SUPPORT
+ uint32_t ctrl = base->CTRL;
+ bool isSevenDataBits = (((ctrl & LPUART_CTRL_M7_MASK) != 0U) ||
+ (((ctrl & LPUART_CTRL_M_MASK) == 0U) && ((ctrl & LPUART_CTRL_PE_MASK) != 0U)));
+#endif
+
+ /* The Non Blocking read data API assume user have ensured there is enough space in
+ peripheral to write. */
+ for (i = 0; i < length; i++)
+ {
+#if defined(FSL_FEATURE_LPUART_HAS_7BIT_DATA_SUPPORT) && FSL_FEATURE_LPUART_HAS_7BIT_DATA_SUPPORT
+ if (isSevenDataBits)
+ {
+ data[i] = (uint8_t)(base->DATA & 0x7FU);
+ }
+ else
+ {
+ data[i] = (uint8_t)base->DATA;
+ }
+#else
+ data[i] = (uint8_t)(base->DATA);
+#endif
+ }
+}
+
+/*!
+ * brief Initializes an LPUART instance with the user configuration structure and the peripheral clock.
+ *
+ * This function configures the LPUART module with user-defined settings. Call the LPUART_GetDefaultConfig() function
+ * to configure the configuration structure and get the default configuration.
+ * The example below shows how to use this API to configure the LPUART.
+ * code
+ * lpuart_config_t lpuartConfig;
+ * lpuartConfig.baudRate_Bps = 115200U;
+ * lpuartConfig.parityMode = kLPUART_ParityDisabled;
+ * lpuartConfig.dataBitsCount = kLPUART_EightDataBits;
+ * lpuartConfig.isMsb = false;
+ * lpuartConfig.stopBitCount = kLPUART_OneStopBit;
+ * lpuartConfig.txFifoWatermark = 0;
+ * lpuartConfig.rxFifoWatermark = 1;
+ * LPUART_Init(LPUART1, &lpuartConfig, 20000000U);
+ * endcode
+ *
+ * param base LPUART peripheral base address.
+ * param config Pointer to a user-defined configuration structure.
+ * param srcClock_Hz LPUART clock source frequency in HZ.
+ * retval kStatus_LPUART_BaudrateNotSupport Baudrate is not support in current clock source.
+ * retval kStatus_Success LPUART initialize succeed
+ */
+status_t LPUART_Init(LPUART_Type *base, const lpuart_config_t *config, uint32_t srcClock_Hz)
+{
+ assert(NULL != config);
+ assert(0U < config->baudRate_Bps);
+#if defined(FSL_FEATURE_LPUART_HAS_FIFO) && FSL_FEATURE_LPUART_HAS_FIFO
+ assert((uint8_t)FSL_FEATURE_LPUART_FIFO_SIZEn(base) >= config->txFifoWatermark);
+ assert((uint8_t)FSL_FEATURE_LPUART_FIFO_SIZEn(base) >= config->rxFifoWatermark);
+#endif
+
+ status_t status = kStatus_Success;
+ uint32_t temp;
+ uint16_t sbr, sbrTemp;
+ uint8_t osr, osrTemp;
+ uint32_t tempDiff, calculatedBaud, baudDiff;
+
+ /* This LPUART instantiation uses a slightly different baud rate calculation
+ * The idea is to use the best OSR (over-sampling rate) possible
+ * Note, OSR is typically hard-set to 16 in other LPUART instantiations
+ * loop to find the best OSR value possible, one that generates minimum baudDiff
+ * iterate through the rest of the supported values of OSR */
+
+ baudDiff = config->baudRate_Bps;
+ osr = 0U;
+ sbr = 0U;
+ for (osrTemp = 4U; osrTemp <= 32U; osrTemp++)
+ {
+ /* calculate the temporary sbr value */
+ sbrTemp = (uint16_t)((srcClock_Hz * 10U / (config->baudRate_Bps * (uint32_t)osrTemp) + 5U) / 10U);
+ /*set sbrTemp to 1 if the sourceClockInHz can not satisfy the desired baud rate*/
+ if (sbrTemp == 0U)
+ {
+ sbrTemp = 1U;
+ }
+ /* Calculate the baud rate based on the temporary OSR and SBR values */
+ calculatedBaud = (srcClock_Hz / ((uint32_t)osrTemp * (uint32_t)sbrTemp));
+ tempDiff = calculatedBaud > config->baudRate_Bps ? (calculatedBaud - config->baudRate_Bps) :
+ (config->baudRate_Bps - calculatedBaud);
+
+ if (tempDiff <= baudDiff)
+ {
+ baudDiff = tempDiff;
+ osr = osrTemp; /* update and store the best OSR value calculated */
+ sbr = sbrTemp; /* update store the best SBR value calculated */
+ }
+ }
+
+ /* Check to see if actual baud rate is within 3% of desired baud rate
+ * based on the best calculate OSR value */
+ if (baudDiff > ((config->baudRate_Bps / 100U) * 3U))
+ {
+ /* Unacceptable baud rate difference of more than 3%*/
+ status = kStatus_LPUART_BaudrateNotSupport;
+ }
+ else
+ {
+#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
+
+ uint32_t instance = LPUART_GetInstance(base);
+
+ /* Enable lpuart clock */
+ CLOCK_EnableClock(s_lpuartClock[instance]);
+#if defined(LPUART_PERIPH_CLOCKS)
+ CLOCK_EnableClock(s_lpuartPeriphClocks[instance]);
+#endif
+
+#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
+
+#if defined(FSL_FEATURE_LPUART_HAS_GLOBAL) && FSL_FEATURE_LPUART_HAS_GLOBAL
+ /*Reset all internal logic and registers, except the Global Register */
+ LPUART_SoftwareReset(base);
+#else
+ /* Disable LPUART TX RX before setting. */
+ base->CTRL &= ~(LPUART_CTRL_TE_MASK | LPUART_CTRL_RE_MASK);
+#endif
+
+ temp = base->BAUD;
+
+ /* Acceptable baud rate, check if OSR is between 4x and 7x oversampling.
+ * If so, then "BOTHEDGE" sampling must be turned on */
+ if ((osr > 3U) && (osr < 8U))
+ {
+ temp |= LPUART_BAUD_BOTHEDGE_MASK;
+ }
+
+ /* program the osr value (bit value is one less than actual value) */
+ temp &= ~LPUART_BAUD_OSR_MASK;
+ temp |= LPUART_BAUD_OSR((uint32_t)osr - 1UL);
+
+ /* write the sbr value to the BAUD registers */
+ temp &= ~LPUART_BAUD_SBR_MASK;
+ base->BAUD = temp | LPUART_BAUD_SBR(sbr);
+
+ /* Set bit count and parity mode. */
+ base->BAUD &= ~LPUART_BAUD_M10_MASK;
+
+ temp = base->CTRL & ~(LPUART_CTRL_PE_MASK | LPUART_CTRL_PT_MASK | LPUART_CTRL_M_MASK | LPUART_CTRL_ILT_MASK |
+ LPUART_CTRL_IDLECFG_MASK);
+
+ temp |= (uint8_t)config->parityMode | LPUART_CTRL_IDLECFG(config->rxIdleConfig) |
+ LPUART_CTRL_ILT(config->rxIdleType);
+
+#if defined(FSL_FEATURE_LPUART_HAS_7BIT_DATA_SUPPORT) && FSL_FEATURE_LPUART_HAS_7BIT_DATA_SUPPORT
+ if (kLPUART_SevenDataBits == config->dataBitsCount)
+ {
+ if (kLPUART_ParityDisabled != config->parityMode)
+ {
+ temp &= ~LPUART_CTRL_M7_MASK; /* Seven data bits and one parity bit */
+ }
+ else
+ {
+ temp |= LPUART_CTRL_M7_MASK;
+ }
+ }
+ else
+#endif
+ {
+ if (kLPUART_ParityDisabled != config->parityMode)
+ {
+ temp |= LPUART_CTRL_M_MASK; /* Eight data bits and one parity bit */
+ }
+ }
+
+ base->CTRL = temp;
+
+#if defined(FSL_FEATURE_LPUART_HAS_STOP_BIT_CONFIG_SUPPORT) && FSL_FEATURE_LPUART_HAS_STOP_BIT_CONFIG_SUPPORT
+ /* set stop bit per char */
+ temp = base->BAUD & ~LPUART_BAUD_SBNS_MASK;
+ base->BAUD = temp | LPUART_BAUD_SBNS((uint8_t)config->stopBitCount);
+#endif
+
+#if defined(FSL_FEATURE_LPUART_HAS_FIFO) && FSL_FEATURE_LPUART_HAS_FIFO
+ /* Set tx/rx WATER watermark
+ Note:
+ Take care of the RX FIFO, RX interrupt request only assert when received bytes
+ equal or more than RX water mark, there is potential issue if RX water
+ mark larger than 1.
+ For example, if RX FIFO water mark is 2, upper layer needs 5 bytes and
+ 5 bytes are received. the last byte will be saved in FIFO but not trigger
+ RX interrupt because the water mark is 2.
