summaryrefslogtreecommitdiffstats
path: root/bsps/arm/imxrt/nxp/devices/MIMXRT1052/drivers/fsl_lpi2c.c
diff options
context:
space:
mode:
Diffstat (limited to 'bsps/arm/imxrt/nxp/devices/MIMXRT1052/drivers/fsl_lpi2c.c')
-rw-r--r--bsps/arm/imxrt/nxp/devices/MIMXRT1052/drivers/fsl_lpi2c.c2315
1 files changed, 2315 insertions, 0 deletions
diff --git a/bsps/arm/imxrt/nxp/devices/MIMXRT1052/drivers/fsl_lpi2c.c b/bsps/arm/imxrt/nxp/devices/MIMXRT1052/drivers/fsl_lpi2c.c
new file mode 100644
index 0000000000..f8d6f55e95
--- /dev/null
+++ b/bsps/arm/imxrt/nxp/devices/MIMXRT1052/drivers/fsl_lpi2c.c
@@ -0,0 +1,2315 @@
+/*
+ * Copyright (c) 2015, Freescale Semiconductor, Inc.
+ * Copyright 2016-2020 NXP
+ * All rights reserved.
+ *
+ * SPDX-License-Identifier: BSD-3-Clause
+ */
+
+#include "fsl_lpi2c.h"
+#include <stdlib.h>
+#include <string.h>
+
+/*******************************************************************************
+ * Definitions
+ ******************************************************************************/
+
+/* Component ID definition, used by tools. */
+#ifndef FSL_COMPONENT_ID
+#define FSL_COMPONENT_ID "platform.drivers.lpi2c"
+#endif
+
+/*! @brief Common sets of flags used by the driver. */
+enum
+{
+ /*! All flags which are cleared by the driver upon starting a transfer. */
+ kMasterClearFlags = kLPI2C_MasterEndOfPacketFlag | kLPI2C_MasterStopDetectFlag | kLPI2C_MasterNackDetectFlag |
+ kLPI2C_MasterArbitrationLostFlag | kLPI2C_MasterFifoErrFlag | kLPI2C_MasterPinLowTimeoutFlag |
+ kLPI2C_MasterDataMatchFlag,
+
+ /*! IRQ sources enabled by the non-blocking transactional API. */
+ kMasterIrqFlags = kLPI2C_MasterArbitrationLostFlag | kLPI2C_MasterTxReadyFlag | kLPI2C_MasterRxReadyFlag |
+ kLPI2C_MasterStopDetectFlag | kLPI2C_MasterNackDetectFlag | kLPI2C_MasterPinLowTimeoutFlag |
+ kLPI2C_MasterFifoErrFlag,
+
+ /*! Errors to check for. */
+ kMasterErrorFlags = kLPI2C_MasterNackDetectFlag | kLPI2C_MasterArbitrationLostFlag | kLPI2C_MasterFifoErrFlag |
+ kLPI2C_MasterPinLowTimeoutFlag,
+
+ /*! All flags which are cleared by the driver upon starting a transfer. */
+ kSlaveClearFlags = kLPI2C_SlaveRepeatedStartDetectFlag | kLPI2C_SlaveStopDetectFlag | kLPI2C_SlaveBitErrFlag |
+ kLPI2C_SlaveFifoErrFlag,
+
+ /*! IRQ sources enabled by the non-blocking transactional API. */
+ kSlaveIrqFlags = kLPI2C_SlaveTxReadyFlag | kLPI2C_SlaveRxReadyFlag | kLPI2C_SlaveStopDetectFlag |
+ kLPI2C_SlaveRepeatedStartDetectFlag | kLPI2C_SlaveFifoErrFlag | kLPI2C_SlaveBitErrFlag |
+ kLPI2C_SlaveTransmitAckFlag | kLPI2C_SlaveAddressValidFlag,
+
+ /*! Errors to check for. */
+ kSlaveErrorFlags = kLPI2C_SlaveFifoErrFlag | kLPI2C_SlaveBitErrFlag,
+};
+
+/* ! @brief LPI2C master fifo commands. */
+enum
+{
+ kTxDataCmd = LPI2C_MTDR_CMD(0x0U), /*!< Transmit DATA[7:0] */
+ kRxDataCmd = LPI2C_MTDR_CMD(0X1U), /*!< Receive (DATA[7:0] + 1) bytes */
+ kStopCmd = LPI2C_MTDR_CMD(0x2U), /*!< Generate STOP condition */
+ kStartCmd = LPI2C_MTDR_CMD(0x4U), /*!< Generate(repeated) START and transmit address in DATA[[7:0] */
+};
+
+/*!
+ * @brief Default watermark values.
+ *
+ * The default watermarks are set to zero.
+ */
+enum
+{
+ kDefaultTxWatermark = 0,
+ kDefaultRxWatermark = 0,
+};
+
+/*! @brief States for the state machine used by transactional APIs. */
+enum
+{
+ kIdleState = 0,
+ kSendCommandState,
+ kIssueReadCommandState,
+ kTransferDataState,
+ kStopState,
+ kWaitForCompletionState,
+};
+
+/*! @brief Typedef for master interrupt handler. */
+typedef void (*lpi2c_master_isr_t)(LPI2C_Type *base, lpi2c_master_handle_t *handle);
+
+/*! @brief Typedef for slave interrupt handler. */
+typedef void (*lpi2c_slave_isr_t)(LPI2C_Type *base, lpi2c_slave_handle_t *handle);
+
+/*******************************************************************************
+ * Prototypes
+ ******************************************************************************/
+
+/* Not static so it can be used from fsl_lpi2c_edma.c. */
+uint32_t LPI2C_GetInstance(LPI2C_Type *base);
+
+static uint32_t LPI2C_GetCyclesForWidth(uint32_t sourceClock_Hz,
+ uint32_t width_ns,
+ uint32_t maxCycles,
+ uint32_t prescaler);
+
+static status_t LPI2C_MasterWaitForTxReady(LPI2C_Type *base);
+
+static status_t LPI2C_RunTransferStateMachine(LPI2C_Type *base, lpi2c_master_handle_t *handle, bool *isDone);
+
+static void LPI2C_InitTransferStateMachine(lpi2c_master_handle_t *handle);
+
+static status_t LPI2C_SlaveCheckAndClearError(LPI2C_Type *base, uint32_t flags);
+
+static void LPI2C_CommonIRQHandler(LPI2C_Type *base, uint32_t instance);
+
+/*******************************************************************************
+ * Variables
+ ******************************************************************************/
+
+/*! @brief Array to map LPI2C instance number to base pointer. */
+static LPI2C_Type *const kLpi2cBases[] = LPI2C_BASE_PTRS;
+
+/*! @brief Array to map LPI2C instance number to IRQ number. */
+static IRQn_Type const kLpi2cIrqs[] = LPI2C_IRQS;
+
+#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
+/*! @brief Array to map LPI2C instance number to clock gate enum. */
+static clock_ip_name_t const kLpi2cClocks[] = LPI2C_CLOCKS;
+
+#if defined(LPI2C_PERIPH_CLOCKS)
+/*! @brief Array to map LPI2C instance number to pheripheral clock gate enum. */
+static const clock_ip_name_t kLpi2cPeriphClocks[] = LPI2C_PERIPH_CLOCKS;
+#endif
+
+#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
+
+/*! @brief Pointer to master IRQ handler for each instance. */
+static lpi2c_master_isr_t s_lpi2cMasterIsr;
+
+/*! @brief Pointers to master handles for each instance. */
+static lpi2c_master_handle_t *s_lpi2cMasterHandle[ARRAY_SIZE(kLpi2cBases)];
+
+/*! @brief Pointer to slave IRQ handler for each instance. */
+static lpi2c_slave_isr_t s_lpi2cSlaveIsr;
+
+/*! @brief Pointers to slave handles for each instance. */
+static lpi2c_slave_handle_t *s_lpi2cSlaveHandle[ARRAY_SIZE(kLpi2cBases)];
+
+/*******************************************************************************
+ * Code
+ ******************************************************************************/
+
+/*!
+ * @brief Returns an instance number given a base address.
+ *
+ * If an invalid base address is passed, debug builds will assert. Release builds will just return
+ * instance number 0.
+ *
+ * @param base The LPI2C peripheral base address.
+ * @return LPI2C instance number starting from 0.
+ */
+uint32_t LPI2C_GetInstance(LPI2C_Type *base)
+{
+ uint32_t instance;
+ for (instance = 0U; instance < ARRAY_SIZE(kLpi2cBases); ++instance)
+ {
+ if (kLpi2cBases[instance] == base)
+ {
+ break;
+ }
+ }
+
+ assert(instance < ARRAY_SIZE(kLpi2cBases));
+ return instance;
+}
+
+/*!
+ * @brief Computes a cycle count for a given time in nanoseconds.
+ * @param sourceClock_Hz LPI2C functional clock frequency in Hertz.
+ * @param width_ns Desired with in nanoseconds.
+ * @param maxCycles Maximum cycle count, determined by the number of bits wide the cycle count field is.
+ * @param prescaler LPI2C prescaler setting. Pass 1 if the prescaler should not be used, as for slave glitch widths.
+ */
+static uint32_t LPI2C_GetCyclesForWidth(uint32_t sourceClock_Hz,
+ uint32_t width_ns,
+ uint32_t maxCycles,
+ uint32_t prescaler)
+{
+ assert(sourceClock_Hz > 0U);
+ assert(prescaler > 0U);
+
+ uint32_t busCycle_ns = 1000000U / (sourceClock_Hz / prescaler / 1000U);
+ uint32_t cycles = 0U;
+
+ /* Search for the cycle count just below the desired glitch width. */
+ while ((((cycles + 1U) * busCycle_ns) < width_ns) && (cycles + 1U < maxCycles))
+ {
+ ++cycles;
+ }
+
+ /* If we end up with zero cycles, then set the filter to a single cycle unless the */
+ /* bus clock is greater than 10x the desired glitch width. */
+ if ((cycles == 0U) && (busCycle_ns <= (width_ns * 10U)))
+ {
+ cycles = 1U;
+ }
+
+ return cycles;
+}
+
+/*!
+ * @brief Convert provided flags to status code, and clear any errors if present.
+ * @param base The LPI2C peripheral base address.
+ * @param status Current status flags value that will be checked.
+ * @retval #kStatus_Success
+ * @retval #kStatus_LPI2C_PinLowTimeout
+ * @retval #kStatus_LPI2C_ArbitrationLost
+ * @retval #kStatus_LPI2C_Nak
+ * @retval #kStatus_LPI2C_FifoError
+ */
+/* Not static so it can be used from fsl_lpi2c_edma.c. */
+status_t LPI2C_MasterCheckAndClearError(LPI2C_Type *base, uint32_t status)
+{
+ status_t result = kStatus_Success;
+
+ /* Check for error. These errors cause a stop to automatically be sent. We must */
+ /* clear the errors before a new transfer can start. */
+ status &= (uint32_t)kMasterErrorFlags;
+ if (0U != status)
+ {
+ /* Select the correct error code. Ordered by severity, with bus issues first. */
+ if (0U != (status & (uint32_t)kLPI2C_MasterPinLowTimeoutFlag))
+ {
+ result = kStatus_LPI2C_PinLowTimeout;
+ }
+ else if (0U != (status & (uint32_t)kLPI2C_MasterArbitrationLostFlag))
+ {
+ result = kStatus_LPI2C_ArbitrationLost;
+ }
+ else if (0U != (status & (uint32_t)kLPI2C_MasterNackDetectFlag))
+ {
+ result = kStatus_LPI2C_Nak;
+ }
+ else if (0U != (status & (uint32_t)kLPI2C_MasterFifoErrFlag))
+ {
+ result = kStatus_LPI2C_FifoError;
+ }
+ else
+ {
+ ; /* Intentional empty */
+ }
+
+ /* Clear the flags. */
+ LPI2C_MasterClearStatusFlags(base, status);
+
+ /* Reset fifos. These flags clear automatically. */
+ base->MCR |= LPI2C_MCR_RRF_MASK | LPI2C_MCR_RTF_MASK;
+ }
+ else
+ {
+ ; /* Intentional empty */
+ }
+
+ return result;
+}
+
+/*!