+ */
+ base->WATER = (((uint32_t)(config->rxFifoWatermark) << 16U) | config->txFifoWatermark);
+
+ /* Enable tx/rx FIFO */
+ base->FIFO |= (LPUART_FIFO_TXFE_MASK | LPUART_FIFO_RXFE_MASK);
+
+ /* Flush FIFO */
+ base->FIFO |= (LPUART_FIFO_TXFLUSH_MASK | LPUART_FIFO_RXFLUSH_MASK);
+#endif
+
+ /* Clear all status flags */
+ temp = (LPUART_STAT_RXEDGIF_MASK | LPUART_STAT_IDLE_MASK | LPUART_STAT_OR_MASK | LPUART_STAT_NF_MASK |
+ LPUART_STAT_FE_MASK | LPUART_STAT_PF_MASK);
+
+#if defined(FSL_FEATURE_LPUART_HAS_LIN_BREAK_DETECT) && FSL_FEATURE_LPUART_HAS_LIN_BREAK_DETECT
+ temp |= LPUART_STAT_LBKDIF_MASK;
+#endif
+
+#if defined(FSL_FEATURE_LPUART_HAS_ADDRESS_MATCHING) && FSL_FEATURE_LPUART_HAS_ADDRESS_MATCHING
+ temp |= (LPUART_STAT_MA1F_MASK | LPUART_STAT_MA2F_MASK);
+#endif
+
+#if defined(FSL_FEATURE_LPUART_HAS_MODEM_SUPPORT) && FSL_FEATURE_LPUART_HAS_MODEM_SUPPORT
+ /* Set the CTS configuration/TX CTS source. */
+ base->MODIR |= LPUART_MODIR_TXCTSC(config->txCtsConfig) | LPUART_MODIR_TXCTSSRC(config->txCtsSource);
+ if (true == config->enableRxRTS)
+ {
+ /* Enable the receiver RTS(request-to-send) function. */
+ base->MODIR |= LPUART_MODIR_RXRTSE_MASK;
+ }
+ if (true == config->enableTxCTS)
+ {
+ /* Enable the CTS(clear-to-send) function. */
+ base->MODIR |= LPUART_MODIR_TXCTSE_MASK;
+ }
+#endif
+
+ /* Set data bits order. */
+ if (true == config->isMsb)
+ {
+ temp |= LPUART_STAT_MSBF_MASK;
+ }
+ else
+ {
+ temp &= ~LPUART_STAT_MSBF_MASK;
+ }
+
+ base->STAT |= temp;
+
+ /* Enable TX/RX base on configure structure. */
+ temp = base->CTRL;
+ if (true == config->enableTx)
+ {
+ temp |= LPUART_CTRL_TE_MASK;
+ }
+
+ if (true == config->enableRx)
+ {
+ temp |= LPUART_CTRL_RE_MASK;
+ }
+
+ base->CTRL = temp;
+ }
+
+ return status;
+}
+/*!
+ * brief Deinitializes a LPUART instance.
+ *
+ * This function waits for transmit to complete, disables TX and RX, and disables the LPUART clock.
+ *
+ * param base LPUART peripheral base address.
+ */
+void LPUART_Deinit(LPUART_Type *base)
+{
+ uint32_t temp;
+
+#if defined(FSL_FEATURE_LPUART_HAS_FIFO) && FSL_FEATURE_LPUART_HAS_FIFO
+ /* Wait tx FIFO send out*/
+ while (0U != ((base->WATER & LPUART_WATER_TXCOUNT_MASK) >> LPUART_WATER_TXWATER_SHIFT))
+ {
+ }
+#endif
+ /* Wait last char shift out */
+ while (0U == (base->STAT & LPUART_STAT_TC_MASK))
+ {
+ }
+
+ /* Clear all status flags */
+ temp = (LPUART_STAT_RXEDGIF_MASK | LPUART_STAT_IDLE_MASK | LPUART_STAT_OR_MASK | LPUART_STAT_NF_MASK |
+ LPUART_STAT_FE_MASK | LPUART_STAT_PF_MASK);
+
+#if defined(FSL_FEATURE_LPUART_HAS_LIN_BREAK_DETECT) && FSL_FEATURE_LPUART_HAS_LIN_BREAK_DETECT
+ temp |= LPUART_STAT_LBKDIF_MASK;
+#endif
+
+#if defined(FSL_FEATURE_LPUART_HAS_ADDRESS_MATCHING) && FSL_FEATURE_LPUART_HAS_ADDRESS_MATCHING
+ temp |= (LPUART_STAT_MA1F_MASK | LPUART_STAT_MA2F_MASK);
+#endif
+
+ base->STAT |= temp;
+
+ /* Disable the module. */
+ base->CTRL = 0U;
+
+#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
+ uint32_t instance = LPUART_GetInstance(base);
+
+ /* Disable lpuart clock */
+ CLOCK_DisableClock(s_lpuartClock[instance]);
+
+#if defined(LPUART_PERIPH_CLOCKS)
+ CLOCK_DisableClock(s_lpuartPeriphClocks[instance]);
+#endif
+
+#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
+}
+
+/*!
+ * brief Gets the default configuration structure.
+ *
+ * This function initializes the LPUART configuration structure to a default value. The default
+ * values are:
+ * lpuartConfig->baudRate_Bps = 115200U;
+ * lpuartConfig->parityMode = kLPUART_ParityDisabled;
+ * lpuartConfig->dataBitsCount = kLPUART_EightDataBits;
+ * lpuartConfig->isMsb = false;
+ * lpuartConfig->stopBitCount = kLPUART_OneStopBit;
+ * lpuartConfig->txFifoWatermark = 0;
+ * lpuartConfig->rxFifoWatermark = 1;
+ * lpuartConfig->rxIdleType = kLPUART_IdleTypeStartBit;
+ * lpuartConfig->rxIdleConfig = kLPUART_IdleCharacter1;
+ * lpuartConfig->enableTx = false;
+ * lpuartConfig->enableRx = false;
+ *
+ * param config Pointer to a configuration structure.
+ */
+void LPUART_GetDefaultConfig(lpuart_config_t *config)
+{
+ assert(NULL != config);
+
+ /* Initializes the configure structure to zero. */
+ (void)memset(config, 0, sizeof(*config));
+
+ config->baudRate_Bps = 115200U;
+ config->parityMode = kLPUART_ParityDisabled;
+ config->dataBitsCount = kLPUART_EightDataBits;
+ config->isMsb = false;
+#if defined(FSL_FEATURE_LPUART_HAS_STOP_BIT_CONFIG_SUPPORT) && FSL_FEATURE_LPUART_HAS_STOP_BIT_CONFIG_SUPPORT
+ config->stopBitCount = kLPUART_OneStopBit;
+#endif
+#if defined(FSL_FEATURE_LPUART_HAS_FIFO) && FSL_FEATURE_LPUART_HAS_FIFO
+ config->txFifoWatermark = 0U;
+ config->rxFifoWatermark = 0U;
+#endif
+#if defined(FSL_FEATURE_LPUART_HAS_MODEM_SUPPORT) && FSL_FEATURE_LPUART_HAS_MODEM_SUPPORT
+ config->enableRxRTS = false;
+ config->enableTxCTS = false;
+ config->txCtsConfig = kLPUART_CtsSampleAtStart;
+ config->txCtsSource = kLPUART_CtsSourcePin;
+#endif
+ config->rxIdleType = kLPUART_IdleTypeStartBit;
+ config->rxIdleConfig = kLPUART_IdleCharacter1;
+ config->enableTx = false;
+ config->enableRx = false;
+}
+
+/*!
+ * brief Sets the LPUART instance baudrate.
+ *
+ * This function configures the LPUART module baudrate. This function is used to update
+ * the LPUART module baudrate after the LPUART module is initialized by the LPUART_Init.
+ * code
+ * LPUART_SetBaudRate(LPUART1, 115200U, 20000000U);
+ * endcode
+ *
+ * param base LPUART peripheral base address.
+ * param baudRate_Bps LPUART baudrate to be set.
+ * param srcClock_Hz LPUART clock source frequency in HZ.
+ * retval kStatus_LPUART_BaudrateNotSupport Baudrate is not supported in the current clock source.
+ * retval kStatus_Success Set baudrate succeeded.
+ */
+status_t LPUART_SetBaudRate(LPUART_Type *base, uint32_t baudRate_Bps, uint32_t srcClock_Hz)
+{
+ assert(0U < baudRate_Bps);
+
+ status_t status = kStatus_Success;
+ uint32_t temp, oldCtrl;
+ uint16_t sbr, sbrTemp;
+ uint8_t osr, osrTemp;
+ uint32_t tempDiff, calculatedBaud, baudDiff;
+
+ /* This LPUART instantiation uses a slightly different baud rate calculation
+ * The idea is to use the best OSR (over-sampling rate) possible
+ * Note, OSR is typically hard-set to 16 in other LPUART instantiations
+ * loop to find the best OSR value possible, one that generates minimum baudDiff
+ * iterate through the rest of the supported values of OSR */
+
+ baudDiff = baudRate_Bps;
+ osr = 0U;
+ sbr = 0U;
+ for (osrTemp = 4U; osrTemp <= 32U; osrTemp++)
+ {
+ /* calculate the temporary sbr value */
+ sbrTemp = (uint16_t)((srcClock_Hz * 10U / (baudRate_Bps * (uint32_t)osrTemp) + 5U) / 10U);
+ /*set sbrTemp to 1 if the sourceClockInHz can not satisfy the desired baud rate*/
+ if (sbrTemp == 0U)
+ {
+ sbrTemp = 1U;
+ }
+ /* Calculate the baud rate based on the temporary OSR and SBR values */
+ calculatedBaud = srcClock_Hz / ((uint32_t)osrTemp * (uint32_t)sbrTemp);
+
+ tempDiff = calculatedBaud > baudRate_Bps ? (calculatedBaud - baudRate_Bps) : (baudRate_Bps - calculatedBaud);
+
+ if (tempDiff <= baudDiff)
+ {
+ baudDiff = tempDiff;
+ osr = osrTemp; /* update and store the best OSR value calculated */
+ sbr = sbrTemp; /* update store the best SBR value calculated */
+ }
+ }
+
+ /* Check to see if actual baud rate is within 3% of desired baud rate
+ * based on the best calculate OSR value */
+ if (baudDiff < (uint32_t)((baudRate_Bps / 100U) * 3U))
+ {
+ /* Store CTRL before disable Tx and Rx */
+ oldCtrl = base->CTRL;
+
+ /* Disable LPUART TX RX before setting. */
+ base->CTRL &= ~(LPUART_CTRL_TE_MASK | LPUART_CTRL_RE_MASK);
+
+ temp = base->BAUD;
+
+ /* Acceptable baud rate, check if OSR is between 4x and 7x oversampling.
+ * If so, then "BOTHEDGE" sampling must be turned on */
+ if ((osr > 3U) && (osr < 8U))
+ {
+ temp |= LPUART_BAUD_BOTHEDGE_MASK;
+ }
+
+ /* program the osr value (bit value is one less than actual value) */
+ temp &= ~LPUART_BAUD_OSR_MASK;
+ temp |= LPUART_BAUD_OSR((uint32_t)osr - 1UL);
+
+ /* write the sbr value to the BAUD registers */
+ temp &= ~LPUART_BAUD_SBR_MASK;
+ base->BAUD = temp | LPUART_BAUD_SBR(sbr);
+
+ /* Restore CTRL. */
+ base->CTRL = oldCtrl;
+ }
+ else
+ {
+ /* Unacceptable baud rate difference of more than 3%*/
+ status = kStatus_LPUART_BaudrateNotSupport;
+ }
+
+ return status;
+}
+
+/*!
+ * brief Enables LPUART interrupts according to a provided mask.
+ *
+ * This function enables the LPUART interrupts according to a provided mask. The mask
+ * is a logical OR of enumeration members. See the ref _lpuart_interrupt_enable.
+ * This examples shows how to enable TX empty interrupt and RX full interrupt:
+ * code
+ * LPUART_EnableInterrupts(LPUART1,kLPUART_TxDataRegEmptyInterruptEnable | kLPUART_RxDataRegFullInterruptEnable);
+ * endcode
+ *
+ * param base LPUART peripheral base address.
+ * param mask The interrupts to enable. Logical OR of ref _uart_interrupt_enable.
+ */
+void LPUART_EnableInterrupts(LPUART_Type *base, uint32_t mask)
+{
+ base->BAUD |= ((mask << 8U) & (LPUART_BAUD_LBKDIE_MASK | LPUART_BAUD_RXEDGIE_MASK));
+#if defined(FSL_FEATURE_LPUART_HAS_FIFO) && FSL_FEATURE_LPUART_HAS_FIFO
+ base->FIFO = (base->FIFO & ~(LPUART_FIFO_TXOF_MASK | LPUART_FIFO_RXUF_MASK)) |
+ ((mask << 8U) & (LPUART_FIFO_TXOFE_MASK | LPUART_FIFO_RXUFE_MASK));
+#endif
+ mask &= 0xFFFFFF00U;
+ base->CTRL |= mask;
+}
+
+/*!
+ * brief Disables LPUART interrupts according to a provided mask.
+ *
+ * This function disables the LPUART interrupts according to a provided mask. The mask
+ * is a logical OR of enumeration members. See ref _lpuart_interrupt_enable.
+ * This example shows how to disable the TX empty interrupt and RX full interrupt:
+ * code
+ * LPUART_DisableInterrupts(LPUART1,kLPUART_TxDataRegEmptyInterruptEnable | kLPUART_RxDataRegFullInterruptEnable);
+ * endcode
+ *
+ * param base LPUART peripheral base address.
+ * param mask The interrupts to disable. Logical OR of ref _lpuart_interrupt_enable.
+ */
+void LPUART_DisableInterrupts(LPUART_Type *base, uint32_t mask)
+{
+ base->BAUD &= ~((mask << 8U) & (LPUART_BAUD_LBKDIE_MASK | LPUART_BAUD_RXEDGIE_MASK));
+#if defined(FSL_FEATURE_LPUART_HAS_FIFO) && FSL_FEATURE_LPUART_HAS_FIFO
+ base->FIFO = (base->FIFO & ~(LPUART_FIFO_TXOF_MASK | LPUART_FIFO_RXUF_MASK)) &
+ ~((mask << 8U) & (LPUART_FIFO_TXOFE_MASK | LPUART_FIFO_RXUFE_MASK));
+#endif
+ mask &= 0xFFFFFF00U;
+ base->CTRL &= ~mask;
+}
+
+/*!
+ * brief Gets enabled LPUART interrupts.
+ *
+ * This function gets the enabled LPUART interrupts. The enabled interrupts are returned
+ * as the logical OR value of the enumerators ref _lpuart_interrupt_enable. To check
+ * a specific interrupt enable status, compare the return value with enumerators
+ * in ref _lpuart_interrupt_enable.
+ * For example, to check whether the TX empty interrupt is enabled:
+ * code
+ * uint32_t enabledInterrupts = LPUART_GetEnabledInterrupts(LPUART1);
+ *
+ * if (kLPUART_TxDataRegEmptyInterruptEnable & enabledInterrupts)
+ * {
+ * ...
+ * }
+ * endcode
+ *
+ * param base LPUART peripheral base address.
+ * return LPUART interrupt flags which are logical OR of the enumerators in ref _lpuart_interrupt_enable.
+ */
+uint32_t LPUART_GetEnabledInterrupts(LPUART_Type *base)
+{
+ uint32_t temp;
+ temp = (base->BAUD & (LPUART_BAUD_LBKDIE_MASK | LPUART_BAUD_RXEDGIE_MASK)) >> 8U;
+#if defined(FSL_FEATURE_LPUART_HAS_FIFO) && FSL_FEATURE_LPUART_HAS_FIFO
+ temp |= (base->FIFO & (LPUART_FIFO_TXOFE_MASK | LPUART_FIFO_RXUFE_MASK)) >> 8U;
+#endif
+ temp |= (uint32_t)(base->CTRL & 0xFF0C000u);
+
+ return temp;
+}
+
+/*!
+ * brief Gets LPUART status flags.
+ *
+ * This function gets all LPUART status flags. The flags are returned as the logical
+ * OR value of the enumerators ref _lpuart_flags. To check for a specific status,
+ * compare the return value with enumerators in the ref _lpuart_flags.
+ * For example, to check whether the TX is empty:
+ * code
+ * if (kLPUART_TxDataRegEmptyFlag & LPUART_GetStatusFlags(LPUART1))
+ * {
+ * ...
+ * }
+ * endcode
+ *
+ * param base LPUART peripheral base address.
+ * return LPUART status flags which are ORed by the enumerators in the _lpuart_flags.
+ */
+uint32_t LPUART_GetStatusFlags(LPUART_Type *base)
+{
+ uint32_t temp;
+ temp = base->STAT;
+#if defined(FSL_FEATURE_LPUART_HAS_FIFO) && FSL_FEATURE_LPUART_HAS_FIFO
+ temp |= (base->FIFO &
+ (LPUART_FIFO_TXEMPT_MASK | LPUART_FIFO_RXEMPT_MASK | LPUART_FIFO_TXOF_MASK | LPUART_FIFO_RXUF_MASK)) >>
+ 16U;
+#endif
+ return temp;
+}
+
+/*!
+ * brief Clears status flags with a provided mask.
+ *
+ * This function clears LPUART status flags with a provided mask. Automatically cleared flags
+ * can't be cleared by this function.
+ * Flags that can only cleared or set by hardware are:
+ * kLPUART_TxDataRegEmptyFlag, kLPUART_TransmissionCompleteFlag, kLPUART_RxDataRegFullFlag,
+ * kLPUART_RxActiveFlag, kLPUART_NoiseErrorInRxDataRegFlag, kLPUART_ParityErrorInRxDataRegFlag,
+ * kLPUART_TxFifoEmptyFlag,kLPUART_RxFifoEmptyFlag
+ * Note: This API should be called when the Tx/Rx is idle, otherwise it takes no effects.
+ *
+ * param base LPUART peripheral base address.
+ * param mask the status flags to be cleared. The user can use the enumerators in the
+ * _lpuart_status_flag_t to do the OR operation and get the mask.
+ * return 0 succeed, others failed.
+ * retval kStatus_LPUART_FlagCannotClearManually The flag can't be cleared by this function but
+ * it is cleared automatically by hardware.
+ * retval kStatus_Success Status in the mask are cleared.
+ */
+status_t LPUART_ClearStatusFlags(LPUART_Type *base, uint32_t mask)
+{
+ uint32_t temp;
+ status_t status;
+#if defined(FSL_FEATURE_LPUART_HAS_FIFO) && FSL_FEATURE_LPUART_HAS_FIFO
+ temp = (uint32_t)base->FIFO;
+ temp &= (uint32_t)(~(LPUART_FIFO_TXOF_MASK | LPUART_FIFO_RXUF_MASK));
+ temp |= (mask << 16U) & (LPUART_FIFO_TXOF_MASK | LPUART_FIFO_RXUF_MASK);
+ base->FIFO = temp;
+#endif
+ temp = (uint32_t)base->STAT;
+#if defined(FSL_FEATURE_LPUART_HAS_LIN_BREAK_DETECT) && FSL_FEATURE_LPUART_HAS_LIN_BREAK_DETECT
+ temp &= (uint32_t)(~(LPUART_STAT_LBKDIF_MASK));
+ temp |= mask & LPUART_STAT_LBKDIF_MASK;
+#endif
+ temp &= (uint32_t)(~(LPUART_STAT_RXEDGIF_MASK | LPUART_STAT_IDLE_MASK | LPUART_STAT_OR_MASK | LPUART_STAT_NF_MASK |
+ LPUART_STAT_FE_MASK | LPUART_STAT_PF_MASK));
+ temp |= mask & (LPUART_STAT_RXEDGIF_MASK | LPUART_STAT_IDLE_MASK | LPUART_STAT_OR_MASK | LPUART_STAT_NF_MASK |
+ LPUART_STAT_FE_MASK | LPUART_STAT_PF_MASK);
+#if defined(FSL_FEATURE_LPUART_HAS_ADDRESS_MATCHING) && FSL_FEATURE_LPUART_HAS_ADDRESS_MATCHING
+ temp &= (uint32_t)(~(LPUART_STAT_MA2F_MASK | LPUART_STAT_MA1F_MASK));
+ temp |= mask & (LPUART_STAT_MA2F_MASK | LPUART_STAT_MA1F_MASK);
+#endif
+ base->STAT = temp;
+ /* If some flags still pending. */
+ if (0U != (mask & LPUART_GetStatusFlags(base)))
+ {
+ /* Some flags can only clear or set by the hardware itself, these flags are: kLPUART_TxDataRegEmptyFlag,
+ kLPUART_TransmissionCompleteFlag, kLPUART_RxDataRegFullFlag, kLPUART_RxActiveFlag,
+ kLPUART_NoiseErrorInRxDataRegFlag, kLPUART_ParityErrorInRxDataRegFlag,
+ kLPUART_TxFifoEmptyFlag, kLPUART_RxFifoEmptyFlag. */
+ status = kStatus_LPUART_FlagCannotClearManually; /* flags can not clear manually */
+ }
+ else
+ {
+ status = kStatus_Success;
+ }
+
+ return status;
+}
+
+/*!
+ * brief Writes to the transmitter register using a blocking method.
+ *
+ * This function polls the transmitter register, first waits for the register to be empty or TX FIFO to have room,
+ * and writes data to the transmitter buffer, then waits for the data to be sent out to bus.
+ *
+ * param base LPUART peripheral base address.
+ * param data Start address of the data to write.
+ * param length Size of the data to write.
+ * retval kStatus_LPUART_Timeout Transmission timed out and was aborted.
+ * retval kStatus_Success Successfully wrote all data.