+ * @brief Wait until there is room in the tx fifo.
+ * @param base The LPI2C peripheral base address.
+ * @retval #kStatus_Success
+ * @retval #kStatus_LPI2C_PinLowTimeout
+ * @retval #kStatus_LPI2C_ArbitrationLost
+ * @retval #kStatus_LPI2C_Nak
+ * @retval #kStatus_LPI2C_FifoError
+ */
+static status_t LPI2C_MasterWaitForTxReady(LPI2C_Type *base)
+{
+ uint32_t status;
+ size_t txCount;
+ size_t txFifoSize = (size_t)FSL_FEATURE_LPI2C_FIFO_SIZEn(base);
+
+#if I2C_RETRY_TIMES
+ uint32_t waitTimes = I2C_RETRY_TIMES;
+#endif
+ do
+ {
+ status_t result;
+
+ /* Get the number of words in the tx fifo and compute empty slots. */
+ LPI2C_MasterGetFifoCounts(base, NULL, &txCount);
+ txCount = txFifoSize - txCount;
+
+ /* Check for error flags. */
+ status = LPI2C_MasterGetStatusFlags(base);
+ result = LPI2C_MasterCheckAndClearError(base, status);
+ if (kStatus_Success != result)
+ {
+ return result;
+ }
+#if I2C_RETRY_TIMES
+ } while ((0U == txCount) && (0U != --waitTimes));
+
+ if (0U == waitTimes)
+ {
+ return kStatus_LPI2C_Timeout;
+ }
+#else
+ } while (0U == txCount);
+#endif
+
+ return kStatus_Success;
+}
+
+/*!
+ * @brief Make sure the bus isn't already busy.
+ *
+ * A busy bus is allowed if we are the one driving it.
+ *
+ * @param base The LPI2C peripheral base address.
+ * @retval #kStatus_Success
+ * @retval #kStatus_LPI2C_Busy
+ */
+/* Not static so it can be used from fsl_lpi2c_edma.c. */
+status_t LPI2C_CheckForBusyBus(LPI2C_Type *base)
+{
+ status_t ret = kStatus_Success;
+
+ uint32_t status = LPI2C_MasterGetStatusFlags(base);
+ if ((0U != (status & (uint32_t)kLPI2C_MasterBusBusyFlag)) && (0U == (status & (uint32_t)kLPI2C_MasterBusyFlag)))
+ {
+ ret = kStatus_LPI2C_Busy;
+ }
+
+ return ret;
+}
+
+/*!
+ * brief Provides a default configuration for the LPI2C master peripheral.
+ *
+ * This function provides the following default configuration for the LPI2C master peripheral:
+ * code
+ * masterConfig->enableMaster = true;
+ * masterConfig->debugEnable = false;
+ * masterConfig->ignoreAck = false;
+ * masterConfig->pinConfig = kLPI2C_2PinOpenDrain;
+ * masterConfig->baudRate_Hz = 100000U;
+ * masterConfig->busIdleTimeout_ns = 0U;
+ * masterConfig->pinLowTimeout_ns = 0U;
+ * masterConfig->sdaGlitchFilterWidth_ns = 0U;
+ * masterConfig->sclGlitchFilterWidth_ns = 0U;
+ * masterConfig->hostRequest.enable = false;
+ * masterConfig->hostRequest.source = kLPI2C_HostRequestExternalPin;
+ * masterConfig->hostRequest.polarity = kLPI2C_HostRequestPinActiveHigh;
+ * endcode
+ *
+ * After calling this function, you can override any settings in order to customize the configuration,
+ * prior to initializing the master driver with LPI2C_MasterInit().
+ *
+ * param[out] masterConfig User provided configuration structure for default values. Refer to #lpi2c_master_config_t.
+ */
+void LPI2C_MasterGetDefaultConfig(lpi2c_master_config_t *masterConfig)
+{
+ /* Initializes the configure structure to zero. */
+ (void)memset(masterConfig, 0, sizeof(*masterConfig));
+
+ masterConfig->enableMaster = true;
+ masterConfig->debugEnable = false;
+ masterConfig->enableDoze = true;
+ masterConfig->ignoreAck = false;
+ masterConfig->pinConfig = kLPI2C_2PinOpenDrain;
+ masterConfig->baudRate_Hz = 100000U;
+ masterConfig->busIdleTimeout_ns = 0U;
+ masterConfig->pinLowTimeout_ns = 0U;
+ masterConfig->sdaGlitchFilterWidth_ns = 0U;
+ masterConfig->sclGlitchFilterWidth_ns = 0U;
+ masterConfig->hostRequest.enable = false;
+ masterConfig->hostRequest.source = kLPI2C_HostRequestExternalPin;
+ masterConfig->hostRequest.polarity = kLPI2C_HostRequestPinActiveHigh;
+}
+
+/*!
+ * brief Initializes the LPI2C master peripheral.
+ *
+ * This function enables the peripheral clock and initializes the LPI2C master peripheral as described by the user
+ * provided configuration. A software reset is performed prior to configuration.
+ *
+ * param base The LPI2C peripheral base address.
+ * param masterConfig User provided peripheral configuration. Use LPI2C_MasterGetDefaultConfig() to get a set of
+ * defaults
+ * that you can override.
+ * param sourceClock_Hz Frequency in Hertz of the LPI2C functional clock. Used to calculate the baud rate divisors,
+ * filter widths, and timeout periods.
+ */
+void LPI2C_MasterInit(LPI2C_Type *base, const lpi2c_master_config_t *masterConfig, uint32_t sourceClock_Hz)
+{
+ uint32_t prescaler;
+ uint32_t cycles;
+ uint32_t cfgr2;
+ uint32_t value;
+
+#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
+
+ uint32_t instance = LPI2C_GetInstance(base);
+
+ /* Ungate the clock. */
+ CLOCK_EnableClock(kLpi2cClocks[instance]);
+#if defined(LPI2C_PERIPH_CLOCKS)
+ /* Ungate the functional clock in initialize function. */
+ CLOCK_EnableClock(kLpi2cPeriphClocks[instance]);
+#endif
+
+#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
+
+ /* Reset peripheral before configuring it. */
+ LPI2C_MasterReset(base);
+
+ /* Doze bit: 0 is enable, 1 is disable */
+ base->MCR = LPI2C_MCR_DBGEN(masterConfig->debugEnable) | LPI2C_MCR_DOZEN(!(masterConfig->enableDoze));
+
+ /* host request */
+ value = base->MCFGR0;
+ value &= (~(LPI2C_MCFGR0_HREN_MASK | LPI2C_MCFGR0_HRPOL_MASK | LPI2C_MCFGR0_HRSEL_MASK));
+ value |= LPI2C_MCFGR0_HREN(masterConfig->hostRequest.enable) |
+ LPI2C_MCFGR0_HRPOL(masterConfig->hostRequest.polarity) |
+ LPI2C_MCFGR0_HRSEL(masterConfig->hostRequest.source);
+ base->MCFGR0 = value;
+
+ /* pin config and ignore ack */
+ value = base->MCFGR1;
+ value &= ~(LPI2C_MCFGR1_PINCFG_MASK | LPI2C_MCFGR1_IGNACK_MASK);
+ value |= LPI2C_MCFGR1_PINCFG(masterConfig->pinConfig);
+ value |= LPI2C_MCFGR1_IGNACK(masterConfig->ignoreAck);
+ base->MCFGR1 = value;
+
+ LPI2C_MasterSetWatermarks(base, (size_t)kDefaultTxWatermark, (size_t)kDefaultRxWatermark);
+
+ LPI2C_MasterSetBaudRate(base, sourceClock_Hz, masterConfig->baudRate_Hz);
+
+ /* Configure glitch filters and bus idle and pin low timeouts. */
+ prescaler = (base->MCFGR1 & LPI2C_MCFGR1_PRESCALE_MASK) >> LPI2C_MCFGR1_PRESCALE_SHIFT;
+ cfgr2 = base->MCFGR2;
+ if (0U != (masterConfig->busIdleTimeout_ns))
+ {
+ cycles = LPI2C_GetCyclesForWidth(sourceClock_Hz, masterConfig->busIdleTimeout_ns,
+ (LPI2C_MCFGR2_BUSIDLE_MASK >> LPI2C_MCFGR2_BUSIDLE_SHIFT), prescaler);
+ cfgr2 &= ~LPI2C_MCFGR2_BUSIDLE_MASK;
+ cfgr2 |= LPI2C_MCFGR2_BUSIDLE(cycles);
+ }
+ if (0U != (masterConfig->sdaGlitchFilterWidth_ns))
+ {
+ cycles = LPI2C_GetCyclesForWidth(sourceClock_Hz, masterConfig->sdaGlitchFilterWidth_ns,
+ (LPI2C_MCFGR2_FILTSDA_MASK >> LPI2C_MCFGR2_FILTSDA_SHIFT), 1U);
+ cfgr2 &= ~LPI2C_MCFGR2_FILTSDA_MASK;
+ cfgr2 |= LPI2C_MCFGR2_FILTSDA(cycles);
+ }
+ if (0U != masterConfig->sclGlitchFilterWidth_ns)
+ {
+ cycles = LPI2C_GetCyclesForWidth(sourceClock_Hz, masterConfig->sclGlitchFilterWidth_ns,
+ (LPI2C_MCFGR2_FILTSCL_MASK >> LPI2C_MCFGR2_FILTSCL_SHIFT), 1U);
+ cfgr2 &= ~LPI2C_MCFGR2_FILTSCL_MASK;
+ cfgr2 |= LPI2C_MCFGR2_FILTSCL(cycles);
+ }
+ base->MCFGR2 = cfgr2;
+ if (0U != masterConfig->pinLowTimeout_ns)
+ {
+ cycles = LPI2C_GetCyclesForWidth(sourceClock_Hz, masterConfig->pinLowTimeout_ns / 256U,
+ (LPI2C_MCFGR2_BUSIDLE_MASK >> LPI2C_MCFGR2_BUSIDLE_SHIFT), prescaler);
+ base->MCFGR3 = (base->MCFGR3 & ~LPI2C_MCFGR3_PINLOW_MASK) | LPI2C_MCFGR3_PINLOW(cycles);
+ }
+
+ LPI2C_MasterEnable(base, masterConfig->enableMaster);
+}
+
+/*!
+ * brief Deinitializes the LPI2C master peripheral.
+ *
+ * This function disables the LPI2C master peripheral and gates the clock. It also performs a software
+ * reset to restore the peripheral to reset conditions.
+ *
+ * param base The LPI2C peripheral base address.
+ */
+void LPI2C_MasterDeinit(LPI2C_Type *base)
+{
+ /* Restore to reset state. */
+ LPI2C_MasterReset(base);
+
+#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
+
+ uint32_t instance = LPI2C_GetInstance(base);
+
+ /* Gate clock. */
+ CLOCK_DisableClock(kLpi2cClocks[instance]);
+#if defined(LPI2C_PERIPH_CLOCKS)
+ /* Gate the functional clock. */
+ CLOCK_DisableClock(kLpi2cPeriphClocks[instance]);
+#endif
+
+#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
+}
+
+/*!
+ * brief Configures LPI2C master data match feature.
+ *
+ * param base The LPI2C peripheral base address.
+ * param config Settings for the data match feature.
+ */
+void LPI2C_MasterConfigureDataMatch(LPI2C_Type *base, const lpi2c_data_match_config_t *config)
+{
+ /* Disable master mode. */
+ bool wasEnabled = (0U != ((base->MCR & LPI2C_MCR_MEN_MASK) >> LPI2C_MCR_MEN_SHIFT));
+ LPI2C_MasterEnable(base, false);
+
+ base->MCFGR1 = (base->MCFGR1 & ~LPI2C_MCFGR1_MATCFG_MASK) | LPI2C_MCFGR1_MATCFG(config->matchMode);
+ base->MCFGR0 = (base->MCFGR0 & ~LPI2C_MCFGR0_RDMO_MASK) | LPI2C_MCFGR0_RDMO(config->rxDataMatchOnly);
+ base->MDMR = LPI2C_MDMR_MATCH0(config->match0) | LPI2C_MDMR_MATCH1(config->match1);
+
+ /* Restore master mode. */
+ if (wasEnabled)
+ {
+ LPI2C_MasterEnable(base, true);
+ }
+}
+
+/*!