+ */
+status_t LPUART_WriteBlocking(LPUART_Type *base, const uint8_t *data, size_t length)
+{
+ assert(NULL != data);
+
+ const uint8_t *dataAddress = data;
+ size_t transferSize = length;
+
+#if UART_RETRY_TIMES
+ uint32_t waitTimes;
+#endif
+
+ while (0U != transferSize)
+ {
+#if UART_RETRY_TIMES
+ waitTimes = UART_RETRY_TIMES;
+ while ((0U == (base->STAT & LPUART_STAT_TDRE_MASK)) && (0U != --waitTimes))
+#else
+ while (0U == (base->STAT & LPUART_STAT_TDRE_MASK))
+#endif
+ {
+ }
+#if UART_RETRY_TIMES
+ if (0U == waitTimes)
+ {
+ return kStatus_LPUART_Timeout;
+ }
+#endif
+ base->DATA = *(dataAddress);
+ dataAddress++;
+ transferSize--;
+ }
+ /* Ensure all the data in the transmit buffer are sent out to bus. */
+#if UART_RETRY_TIMES
+ waitTimes = UART_RETRY_TIMES;
+ while ((0U == (base->STAT & LPUART_STAT_TC_MASK)) && (0U != --waitTimes))
+#else
+ while (0U == (base->STAT & LPUART_STAT_TC_MASK))
+#endif
+ {
+ }
+#if UART_RETRY_TIMES
+ if (0U == waitTimes)
+ {
+ return kStatus_LPUART_Timeout;
+ }
+#endif
+ return kStatus_Success;
+}
+
+/*!
+ * brief Reads the receiver data register using a blocking method.
+ *
+ * This function polls the receiver register, waits for the receiver register full or receiver FIFO
+ * has data, and reads data from the TX register.
+ *
+ * param base LPUART peripheral base address.
+ * param data Start address of the buffer to store the received data.
+ * param length Size of the buffer.
+ * retval kStatus_LPUART_RxHardwareOverrun Receiver overrun happened while receiving data.
+ * retval kStatus_LPUART_NoiseError Noise error happened while receiving data.
+ * retval kStatus_LPUART_FramingError Framing error happened while receiving data.
+ * retval kStatus_LPUART_ParityError Parity error happened while receiving data.
+ * retval kStatus_LPUART_Timeout Transmission timed out and was aborted.
+ * retval kStatus_Success Successfully received all data.
+ */
+status_t LPUART_ReadBlocking(LPUART_Type *base, uint8_t *data, size_t length)
+{
+ assert(NULL != data);
+
+ status_t status = kStatus_Success;
+ uint32_t statusFlag;
+ uint8_t *dataAddress = data;
+
+#if defined(FSL_FEATURE_LPUART_HAS_7BIT_DATA_SUPPORT) && FSL_FEATURE_LPUART_HAS_7BIT_DATA_SUPPORT
+ uint32_t ctrl = base->CTRL;
+ bool isSevenDataBits = (((ctrl & LPUART_CTRL_M7_MASK) != 0U) ||
+ (((ctrl & LPUART_CTRL_M_MASK) == 0U) && ((ctrl & LPUART_CTRL_PE_MASK) != 0U)));
+#endif
+
+#if UART_RETRY_TIMES
+ uint32_t waitTimes;
+#endif
+
+ while (0U != (length--))
+ {
+#if UART_RETRY_TIMES
+ waitTimes = UART_RETRY_TIMES;
+#endif
+#if defined(FSL_FEATURE_LPUART_HAS_FIFO) && FSL_FEATURE_LPUART_HAS_FIFO
+ while (0U == ((base->WATER & LPUART_WATER_RXCOUNT_MASK) >> LPUART_WATER_RXCOUNT_SHIFT))
+#else
+ while (0U == (base->STAT & LPUART_STAT_RDRF_MASK))
+#endif
+ {
+#if UART_RETRY_TIMES
+ if (0U == --waitTimes)
+ {
+ status = kStatus_LPUART_Timeout;
+ break;
+ }
+#endif
+ statusFlag = LPUART_GetStatusFlags(base);
+
+ if (0U != (statusFlag & (uint32_t)kLPUART_RxOverrunFlag))
+ {
+ status = ((kStatus_Success == LPUART_ClearStatusFlags(base, (uint32_t)kLPUART_RxOverrunFlag)) ?
+ (kStatus_LPUART_RxHardwareOverrun) :
+ (kStatus_LPUART_FlagCannotClearManually));
+ /* Other error flags(FE, NF, and PF) are prevented from setting once OR is set, no need to check other
+ * error flags*/
+ break;
+ }
+
+ if (0U != (statusFlag & (uint32_t)kLPUART_ParityErrorFlag))
+ {
+ status = ((kStatus_Success == LPUART_ClearStatusFlags(base, (uint32_t)kLPUART_ParityErrorFlag)) ?
+ (kStatus_LPUART_ParityError) :
+ (kStatus_LPUART_FlagCannotClearManually));
+ }
+
+ if (0U != (statusFlag & (uint32_t)kLPUART_FramingErrorFlag))
+ {
+ status = ((kStatus_Success == LPUART_ClearStatusFlags(base, (uint32_t)kLPUART_FramingErrorFlag)) ?
+ (kStatus_LPUART_FramingError) :
+ (kStatus_LPUART_FlagCannotClearManually));
+ }
+
+ if (0U != (statusFlag & (uint32_t)kLPUART_NoiseErrorFlag))
+ {
+ status = ((kStatus_Success == LPUART_ClearStatusFlags(base, (uint32_t)kLPUART_NoiseErrorFlag)) ?
+ (kStatus_LPUART_NoiseError) :
+ (kStatus_LPUART_FlagCannotClearManually));
+ }
+ if (kStatus_Success != status)
+ {
+ break;
+ }
+ }
+
+ if (kStatus_Success == status)
+ {
+#if defined(FSL_FEATURE_LPUART_HAS_7BIT_DATA_SUPPORT) && FSL_FEATURE_LPUART_HAS_7BIT_DATA_SUPPORT
+ if (isSevenDataBits)
+ {
+ *(dataAddress) = (uint8_t)(base->DATA & 0x7FU);
+ dataAddress++;
+ }
+ else
+ {
+ *(dataAddress) = (uint8_t)base->DATA;
+ dataAddress++;
+ }
+#else
+ *(dataAddress) = (uint8_t)base->DATA;
+ dataAddress++;
+#endif
+ }
+ else
+ {
+ break;
+ }
+ }
+
+ return status;
+}
+
+/*!
+ * brief Initializes the LPUART handle.
+ *
+ * This function initializes the LPUART handle, which can be used for other LPUART
+ * transactional APIs. Usually, for a specified LPUART instance,
+ * call this API once to get the initialized handle.
+ *
+ * The LPUART driver supports the "background" receiving, which means that user can set up
+ * an RX ring buffer optionally. Data received is stored into the ring buffer even when the
+ * user doesn't call the LPUART_TransferReceiveNonBlocking() API. If there is already data received
+ * in the ring buffer, the user can get the received data from the ring buffer directly.
+ * The ring buffer is disabled if passing NULL as p ringBuffer.
+ *
+ * param base LPUART peripheral base address.
+ * param handle LPUART handle pointer.
+ * param callback Callback function.
+ * param userData User data.
+ */
+void LPUART_TransferCreateHandle(LPUART_Type *base,
+ lpuart_handle_t *handle,
+ lpuart_transfer_callback_t callback,
+ void *userData)
+{
+ assert(NULL != handle);
+
+ uint32_t instance;
+
+#if defined(FSL_FEATURE_LPUART_HAS_7BIT_DATA_SUPPORT) && FSL_FEATURE_LPUART_HAS_7BIT_DATA_SUPPORT
+ uint32_t ctrl = base->CTRL;
+ bool isSevenDataBits = (((ctrl & LPUART_CTRL_M7_MASK) != 0U) ||
+ (((ctrl & LPUART_CTRL_M_MASK) == 0U) && ((ctrl & LPUART_CTRL_PE_MASK) != 0U)));
+#endif
+
+ /* Zero the handle. */
+ (void)memset(handle, 0, sizeof(lpuart_handle_t));
+
+ /* Set the TX/RX state. */
+ handle->rxState = (uint8_t)kLPUART_RxIdle;
+ handle->txState = (uint8_t)kLPUART_TxIdle;
+
+ /* Set the callback and user data. */
+ handle->callback = callback;
+ handle->userData = userData;
+
+#if defined(FSL_FEATURE_LPUART_HAS_7BIT_DATA_SUPPORT) && FSL_FEATURE_LPUART_HAS_7BIT_DATA_SUPPORT
+ /* Initial seven data bits flag */
+ handle->isSevenDataBits = isSevenDataBits;
+#endif
+
+ /* Get instance from peripheral base address. */
+ instance = LPUART_GetInstance(base);
+
+ /* Save the handle in global variables to support the double weak mechanism. */
+ s_lpuartHandle[instance] = handle;
+
+ s_lpuartIsr = LPUART_TransferHandleIRQ;
+
+/* Enable interrupt in NVIC. */
+#if defined(FSL_FEATURE_LPUART_HAS_SEPARATE_RX_TX_IRQ) && FSL_FEATURE_LPUART_HAS_SEPARATE_RX_TX_IRQ
+ (void)EnableIRQ(s_lpuartRxIRQ[instance]);
+ (void)EnableIRQ(s_lpuartTxIRQ[instance]);
+#else
+ (void)EnableIRQ(s_lpuartIRQ[instance]);
+#endif
+}
+
+/*!
+ * brief Sets up the RX ring buffer.
+ *
+ * This function sets up the RX ring buffer to a specific UART handle.
+ *
+ * When the RX ring buffer is used, data received is stored into the ring buffer even when
+ * the user doesn't call the UART_TransferReceiveNonBlocking() API. If there is already data received
+ * in the ring buffer, the user can get the received data from the ring buffer directly.
+ *
+ * note When using RX ring buffer, one byte is reserved for internal use. In other
+ * words, if p ringBufferSize is 32, then only 31 bytes are used for saving data.
+ *
+ * param base LPUART peripheral base address.
+ * param handle LPUART handle pointer.
+ * param ringBuffer Start address of ring buffer for background receiving. Pass NULL to disable the ring buffer.
+ * param ringBufferSize size of the ring buffer.
+ */
+void LPUART_TransferStartRingBuffer(LPUART_Type *base,
+ lpuart_handle_t *handle,
+ uint8_t *ringBuffer,
+ size_t ringBufferSize)
+{
+ assert(NULL != handle);
+ assert(NULL != ringBuffer);
+
+ /* Setup the ring buffer address */
+ handle->rxRingBuffer = ringBuffer;
+ handle->rxRingBufferSize = ringBufferSize;
+ handle->rxRingBufferHead = 0U;
+ handle->rxRingBufferTail = 0U;
+
+ /* Enable the interrupt to accept the data when user need the ring buffer. */
+ LPUART_EnableInterrupts(
+ base, (uint32_t)kLPUART_RxDataRegFullInterruptEnable | (uint32_t)kLPUART_RxOverrunInterruptEnable);
+}
+
+/*!
+ * brief Aborts the background transfer and uninstalls the ring buffer.
+ *
+ * This function aborts the background transfer and uninstalls the ring buffer.
+ *
+ * param base LPUART peripheral base address.
+ * param handle LPUART handle pointer.
+ */
+void LPUART_TransferStopRingBuffer(LPUART_Type *base, lpuart_handle_t *handle)
+{
+ assert(NULL != handle);
+
+ if (handle->rxState == (uint8_t)kLPUART_RxIdle)
+ {
+ LPUART_DisableInterrupts(
+ base, (uint32_t)kLPUART_RxDataRegFullInterruptEnable | (uint32_t)kLPUART_RxOverrunInterruptEnable);
+ }
+
+ handle->rxRingBuffer = NULL;
+ handle->rxRingBufferSize = 0U;
+ handle->rxRingBufferHead = 0U;
+ handle->rxRingBufferTail = 0U;
+}
+
+/*!
+ * brief Transmits a buffer of data using the interrupt method.
+ *
+ * This function send data using an interrupt method. This is a non-blocking function, which
+ * returns directly without waiting for all data written to the transmitter register. When
+ * all data is written to the TX register in the ISR, the LPUART driver calls the callback
+ * function and passes the ref kStatus_LPUART_TxIdle as status parameter.
+ *
+ * note The kStatus_LPUART_TxIdle is passed to the upper layer when all data are written
+ * to the TX register. However, there is no check to ensure that all the data sent out. Before disabling the TX,
+ * check the kLPUART_TransmissionCompleteFlag to ensure that the transmit is finished.
+ *
+ * param base LPUART peripheral base address.
+ * param handle LPUART handle pointer.
+ * param xfer LPUART transfer structure, see #lpuart_transfer_t.
+ * retval kStatus_Success Successfully start the data transmission.
+ * retval kStatus_LPUART_TxBusy Previous transmission still not finished, data not all written to the TX register.
+ * retval kStatus_InvalidArgument Invalid argument.
+ */
+status_t LPUART_TransferSendNonBlocking(LPUART_Type *base, lpuart_handle_t *handle, lpuart_transfer_t *xfer)
+{
+ assert(NULL != handle);
+ assert(NULL != xfer);
+ assert(NULL != xfer->data);
+ assert(0U != xfer->dataSize);
+
+ status_t status;
+
+ /* Return error if current TX busy. */
+ if ((uint8_t)kLPUART_TxBusy == handle->txState)
+ {
+ status = kStatus_LPUART_TxBusy;
+ }
+ else
+ {
+ handle->txData = xfer->data;
+ handle->txDataSize = xfer->dataSize;
+ handle->txDataSizeAll = xfer->dataSize;
+ handle->txState = (uint8_t)kLPUART_TxBusy;
+
+ /* Enable transmitter interrupt. */
+ LPUART_EnableInterrupts(base, (uint32_t)kLPUART_TxDataRegEmptyInterruptEnable);
+
+ status = kStatus_Success;
+ }
+
+ return status;
+}
+
+/*!
+ * brief Aborts the interrupt-driven data transmit.
+ *
+ * This function aborts the interrupt driven data sending. The user can get the remainBtyes to find out
+ * how many bytes are not sent out.
+ *
+ * param base LPUART peripheral base address.
+ * param handle LPUART handle pointer.
+ */
+void LPUART_TransferAbortSend(LPUART_Type *base, lpuart_handle_t *handle)
+{
+ assert(NULL != handle);
+
+ LPUART_DisableInterrupts(
+ base, (uint32_t)kLPUART_TxDataRegEmptyInterruptEnable | (uint32_t)kLPUART_TransmissionCompleteInterruptEnable);
+
+ handle->txDataSize = 0;
+ handle->txState = (uint8_t)kLPUART_TxIdle;
+}
+
+/*!
+ * brief Gets the number of bytes that have been sent out to bus.
+ *
+ * This function gets the number of bytes that have been sent out to bus by an interrupt method.
+ *
+ * param base LPUART peripheral base address.
+ * param handle LPUART handle pointer.
+ * param count Send bytes count.
+ * retval kStatus_NoTransferInProgress No send in progress.
+ * retval kStatus_InvalidArgument Parameter is invalid.
+ * retval kStatus_Success Get successfully through the parameter \p count;
+ */
+status_t LPUART_TransferGetSendCount(LPUART_Type *base, lpuart_handle_t *handle, uint32_t *count)
+{
+ assert(NULL != handle);
+ assert(NULL != count);
+
+ status_t status = kStatus_Success;
+ size_t tmptxDataSize = handle->txDataSize;
+
+ if ((uint8_t)kLPUART_TxIdle == handle->txState)
+ {
+ status = kStatus_NoTransferInProgress;
+ }
+ else
+ {
+#if defined(FSL_FEATURE_LPUART_HAS_FIFO) && FSL_FEATURE_LPUART_HAS_FIFO
+ *count = handle->txDataSizeAll - tmptxDataSize -
+ ((base->WATER & LPUART_WATER_TXCOUNT_MASK) >> LPUART_WATER_TXCOUNT_SHIFT);
+#else
+ if ((base->STAT & (uint32_t)kLPUART_TxDataRegEmptyFlag) != 0U)
+ {
+ *count = handle->txDataSizeAll - tmptxDataSize;
+ }
+ else
+ {
+ *count = handle->txDataSizeAll - tmptxDataSize - 1U;
+ }
+#endif
+ }
+
+ return status;
+}
+
+/*!
+ * brief Receives a buffer of data using the interrupt method.
+ *
+ * This function receives data using an interrupt method. This is a non-blocking function
+ * which returns without waiting to ensure that all data are received.
+ * If the RX ring buffer is used and not empty, the data in the ring buffer is copied and
+ * the parameter p receivedBytes shows how many bytes are copied from the ring buffer.
+ * After copying, if the data in the ring buffer is not enough for read, the receive
+ * request is saved by the LPUART driver. When the new data arrives, the receive request
+ * is serviced first. When all data is received, the LPUART driver notifies the upper layer
+ * through a callback function and passes a status parameter ref kStatus_UART_RxIdle.
+ * For example, the upper layer needs 10 bytes but there are only 5 bytes in ring buffer.
+ * The 5 bytes are copied to xfer->data, which returns with the
+ * parameter p receivedBytes set to 5. For the remaining 5 bytes, the newly arrived data is
+ * saved from xfer->data[5]. When 5 bytes are received, the LPUART driver notifies the upper layer.
+ * If the RX ring buffer is not enabled, this function enables the RX and RX interrupt
+ * to receive data to xfer->data. When all data is received, the upper layer is notified.
+ *
+ * param base LPUART peripheral base address.
+ * param handle LPUART handle pointer.
+ * param xfer LPUART transfer structure, see #uart_transfer_t.
+ * param receivedBytes Bytes received from the ring buffer directly.
+ * retval kStatus_Success Successfully queue the transfer into the transmit queue.
+ * retval kStatus_LPUART_RxBusy Previous receive request is not finished.
+ * retval kStatus_InvalidArgument Invalid argument.
+ */
+status_t LPUART_TransferReceiveNonBlocking(LPUART_Type *base,
+ lpuart_handle_t *handle,
+ lpuart_transfer_t *xfer,
+ size_t *receivedBytes)
+{
+ assert(NULL != handle);
+ assert(NULL != xfer);
+ assert(NULL != xfer->data);
+ assert(0U != xfer->dataSize);
+
+ uint32_t i;
+ status_t status;
+ /* How many bytes to copy from ring buffer to user memory. */
+ size_t bytesToCopy = 0U;
+ /* How many bytes to receive. */
+ size_t bytesToReceive;
+ /* How many bytes currently have received. */
+ size_t bytesCurrentReceived;
+
+ /* How to get data:
+ 1. If RX ring buffer is not enabled, then save xfer->data and xfer->dataSize
+ to lpuart handle, enable interrupt to store received data to xfer->data. When
+ all data received, trigger callback.
+ 2. If RX ring buffer is enabled and not empty, get data from ring buffer first.
+ If there are enough data in ring buffer, copy them to xfer->data and return.