+ * brief Sets the I2C bus frequency for master transactions.
+ *
+ * The LPI2C master is automatically disabled and re-enabled as necessary to configure the baud
+ * rate. Do not call this function during a transfer, or the transfer is aborted.
+ *
+ * note Please note that the second parameter is the clock frequency of LPI2C module, the third
+ * parameter means user configured bus baudrate, this implementation is different from other I2C drivers
+ * which use baudrate configuration as second parameter and source clock frequency as third parameter.
+ *
+ * param base The LPI2C peripheral base address.
+ * param sourceClock_Hz LPI2C functional clock frequency in Hertz.
+ * param baudRate_Hz Requested bus frequency in Hertz.
+ */
+void LPI2C_MasterSetBaudRate(LPI2C_Type *base, uint32_t sourceClock_Hz, uint32_t baudRate_Hz)
+{
+ uint32_t prescale = 0U;
+ uint32_t bestPre = 0U;
+ uint32_t bestClkHi = 0U;
+ uint32_t absError = 0U;
+ uint32_t bestError = 0xffffffffu;
+ uint32_t value;
+ uint32_t clkHiCycle;
+ uint32_t computedRate;
+ uint32_t i;
+ bool wasEnabled;
+
+ /* Disable master mode. */
+ wasEnabled = (0U != ((base->MCR & LPI2C_MCR_MEN_MASK) >> LPI2C_MCR_MEN_SHIFT));
+ LPI2C_MasterEnable(base, false);
+
+ /* Baud rate = (sourceClock_Hz/2^prescale)/(CLKLO+1+CLKHI+1 + ROUNDDOWN((2+FILTSCL)/2^prescale) */
+ /* Assume CLKLO = 2*CLKHI, SETHOLD = CLKHI, DATAVD = CLKHI/2. */
+ for (prescale = 1U; prescale <= 128U; prescale = 2U * prescale)
+ {
+ if (bestError == 0U)
+ {
+ break;
+ }
+
+ for (clkHiCycle = 1U; clkHiCycle < 32U; clkHiCycle++)
+ {
+ if (clkHiCycle == 1U)
+ {
+ computedRate = (sourceClock_Hz / prescale) / (1U + 3U + 2U + 2U / prescale);
+ }
+ else
+ {
+ computedRate = (sourceClock_Hz / prescale) / (3U * clkHiCycle + 2U + 2U / prescale);
+ }
+
+ absError = baudRate_Hz > computedRate ? baudRate_Hz - computedRate : computedRate - baudRate_Hz;
+
+ if (absError < bestError)
+ {
+ bestPre = prescale;
+ bestClkHi = clkHiCycle;
+ bestError = absError;
+
+ /* If the error is 0, then we can stop searching because we won't find a better match. */
+ if (absError == 0U)
+ {
+ break;
+ }
+ }
+ }
+ }
+
+ /* Standard, fast, fast mode plus and ultra-fast transfers. */
+ value = LPI2C_MCCR0_CLKHI(bestClkHi);
+
+ if (bestClkHi < 2U)
+ {
+ value |= (uint32_t)(LPI2C_MCCR0_CLKLO(3UL) | LPI2C_MCCR0_SETHOLD(2UL) | LPI2C_MCCR0_DATAVD(1UL));
+ }
+ else
+ {
+ value |=
+ LPI2C_MCCR0_CLKLO(2UL * bestClkHi) | LPI2C_MCCR0_SETHOLD(bestClkHi) | LPI2C_MCCR0_DATAVD(bestClkHi / 2UL);
+ }
+
+ base->MCCR0 = value;
+
+ for (i = 0U; i < 8U; i++)
+ {
+ if (bestPre == (1UL << i))
+ {
+ bestPre = i;
+ break;
+ }
+ }
+ base->MCFGR1 = (base->MCFGR1 & ~LPI2C_MCFGR1_PRESCALE_MASK) | LPI2C_MCFGR1_PRESCALE(bestPre);
+
+ /* Restore master mode. */
+ if (wasEnabled)
+ {
+ LPI2C_MasterEnable(base, true);
+ }
+}
+
+/*!
+ * brief Sends a START signal and slave address on the I2C bus.
+ *
+ * This function is used to initiate a new master mode transfer. First, the bus state is checked to ensure
+ * that another master is not occupying the bus. Then a START signal is transmitted, followed by the
+ * 7-bit address specified in the a address parameter. Note that this function does not actually wait
+ * until the START and address are successfully sent on the bus before returning.
+ *
+ * param base The LPI2C peripheral base address.
+ * param address 7-bit slave device address, in bits [6:0].
+ * param dir Master transfer direction, either #kLPI2C_Read or #kLPI2C_Write. This parameter is used to set
+ * the R/w bit (bit 0) in the transmitted slave address.
+ * retval #kStatus_Success START signal and address were successfully enqueued in the transmit FIFO.
+ * retval #kStatus_LPI2C_Busy Another master is currently utilizing the bus.
+ */
+status_t LPI2C_MasterStart(LPI2C_Type *base, uint8_t address, lpi2c_direction_t dir)
+{
+ /* Return an error if the bus is already in use not by us. */
+ status_t result = LPI2C_CheckForBusyBus(base);
+ if (kStatus_Success != result)
+ {
+ return result;
+ }
+
+ /* Clear all flags. */
+ LPI2C_MasterClearStatusFlags(base, (uint32_t)kMasterClearFlags);
+
+ /* Turn off auto-stop option. */
+ base->MCFGR1 &= ~LPI2C_MCFGR1_AUTOSTOP_MASK;
+
+ /* Wait until there is room in the fifo. */
+ result = LPI2C_MasterWaitForTxReady(base);
+ if (kStatus_Success != result)
+ {
+ return result;
+ }
+
+ /* Issue start command. */
+ base->MTDR = (uint32_t)kStartCmd | (((uint32_t)address << 1U) | (uint32_t)dir);
+
+ return kStatus_Success;
+}
+
+/*!
+ * brief Sends a STOP signal on the I2C bus.
+ *
+ * This function does not return until the STOP signal is seen on the bus, or an error occurs.
+ *
+ * param base The LPI2C peripheral base address.
+ * retval #kStatus_Success The STOP signal was successfully sent on the bus and the transaction terminated.
+ * retval #kStatus_LPI2C_Busy Another master is currently utilizing the bus.
+ * retval #kStatus_LPI2C_Nak The slave device sent a NAK in response to a byte.
+ * retval #kStatus_LPI2C_FifoError FIFO under run or overrun.
+ * retval #kStatus_LPI2C_ArbitrationLost Arbitration lost error.
+ * retval #kStatus_LPI2C_PinLowTimeout SCL or SDA were held low longer than the timeout.
+ */
+status_t LPI2C_MasterStop(LPI2C_Type *base)
+{
+ /* Wait until there is room in the fifo. */
+ status_t result = LPI2C_MasterWaitForTxReady(base);
+ if (kStatus_Success != result)
+ {
+ return result;
+ }
+
+ /* Send the STOP signal */
+ base->MTDR = (uint32_t)kStopCmd;
+
+/* Wait for the stop detected flag to set, indicating the transfer has completed on the bus. */
+/* Also check for errors while waiting. */
+#if I2C_RETRY_TIMES
+ uint32_t waitTimes = I2C_RETRY_TIMES;
+#endif
+
+#if I2C_RETRY_TIMES
+ while ((result == kStatus_Success) && (0U != --waitTimes))
+#else
+ while (result == kStatus_Success)
+#endif
+ {
+ uint32_t status = LPI2C_MasterGetStatusFlags(base);
+
+ /* Check for error flags. */
+ result = LPI2C_MasterCheckAndClearError(base, status);
+
+ /* Check if the stop was sent successfully. */
+ if ((0U != (status & (uint32_t)kLPI2C_MasterStopDetectFlag)) &&
+ (0U != (status & (uint32_t)kLPI2C_MasterTxReadyFlag)))
+ {
+ LPI2C_MasterClearStatusFlags(base, (uint32_t)kLPI2C_MasterStopDetectFlag);
+ break;
+ }
+ }
+
+#if I2C_RETRY_TIMES
+ if (0U == waitTimes)
+ {
+ return kStatus_LPI2C_Timeout;
+ }
+#endif
+
+ return result;
+}
+
+/*!
+ * brief Performs a polling receive transfer on the I2C bus.
+ *
+ * param base The LPI2C peripheral base address.
+ * param rxBuff The pointer to the data to be transferred.
+ * param rxSize The length in bytes of the data to be transferred.
+ * retval #kStatus_Success Data was received successfully.
+ * retval #kStatus_LPI2C_Busy Another master is currently utilizing the bus.
+ * retval #kStatus_LPI2C_Nak The slave device sent a NAK in response to a byte.
+ * retval #kStatus_LPI2C_FifoError FIFO under run or overrun.
+ * retval #kStatus_LPI2C_ArbitrationLost Arbitration lost error.
+ * retval #kStatus_LPI2C_PinLowTimeout SCL or SDA were held low longer than the timeout.
+ */
+status_t LPI2C_MasterReceive(LPI2C_Type *base, void *rxBuff, size_t rxSize)
+{
+ status_t result;
+ uint8_t *buf;
+#if I2C_RETRY_TIMES
+ uint32_t waitTimes;
+#endif
+
+ assert(NULL != rxBuff);
+
+ /* Handle empty read. */
+ if (rxSize == 0U)
+ {
+ return kStatus_Success;
+ }
+
+ /* Wait until there is room in the command fifo. */
+ result = LPI2C_MasterWaitForTxReady(base);
+ if (kStatus_Success != result)
+ {
+ return result;
+ }
+
+ /* Issue command to receive data. */
+ base->MTDR = ((uint32_t)kRxDataCmd) | LPI2C_MTDR_DATA(rxSize - 1U);
+
+ /* Receive data */
+ buf = (uint8_t *)rxBuff;
+ while (0U != (rxSize--))
+ {
+#if I2C_RETRY_TIMES
+ waitTimes = I2C_RETRY_TIMES;
+#endif
+ /* Read LPI2C receive fifo register. The register includes a flag to indicate whether */
+ /* the FIFO is empty, so we can both get the data and check if we need to keep reading */
+ /* using a single register read. */
+ uint32_t value;
+ do
+ {
+ /* Check for errors. */
+ result = LPI2C_MasterCheckAndClearError(base, LPI2C_MasterGetStatusFlags(base));
+ if (kStatus_Success != result)
+ {
+ return result;
+ }
+
+ value = base->MRDR;
+#if I2C_RETRY_TIMES
+ } while ((0U != (value & LPI2C_MRDR_RXEMPTY_MASK)) && (0U != --waitTimes));
+ if (0U == waitTimes)
+ {
+ return kStatus_LPI2C_Timeout;
+ }
+#else
+ } while (0U != (value & LPI2C_MRDR_RXEMPTY_MASK));
+#endif
+
+ *buf++ = (uint8_t)(value & LPI2C_MRDR_DATA_MASK);
+ }
+
+ return kStatus_Success;
+}
+
+/*!
+ * brief Performs a polling send transfer on the I2C bus.
+ *
+ * Sends up to a txSize number of bytes to the previously addressed slave device. The slave may
+ * reply with a NAK to any byte in order to terminate the transfer early. If this happens, this
+ * function returns #kStatus_LPI2C_Nak.
+ *
+ * param base The LPI2C peripheral base address.
+ * param txBuff The pointer to the data to be transferred.
+ * param txSize The length in bytes of the data to be transferred.
+ * retval #kStatus_Success Data was sent successfully.
+ * retval #kStatus_LPI2C_Busy Another master is currently utilizing the bus.
+ * retval #kStatus_LPI2C_Nak The slave device sent a NAK in response to a byte.
+ * retval #kStatus_LPI2C_FifoError FIFO under run or over run.
+ * retval #kStatus_LPI2C_ArbitrationLost Arbitration lost error.
+ * retval #kStatus_LPI2C_PinLowTimeout SCL or SDA were held low longer than the timeout.
+ */
+status_t LPI2C_MasterSend(LPI2C_Type *base, void *txBuff, size_t txSize)
+{
+ uint8_t *buf = (uint8_t *)txBuff;
+
+ assert(NULL != txBuff);
+
+ /* Send data buffer */
+ while (0U != (txSize--))
+ {
+ /* Wait until there is room in the fifo. This also checks for errors. */
+ status_t result = LPI2C_MasterWaitForTxReady(base);
+ if (kStatus_Success != result)
+ {
+ return result;
+ }
+
+ /* Write byte into LPI2C master data register. */
+ base->MTDR = *buf++;
+ }
+
+ return kStatus_Success;
+}
+
+/*!
+ * brief Performs a master polling transfer on the I2C bus.
+ *
+ * note The API does not return until the transfer succeeds or fails due
+ * to error happens during transfer.
+ *
+ * param base The LPI2C peripheral base address.
+ * param transfer Pointer to the transfer structure.
+ * retval #kStatus_Success Data was received successfully.
+ * retval #kStatus_LPI2C_Busy Another master is currently utilizing the bus.
+ * retval #kStatus_LPI2C_Nak The slave device sent a NAK in response to a byte.
+ * retval #kStatus_LPI2C_FifoError FIFO under run or overrun.
+ * retval #kStatus_LPI2C_ArbitrationLost Arbitration lost error.
+ * retval #kStatus_LPI2C_PinLowTimeout SCL or SDA were held low longer than the timeout.
+ */
+status_t LPI2C_MasterTransferBlocking(LPI2C_Type *base, lpi2c_master_transfer_t *transfer)
+{
+ status_t result = kStatus_Success;
+ uint16_t commandBuffer[7];
+ uint32_t cmdCount = 0U;
+
+ assert(NULL != transfer);
+ assert(transfer->subaddressSize <= sizeof(transfer->subaddress));
+
+ /* Return an error if the bus is already in use not by us. */
+ result = LPI2C_CheckForBusyBus(base);
+ if (kStatus_Success != result)
+ {
+ return result;
+ }
+
+ /* Clear all flags. */
+ LPI2C_MasterClearStatusFlags(base, (uint32_t)kMasterClearFlags);
+
+ /* Turn off auto-stop option. */
+ base->MCFGR1 &= ~LPI2C_MCFGR1_AUTOSTOP_MASK;
+
+ lpi2c_direction_t direction = (0U != transfer->subaddressSize) ? kLPI2C_Write : transfer->direction;
+ if (0U == (transfer->flags & (uint32_t)kLPI2C_TransferNoStartFlag))
+ {
+ commandBuffer[cmdCount++] =
+ (uint16_t)kStartCmd | (uint16_t)((uint16_t)((uint16_t)transfer->slaveAddress << 1U) | (uint16_t)direction);
+ }
+
+ /* Subaddress, MSB first. */
+ if (0U != transfer->subaddressSize)
+ {
+ uint32_t subaddressRemaining = transfer->subaddressSize;
+ while (0U != subaddressRemaining--)
+ {
+ uint8_t subaddressByte = (uint8_t)((transfer->subaddress >> (8U * subaddressRemaining)) & 0xffU);
+ commandBuffer[cmdCount++] = subaddressByte;
+ }
+ }
+
+ /* Reads need special handling. */
+ if ((0U != transfer->dataSize) && (transfer->direction == kLPI2C_Read))
+ {
+ /* Need to send repeated start if switching directions to read. */
+ if (direction == kLPI2C_Write)
+ {
+ commandBuffer[cmdCount++] =
+ (uint16_t)kStartCmd |
+ (uint16_t)((uint16_t)((uint16_t)transfer->slaveAddress << 1U) | (uint16_t)kLPI2C_Read);
+ }
+ }
+
+ /* Send command buffer */
+ uint32_t index = 0U;
+ while (0U != cmdCount--)
+ {
+ /* Wait until there is room in the fifo. This also checks for errors. */
+ result = LPI2C_MasterWaitForTxReady(base);
+ if (kStatus_Success != result)
+ {
+ return result;
+ }
+
+ /* Write byte into LPI2C master data register. */
+ base->MTDR = commandBuffer[index];
+ index++;
+ }
+
+ /* Transmit data. */
+ if ((transfer->direction == kLPI2C_Write) && (transfer->dataSize > 0U))
+ {
+ /* Send Data. */
+ result = LPI2C_MasterSend(base, transfer->data, transfer->dataSize);
+ }
+
+ /* Receive Data. */
+ if ((transfer->direction == kLPI2C_Read) && (transfer->dataSize > 0U))
+ {
+ result = LPI2C_MasterReceive(base, transfer->data, transfer->dataSize);
+ }
+
+ if (kStatus_Success != result)
+ {
+ return result;
+ }
+
+ if ((transfer->flags & (uint32_t)kLPI2C_TransferNoStopFlag) == 0U)
+ {
+ result = LPI2C_MasterStop(base);
+ }
+
+ return result;
+}
+
+/*!
+ * brief Creates a new handle for the LPI2C master non-blocking APIs.
+ *
+ * The creation of a handle is for use with the non-blocking APIs. Once a handle
+ * is created, there is not a corresponding destroy handle. If the user wants to
+ * terminate a transfer, the LPI2C_MasterTransferAbort() API shall be called.
+ *
+ *
+ * note The function also enables the NVIC IRQ for the input LPI2C. Need to notice
+ * that on some SoCs the LPI2C IRQ is connected to INTMUX, in this case user needs to
+ * enable the associated INTMUX IRQ in application.
+ *
+ * param base The LPI2C peripheral base address.
+ * param[out] handle Pointer to the LPI2C master driver handle.
+ * param callback User provided pointer to the asynchronous callback function.
+ * param userData User provided pointer to the application callback data.
+ */
+void LPI2C_MasterTransferCreateHandle(LPI2C_Type *base,
+ lpi2c_master_handle_t *handle,
+ lpi2c_master_transfer_callback_t callback,
+ void *userData)
+{
+ uint32_t instance;
+
+ assert(NULL != handle);
+
+ /* Clear out the handle. */
+ (void)memset(handle, 0, sizeof(*handle));
+
+ /* Look up instance number */
+ instance = LPI2C_GetInstance(base);
+
+ /* Save base and instance. */
+ handle->completionCallback = callback;
+ handle->userData = userData;
+
+ /* Save this handle for IRQ use. */
+ s_lpi2cMasterHandle[instance] = handle;
+
+ /* Set irq handler. */
+ s_lpi2cMasterIsr = LPI2C_MasterTransferHandleIRQ;
+
+ /* Clear internal IRQ enables and enable NVIC IRQ. */
+ LPI2C_MasterDisableInterrupts(base, (uint32_t)kMasterIrqFlags);
+
+ /* Enable NVIC IRQ, this only enables the IRQ directly connected to the NVIC.
+ In some cases the LPI2C IRQ is configured through INTMUX, user needs to enable
+ INTMUX IRQ in application code. */
+ (void)EnableIRQ(kLpi2cIrqs[instance]);
+}
+
+/*!
+ * @brief Execute states until FIFOs are exhausted.
+ * @param handle Master nonblocking driver handle.
+ * @param[out] isDone Set to true if the transfer has completed.
+ * @retval #kStatus_Success
+ * @retval #kStatus_LPI2C_PinLowTimeout
+ * @retval #kStatus_LPI2C_ArbitrationLost
+ * @retval #kStatus_LPI2C_Nak
+ * @retval #kStatus_LPI2C_FifoError
+ */
+static status_t LPI2C_RunTransferStateMachine(LPI2C_Type *base, lpi2c_master_handle_t *handle, bool *isDone)
+{
+ uint32_t status;
+ status_t result = kStatus_Success;
+ lpi2c_master_transfer_t *xfer;
+ size_t txCount;
+ size_t rxCount;
+ size_t txFifoSize = (size_t)FSL_FEATURE_LPI2C_FIFO_SIZEn(base);
+ bool state_complete = false;
+ uint16_t sendval;
+
+ /* Set default isDone return value. */
+ *isDone = false;
+
+ /* Check for errors. */
+ status = LPI2C_MasterGetStatusFlags(base);
+ /* For the last byte, nack flag is expected.
+ Do not check and clear kLPI2C_MasterNackDetectFlag for the last byte,
+ in case FIFO is emptied when stop command has not been sent. */
+ if (handle->remainingBytes == 0U)
+ {
+ status &= ~(uint32_t)kLPI2C_MasterNackDetectFlag;
+ }
+ result = LPI2C_MasterCheckAndClearError(base, status);
+ if (kStatus_Success != result)
+ {
+ return result;
+ }
+
+ /* Get pointer to private data. */
+ xfer = &handle->transfer;
+
+ /* Get fifo counts and compute room in tx fifo. */
+ LPI2C_MasterGetFifoCounts(base, &rxCount, &txCount);
+ txCount = txFifoSize - txCount;
+
+ while (!state_complete)
+ {
+ /* Execute the state. */
+ switch (handle->state)
+ {
+ case (uint8_t)kSendCommandState:
+ /* Make sure there is room in the tx fifo for the next command. */
+ if (0U == txCount--)
+ {
+ state_complete = true;
+ break;
+ }
+
+ /* Issue command. buf is a uint8_t* pointing at the uint16 command array. */
+ sendval = ((uint16_t)(*handle->buf)) | ((uint16_t)(*(handle->buf + 1U)) << 8U);
+ base->MTDR = sendval;
+ handle->buf++;
+ handle->buf++;
+
+ /* Count down until all commands are sent. */
+ if (--handle->remainingBytes == 0U)
+ {
+ /* Choose next state and set up buffer pointer and count. */
+ if (0U != xfer->dataSize)
+ {
+ /* Either a send or receive transfer is next. */
+ handle->state = (uint8_t)kTransferDataState;
+ handle->buf = (uint8_t *)xfer->data;
+ handle->remainingBytes = (uint16_t)xfer->dataSize;
+ if (xfer->direction == kLPI2C_Read)
+ {
+ /* Disable TX interrupt */
+ LPI2C_MasterDisableInterrupts(base, (uint32_t)kLPI2C_MasterTxReadyFlag);
+ }
+ }
+ else
+ {
+ /* No transfer, so move to stop state. */
+ handle->state = (uint8_t)kStopState;
+ }
+ }
+ break;
+
+ case (uint8_t)kIssueReadCommandState:
+ /* Make sure there is room in the tx fifo for the read command. */
+ if (0U == txCount--)
+ {
+ state_complete = true;
+ break;
+ }
+
+ base->MTDR = (uint32_t)kRxDataCmd | LPI2C_MTDR_DATA(xfer->dataSize - 1U);
+
+ /* Move to transfer state. */
+ handle->state = (uint8_t)kTransferDataState;
+ if (xfer->direction == kLPI2C_Read)
+ {
+ /* Disable TX interrupt */
+ LPI2C_MasterDisableInterrupts(base, (uint32_t)kLPI2C_MasterTxReadyFlag);
+ }
+ break;
+
+ case (uint8_t)kTransferDataState:
+ if (xfer->direction == kLPI2C_Write)
+ {
+ /* Make sure there is room in the tx fifo. */
+ if (0U == txCount--)
+ {
+ state_complete = true;
+ break;
+ }
+
+ /* Put byte to send in fifo. */
+ base->MTDR = *(handle->buf)++;
+ }
+ else
+ {
+ /* XXX handle receive sizes > 256, use kIssueReadCommandState */
+ /* Make sure there is data in the rx fifo. */
+ if (0U == rxCount--)
+ {
+ state_complete = true;
+ break;
+ }
+
+ /* Read byte from fifo. */
+ *(handle->buf)++ = (uint8_t)(base->MRDR & LPI2C_MRDR_DATA_MASK);
+ }
+
+ /* Move to stop when the transfer is done. */
+ if (--handle->remainingBytes == 0U)
+ {
+ if (xfer->direction == kLPI2C_Write)
+ {
+ state_complete = true;
+ }
+ handle->state = (uint8_t)kStopState;
+ }
+ break;
+
+ case (uint8_t)kStopState:
+ /* Only issue a stop transition if the caller requested it. */
+ if ((xfer->flags & (uint32_t)kLPI2C_TransferNoStopFlag) == 0U)
+ {
+ /* Make sure there is room in the tx fifo for the stop command. */
+ if (0U == txCount--)
+ {
+ state_complete = true;
+ break;
+ }
+
+ base->MTDR = (uint32_t)kStopCmd;
+ }
+ else
+ {
+ /* Caller doesn't want to send a stop, so we're done now. */
+ *isDone = true;
+ state_complete = true;
+ break;
+ }
+ handle->state = (uint8_t)kWaitForCompletionState;
+ break;
+
+ case (uint8_t)kWaitForCompletionState:
+ /* We stay in this state until the stop state is detected. */
+ if (0U != (status & (uint32_t)kLPI2C_MasterStopDetectFlag))
+ {
+ *isDone = true;
+ }
+ state_complete = true;
+ break;
+ default:
+ assert(false);
+ break;
+ }
+ }
+ return result;
+}
+
+/*!