+ If there are not enough data in ring buffer, copy all of them to xfer->data,
+ save the xfer->data remained empty space to lpuart handle, receive data
+ to this empty space and trigger callback when finished. */
+
+ if ((uint8_t)kLPUART_RxBusy == handle->rxState)
+ {
+ status = kStatus_LPUART_RxBusy;
+ }
+ else
+ {
+ bytesToReceive = xfer->dataSize;
+ bytesCurrentReceived = 0;
+
+ /* If RX ring buffer is used. */
+ if (NULL != handle->rxRingBuffer)
+ {
+ /* Disable LPUART RX IRQ, protect ring buffer. */
+ LPUART_DisableInterrupts(base, (uint32_t)kLPUART_RxDataRegFullInterruptEnable);
+
+ /* How many bytes in RX ring buffer currently. */
+ bytesToCopy = LPUART_TransferGetRxRingBufferLength(base, handle);
+
+ if (0U != bytesToCopy)
+ {
+ bytesToCopy = MIN(bytesToReceive, bytesToCopy);
+
+ bytesToReceive -= bytesToCopy;
+
+ /* Copy data from ring buffer to user memory. */
+ for (i = 0U; i < bytesToCopy; i++)
+ {
+ xfer->data[bytesCurrentReceived] = handle->rxRingBuffer[handle->rxRingBufferTail];
+ bytesCurrentReceived++;
+
+ /* Wrap to 0. Not use modulo (%) because it might be large and slow. */
+ if (((uint32_t)handle->rxRingBufferTail + 1U) == handle->rxRingBufferSize)
+ {
+ handle->rxRingBufferTail = 0U;
+ }
+ else
+ {
+ handle->rxRingBufferTail++;
+ }
+ }
+ }
+
+ /* If ring buffer does not have enough data, still need to read more data. */
+ if (0U != bytesToReceive)
+ {
+ /* No data in ring buffer, save the request to LPUART handle. */
+ handle->rxData = xfer->data + bytesCurrentReceived;
+ handle->rxDataSize = bytesToReceive;
+ handle->rxDataSizeAll = bytesToReceive;
+ handle->rxState = (uint8_t)kLPUART_RxBusy;
+ }
+ /* Enable LPUART RX IRQ if previously enabled. */
+ LPUART_EnableInterrupts(base, (uint32_t)kLPUART_RxDataRegFullInterruptEnable);
+
+ /* Call user callback since all data are received. */
+ if (0U == bytesToReceive)
+ {
+ if (NULL != handle->callback)
+ {
+ handle->callback(base, handle, kStatus_LPUART_RxIdle, handle->userData);
+ }
+ }
+ }
+ /* Ring buffer not used. */
+ else
+ {
+ handle->rxData = xfer->data + bytesCurrentReceived;
+ handle->rxDataSize = bytesToReceive;
+ handle->rxDataSizeAll = bytesToReceive;
+ handle->rxState = (uint8_t)kLPUART_RxBusy;
+
+ /* Enable RX interrupt. */
+ LPUART_EnableInterrupts(base, (uint32_t)kLPUART_RxDataRegFullInterruptEnable |
+ (uint32_t)kLPUART_RxOverrunInterruptEnable |
+ (uint32_t)kLPUART_IdleLineInterruptEnable);
+ }
+
+ /* Return the how many bytes have read. */
+ if (NULL != receivedBytes)
+ {
+ *receivedBytes = bytesCurrentReceived;
+ }
+
+ status = kStatus_Success;
+ }
+
+ return status;
+}
+
+/*!
+ * brief Aborts the interrupt-driven data receiving.
+ *
+ * This function aborts the interrupt-driven data receiving. The user can get the remainBytes to find out
+ * how many bytes not received yet.
+ *
+ * param base LPUART peripheral base address.
+ * param handle LPUART handle pointer.
+ */
+void LPUART_TransferAbortReceive(LPUART_Type *base, lpuart_handle_t *handle)
+{
+ assert(NULL != handle);
+
+ /* Only abort the receive to handle->rxData, the RX ring buffer is still working. */
+ if (NULL == handle->rxRingBuffer)
+ {
+ /* Disable RX interrupt. */
+ LPUART_DisableInterrupts(base, (uint32_t)kLPUART_RxDataRegFullInterruptEnable |
+ (uint32_t)kLPUART_RxOverrunInterruptEnable |
+ (uint32_t)kLPUART_IdleLineInterruptEnable);
+ }
+
+ handle->rxDataSize = 0U;
+ handle->rxState = (uint8_t)kLPUART_RxIdle;
+}
+
+/*!
+ * brief Gets the number of bytes that have been received.
+ *
+ * This function gets the number of bytes that have been received.
+ *
+ * param base LPUART peripheral base address.
+ * param handle LPUART handle pointer.
+ * param count Receive bytes count.
+ * retval kStatus_NoTransferInProgress No receive in progress.
+ * retval kStatus_InvalidArgument Parameter is invalid.
+ * retval kStatus_Success Get successfully through the parameter \p count;
+ */
+status_t LPUART_TransferGetReceiveCount(LPUART_Type *base, lpuart_handle_t *handle, uint32_t *count)
+{
+ assert(NULL != handle);
+ assert(NULL != count);
+
+ status_t status = kStatus_Success;
+ size_t tmprxDataSize = handle->rxDataSize;
+
+ if ((uint8_t)kLPUART_RxIdle == handle->rxState)
+ {
+ status = kStatus_NoTransferInProgress;
+ }
+ else
+ {
+ *count = handle->rxDataSizeAll - tmprxDataSize;
+ }
+
+ return status;
+}
+
+/*!
+ * brief LPUART IRQ handle function.
+ *
+ * This function handles the LPUART transmit and receive IRQ request.
+ *
+ * param base LPUART peripheral base address.
+ * param handle LPUART handle pointer.
+ */
+void LPUART_TransferHandleIRQ(LPUART_Type *base, lpuart_handle_t *handle)
+{
+ assert(NULL != handle);
+
+ uint8_t count;
+ uint8_t tempCount;
+ uint32_t status = LPUART_GetStatusFlags(base);
+ uint32_t enabledInterrupts = LPUART_GetEnabledInterrupts(base);
+ uint16_t tpmRxRingBufferHead;
+ uint32_t tpmData;
+
+ /* If RX overrun. */
+ if ((uint32_t)kLPUART_RxOverrunFlag == ((uint32_t)kLPUART_RxOverrunFlag & status))
+ {
+ /* Clear overrun flag, otherwise the RX does not work. */
+ base->STAT = ((base->STAT & 0x3FE00000U) | LPUART_STAT_OR_MASK);
+
+ /* Trigger callback. */
+ if (NULL != (handle->callback))
+ {
+ handle->callback(base, handle, kStatus_LPUART_RxHardwareOverrun, handle->userData);
+ }
+ }
+
+ /* If IDLE flag is set and the IDLE interrupt is enabled. */
+ if ((0U != ((uint32_t)kLPUART_IdleLineFlag & status)) &&
+ (0U != ((uint32_t)kLPUART_IdleLineInterruptEnable & enabledInterrupts)))
+ {
+#if defined(FSL_FEATURE_LPUART_HAS_FIFO) && FSL_FEATURE_LPUART_HAS_FIFO
+ count = ((uint8_t)((base->WATER & LPUART_WATER_RXCOUNT_MASK) >> LPUART_WATER_RXCOUNT_SHIFT));
+
+ while ((0U != handle->rxDataSize) && (0U != count))
+ {
+ tempCount = (uint8_t)MIN(handle->rxDataSize, count);
+
+ /* Using non block API to read the data from the registers. */
+ LPUART_ReadNonBlocking(base, handle->rxData, tempCount);
+ handle->rxData += tempCount;
+ handle->rxDataSize -= tempCount;
+ count -= tempCount;
+
+ /* If rxDataSize is 0, disable idle line interrupt.*/
+ if (0U == (handle->rxDataSize))
+ {
+ handle->rxState = (uint8_t)kLPUART_RxIdle;
+
+ LPUART_DisableInterrupts(
+ base, (uint32_t)kLPUART_RxDataRegFullInterruptEnable | (uint32_t)kLPUART_RxOverrunInterruptEnable);
+ if (NULL != handle->callback)
+ {
+ handle->callback(base, handle, kStatus_LPUART_RxIdle, handle->userData);
+ }
+ }
+ }
+#endif
+ /* Clear IDLE flag.*/
+ base->STAT |= LPUART_STAT_IDLE_MASK;
+
+ /* If rxDataSize is 0, disable idle line interrupt.*/
+ if (0U != (handle->rxDataSize))
+ {
+ LPUART_DisableInterrupts(base, (uint32_t)kLPUART_IdleLineInterruptEnable);
+ }
+ /* If callback is not NULL and rxDataSize is not 0. */
+ if ((0U != handle->rxDataSize) && (NULL != handle->callback))
+ {
+ handle->callback(base, handle, kStatus_LPUART_IdleLineDetected, handle->userData);
+ }
+ }
+ /* Receive data register full */
+ if ((0U != ((uint32_t)kLPUART_RxDataRegFullFlag & status)) &&
+ (0U != ((uint32_t)kLPUART_RxDataRegFullInterruptEnable & enabledInterrupts)))
+ {
+/* Get the size that can be stored into buffer for this interrupt. */
+#if defined(FSL_FEATURE_LPUART_HAS_FIFO) && FSL_FEATURE_LPUART_HAS_FIFO
+ count = ((uint8_t)((base->WATER & LPUART_WATER_RXCOUNT_MASK) >> LPUART_WATER_RXCOUNT_SHIFT));
+#else
+ count = 1;
+#endif
+
+ /* If handle->rxDataSize is not 0, first save data to handle->rxData. */
+ while ((0U != handle->rxDataSize) && (0U != count))
+ {
+#if defined(FSL_FEATURE_LPUART_HAS_FIFO) && FSL_FEATURE_LPUART_HAS_FIFO
+ tempCount = (uint8_t)MIN(handle->rxDataSize, count);
+#else
+ tempCount = 1;
+#endif
+
+ /* Using non block API to read the data from the registers. */
+ LPUART_ReadNonBlocking(base, handle->rxData, tempCount);
+ handle->rxData += tempCount;
+ handle->rxDataSize -= tempCount;
+ count -= tempCount;
+
+ /* If all the data required for upper layer is ready, trigger callback. */
+ if (0U == handle->rxDataSize)
+ {
+ handle->rxState = (uint8_t)kLPUART_RxIdle;
+
+ if (NULL != handle->callback)
+ {
+ handle->callback(base, handle, kStatus_LPUART_RxIdle, handle->userData);
+ }
+ }
+ }
+
+ /* If use RX ring buffer, receive data to ring buffer. */
+ if (NULL != handle->rxRingBuffer)
+ {
+ while (0U != count--)
+ {
+ /* If RX ring buffer is full, trigger callback to notify over run. */
+ if (LPUART_TransferIsRxRingBufferFull(base, handle))
+ {
+ if (NULL != handle->callback)
+ {
+ handle->callback(base, handle, kStatus_LPUART_RxRingBufferOverrun, handle->userData);
+ }
+ }
+
+ /* If ring buffer is still full after callback function, the oldest data is overridden. */
+ if (LPUART_TransferIsRxRingBufferFull(base, handle))
+ {
+ /* Increase handle->rxRingBufferTail to make room for new data. */
+ if (((uint32_t)handle->rxRingBufferTail + 1U) == handle->rxRingBufferSize)
+ {
+ handle->rxRingBufferTail = 0U;
+ }
+ else
+ {
+ handle->rxRingBufferTail++;
+ }
+ }
+
+ /* Read data. */
+ tpmRxRingBufferHead = handle->rxRingBufferHead;
+ tpmData = base->DATA;
+#if defined(FSL_FEATURE_LPUART_HAS_7BIT_DATA_SUPPORT) && FSL_FEATURE_LPUART_HAS_7BIT_DATA_SUPPORT
+ if (handle->isSevenDataBits)
+ {
+ handle->rxRingBuffer[tpmRxRingBufferHead] = (uint8_t)(tpmData & 0x7FU);
+ }
+ else
+ {
+ handle->rxRingBuffer[tpmRxRingBufferHead] = (uint8_t)tpmData;
+ }
+#else
+ handle->rxRingBuffer[tpmRxRingBufferHead] = (uint8_t)tpmData;
+#endif
+
+ /* Increase handle->rxRingBufferHead. */
+ if (((uint32_t)handle->rxRingBufferHead + 1U) == handle->rxRingBufferSize)
+ {
+ handle->rxRingBufferHead = 0U;
+ }
+ else
+ {
+ handle->rxRingBufferHead++;
+ }
+ }
+ }
+ /* If no receive requst pending, stop RX interrupt. */
+ else if (0U == handle->rxDataSize)
+ {
+ LPUART_DisableInterrupts(
+ base, (uint32_t)kLPUART_RxDataRegFullInterruptEnable | (uint32_t)kLPUART_RxOverrunInterruptEnable);
+ }
+ else
+ {
+ }
+ }
+
+ /* Send data register empty and the interrupt is enabled. */
+ if ((0U != ((uint32_t)kLPUART_TxDataRegEmptyFlag & status)) &&
+ (0U != ((uint32_t)kLPUART_TxDataRegEmptyInterruptEnable & enabledInterrupts)))
+ {
+/* Get the bytes that available at this moment. */
+#if defined(FSL_FEATURE_LPUART_HAS_FIFO) && FSL_FEATURE_LPUART_HAS_FIFO
+ count = (uint8_t)FSL_FEATURE_LPUART_FIFO_SIZEn(base) -
+ (uint8_t)((base->WATER & LPUART_WATER_TXCOUNT_MASK) >> LPUART_WATER_TXCOUNT_SHIFT);
+#else
+ count = 1;
+#endif
+
+ while ((0U != handle->txDataSize) && (0U != count))
+ {
+#if defined(FSL_FEATURE_LPUART_HAS_FIFO) && FSL_FEATURE_LPUART_HAS_FIFO
+ tempCount = (uint8_t)MIN(handle->txDataSize, count);
+#else
+ tempCount = 1;
+#endif
+
+ /* Using non block API to write the data to the registers. */
+ LPUART_WriteNonBlocking(base, handle->txData, tempCount);
+ handle->txData += tempCount;
+ handle->txDataSize -= tempCount;
+ count -= tempCount;
+
+ /* If all the data are written to data register, notify user with the callback, then TX finished. */
+ if (0U == handle->txDataSize)
+ {
+ /* Disable TX register empty interrupt. */
+ base->CTRL = (base->CTRL & ~LPUART_CTRL_TIE_MASK);
+ /* Enable transmission complete interrupt. */
+ LPUART_EnableInterrupts(base, (uint32_t)kLPUART_TransmissionCompleteInterruptEnable);
+ }
+ }
+ }
+
+ /* Transmission complete and the interrupt is enabled. */
+ if ((0U != ((uint32_t)kLPUART_TransmissionCompleteFlag & status)) &&
+ (0U != ((uint32_t)kLPUART_TransmissionCompleteInterruptEnable & enabledInterrupts)))
+ {
+ /* Set txState to idle only when all data has been sent out to bus. */
+ handle->txState = (uint8_t)kLPUART_TxIdle;
+ /* Disable transmission complete interrupt. */
+ LPUART_DisableInterrupts(base, (uint32_t)kLPUART_TransmissionCompleteInterruptEnable);
+
+ /* Trigger callback. */
+ if (NULL != handle->callback)
+ {
+ handle->callback(base, handle, kStatus_LPUART_TxIdle, handle->userData);
+ }
+ }
+}
+
+/*!
+ * brief LPUART Error IRQ handle function.
+ *
+ * This function handles the LPUART error IRQ request.
+ *
+ * param base LPUART peripheral base address.
+ * param handle LPUART handle pointer.
+ */
+void LPUART_TransferHandleErrorIRQ(LPUART_Type *base, lpuart_handle_t *handle)
+{
+ /* To be implemented by User. */
+}
+#if defined(FSL_FEATURE_LPUART_HAS_SHARED_IRQ0_IRQ1) && FSL_FEATURE_LPUART_HAS_SHARED_IRQ0_IRQ1
+#if defined(FSL_FEATURE_LPUART_HAS_SEPARATE_RX_TX_IRQ) && FSL_FEATURE_LPUART_HAS_SEPARATE_RX_TX_IRQ
+void LPUART0_LPUART1_RX_DriverIRQHandler(void)
+{
+ uint32_t stat = 0U;
+ uint32_t ctrl = 0U;
+
+ if (CLOCK_isEnabledClock(s_lpuartClock[0]))
+ {
+ stat = LPUART0->STAT;
+ ctrl = LPUART0->CTRL;
+ if ((LPUART_STAT_OR_MASK & stat) || ((LPUART_STAT_RDRF_MASK & stat) && (LPUART_CTRL_RIE_MASK & ctrl)))
+ {
+ s_lpuartIsr(LPUART0, s_lpuartHandle[0]);
+ }
+ }
+ if (CLOCK_isEnabledClock(s_lpuartClock[1]))
+ {
+ stat = LPUART1->STAT;
+ ctrl = LPUART1->CTRL;
+ if ((LPUART_STAT_OR_MASK & stat) || ((LPUART_STAT_RDRF_MASK & stat) && (LPUART_CTRL_RIE_MASK & ctrl)))
+ {
+ s_lpuartIsr(LPUART1, s_lpuartHandle[1]);
+ }
+ }
+ SDK_ISR_EXIT_BARRIER;
+}
+void LPUART0_LPUART1_TX_DriverIRQHandler(void)
+{
+ uint32_t stat = 0U;
+ uint32_t ctrl = 0U;
+
+ if (CLOCK_isEnabledClock(s_lpuartClock[0]))
+ {
+ stat = LPUART0->STAT;
+ ctrl = LPUART0->CTRL;
+ if ((LPUART_STAT_OR_MASK & stat) || ((stat & LPUART_STAT_TDRE_MASK) && (ctrl & LPUART_CTRL_TIE_MASK)))
+ {
+ s_lpuartIsr(LPUART0, s_lpuartHandle[0]);
+ }
+ }
+ if (CLOCK_isEnabledClock(s_lpuartClock[1]))
+ {
+ stat = LPUART1->STAT;
+ ctrl = LPUART1->CTRL;
+ if ((LPUART_STAT_OR_MASK & stat) || ((stat & LPUART_STAT_TDRE_MASK) && (ctrl & LPUART_CTRL_TIE_MASK)))
+ {
+ s_lpuartIsr(LPUART1, s_lpuartHandle[1]);
+ }
+ }
+ SDK_ISR_EXIT_BARRIER;
+}
+#else
+void LPUART0_LPUART1_DriverIRQHandler(void)
+{
+ uint32_t stat = 0U;
+ uint32_t ctrl = 0U;
+
+ if (CLOCK_isEnabledClock(s_lpuartClock[0]))
+ {
+ stat = LPUART0->STAT;
+ ctrl = LPUART0->CTRL;
+ if ((0U != (LPUART_STAT_OR_MASK & stat)) ||
+ ((0U != (LPUART_STAT_RDRF_MASK & stat)) && (0U != (LPUART_CTRL_RIE_MASK & ctrl))) ||
+ ((0U != (stat & LPUART_STAT_TDRE_MASK)) && (0U != (ctrl & LPUART_CTRL_TIE_MASK))))
+ {
+ s_lpuartIsr(LPUART0, s_lpuartHandle[0]);
+ }
+ }
+ if (CLOCK_isEnabledClock(s_lpuartClock[1]))
+ {
+ stat = LPUART1->STAT;
+ ctrl = LPUART1->CTRL;
+ if ((0U != (LPUART_STAT_OR_MASK & stat)) ||