+ * @brief Prepares the transfer state machine and fills in the command buffer.
+ * @param handle Master nonblocking driver handle.
+ */
+static void LPI2C_InitTransferStateMachine(lpi2c_master_handle_t *handle)
+{
+ lpi2c_master_transfer_t *xfer = &handle->transfer;
+
+ /* Handle no start option. */
+ if (0U != (xfer->flags & (uint32_t)kLPI2C_TransferNoStartFlag))
+ {
+ if (xfer->direction == kLPI2C_Read)
+ {
+ /* Need to issue read command first. */
+ handle->state = (uint8_t)kIssueReadCommandState;
+ }
+ else
+ {
+ /* Start immediately in the data transfer state. */
+ handle->state = (uint8_t)kTransferDataState;
+ }
+
+ handle->buf = (uint8_t *)xfer->data;
+ handle->remainingBytes = (uint16_t)xfer->dataSize;
+ }
+ else
+ {
+ uint16_t *cmd = (uint16_t *)&handle->commandBuffer;
+ uint32_t cmdCount = 0U;
+
+ /* Initial direction depends on whether a subaddress was provided, and of course the actual */
+ /* data transfer direction. */
+ lpi2c_direction_t direction = (0U != xfer->subaddressSize) ? kLPI2C_Write : xfer->direction;
+
+ /* Start command. */
+ cmd[cmdCount++] =
+ (uint16_t)kStartCmd | (uint16_t)((uint16_t)((uint16_t)xfer->slaveAddress << 1U) | (uint16_t)direction);
+
+ /* Subaddress, MSB first. */
+ if (0U != xfer->subaddressSize)
+ {
+ uint32_t subaddressRemaining = xfer->subaddressSize;
+ while (0U != (subaddressRemaining--))
+ {
+ uint8_t subaddressByte = (uint8_t)((xfer->subaddress >> (8U * subaddressRemaining)) & 0xffU);
+ cmd[cmdCount++] = subaddressByte;
+ }
+ }
+
+ /* Reads need special handling. */
+ if ((0U != xfer->dataSize) && (xfer->direction == kLPI2C_Read))
+ {
+ /* Need to send repeated start if switching directions to read. */
+ if (direction == kLPI2C_Write)
+ {
+ cmd[cmdCount++] = (uint16_t)kStartCmd |
+ (uint16_t)((uint16_t)((uint16_t)xfer->slaveAddress << 1U) | (uint16_t)kLPI2C_Read);
+ }
+
+ /* Read command. */
+ cmd[cmdCount++] = (uint16_t)((uint32_t)kRxDataCmd | LPI2C_MTDR_DATA(xfer->dataSize - 1U));
+ }
+
+ /* Set up state machine for transferring the commands. */
+ handle->state = (uint8_t)kSendCommandState;
+ handle->remainingBytes = (uint16_t)cmdCount;
+ handle->buf = (uint8_t *)&handle->commandBuffer;
+ }
+}
+
+/*!
+ * brief Performs a non-blocking transaction on the I2C bus.
+ *
+ * param base The LPI2C peripheral base address.
+ * param handle Pointer to the LPI2C master driver handle.
+ * param transfer The pointer to the transfer descriptor.
+ * retval #kStatus_Success The transaction was started successfully.
+ * retval #kStatus_LPI2C_Busy Either another master is currently utilizing the bus, or a non-blocking
+ * transaction is already in progress.
+ */
+status_t LPI2C_MasterTransferNonBlocking(LPI2C_Type *base,
+ lpi2c_master_handle_t *handle,
+ lpi2c_master_transfer_t *transfer)
+{
+ status_t result;
+
+ assert(NULL != handle);
+ assert(NULL != transfer);
+ assert(transfer->subaddressSize <= sizeof(transfer->subaddress));
+
+ /* Return busy if another transaction is in progress. */
+ if (handle->state != (uint8_t)kIdleState)
+ {
+ return kStatus_LPI2C_Busy;
+ }
+
+ /* Return an error if the bus is already in use not by us. */
+ result = LPI2C_CheckForBusyBus(base);
+ if (kStatus_Success != result)
+ {
+ return result;
+ }
+
+ /* Disable LPI2C IRQ sources while we configure stuff. */
+ LPI2C_MasterDisableInterrupts(base, (uint32_t)kMasterIrqFlags);
+
+ /* Reset FIFO in case there are data. */
+ base->MCR |= LPI2C_MCR_RRF_MASK | LPI2C_MCR_RTF_MASK;
+
+ /* Save transfer into handle. */
+ handle->transfer = *transfer;
+
+ /* Generate commands to send. */
+ LPI2C_InitTransferStateMachine(handle);
+
+ /* Clear all flags. */
+ LPI2C_MasterClearStatusFlags(base, (uint32_t)kMasterClearFlags);
+
+ /* Turn off auto-stop option. */
+ base->MCFGR1 &= ~LPI2C_MCFGR1_AUTOSTOP_MASK;
+
+ /* Enable LPI2C internal IRQ sources. NVIC IRQ was enabled in CreateHandle() */
+ LPI2C_MasterEnableInterrupts(base, (uint32_t)kMasterIrqFlags);
+
+ return result;
+}
+
+/*!
+ * brief Returns number of bytes transferred so far.
+ * param base The LPI2C peripheral base address.
+ * param handle Pointer to the LPI2C master driver handle.
+ * param[out] count Number of bytes transferred so far by the non-blocking transaction.
+ * retval #kStatus_Success
+ * retval #kStatus_NoTransferInProgress There is not a non-blocking transaction currently in progress.
+ */
+status_t LPI2C_MasterTransferGetCount(LPI2C_Type *base, lpi2c_master_handle_t *handle, size_t *count)
+{
+ assert(NULL != handle);
+
+ if (NULL == count)
+ {
+ return kStatus_InvalidArgument;
+ }
+
+ /* Catch when there is not an active transfer. */
+ if (handle->state == (uint8_t)kIdleState)
+ {
+ *count = 0;
+ return kStatus_NoTransferInProgress;
+ }
+
+ uint8_t state;
+ uint16_t remainingBytes;
+ uint32_t dataSize;
+
+ /* Cache some fields with IRQs disabled. This ensures all field values */
+ /* are synchronized with each other during an ongoing transfer. */
+ uint32_t irqs = LPI2C_MasterGetEnabledInterrupts(base);
+ LPI2C_MasterDisableInterrupts(base, irqs);
+ state = handle->state;
+ remainingBytes = handle->remainingBytes;
+ dataSize = handle->transfer.dataSize;
+ LPI2C_MasterEnableInterrupts(base, irqs);
+
+ /* Get transfer count based on current transfer state. */
+ switch (state)
+ {
+ case (uint8_t)kIdleState:
+ case (uint8_t)kSendCommandState:
+ case (
+ uint8_t)kIssueReadCommandState: /* XXX return correct value for this state when >256 reads are supported */
+ *count = 0;
+ break;
+
+ case (uint8_t)kTransferDataState:
+ *count = dataSize - remainingBytes;
+ break;
+
+ case (uint8_t)kStopState:
+ case (uint8_t)kWaitForCompletionState:
+ default:
+ *count = dataSize;
+ break;
+ }
+
+ return kStatus_Success;
+}
+
+/*!
+ * brief Terminates a non-blocking LPI2C master transmission early.
+ *
+ * note It is not safe to call this function from an IRQ handler that has a higher priority than the
+ * LPI2C peripheral's IRQ priority.
+ *
+ * param base The LPI2C peripheral base address.
+ * param handle Pointer to the LPI2C master driver handle.
+ * retval #kStatus_Success A transaction was successfully aborted.
+ * retval #kStatus_LPI2C_Idle There is not a non-blocking transaction currently in progress.
+ */
+void LPI2C_MasterTransferAbort(LPI2C_Type *base, lpi2c_master_handle_t *handle)
+{
+ if (handle->state != (uint8_t)kIdleState)
+ {
+ /* Disable internal IRQ enables. */
+ LPI2C_MasterDisableInterrupts(base, (uint32_t)kMasterIrqFlags);
+
+ /* Reset fifos. */
+ base->MCR |= LPI2C_MCR_RRF_MASK | LPI2C_MCR_RTF_MASK;
+
+ /* Send a stop command to finalize the transfer. */
+ base->MTDR = (uint32_t)kStopCmd;
+
+ /* Reset handle. */
+ handle->state = (uint8_t)kIdleState;
+ }
+}
+
+/*!
+ * brief Reusable routine to handle master interrupts.
+ * note This function does not need to be called unless you are reimplementing the
+ * nonblocking API's interrupt handler routines to add special functionality.
+ * param base The LPI2C peripheral base address.
+ * param handle Pointer to the LPI2C master driver handle.
+ */
+void LPI2C_MasterTransferHandleIRQ(LPI2C_Type *base, lpi2c_master_handle_t *handle)
+{
+ bool isDone = false;
+ status_t result;
+ size_t txCount;
+
+ /* Don't do anything if we don't have a valid handle. */
+ if (NULL == handle)
+ {
+ return;
+ }
+
+ if (handle->state == (uint8_t)kIdleState)
+ {
+ return;
+ }
+
+ result = LPI2C_RunTransferStateMachine(base, handle, &isDone);
+
+ if ((result != kStatus_Success) || isDone)
+ {
+ /* Handle error, terminate xfer */
+ if (result != kStatus_Success)
+ {
+ LPI2C_MasterTransferAbort(base, handle);
+ }
+ /* Check whether there is data in tx FIFO not sent out, is there is then the last transfer was NACKed by slave
+ */
+ LPI2C_MasterGetFifoCounts(base, NULL, &txCount);
+ if (txCount != 0U)
+ {
+ result = kStatus_LPI2C_Nak;
+ /* Reset fifos. */
+ base->MCR |= LPI2C_MCR_RRF_MASK | LPI2C_MCR_RTF_MASK;
+ /* Send a stop command to finalize the transfer. */
+ base->MTDR = (uint32_t)kStopCmd;
+ }
+ /* Disable internal IRQ enables. */
+ LPI2C_MasterDisableInterrupts(base, (uint32_t)kMasterIrqFlags);
+
+ /* Set handle to idle state. */
+ handle->state = (uint8_t)kIdleState;
+
+ /* Invoke callback. */
+ if (NULL != handle->completionCallback)
+ {
+ handle->completionCallback(base, handle, result, handle->userData);
+ }
+ }
+}
+
+/*!
+ * brief Provides a default configuration for the LPI2C slave peripheral.
+ *
+ * This function provides the following default configuration for the LPI2C slave peripheral:
+ * code
+ * slaveConfig->enableSlave = true;
+ * slaveConfig->address0 = 0U;
+ * slaveConfig->address1 = 0U;
+ * slaveConfig->addressMatchMode = kLPI2C_MatchAddress0;
+ * slaveConfig->filterDozeEnable = true;
+ * slaveConfig->filterEnable = true;
+ * slaveConfig->enableGeneralCall = false;
+ * slaveConfig->sclStall.enableAck = false;
+ * slaveConfig->sclStall.enableTx = true;
+ * slaveConfig->sclStall.enableRx = true;
+ * slaveConfig->sclStall.enableAddress = true;
+ * slaveConfig->ignoreAck = false;
+ * slaveConfig->enableReceivedAddressRead = false;
+ * slaveConfig->sdaGlitchFilterWidth_ns = 0;
+ * slaveConfig->sclGlitchFilterWidth_ns = 0;
+ * slaveConfig->dataValidDelay_ns = 0;
+ * slaveConfig->clockHoldTime_ns = 0;
+ * endcode
+ *
+ * After calling this function, override any settings to customize the configuration,
+ * prior to initializing the master driver with LPI2C_SlaveInit(). Be sure to override at least the a
+ * address0 member of the configuration structure with the desired slave address.
+ *
+ * param[out] slaveConfig User provided configuration structure that is set to default values. Refer to
+ * #lpi2c_slave_config_t.
+ */
+void LPI2C_SlaveGetDefaultConfig(lpi2c_slave_config_t *slaveConfig)
+{
+ /* Initializes the configure structure to zero. */
+ (void)memset(slaveConfig, 0, sizeof(*slaveConfig));
+
+ slaveConfig->enableSlave = true;
+ slaveConfig->address0 = 0U;
+ slaveConfig->address1 = 0U;
+ slaveConfig->addressMatchMode = kLPI2C_MatchAddress0;
+ slaveConfig->filterDozeEnable = true;
+ slaveConfig->filterEnable = true;
+ slaveConfig->enableGeneralCall = false;
+ slaveConfig->sclStall.enableAck = false;
+ slaveConfig->sclStall.enableTx = true;
+ slaveConfig->sclStall.enableRx = true;
+ slaveConfig->sclStall.enableAddress = false;
+ slaveConfig->ignoreAck = false;
+ slaveConfig->enableReceivedAddressRead = false;
+ slaveConfig->sdaGlitchFilterWidth_ns = 0U; /* TODO determine default width values */
+ slaveConfig->sclGlitchFilterWidth_ns = 0U;
+ slaveConfig->dataValidDelay_ns = 0U;
+ slaveConfig->clockHoldTime_ns = 0U;
+}
+
+/*!
+ * brief Initializes the LPI2C slave peripheral.
+ *
+ * This function enables the peripheral clock and initializes the LPI2C slave peripheral as described by the user
+ * provided configuration.
+ *
+ * param base The LPI2C peripheral base address.
+ * param slaveConfig User provided peripheral configuration. Use LPI2C_SlaveGetDefaultConfig() to get a set of defaults
+ * that you can override.
+ * param sourceClock_Hz Frequency in Hertz of the LPI2C functional clock. Used to calculate the filter widths,
+ * data valid delay, and clock hold time.
+ */
+void LPI2C_SlaveInit(LPI2C_Type *base, const lpi2c_slave_config_t *slaveConfig, uint32_t sourceClock_Hz)
+{
+ uint32_t tmpCycle;
+
+#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
+
+ uint32_t instance = LPI2C_GetInstance(base);
+
+ /* Ungate the clock. */
+ CLOCK_EnableClock(kLpi2cClocks[instance]);
+#if defined(LPI2C_PERIPH_CLOCKS)
+ /* Ungate the functional clock in initialize function. */
+ CLOCK_EnableClock(kLpi2cPeriphClocks[instance]);
+#endif
+
+#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
+
+ /* Restore to reset conditions. */
+ LPI2C_SlaveReset(base);
+
+ /* Configure peripheral. */
+ base->SAMR = LPI2C_SAMR_ADDR0(slaveConfig->address0) | LPI2C_SAMR_ADDR1(slaveConfig->address1);
+
+ base->SCFGR1 =
+ LPI2C_SCFGR1_ADDRCFG(slaveConfig->addressMatchMode) | LPI2C_SCFGR1_IGNACK(slaveConfig->ignoreAck) |
+ LPI2C_SCFGR1_RXCFG(slaveConfig->enableReceivedAddressRead) | LPI2C_SCFGR1_GCEN(slaveConfig->enableGeneralCall) |
+ LPI2C_SCFGR1_ACKSTALL(slaveConfig->sclStall.enableAck) | LPI2C_SCFGR1_TXDSTALL(slaveConfig->sclStall.enableTx) |
+ LPI2C_SCFGR1_RXSTALL(slaveConfig->sclStall.enableRx) |
+ LPI2C_SCFGR1_ADRSTALL(slaveConfig->sclStall.enableAddress);
+
+ tmpCycle =
+ LPI2C_SCFGR2_FILTSDA(LPI2C_GetCyclesForWidth(sourceClock_Hz, slaveConfig->sdaGlitchFilterWidth_ns,
+ (LPI2C_SCFGR2_FILTSDA_MASK >> LPI2C_SCFGR2_FILTSDA_SHIFT), 1U));
+ tmpCycle |=
+ LPI2C_SCFGR2_FILTSCL(LPI2C_GetCyclesForWidth(sourceClock_Hz, slaveConfig->sclGlitchFilterWidth_ns,
+ (LPI2C_SCFGR2_FILTSCL_MASK >> LPI2C_SCFGR2_FILTSCL_SHIFT), 1U));
+ tmpCycle |= LPI2C_SCFGR2_DATAVD(LPI2C_GetCyclesForWidth(
+ sourceClock_Hz, slaveConfig->dataValidDelay_ns, (LPI2C_SCFGR2_DATAVD_MASK >> LPI2C_SCFGR2_DATAVD_SHIFT), 1U));
+
+ base->SCFGR2 = tmpCycle | LPI2C_SCFGR2_CLKHOLD(LPI2C_GetCyclesForWidth(
+ sourceClock_Hz, slaveConfig->clockHoldTime_ns,
+ (LPI2C_SCFGR2_CLKHOLD_MASK >> LPI2C_SCFGR2_CLKHOLD_SHIFT), 1U));
+
+ /* Save SCR to last so we don't enable slave until it is configured */
+ base->SCR = LPI2C_SCR_FILTDZ(slaveConfig->filterDozeEnable) | LPI2C_SCR_FILTEN(slaveConfig->filterEnable) |
+ LPI2C_SCR_SEN(slaveConfig->enableSlave);
+}
+
+/*!
+ * brief Deinitializes the LPI2C slave peripheral.
+ *
+ * This function disables the LPI2C slave peripheral and gates the clock. It also performs a software
+ * reset to restore the peripheral to reset conditions.
+ *
+ * param base The LPI2C peripheral base address.
+ */
+void LPI2C_SlaveDeinit(LPI2C_Type *base)
+{
+ LPI2C_SlaveReset(base);
+
+#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
+
+ uint32_t instance = LPI2C_GetInstance(base);
+
+ /* Gate the clock. */
+ CLOCK_DisableClock(kLpi2cClocks[instance]);
+
+#if defined(LPI2C_PERIPH_CLOCKS)
+ /* Gate the functional clock. */
+ CLOCK_DisableClock(kLpi2cPeriphClocks[instance]);
+#endif
+
+#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
+}
+
+/*!
+ * @brief Convert provided flags to status code, and clear any errors if present.
+ * @param base The LPI2C peripheral base address.
+ * @param status Current status flags value that will be checked.
+ * @retval #kStatus_Success
+ * @retval #kStatus_LPI2C_BitError
+ * @retval #kStatus_LPI2C_FifoError
+ */
+static status_t LPI2C_SlaveCheckAndClearError(LPI2C_Type *base, uint32_t flags)
+{
+ status_t result = kStatus_Success;
+
+ flags &= (uint32_t)kSlaveErrorFlags;
+ if (0U != flags)
+ {
+ if (0U != (flags & (uint32_t)kLPI2C_SlaveBitErrFlag))
+ {
+ result = kStatus_LPI2C_BitError;
+ }
+ else if (0U != (flags & (uint32_t)kLPI2C_SlaveFifoErrFlag))
+ {
+ result = kStatus_LPI2C_FifoError;
+ }
+ else
+ {
+ ; /* Intentional empty */
+ }
+
+ /* Clear the errors. */
+ LPI2C_SlaveClearStatusFlags(base, flags);
+ }
+ else
+ {
+ ; /* Intentional empty */
+ }
+
+ return result;
+}
+
+/*!
+ * brief Performs a polling send transfer on the I2C bus.
+ *
+ * param base The LPI2C peripheral base address.
+ * param txBuff The pointer to the data to be transferred.
+ * param txSize The length in bytes of the data to be transferred.
+ * param[out] actualTxSize
+ * return Error or success status returned by API.
+ */
+status_t LPI2C_SlaveSend(LPI2C_Type *base, void *txBuff, size_t txSize, size_t *actualTxSize)
+{
+ uint8_t *buf = (uint8_t *)txBuff;
+ size_t remaining = txSize;
+
+ assert(NULL != txBuff);
+
+#if I2C_RETRY_TIMES
+ uint32_t waitTimes = I2C_RETRY_TIMES;
+#endif
+
+ /* Clear stop flag. */
+ LPI2C_SlaveClearStatusFlags(base,
+ (uint32_t)kLPI2C_SlaveStopDetectFlag | (uint32_t)kLPI2C_SlaveRepeatedStartDetectFlag);
+
+ while (0U != remaining)
+ {
+ uint32_t flags;
+ status_t result;
+
+ /* Wait until we can transmit. */
+ do
+ {
+ /* Check for errors */
+ flags = LPI2C_SlaveGetStatusFlags(base);
+ result = LPI2C_SlaveCheckAndClearError(base, flags);
+ if (kStatus_Success != result)
+ {
+ if (NULL != actualTxSize)
+ {
+ *actualTxSize = txSize - remaining;
+ }
+ return result;
+ }
+#if I2C_RETRY_TIMES
+ } while ((0U == (flags & ((uint32_t)kLPI2C_SlaveTxReadyFlag | (uint32_t)kLPI2C_SlaveStopDetectFlag |
+ (uint32_t)kLPI2C_SlaveRepeatedStartDetectFlag))) &&
+ (0U != --waitTimes));
+ if (0U == waitTimes)
+ {
+ return kStatus_LPI2C_Timeout;
+ }
+#else
+ } while (0U == (flags & ((uint32_t)kLPI2C_SlaveTxReadyFlag | (uint32_t)kLPI2C_SlaveStopDetectFlag |
+ (uint32_t)kLPI2C_SlaveRepeatedStartDetectFlag)));
+#endif
+
+ /* Send a byte. */
+ if (0U != (flags & (uint32_t)kLPI2C_SlaveTxReadyFlag))
+ {
+ base->STDR = *buf++;
+ --remaining;
+ }
+
+ /* Exit loop if we see a stop or restart in transfer*/
+ if ((0U != (flags & ((uint32_t)kLPI2C_SlaveStopDetectFlag | (uint32_t)kLPI2C_SlaveRepeatedStartDetectFlag))) &&
+ (remaining != 0U))
+ {
+ LPI2C_SlaveClearStatusFlags(
+ base, (uint32_t)kLPI2C_SlaveStopDetectFlag | (uint32_t)kLPI2C_SlaveRepeatedStartDetectFlag);
+ break;
+ }
+ }
+
+ if (NULL != actualTxSize)
+ {
+ *actualTxSize = txSize - remaining;
+ }
+
+ return kStatus_Success;
+}
+
+/*!
+ * brief Performs a polling receive transfer on the I2C bus.
+ *
+ * param base The LPI2C peripheral base address.
+ * param rxBuff The pointer to the data to be transferred.
+ * param rxSize The length in bytes of the data to be transferred.
+ * param[out] actualRxSize
+ * return Error or success status returned by API.