+ ((0U != (LPUART_STAT_RDRF_MASK & stat)) && (0U != (LPUART_CTRL_RIE_MASK & ctrl))) ||
+ ((0U != (stat & LPUART_STAT_TDRE_MASK)) && (0U != (ctrl & LPUART_CTRL_TIE_MASK))))
+ {
+ s_lpuartIsr(LPUART1, s_lpuartHandle[1]);
+ }
+ }
+ SDK_ISR_EXIT_BARRIER;
+}
+#endif
+#endif
+
+#if defined(LPUART0)
+#if !(defined(FSL_FEATURE_LPUART_HAS_SHARED_IRQ0_IRQ1) && FSL_FEATURE_LPUART_HAS_SHARED_IRQ0_IRQ1)
+#if defined(FSL_FEATURE_LPUART_HAS_SEPARATE_RX_TX_IRQ) && FSL_FEATURE_LPUART_HAS_SEPARATE_RX_TX_IRQ
+void LPUART0_TX_DriverIRQHandler(void)
+{
+ s_lpuartIsr(LPUART0, s_lpuartHandle[0]);
+ SDK_ISR_EXIT_BARRIER;
+}
+void LPUART0_RX_DriverIRQHandler(void)
+{
+ s_lpuartIsr(LPUART0, s_lpuartHandle[0]);
+ SDK_ISR_EXIT_BARRIER;
+}
+#else
+void LPUART0_DriverIRQHandler(void)
+{
+ s_lpuartIsr(LPUART0, s_lpuartHandle[0]);
+ SDK_ISR_EXIT_BARRIER;
+}
+#endif
+#endif
+#endif
+
+#if defined(LPUART1)
+#if !(defined(FSL_FEATURE_LPUART_HAS_SHARED_IRQ0_IRQ1) && FSL_FEATURE_LPUART_HAS_SHARED_IRQ0_IRQ1)
+#if defined(FSL_FEATURE_LPUART_HAS_SEPARATE_RX_TX_IRQ) && FSL_FEATURE_LPUART_HAS_SEPARATE_RX_TX_IRQ
+void LPUART1_TX_DriverIRQHandler(void)
+{
+ s_lpuartIsr(LPUART1, s_lpuartHandle[1]);
+ SDK_ISR_EXIT_BARRIER;
+}
+void LPUART1_RX_DriverIRQHandler(void)
+{
+ s_lpuartIsr(LPUART1, s_lpuartHandle[1]);
+ SDK_ISR_EXIT_BARRIER;
+}
+#else
+void LPUART1_DriverIRQHandler(void)
+{
+ s_lpuartIsr(LPUART1, s_lpuartHandle[1]);
+ SDK_ISR_EXIT_BARRIER;
+}
+#endif
+#endif
+#endif
+
+#if defined(LPUART2)
+#if defined(FSL_FEATURE_LPUART_HAS_SEPARATE_RX_TX_IRQ) && FSL_FEATURE_LPUART_HAS_SEPARATE_RX_TX_IRQ
+void LPUART2_TX_DriverIRQHandler(void)
+{
+ s_lpuartIsr(LPUART2, s_lpuartHandle[2]);
+ SDK_ISR_EXIT_BARRIER;
+}
+void LPUART2_RX_DriverIRQHandler(void)
+{
+ s_lpuartIsr(LPUART2, s_lpuartHandle[2]);
+ SDK_ISR_EXIT_BARRIER;
+}
+#else
+void LPUART2_DriverIRQHandler(void)
+{
+ s_lpuartIsr(LPUART2, s_lpuartHandle[2]);
+ SDK_ISR_EXIT_BARRIER;
+}
+#endif
+#endif
+
+#if defined(LPUART3)
+#if defined(FSL_FEATURE_LPUART_HAS_SEPARATE_RX_TX_IRQ) && FSL_FEATURE_LPUART_HAS_SEPARATE_RX_TX_IRQ
+void LPUART3_TX_DriverIRQHandler(void)
+{
+ s_lpuartIsr(LPUART3, s_lpuartHandle[3]);
+ SDK_ISR_EXIT_BARRIER;
+}
+void LPUART3_RX_DriverIRQHandler(void)
+{
+ s_lpuartIsr(LPUART3, s_lpuartHandle[3]);
+ SDK_ISR_EXIT_BARRIER;
+}
+#else
+void LPUART3_DriverIRQHandler(void)
+{
+ s_lpuartIsr(LPUART3, s_lpuartHandle[3]);
+ SDK_ISR_EXIT_BARRIER;
+}
+#endif
+#endif
+
+#if defined(LPUART4)
+#if defined(FSL_FEATURE_LPUART_HAS_SEPARATE_RX_TX_IRQ) && FSL_FEATURE_LPUART_HAS_SEPARATE_RX_TX_IRQ
+void LPUART4_TX_DriverIRQHandler(void)
+{
+ s_lpuartIsr(LPUART4, s_lpuartHandle[4]);
+ SDK_ISR_EXIT_BARRIER;
+}
+void LPUART4_RX_DriverIRQHandler(void)
+{
+ s_lpuartIsr(LPUART4, s_lpuartHandle[4]);
+ SDK_ISR_EXIT_BARRIER;
+}
+#else
+void LPUART4_DriverIRQHandler(void)
+{
+ s_lpuartIsr(LPUART4, s_lpuartHandle[4]);
+ SDK_ISR_EXIT_BARRIER;
+}
+#endif
+#endif
+
+#if defined(LPUART5)
+#if defined(FSL_FEATURE_LPUART_HAS_SEPARATE_RX_TX_IRQ) && FSL_FEATURE_LPUART_HAS_SEPARATE_RX_TX_IRQ
+void LPUART5_TX_DriverIRQHandler(void)
+{
+ s_lpuartIsr(LPUART5, s_lpuartHandle[5]);
+ SDK_ISR_EXIT_BARRIER;
+}
+void LPUART5_RX_DriverIRQHandler(void)
+{
+ s_lpuartIsr(LPUART5, s_lpuartHandle[5]);
+ SDK_ISR_EXIT_BARRIER;
+}
+#else
+void LPUART5_DriverIRQHandler(void)
+{
+ s_lpuartIsr(LPUART5, s_lpuartHandle[5]);
+ SDK_ISR_EXIT_BARRIER;
+}
+#endif
+#endif
+
+#if defined(LPUART6)
+#if defined(FSL_FEATURE_LPUART_HAS_SEPARATE_RX_TX_IRQ) && FSL_FEATURE_LPUART_HAS_SEPARATE_RX_TX_IRQ
+void LPUART6_TX_DriverIRQHandler(void)
+{
+ s_lpuartIsr(LPUART6, s_lpuartHandle[6]);
+ SDK_ISR_EXIT_BARRIER;
+}
+void LPUART6_RX_DriverIRQHandler(void)
+{
+ s_lpuartIsr(LPUART6, s_lpuartHandle[6]);
+ SDK_ISR_EXIT_BARRIER;
+}
+#else
+void LPUART6_DriverIRQHandler(void)
+{
+ s_lpuartIsr(LPUART6, s_lpuartHandle[6]);
+ SDK_ISR_EXIT_BARRIER;
+}
+#endif
+#endif
+
+#if defined(LPUART7)
+#if defined(FSL_FEATURE_LPUART_HAS_SEPARATE_RX_TX_IRQ) && FSL_FEATURE_LPUART_HAS_SEPARATE_RX_TX_IRQ
+void LPUART7_TX_DriverIRQHandler(void)
+{
+ s_lpuartIsr(LPUART7, s_lpuartHandle[7]);
+ SDK_ISR_EXIT_BARRIER;
+}
+void LPUART7_RX_DriverIRQHandler(void)
+{
+ s_lpuartIsr(LPUART7, s_lpuartHandle[7]);
+ SDK_ISR_EXIT_BARRIER;
+}
+#else
+void LPUART7_DriverIRQHandler(void)
+{
+ s_lpuartIsr(LPUART7, s_lpuartHandle[7]);
+ SDK_ISR_EXIT_BARRIER;
+}
+#endif
+#endif
+
+#if defined(LPUART8)
+#if defined(FSL_FEATURE_LPUART_HAS_SEPARATE_RX_TX_IRQ) && FSL_FEATURE_LPUART_HAS_SEPARATE_RX_TX_IRQ
+void LPUART8_TX_DriverIRQHandler(void)
+{
+ s_lpuartIsr(LPUART8, s_lpuartHandle[8]);
+ SDK_ISR_EXIT_BARRIER;
+}
+void LPUART8_RX_DriverIRQHandler(void)
+{
+ s_lpuartIsr(LPUART8, s_lpuartHandle[8]);
+ SDK_ISR_EXIT_BARRIER;
+}
+#else
+void LPUART8_DriverIRQHandler(void)
+{
+ s_lpuartIsr(LPUART8, s_lpuartHandle[8]);
+ SDK_ISR_EXIT_BARRIER;
+}
+#endif
+#endif
+
+#if defined(CM4_0__LPUART)
+void M4_0_LPUART_DriverIRQHandler(void)
+{
+ s_lpuartIsr(CM4_0__LPUART, s_lpuartHandle[LPUART_GetInstance(CM4_0__LPUART)]);
+ SDK_ISR_EXIT_BARRIER;
+}
+#endif
+
+#if defined(CM4_1__LPUART)
+void M4_1_LPUART_DriverIRQHandler(void)
+{
+ s_lpuartIsr(CM4_1__LPUART, s_lpuartHandle[LPUART_GetInstance(CM4_1__LPUART)]);
+ SDK_ISR_EXIT_BARRIER;
+}
+#endif
+
+#if defined(CM4__LPUART)
+void M4_LPUART_DriverIRQHandler(void)
+{
+ s_lpuartIsr(CM4__LPUART, s_lpuartHandle[LPUART_GetInstance(CM4__LPUART)]);
+ SDK_ISR_EXIT_BARRIER;
+}
+#endif
+
+#if defined(DMA__LPUART0)
+void DMA_UART0_INT_DriverIRQHandler(void)
+{
+ s_lpuartIsr(DMA__LPUART0, s_lpuartHandle[LPUART_GetInstance(DMA__LPUART0)]);
+ SDK_ISR_EXIT_BARRIER;
+}
+#endif
+
+#if defined(DMA__LPUART1)
+void DMA_UART1_INT_DriverIRQHandler(void)
+{
+ s_lpuartIsr(DMA__LPUART1, s_lpuartHandle[LPUART_GetInstance(DMA__LPUART1)]);
+ SDK_ISR_EXIT_BARRIER;
+}
+#endif
+
+#if defined(DMA__LPUART2)
+void DMA_UART2_INT_DriverIRQHandler(void)
+{
+ s_lpuartIsr(DMA__LPUART2, s_lpuartHandle[LPUART_GetInstance(DMA__LPUART2)]);
+ SDK_ISR_EXIT_BARRIER;
+}
+#endif
+
+#if defined(DMA__LPUART3)
+void DMA_UART3_INT_DriverIRQHandler(void)
+{
+ s_lpuartIsr(DMA__LPUART3, s_lpuartHandle[LPUART_GetInstance(DMA__LPUART3)]);
+ SDK_ISR_EXIT_BARRIER;
+}
+#endif
+
+#if defined(DMA__LPUART4)
+void DMA_UART4_INT_DriverIRQHandler(void)
+{
+ s_lpuartIsr(DMA__LPUART4, s_lpuartHandle[LPUART_GetInstance(DMA__LPUART4)]);
+ SDK_ISR_EXIT_BARRIER;
+}
+#endif
+
+#if defined(ADMA__LPUART0)
+void ADMA_UART0_INT_DriverIRQHandler(void)
+{
+ s_lpuartIsr(ADMA__LPUART0, s_lpuartHandle[LPUART_GetInstance(ADMA__LPUART0)]);
+ SDK_ISR_EXIT_BARRIER;
+}
+#endif
+
+#if defined(ADMA__LPUART1)
+void ADMA_UART1_INT_DriverIRQHandler(void)
+{
+ s_lpuartIsr(ADMA__LPUART1, s_lpuartHandle[LPUART_GetInstance(ADMA__LPUART1)]);
+ SDK_ISR_EXIT_BARRIER;
+}
+#endif
+
+#if defined(ADMA__LPUART2)
+void ADMA_UART2_INT_DriverIRQHandler(void)
+{
+ s_lpuartIsr(ADMA__LPUART2, s_lpuartHandle[LPUART_GetInstance(ADMA__LPUART2)]);
+ SDK_ISR_EXIT_BARRIER;
+}
+#endif
+
+#if defined(ADMA__LPUART3)
+void ADMA_UART3_INT_DriverIRQHandler(void)
+{
+ s_lpuartIsr(ADMA__LPUART3, s_lpuartHandle[LPUART_GetInstance(ADMA__LPUART3)]);
+ SDK_ISR_EXIT_BARRIER;
+}
+#endif