+ */
+status_t LPI2C_SlaveReceive(LPI2C_Type *base, void *rxBuff, size_t rxSize, size_t *actualRxSize)
+{
+ uint8_t *buf = (uint8_t *)rxBuff;
+ size_t remaining = rxSize;
+
+ assert(NULL != rxBuff);
+
+#if I2C_RETRY_TIMES
+ uint32_t waitTimes = I2C_RETRY_TIMES;
+#endif
+
+ /* Clear stop flag. */
+ LPI2C_SlaveClearStatusFlags(base,
+ (uint32_t)kLPI2C_SlaveStopDetectFlag | (uint32_t)kLPI2C_SlaveRepeatedStartDetectFlag);
+
+ while (0U != remaining)
+ {
+ uint32_t flags;
+ status_t result;
+
+ /* Wait until we can receive. */
+ do
+ {
+ /* Check for errors */
+ flags = LPI2C_SlaveGetStatusFlags(base);
+ result = LPI2C_SlaveCheckAndClearError(base, flags);
+ if (kStatus_Success != result)
+ {
+ if (NULL != actualRxSize)
+ {
+ *actualRxSize = rxSize - remaining;
+ }
+ return result;
+ }
+#if I2C_RETRY_TIMES
+ } while ((0U == (flags & ((uint32_t)kLPI2C_SlaveRxReadyFlag | (uint32_t)kLPI2C_SlaveStopDetectFlag |
+ (uint32_t)kLPI2C_SlaveRepeatedStartDetectFlag))) &&
+ (0U != --waitTimes));
+ if (0U == waitTimes)
+ {
+ return kStatus_LPI2C_Timeout;
+ }
+#else
+ } while (0U == (flags & ((uint32_t)kLPI2C_SlaveRxReadyFlag | (uint32_t)kLPI2C_SlaveStopDetectFlag |
+ (uint32_t)kLPI2C_SlaveRepeatedStartDetectFlag)));
+#endif
+
+ /* Receive a byte. */
+ if (0U != (flags & (uint32_t)kLPI2C_SlaveRxReadyFlag))
+ {
+ *buf++ = (uint8_t)(base->SRDR & LPI2C_SRDR_DATA_MASK);
+ --remaining;
+ }
+
+ /* Exit loop if we see a stop or restart */
+ if ((0U != (flags & ((uint32_t)kLPI2C_SlaveStopDetectFlag | (uint32_t)kLPI2C_SlaveRepeatedStartDetectFlag))) &&
+ (remaining != 0U))
+ {
+ LPI2C_SlaveClearStatusFlags(
+ base, (uint32_t)kLPI2C_SlaveStopDetectFlag | (uint32_t)kLPI2C_SlaveRepeatedStartDetectFlag);
+ break;
+ }
+ }
+
+ if (NULL != actualRxSize)
+ {
+ *actualRxSize = rxSize - remaining;
+ }
+
+ return kStatus_Success;
+}
+
+/*!
+ * brief Creates a new handle for the LPI2C slave non-blocking APIs.
+ *
+ * The creation of a handle is for use with the non-blocking APIs. Once a handle
+ * is created, there is not a corresponding destroy handle. If the user wants to
+ * terminate a transfer, the LPI2C_SlaveTransferAbort() API shall be called.
+ *
+ * note The function also enables the NVIC IRQ for the input LPI2C. Need to notice
+ * that on some SoCs the LPI2C IRQ is connected to INTMUX, in this case user needs to
+ * enable the associated INTMUX IRQ in application.
+
+ * param base The LPI2C peripheral base address.
+ * param[out] handle Pointer to the LPI2C slave driver handle.
+ * param callback User provided pointer to the asynchronous callback function.
+ * param userData User provided pointer to the application callback data.
+ */
+void LPI2C_SlaveTransferCreateHandle(LPI2C_Type *base,
+ lpi2c_slave_handle_t *handle,
+ lpi2c_slave_transfer_callback_t callback,
+ void *userData)
+{
+ uint32_t instance;
+
+ assert(NULL != handle);
+
+ /* Clear out the handle. */
+ (void)memset(handle, 0, sizeof(*handle));
+
+ /* Look up instance number */
+ instance = LPI2C_GetInstance(base);
+
+ /* Save base and instance. */
+ handle->callback = callback;
+ handle->userData = userData;
+
+ /* Save this handle for IRQ use. */
+ s_lpi2cSlaveHandle[instance] = handle;
+
+ /* Set irq handler. */
+ s_lpi2cSlaveIsr = LPI2C_SlaveTransferHandleIRQ;
+
+ /* Clear internal IRQ enables and enable NVIC IRQ. */
+ LPI2C_SlaveDisableInterrupts(base, (uint32_t)kSlaveIrqFlags);
+ (void)EnableIRQ(kLpi2cIrqs[instance]);
+
+ /* Nack by default. */
+ base->STAR = LPI2C_STAR_TXNACK_MASK;
+}
+
+/*!
+ * brief Starts accepting slave transfers.
+ *
+ * Call this API after calling I2C_SlaveInit() and LPI2C_SlaveTransferCreateHandle() to start processing
+ * transactions driven by an I2C master. The slave monitors the I2C bus and pass events to the
+ * callback that was passed into the call to LPI2C_SlaveTransferCreateHandle(). The callback is always invoked
+ * from the interrupt context.
+ *
+ * The set of events received by the callback is customizable. To do so, set the a eventMask parameter to
+ * the OR'd combination of #lpi2c_slave_transfer_event_t enumerators for the events you wish to receive.
+ * The #kLPI2C_SlaveTransmitEvent and #kLPI2C_SlaveReceiveEvent events are always enabled and do not need
+ * to be included in the mask. Alternatively, you can pass 0 to get a default set of only the transmit and
+ * receive events that are always enabled. In addition, the #kLPI2C_SlaveAllEvents constant is provided as
+ * a convenient way to enable all events.
+ *
+ * param base The LPI2C peripheral base address.
+ * param handle Pointer to #lpi2c_slave_handle_t structure which stores the transfer state.
+ * param eventMask Bit mask formed by OR'ing together #lpi2c_slave_transfer_event_t enumerators to specify
+ * which events to send to the callback. Other accepted values are 0 to get a default set of
+ * only the transmit and receive events, and #kLPI2C_SlaveAllEvents to enable all events.
+ *
+ * retval #kStatus_Success Slave transfers were successfully started.
+ * retval #kStatus_LPI2C_Busy Slave transfers have already been started on this handle.
+ */
+status_t LPI2C_SlaveTransferNonBlocking(LPI2C_Type *base, lpi2c_slave_handle_t *handle, uint32_t eventMask)
+{
+ uint32_t status;
+
+ assert(NULL != handle);
+
+ /* Return busy if another transaction is in progress. */
+ if (handle->isBusy)
+ {
+ return kStatus_LPI2C_Busy;
+ }
+
+ /* Return an error if the bus is already in use not by us. */
+ status = LPI2C_SlaveGetStatusFlags(base);
+ if ((0U != (status & (uint32_t)kLPI2C_SlaveBusBusyFlag)) && (0U == (status & (uint32_t)kLPI2C_SlaveBusyFlag)))
+ {
+ return kStatus_LPI2C_Busy;
+ }
+
+ /* Disable LPI2C IRQ sources while we configure stuff. */
+ LPI2C_SlaveDisableInterrupts(base, (uint32_t)kSlaveIrqFlags);
+
+ /* Clear transfer in handle. */
+ (void)memset(&handle->transfer, 0, sizeof(handle->transfer));
+
+ /* Record that we're busy. */
+ handle->isBusy = true;
+
+ /* Set up event mask. tx and rx are always enabled. */
+ handle->eventMask = eventMask | (uint32_t)kLPI2C_SlaveTransmitEvent | (uint32_t)kLPI2C_SlaveReceiveEvent;
+
+ /* Ack by default. */
+ base->STAR = 0U;
+
+ /* Clear all flags. */
+ LPI2C_SlaveClearStatusFlags(base, (uint32_t)kSlaveClearFlags);
+
+ /* Enable LPI2C internal IRQ sources. NVIC IRQ was enabled in CreateHandle() */
+ LPI2C_SlaveEnableInterrupts(base, (uint32_t)kSlaveIrqFlags);
+
+ return kStatus_Success;
+}
+
+/*!
+ * brief Gets the slave transfer status during a non-blocking transfer.
+ * param base The LPI2C peripheral base address.
+ * param handle Pointer to i2c_slave_handle_t structure.
+ * param[out] count Pointer to a value to hold the number of bytes transferred. May be NULL if the count is not
+ * required.
+ * retval #kStatus_Success
+ * retval #kStatus_NoTransferInProgress
+ */
+status_t LPI2C_SlaveTransferGetCount(LPI2C_Type *base, lpi2c_slave_handle_t *handle, size_t *count)
+{
+ assert(NULL != handle);
+
+ if (count == NULL)
+ {
+ return kStatus_InvalidArgument;
+ }
+
+ /* Catch when there is not an active transfer. */
+ if (!handle->isBusy)
+ {
+ *count = 0;
+ return kStatus_NoTransferInProgress;
+ }
+
+ /* For an active transfer, just return the count from the handle. */
+ *count = handle->transferredCount;
+
+ return kStatus_Success;
+}
+
+/*!
+ * brief Aborts the slave non-blocking transfers.
+ * note This API could be called at any time to stop slave for handling the bus events.
+ * param base The LPI2C peripheral base address.
+ * param handle Pointer to #lpi2c_slave_handle_t structure which stores the transfer state.
+ * retval #kStatus_Success
+ * retval #kStatus_LPI2C_Idle
+ */
+void LPI2C_SlaveTransferAbort(LPI2C_Type *base, lpi2c_slave_handle_t *handle)
+{
+ assert(NULL != handle);
+
+ /* Return idle if no transaction is in progress. */
+ if (handle->isBusy)
+ {
+ /* Disable LPI2C IRQ sources. */
+ LPI2C_SlaveDisableInterrupts(base, (uint32_t)kSlaveIrqFlags);
+
+ /* Nack by default. */
+ base->STAR = LPI2C_STAR_TXNACK_MASK;
+
+ /* Reset transfer info. */
+ (void)memset(&handle->transfer, 0, sizeof(handle->transfer));
+
+ /* We're no longer busy. */
+ handle->isBusy = false;
+ }
+}
+
+/*!
+ * brief Reusable routine to handle slave interrupts.
+ * note This function does not need to be called unless you are reimplementing the
+ * non blocking API's interrupt handler routines to add special functionality.
+ * param base The LPI2C peripheral base address.
+ * param handle Pointer to #lpi2c_slave_handle_t structure which stores the transfer state.
+ */
+void LPI2C_SlaveTransferHandleIRQ(LPI2C_Type *base, lpi2c_slave_handle_t *handle)
+{
+ uint32_t flags;
+ lpi2c_slave_transfer_t *xfer;
+
+ /* Check for a valid handle in case of a spurious interrupt. */
+ if (NULL == handle)
+ {
+ return;
+ }
+
+ xfer = &handle->transfer;
+
+ /* Get status flags. */
+ flags = LPI2C_SlaveGetStatusFlags(base);
+
+ if (0U != (flags & ((uint32_t)kLPI2C_SlaveBitErrFlag | (uint32_t)kLPI2C_SlaveFifoErrFlag)))
+ {
+ xfer->event = kLPI2C_SlaveCompletionEvent;
+ xfer->completionStatus = LPI2C_SlaveCheckAndClearError(base, flags);
+
+ if ((0U != (handle->eventMask & (uint32_t)kLPI2C_SlaveCompletionEvent)) && (NULL != handle->callback))
+ {
+ handle->callback(base, xfer, handle->userData);
+ }
+ return;
+ }
+ if (0U != (flags & (((uint32_t)kLPI2C_SlaveRepeatedStartDetectFlag) | ((uint32_t)kLPI2C_SlaveStopDetectFlag))))
+ {
+ xfer->event = (0U != (flags & (uint32_t)kLPI2C_SlaveRepeatedStartDetectFlag)) ? kLPI2C_SlaveRepeatedStartEvent :
+ kLPI2C_SlaveCompletionEvent;
+ xfer->receivedAddress = 0U;
+ xfer->completionStatus = kStatus_Success;
+ xfer->transferredCount = handle->transferredCount;
+
+ if (xfer->event == kLPI2C_SlaveCompletionEvent)
+ {
+ handle->isBusy = false;
+ }
+
+ if (handle->wasTransmit)
+ {
+ /* Subtract one from the transmit count to offset the fact that LPI2C asserts the */
+ /* tx flag before it sees the nack from the master-receiver, thus causing one more */
+ /* count that the master actually receives. */
+ --xfer->transferredCount;
+ handle->wasTransmit = false;
+ }
+
+ /* Clear the flag. */
+ LPI2C_SlaveClearStatusFlags(
+ base, flags & ((uint32_t)kLPI2C_SlaveRepeatedStartDetectFlag | (uint32_t)kLPI2C_SlaveStopDetectFlag));
+
+ /* Revert to sending an Ack by default, in case we sent a Nack for receive. */
+ base->STAR = 0U;
+
+ if ((0U != (handle->eventMask & (uint32_t)xfer->event)) && (NULL != handle->callback))
+ {
+ handle->callback(base, xfer, handle->userData);
+ }
+
+ /* Clean up transfer info on completion, after the callback has been invoked. */
+ (void)memset(&handle->transfer, 0, sizeof(handle->transfer));
+ }
+ if (0U != (flags & (uint32_t)kLPI2C_SlaveAddressValidFlag))
+ {
+ xfer->event = kLPI2C_SlaveAddressMatchEvent;
+ xfer->receivedAddress = (uint8_t)(base->SASR & LPI2C_SASR_RADDR_MASK);
+
+ /* Update handle status to busy because slave is addressed. */
+ handle->isBusy = true;
+ if ((0U != (handle->eventMask & (uint32_t)kLPI2C_SlaveAddressMatchEvent)) && (NULL != handle->callback))
+ {
+ handle->callback(base, xfer, handle->userData);
+ }
+ }
+ if (0U != (flags & (uint32_t)kLPI2C_SlaveTransmitAckFlag))
+ {
+ xfer->event = kLPI2C_SlaveTransmitAckEvent;
+
+ if ((0U != (handle->eventMask & (uint32_t)kLPI2C_SlaveTransmitAckEvent)) && (NULL != handle->callback))
+ {
+ handle->callback(base, xfer, handle->userData);
+ }
+ }
+
+ /* Handle transmit and receive. */
+ if (0U != (flags & (uint32_t)kLPI2C_SlaveTxReadyFlag))
+ {
+ handle->wasTransmit = true;
+
+ /* If we're out of data, invoke callback to get more. */
+ if ((NULL == xfer->data) || (0U == xfer->dataSize))
+ {
+ xfer->event = kLPI2C_SlaveTransmitEvent;
+ if (NULL != handle->callback)
+ {
+ handle->callback(base, xfer, handle->userData);
+ }
+
+ /* Clear the transferred count now that we have a new buffer. */
+ handle->transferredCount = 0U;
+ }
+
+ /* Transmit a byte. */
+ if ((NULL != xfer->data) && (0U != xfer->dataSize))
+ {
+ base->STDR = *xfer->data++;
+ --xfer->dataSize;
+ ++handle->transferredCount;
+ }
+ }
+ if (0U != (flags & (uint32_t)kLPI2C_SlaveRxReadyFlag))
+ {
+ /* If we're out of room in the buffer, invoke callback to get another. */
+ if ((NULL == xfer->data) || (0U == xfer->dataSize))
+ {
+ xfer->event = kLPI2C_SlaveReceiveEvent;
+ if (NULL != handle->callback)
+ {
+ handle->callback(base, xfer, handle->userData);
+ }
+
+ /* Clear the transferred count now that we have a new buffer. */
+ handle->transferredCount = 0U;
+ }
+
+ /* Receive a byte. */
+ if ((NULL != xfer->data) && (0U != xfer->dataSize))
+ {
+ *xfer->data++ = (uint8_t)base->SRDR;
+ --xfer->dataSize;
+ ++handle->transferredCount;
+ }
+ else
+ {
+ /* We don't have any room to receive more data, so send a nack. */
+ base->STAR = LPI2C_STAR_TXNACK_MASK;
+ }
+ }
+}
+
+#if !(defined(FSL_FEATURE_I2C_HAS_NO_IRQ) && FSL_FEATURE_I2C_HAS_NO_IRQ)
+/*!
+ * @brief Shared IRQ handler that can call both master and slave ISRs.
+ *
+ * The master and slave ISRs are called through function pointers in order to decouple
+ * this code from the ISR functions. Without this, the linker would always pull in both
+ * ISRs and every function they call, even if only the functional API was used.
+ *
+ * @param base The LPI2C peripheral base address.
+ * @param instance The LPI2C peripheral instance number.
+ */
+static void LPI2C_CommonIRQHandler(LPI2C_Type *base, uint32_t instance)
+{
+ /* Check for master IRQ. */
+ if ((0U != (base->MCR & LPI2C_MCR_MEN_MASK)) && (NULL != s_lpi2cMasterIsr))
+ {
+ /* Master mode. */
+ s_lpi2cMasterIsr(base, s_lpi2cMasterHandle[instance]);
+ }
+
+ /* Check for slave IRQ. */
+ if ((0U != (base->SCR & LPI2C_SCR_SEN_MASK)) && (NULL != s_lpi2cSlaveIsr))
+ {
+ /* Slave mode. */
+ s_lpi2cSlaveIsr(base, s_lpi2cSlaveHandle[instance]);
+ }
+ SDK_ISR_EXIT_BARRIER;
+}
+#endif
+
+#if defined(LPI2C0)
+/* Implementation of LPI2C0 handler named in startup code. */
+void LPI2C0_DriverIRQHandler(void)
+{
+ LPI2C_CommonIRQHandler(LPI2C0, 0U);
+}
+#endif
+
+#if defined(LPI2C1)
+/* Implementation of LPI2C1 handler named in startup code. */
+void LPI2C1_DriverIRQHandler(void)
+{
+ LPI2C_CommonIRQHandler(LPI2C1, 1U);
+}
+#endif
+
+#if defined(LPI2C2)
+/* Implementation of LPI2C2 handler named in startup code. */
+void LPI2C2_DriverIRQHandler(void)
+{
+ LPI2C_CommonIRQHandler(LPI2C2, 2U);
+}
+#endif
+
+#if defined(LPI2C3)
+/* Implementation of LPI2C3 handler named in startup code. */
+void LPI2C3_DriverIRQHandler(void)
+{
+ LPI2C_CommonIRQHandler(LPI2C3, 3U);
+}
+#endif
+
+#if defined(LPI2C4)
+/* Implementation of LPI2C4 handler named in startup code. */
+void LPI2C4_DriverIRQHandler(void)
+{
+ LPI2C_CommonIRQHandler(LPI2C4, 4U);
+}
+#endif
+
+#if defined(LPI2C5)
+/* Implementation of LPI2C5 handler named in startup code. */
+void LPI2C5_DriverIRQHandler(void)
+{
+ LPI2C_CommonIRQHandler(LPI2C5, 5U);
+}
+#endif
+
+#if defined(LPI2C6)
+/* Implementation of LPI2C6 handler named in startup code. */
+void LPI2C6_DriverIRQHandler(void)
+{
+ LPI2C_CommonIRQHandler(LPI2C6, 6U);
+}
+#endif
+
+#if defined(CM4_0__LPI2C)
+/* Implementation of CM4_0__LPI2C handler named in startup code. */
+void M4_0_LPI2C_DriverIRQHandler(void)
+{
+ LPI2C_CommonIRQHandler(CM4_0__LPI2C, LPI2C_GetInstance(CM4_0__LPI2C));
+}
+#endif
+
+#if defined(CM4__LPI2C)
+/* Implementation of CM4__LPI2C handler named in startup code. */
+void M4_LPI2C_DriverIRQHandler(void)
+{
+ LPI2C_CommonIRQHandler(CM4__LPI2C, LPI2C_GetInstance(CM4__LPI2C));
+}
+#endif
+
+#if defined(CM4_1__LPI2C)
+/* Implementation of CM4_1__LPI2C handler named in startup code. */
+void M4_1_LPI2C_DriverIRQHandler(void)
+{
+ LPI2C_CommonIRQHandler(CM4_1__LPI2C, LPI2C_GetInstance(CM4_1__LPI2C));
+}
+#endif
+
+#if defined(DMA__LPI2C0)
+/* Implementation of DMA__LPI2C0 handler named in startup code. */
+void DMA_I2C0_INT_DriverIRQHandler(void)
+{
+ LPI2C_CommonIRQHandler(DMA__LPI2C0, LPI2C_GetInstance(DMA__LPI2C0));
+}
+#endif
+
+#if defined(DMA__LPI2C1)
+/* Implementation of DMA__LPI2C1 handler named in startup code. */
+void DMA_I2C1_INT_DriverIRQHandler(void)
+{
+ LPI2C_CommonIRQHandler(DMA__LPI2C1, LPI2C_GetInstance(DMA__LPI2C1));
+}
+#endif
+
+#if defined(DMA__LPI2C2)
+/* Implementation of DMA__LPI2C2 handler named in startup code. */
+void DMA_I2C2_INT_DriverIRQHandler(void)
+{
+ LPI2C_CommonIRQHandler(DMA__LPI2C2, LPI2C_GetInstance(DMA__LPI2C2));
+}
+#endif
+
+#if defined(DMA__LPI2C3)
+/* Implementation of DMA__LPI2C3 handler named in startup code. */
+void DMA_I2C3_INT_DriverIRQHandler(void)
+{
+ LPI2C_CommonIRQHandler(DMA__LPI2C3, LPI2C_GetInstance(DMA__LPI2C3));
+}
+#endif
+
+#if defined(DMA__LPI2C4)
+/* Implementation of DMA__LPI2C3 handler named in startup code. */
+void DMA_I2C4_INT_DriverIRQHandler(void)
+{
+ LPI2C_CommonIRQHandler(DMA__LPI2C4, LPI2C_GetInstance(DMA__LPI2C4));
+}
+#endif
+
+#if defined(ADMA__LPI2C0)
+/* Implementation of DMA__LPI2C0 handler named in startup code. */
+void ADMA_I2C0_INT_DriverIRQHandler(void)
+{
+ LPI2C_CommonIRQHandler(ADMA__LPI2C0, LPI2C_GetInstance(ADMA__LPI2C0));
+}
+#endif
+
+#if defined(ADMA__LPI2C1)
+/* Implementation of DMA__LPI2C1 handler named in startup code. */
+void ADMA_I2C1_INT_DriverIRQHandler(void)
+{
+ LPI2C_CommonIRQHandler(ADMA__LPI2C1, LPI2C_GetInstance(ADMA__LPI2C1));
+}
+#endif
+
+#if defined(ADMA__LPI2C2)
+/* Implementation of DMA__LPI2C2 handler named in startup code. */
+void ADMA_I2C2_INT_DriverIRQHandler(void)
+{
+ LPI2C_CommonIRQHandler(ADMA__LPI2C2, LPI2C_GetInstance(ADMA__LPI2C2));
+}
+#endif
+
+#if defined(ADMA__LPI2C3)
+/* Implementation of DMA__LPI2C3 handler named in startup code. */
+void ADMA_I2C3_INT_DriverIRQHandler(void)
+{
+ LPI2C_CommonIRQHandler(ADMA__LPI2C3, LPI2C_GetInstance(ADMA__LPI2C3));
+}
+#endif
+
+#if defined(ADMA__LPI2C4)
+/* Implementation of DMA__LPI2C3 handler named in startup code. */
+void ADMA_I2C4_INT_DriverIRQHandler(void)
+{
+ LPI2C_CommonIRQHandler(ADMA__LPI2C4, LPI2C_GetInstance(ADMA__LPI2C4));
+}
+#endif